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Abstract. A typical microarray experiment yields the expression level of a large
number of genes for a small number of samples. Given a classification of the
samples, the goal of feature selection is to identify a small subset of relevant
genes, which are differentialy expressed for different sample classes. We present
a new method for feature selection that combines a solution for the Min (o, 3)-
Feature Set Problem and a clustering algorithm, the Arithmetic-Harmonic Cut
to robustly identify relevant features. We apply our method to the NCI60 cancer
dataset and evaluate the effectiveness and performance of the new algorithm for
the classification of cancer cell-lines.

1. Introduction

Microarrays are useful for obtaining the expression levels of a great amount of genes
simultaneously. Selecting correlated genes from the output of a microarray experiment
according to a selected phenotype can help scientists to better understand how to cure or
prevent diseases. However, reaching this selection is not a trivial task due to the small
number of samples and the huge quantity of genes involved in these experiments. This
task can be seen as a feature selection problem since we want to select a subset of elements
that better classifies the samples into two or more categories according to some feature.
In bioinformatics, usually, this subset are genes, the samples are people and we want to
find out which genes are better to show which samples present some special characteristic
(feature) such as a disease. The Min («,3) Feature Set Problem [Cotta et al. 2006] is a
special case of feature selection problem. In [Cotta et al. 2006] an implementation using
integer programming presented good results even with large datasets. The drawback is
that this model does not consider correlations between gene expression levels. We propose
a hybrid approach, first proposed in [Machado 2008] and later improved in [Merode 2008]
which combines a solution for the Min («,3) Feature Set problem, and a (bi-)clustering
technique, called the Arithmetic-Harmonic Cut [Mahata et al. 2006]. The Arithmetic-
Harmonic Cut ranks selected features according to their correlation, and therefore the
combined method is able to select a small feature set better than using only a algorithm
that solves the Min («,3)-Feature Set. The rest of this paper is organized as follows:
Sections 2 explains the Min («,3)-Feature Set Problem. Section 3 presents the Arithmetic-
Harmonic Cut clustering procedure. Section 4 presents our combined approach to feature



selection based on these techniques. In Section 5 we validate our approach experimentally
on the NCI60 cancer dataset. Final remarks are made in Section 6.

2. Min (a,3)-Feature Set Problem

We illustrustrate the feature selection problem on the example of a discretized gene ex-
pression level matrix given in 2 (b) and represented as the graph in 2 (a), where each pair
of samples of different classes is shown as a circular node on the left side, each gene as a
squared node in the middle and each pair of samples of the same class as a circular gray
node on the right side. We draw an edge between a circular node and a gene, if the gene
is differentially expressed for this pair of samples. Moreover, we draw an edge between a
circular gray node and a gene if this gene is equally expressed for this pair of samples.
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Figure 1. (a) is a graph modeling the expression levels in (b)

In the Min («,3)-Feature Set, it is required that each pair of genes from different
classes is adjacent to at least a number « of genes. Analogously, it is required that each
pair of genes from same class must be adjacent to at least a number of 3 genes. Therefore,
each difference is witnessed by a number of « differentially expressed genes and each
similarity is witnessed by a number of 3 genes. In other words the Min («,3)-Feature
Set Problem is the problem of finding the minimum number of genes that satisfies «
and (§ parameters. In our example, notice that for a value of « = 1 and = 1, one
possible solution is the set of nodes B, C' and F’ since they would be enough to cover all
pairs of samples. It easy to see that & and 3 parameters will be higher as the number of
selected genes increases. Thus, these a and 3 parameters must be chosen criteriously. If
the parameters are too high, too many genes are selected and in case they are small, the
results may be not reliable.

3. Arithmetic-Harmonic Cut

Arithmetic-Harmonic Cut is a clustering technique proposed in [Mahata et al. 2006]. In
this work, the authors pose the clustering problem as a graph optimization problem and
propose a novel objective function which performs very well in diverse types of datasets.
An Arithmetic-Harmonic cut of an undirected, weighted graph is a bi-partition of the
vertex set which maximizes the product of the sum of the weights of the edges between



the partitions, and the sum of the reciprocals of the weights of the edges inside them. The
arithmetic-harmonic cut maximizes

(ze)zh) o

ec Eout

where w(e) is the weight of an edge e. An edge e pertains to E;,, when it links two nodes
that are in the same partition. In the same way, an edge e pertains to E,,; when it links
two nodes that are in different partitions. Maximizing F tends to keep edges with small
weights inside the clusters, and edges with high weights between them, since its sums the
reciprocals of intra-cluster and multiplies this by the sum of the weight of inter-cluster
edges As observed in [Mahata et al. 2006], this objective function can be rewritten as

Aout

Hin
where A,,; corresponds to the arithmetic mean of weights of edges that connect vertices
from different clusters, H, is the harmonic mean of weights of edges that connect vertices
from the same cluster. This rearranged function shows more explicitly that we are using
the harmonic mean, which is more robust and less sensitive to the presence of outliers.
It is a NP-hard problem [Rizzi and Moscato ] and the recursive application of such cuts
generates a tree-based classification of the data.

F = |Ein||Eout|a (2)

4. The new approach

This new approach was suggested in [Merode 2008], and is an improvement to the ap-
proach shown in [Machado 2008]. Although solutions for the Min («,3)-Feature Set
problem make good choices of genes, this method can still be more robust. To achieve
it, we need another measure that helps to increase the reliability of gene selection. One
possible measure is the correlation between genes. Since the Arithmetic-Harmonic Cut
value of each solution is based on correlations, it is interesting to combine it with ap-
proximated solutions for the Min («,3)-Feature Set Problem. Because both problems are
NP-complete, we use an evolutionary algorithm defined as follows:

e Each solution is codified as vector of bits, where each bit corresponds to a gene If
the bit is on, it is a selected gene, otherwise non selected.

e Tournament of three solutions is used as selection criterium.

e Mutation flips 10% of the bits in 0.7% of the total population of genes at each
generation.

e Crossover is defined as follows: if both parents have same bit value, this value is
inherited by the child. Otherwise the new solution has 60% of chance of inheriting
the bit from the most capable parent.

We maximize the following objective function:

F ola+3/2) G, (3)

where F is the Arithmetic-Harmonic Cut as defined in equation 1 applied just to the se-
lected genes in the following way: one partition is the set of genes that presents a feature



and the other partition genes that does not. We use as correlation a dissimilarity measure
calculated as the the normalized Euclidean distance among the expression levels of the
genes. Observe that the method does not depend on the this particular measure, and we
could use Pearson or Spearman correlation based measure as well. « and 3 are the same
used in the solutions for the Min («,3)-Feature Set Problem. As can be seen, we give less
value to (3, since our main goal is to discriminate samples. ¢(x) is an auxiliary function
defined as:

p(z) =

0.25 if x is equal to zero
x otherwise

It is used to avoid F to be zero when o + (3/2 = 0, permitting that the solutions can
still be evaluated by the rest of the criteria. We chose 0.25 in the ¢ (z) function because
it is half of the smallest non-zero value that can occur in the expression « + (3/2, which
appears when o = 0 and 3 = 1. G is the mean of the GSRobust for the selected genes
as proposed in [Zheng et al. 2006]. The GSRobust of a gene ¢ is a function defined in the
following way:

M AD[median(g;1), ..., median(g;,)]

2?21 MAD(gij) ’
where G'; is the vector of expression levels of gene ¢ in class j, n is the number of classes
and M AD(x) is

G; = 4)

MAD(z) :=1/n Y |a; — p(x)|. 5)
1<i<n

G helps to limit the number of selected genes, since it increases when less genes are se-
lected. It was also implemented a best improvement local search where the neighborhood
is composed of all solutions that is different just by one bit. However,this local search
is applied in the current solution when occurs 10 generations without any improvement.
The stop criterium is reached when no enhancement happens after the application of the
local search. It is used three constructive heuristics in order to generate a better initial
population. In the first one, it is applied the GSRobust in each gene, then it is selected just
the ones that satisfies G; > G + 30 where o is the standard deviation of G;. The second
one is to rank the genes by the number of samples it can discriminate. Then the genes
are chosen to go to the initial population until a percentage of the maximum « is reached.
The same procedure is done for the  value. The third constructive heuristic selects all
as eligible for the initial population all the genes that satisfy d,,; > nd;, where d,; is
the mean absolute difference among the expression levels of the gene in the samples of
different class, and d;, is the mean absolute difference among the levels of expression in
the samples of same class. n is a constant set as two since it show better results in tests.
The initial population is composed of 500 possible solutions. One half of the population is
generated from the constructive heuristics mentioned and the rest is generated randomly,
but the number of selected genes is equal or less to the mean of selected genes in the
population generated using the constructive heuristics.

5. Results

[Ross et al. 2000] introduced an important dataset for the molecular classification of dif-
ferent types of cancer. We are working with a dataset available on the authors web-



site supplement known as NCI60. We have first completed all missing values for the
NCI60 dataset using the LSImpute algorithm recently introduced in [Bg et al. 2004].
After that, we applied our new approach on the same five different types of cancer cells
that were used in [Berretta et al. 2005]: Renal (RE), Ovarian-like (OV), Leukemia (LE),
Colon (CO) and Melanoma (ML). We compare each type of cancer cell against all others,
1.e. we choose one type of cancer cells and try to select the genes that discriminate well
this type of cancer cells. For example, if we want to find the group of genes that best dis-
criminates Leukemia cells, we put all the samples containing Leukemia cells in one group,
and all other samples in the other. After selecting the relevant subset of genes, we gen-
erate heatmaps. Bright red color means highly expressed genes and bright green means
under expressed genes. Darker colors mean no difference in the level of expression.The
obtained results were very satisfactory. The evolutionary algorithm could improve the al-
ready good initial solutions, according both to the evaluation function and heatmap. Table
1 below shows some further information about the results.

’ \ Generation \ time(s) \ a(max possible) \ [(max possible) \ Selected Genes ‘

Renal 612 15269.44 18(24) 10(26) 238
Ovarian 675 19142.20 11(16) 12(27) 225
Leukemia 700 26048.27 38(49) 12(26) 336
Colon 659 18592.66 15(16) 8(26) 304
Melanoma 411 11827.10 38(53) 10(26) 336

One may notice that the o and 3 values obtained by the evolutionary algo-
rithm were not the maximum. This was expected since the algorithm is a tradeoff
between correlation and high « and [ values. Below there are the heatmaps for Re-
nal Cancer and Melanoma. It can be easily seen in the first heatmap that the ini-
tial columns, which are the samples affected by Renal Cancer stand out from the rest
of the data. Analogously occurs in the Melanoma heatmap, where the affected sam-
ples are the last five columns. Heatmaps for other types of cancer are available at
www.inf.ufrgs.br\~mmachado\heatmaps.

Figure 2. Heatmaps for Renal Cancer(a) and Melanoma(b)



6. Conclusions

In this work we presented a new evolutionary algorithm for selection of genes from mi-
croarray data. This algorithm is based on the Min («,(3)-Feature Set Problem and the
Arithmetic-Harmonic Cut. Since microarray data has outliers, it is important to use ap-
proaches that give good selections in order to permit scientists to more accurately find the
connection between a disease such as cancer and the respective gene expression profile.
As the results show, the intuition that if we optimize for a better clustering between the
selected and not selected genes, even accepting a reduced number of genes discriminating
or confirming differences indeed, give better results In other words, if we permit o and
{ to be lower than the maximum possible but also considering the Arithmetic-Harmonic
Cut, we may find more robust solutions that yet discriminate well samples.
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