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Abstract

The Internet is divided into Autonomous Systems, which @rtheir intra-domain traffic by
using interior gateway protocols. The most common proteseld today is Open Shortest Path
First (OSPF). OSPF routes traffic on shortest paths defineidtbger link weights. The weight
setting problem is to find weights that optimize the resgltiaffic, for example to minimize network
congestion. A recently proposed protocol called DistelduExponentially-weighted Flow Splitting
(DEFT) sends flow on non-shortest paths, with an exponepeiadlty for longer paths. Since these
problems are hard to solve exactly, several heuristics baea proposed. We propose a parallel,
multi-deme version of a memetic algorithm to solve the wegghlting problem in DEFT. It consists
of a shared memory parallelization of the (single deme) ntienaégorithm, as well as instances of
the memetic algorithm running in parallel, and migratinu§ons among populations according to
the island model. Computational results show a reducti@xe€ution time, and an improvement of
solution quality compared to the original memetic algarith

1 Introduction

The Internet is divided into Autonomous Systems (ASs). EaShcontrols its interior routing by an
interior gateway protocol. Common interior gateway protsgcfor instance Open Shortest Path First
(OSPF), allow the operator to define the routes by settinggant weights on the network links. For a
given protocol, the problem of finding weights which optimigome objective function, such as total
network congestion, link utilization, or latency, is callthe weight setting problemIn this article we
focus on the current standard OSPF and a recently propos&stpl called Distributed Exponentially-
weighted Flow Splitting (DEFT) [21].

Fortz and Thorup showed that the weight setting problem f8PBP is NP-hard and proposed a
heuristic solution using tabu search [¥, 8]. Several astiave proposed further heuristics solutions,
including genetic algorithms |[6], memetic algorithms [2hd simulated annealing [13]. Some of the
best results for OSPF have been obtained by Tabu searchd @ mmemetic algorithm [2].

For DEFT, Xu et al.[[21] designed a heuristic two-stage tieeamethod, based on non-linear, non-
smooth optimization, considering real weights. It is qulifficult to parallelize this method, since the
solution technique is a modified primal-dual interior pdihier line search([19]. Recently, Reis et al. pro-
posed a memetic algorithm [15] for DEFT considering integeights. In the comparison results of that
paper, the authors show that, using identical availableuress, int-DEFT produces less network con-
gestion than OSPF routing does. However, int-DEFT prodsoksions with longer path lengths, larger
percentage of intermediate nodes, and larger number of patiese are all undesirable characteristics
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since a link failure will result in a larger expected numbgaffected O-D demand pairs. In a further pro-
posal, Xu et al..[20] proposed a new link-state protocolechPEFT, which also considers real weights
and splits traffic over multiple paths with an exponentialadey on longer paths, as DEFT does.

In this article, we consider the algorithm proposedLin [15d study to what extent multiple pop-
ulations and parallelization can improve solution quadityd reduce execution time compared to the
sequential approach.

A genetic algorithm (GA), as first proposed by Holland [11plees a single population. A variation,
which makes the model more realistic, is a multi-deme GA.eere let evolve multiple populations
(demes) almost independently, and migrate individualsvbeh demes to provide a weak interaction.
From an evolutionary point of view, the model correspondsunctuated equilibria or almost separately
evolving “islands”. For an overview of multi-deme approasiwe refer the reader ta [1]. The topology,
frequency and rate of the migration has a strong influencé@performance of this approach [4].

There are two widely-used approaches to parallel genagmrigthms [1, 3]. In the single-deme ap-
proach, we can maintain a single global population, andllgiiza central operations, such as fitness
evaluation and crossover with local search, to speedupxtheudon. In genetic algorithms these are
usually light-weight operations, which are executed saviémes. This leads to a fine-grained paral-
lelism, well-suited for a multi-threaded implementatiam shared memory machines. For a speedup on
distributed memory machines, the parallelism has to becsgefily coarse. This is usually achieved by
a Master-Slave scheme, where a master repeatedly dissilpatrts of the population to all machines,
which execute some operations in parallel, and the magemmairds collects the results.

The multi-deme variant of a genetic algorithm already hasase-grained structure with several
populations, and limited interactions between them. Thegeit has less communication demands and
is better suited for a parallelization, especially on distied memory machines (some authors call this a
“distributed” genetic algorithm).

In this paper we study the single-deme and multi-deme viariaha memetic algorithm for the
weight setting problem, both in a sequential and a paraihglléementation. The execution has been
parallelized on two levels. A shared memory parallelizatipeeds up the evolution of a single deme,
and a distributed memory parallelization allows multipéartes to evolve in parallel.

The remainder of this paper is organized as follows. In 8a&iwe introduce the protocols OSPF
and DEFT. Next, in Sectidd 3, we briefly present the MA propdse solving the weight setting problem
in OSPF and DEFT. In Sectidn 4, we detail the parallelizatibthese two algorithms. The computational
results of the parallel, multi-deme version are summarizedkctior . Finally, Sectidn 6 presents some
conclusions, as well as possible future investigations.

2 The OSPF and DEFT protocols

LetG = (V, E) be adirected graph with link capacities,, andD a demand matrix wherB;; denotes
the traffic demand from source nodéo destination nodg, for 1 < i,j < |V|. LetT = {v | Dy, > 0}
be the subset of nodes that are the destination of at leasteznand pair.

The multi-commodity routing problem is to find flowfs ,, which satisfy all demands and minimize
the total link utilization

minimize Z O (fuw, Cuw) (1)

(u,v)EE

where ® is a link cost function. A typical choice fob is the piece-wise linear function shown in
Figure[1 [7/3].

Let f , be the flow on link(u,v) destined to node¢. Then any resulting flow must respect the
constraints of flow conservation at intermediate nodest

oo fho= D fhu=Du 2)

(u,v)eE (vyw)eE
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Figure 1: Link cost depending on the link utilization far, , = 1.

and the individual flow aggregation

fu,v = Z fzi,v' (3)

teT

Since the objective function and all constraints are linearcan find an optimal solution by solving
the linear program OPT given by Eqsl (1), (2), and (3) togethth the trivial constraints

0 < fr000 < fupe (4)

The solution of OPT is called fractional multi-commodityviloouting. This kind of routing is not
employed in practice, since it is difficult to implement arahdead to long paths and small link loads.
Since OPT has no routing constraints, its solution servaed@ser bound for practical routing protocols.

In OSPF the flow is determined using integer weights, € [0,2'® — 1] on each link. The routers
exchange information about the links, including their virdg Each router uses these weights to compute
the shortest paths to all destinations. It then distribateggoing traffic destined to a nodequally among
all outgoing links on shortest paths havihgs destination.

DEFT relaxes this constraint. It allows real weights, € R and distributes the flow amongst all
outgoing links whose next node is closer to the destinationks which are not part of a shortest path
receive a flow which decreases with exponential penaltielofmer path lengths. Formally, lef be the
distance from nodeto destinatiort, and leth!, , = di, + w,, — di, be the distance gap of using the link
(u,v) compared to the shortest path. Then, the non-normalizéit tir@ction I" for link (u, v), directed
to t, is calculated as

—ht e gt t
e Muwe it dl, > d)

r'(hy,,) = . (5)
0 otherwise

and the fraction of the total roW(hfw)/zv:(u’v)eE I'(nt, ) is calculated for each outgoing link
(u,v) of u. According to [21], in terms of total link cost and maximuniliaation, there always exists a
weight setting such that DEFT is better than OSPF.

Finding such weights, on the other hand, i.e. solving thayiatesetting problem optimally for these
protocols is difficult. For example, finding the weights miizing link utilization in OSPF is NP-
hard [7].
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3 A memetic algorithm for the weight setting problem

In this section we describe briefly the memetic algorithnmvionasly proposed in the literature to solve
the weight setting problem for OSPF and DEFT. More detaitslmafound inl[2, 15].

A memetic algorithm, or hybrid genetic algorithm, is a gémelgorithm augmented with a local
search procedure to speedup the search by improving caadidlutions locally. In this context, a
solution is called arindividual, each element of the solution isggene a set of individuals is called a
population and each iteration of the algorithm is calledy@neration It is a populational method in
which, during each iteration, individuals are combineatiyh a crossover procedure for generating new
individuals that will form the next generation. The algbnit runs for a number of generations, aiming to
improve the quality of solutions. Each solution is evalddig an objective function that, in this problem,
is to minimize the network congestion.

In our approach, each individual is represented by a vedtarcoweights. The population is struc-
tured into three classes, according to their fitness, asplicgiosed by Ericsson et al.| [6] in a genetic
algorithm for OSPF routing. Clasd contains the bes?5% of the individuals, clas€§ is composed
by the 5% less profitable solutions, and the remaining populationapes to class3. The solutions
from classA pass directly to the next generation. The solutions frorastlaare replaced by new ones
randomly generated. The remaining solutions are replageslotions generated by the crossover pro-
cedure between a random parent from cldsand another from séf U C.

The crossover operator is a random key scheme that presi{given70% of chances) genes from
parents in clasgl. With a small probability ofi%, the child inherits a completely random allele at some
given gene. We apply a local search on each solution geddpgita crossover operator. This procedure
is the computationally most expensive operation of the @sed MA. It examines the effect of increasing
the weights of a subset of arcs. These candidate arcs aptesblmong those with the highest routing
costs according t@ function, and whose weight do not exceed the maximum allowiedreduce the
routing cost of a candidate arc, the local search attemptgtease its weight to induce a reduction on
its load. If this leads to a reduction in the overall routirgt; the change is accepted, and the procedure
is restarted. This procedure executes consecutive soletialuations, that are expensive computational
operations in this problem. To speedup this process, giweeight change, the shortest path graphs, as
well as the flow allocation, are only updated, instead of mgmated from scratch. Updating, instead of
recomputing from scratch, makes this procedure about léstiaster.

The solution evaluation is the second most expensive aperaf the proposed MA in terms of
computational time. Given a set of integer weights, a skbgath grapiG! is computed, as well as the
routing (flow allocation), for each destination node T'.

We apply the same memetic algorithm for the DEFT protocofngfing the evaluation procedure
according to Equation] 5. While OSPF splits the flow of eacheno@venly among all outgoing links
on shortest paths with destinationDEFT splits the same load amomdl outgoing links(u, v) that
approach, i.e.,d!, > d!. Moreover, the load split is not equal among all links as iNiOSPF. As a
consequence, changing the weight of an arc has a larger tinmpR&FT, which increases considerably
the computational effort in the dynamic flow calculation.

4 A parallel multi-deme variant of the memetic algorithm

In this section we describe a parallel, multi-deme varidrauw memetic algorithm for the weight set-
ting problem. The motivation for the multi-deme variant agsstudy whether it improves the solution
quality, compared to the single-deme variant. The goal efghrallelization is to speedup execution
or, equivalently, obtain better results in the same amofitine. Another minor goal was to keep the
parallelization portable to a wide range of architectuceavioid the tedious task of adjusting the paral-
lelization strategy for the hardware on which it is executed

In a multi-deme GA, the migration operator is defined by a atign interval, a migration rate, a
selection and replacement policy, and the migration tapolf&, [18]. The migration interval defines
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when migration happens, and is usually a fixed number of géioes. The migration rate determines
the number of migrants. Most commonly, this is a fixed pe@gator number of individuals. According
to the selection and replacement policy, the migrants avsarihfrom the source deme and integrated into
the destination deme. Typical policies are random or fitlesed, e.g. migrating the best individuals
and substituting the worst at the destination. A furthefawpis to clone the migrants, or actually move
them (termed immigration - resp. emigration by some aujhditse possible destinations can be modeled
by a directed graph, whose vertices represent the demesdde(e,v) of this graph connects deme

to v, if migration fromw to v is possible. Frequently, migration topologies are low-glisional grids
(including cycles) and complete graphs [1]. From the pdssilestinations, we can choose one or more
at random or employ some other scheme, for example a round-ddstribution.

Our multi-deme MA uses a (logical) unidirectional ring téggy. We found little evidence on the
influence of the migration topology on the solution qualitgahose this topology, since the few studies
available seem to indicate that the migration topology bas importance than other parameters [5]. The
selection policy is to choose the fittest individuals. Thglaeement policy, the migration interval, and
the migration rate have been determined experimentally rifs&t section).

To decrease execution time, we use a hybrid parallelizatibwich combines a shared memory and a
distributed memory parallelization [12,/16]. The sharedmogy parallelization speeds up the evolution
of a single deme, by executing the main steps of the gengfaritim with multiple threads. This has
been applied to solution evaluation, mutation, crossomdrlacal search, the latter being the most time-
consuming operation of the algorithm. All these operatioas be done efficiently in a data-parallel
fashion without synchronization between the threads. it has been implemented with OpenMP, a
high-level API for multi-threaded programming._[14]. Thember of threads created by OpenMP can
be easily tuned to the processor architecture to achievgtamal performance.

The distributed memory parallelization applies to the irddime variant of the genetic algorithm.
Each population is assigned to one computing node, which ecoagist of multiple processors, and
uses the shared memory parallelization to evolve the logailifation. Migration uses message-passing
between the nodes to send and receive the individuals. THadlgdaation has been implemented using
Transmittable Parallel Objects (TPO+i#)[9, 10], an objaieénted communication library on top of the
Message Passing Interface (MPI). TPO++ simplifies pargllegramming on distributed machines in
C++.

The overall communication structure is shown in Figure 2tlie example of four populations.

| TPO++

Z0 uone|ndod )

Population 01

Population 04

| TPo++

Figure 2: Structure of the hybrid parallelization with fguopulations. The dashed lines indicate the
thread-level parallelism, the black arrows indicate thg4$hift communication based on TPO++.
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5 Computational Results

We conducted a number of experiments to measure the effiettts bybrid parallelization on execution
time and solution quality. From the instances availablehm literature[8, 21], we have chosen four
for our tests, as described in Table 1. Each instance defingsmaand pairs in the network. Since the
difficulty of solving the weight setting problem increaseighwthe total demand, we have scaled the basic
demands of each instance by factor$dd and12.

Table 1: Instances used in the computational experiments.

Name Instance Nodes Links Capacities
hi er 50a 2-level hierarchy 50 148 200,1000
hi er 50b  2-level hierarchy 50 212 200,1000

rand50  Random topology 50 228 all 1000
rand50a Random topology 50 245 all 1000

We conducted three sets of experiments for analyzing thdtsesThe first set had the purpose of
defining the parameters to be used in the following experimérhe other two experiments analyzed the
speedup of the shared memory parallelization on a fourgssmr, and the speedup of the multi-deme
parallel implementation. The experiments are reporteiéemiext sections.

5.1 Parameter setting

In a preliminary experiment, we chose instafdeer 50a with a scale factor ofl2 to determine the
migration rate, the migration interval, and the replacenpaticy. In this experiment we have usdd
populations ofl00 individuals and report the optimality gap aft&h generations (for this instance the
algorithm achieves convergence with 50 generations). ‘\&tedemigration intervals of, 2, 5 and 10
iterations, and migration rates bf5 and10 percent of the population. We also compared three different
replacement policies: immigration, replacing worst editdutions, immigration, replacing worst global
solutions and emigration, replacing worst elite solutiofbe result of these experiments are shown in
Figured B t& b. The immigration replacement strategiesdutrio perform better than emigration. When
using immigration, replacing elite solutions gives bettsults than replacing globally worst ones. For
both cases of immigration, we found that migratiri§o of individuals with a small number of iterations
yielded the best results. We therefore chose to migi@®e of the individuals every second iteration in
the remaining experiments.

19

T T
1% migrants —+—
5% migrants ---x---
18 y 10% migrants % |

17

16

15

14

Optimality gap [%)]

13

12

11

10 Lo

9

1 2 3 4 5 6 7 8 9 10
Migration rate [iterations]

Figure 3: Optimality gap as a function of migration rate arignation interval and immigration replacing
worst elite solutions.
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Figure 4: Optimality gap as a function of migration rate arignation interval and immigration replacing
worst global solutions.
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Figure 5: Optimality gap as a function of migration rate arignation interval and emigration replacing
worst elite solutions.

5.2 Shared memory parallelization

In our first main experiment we measured the speedup of thedmaemory parallelization on a four-
processor AMD Opteron 275, withGB main memory running &2 GHz. We compared three different
OpenMP loop scheduling strategies for the parallelizatibthe crossover and subsequent local search,
which is the most time-consuming operation. Using statieedaling the loop iterations are distributed
block-wise and evenly among all threads. The dynamic 8igions repeatedly assign smaller blocks of
1 and3 contiguous iterations to each idle thread, until all itenad have been completed.

Figure[® shows the speedup for the three different scheglslirategies. All data points are the
average over three executions. Clearly, all three scheglglirategies achieve good speedups of about
three with six processors. The dynamic scheduling with Emalock-size reaches this speedup first,
with only four processors, and shows less variation thamther strategies. Since the execution time of
each local search can be different, a fine-grained load bialguseems to be the best strategy. Increasing
the number of threads above six does not improve the resutigh indicates that the speedup is not
limited by some of the threads idling, but a not parallelipagt of aboutl0% of the executed code.

5.3 Distributed-memory paralléization

Our last set of experiments is designed to quantify thetyitilf a multi-deme parallel GA compared to
the single-deme - sequential GA, given the same amount df ¢leak) execution time. We measured
the improvement of the solution quality as a function of thenber of populations. Each population has
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Figure 6: Speedup of the multi-threaded memetic algorithra éour-processor SMP machine.

100 individuals, so the total population size is increasinghwitite number of populations.

The experiments have been conducted on the bwGRID [17],al@lesomputing grid consisting of a
total of 498 nodes, each with two Intel Xeon E5540 processors runnirrg8atGHz, and equipped with
16 GB of main memory. The machine can communicate over GigaberBet and InfiniBand. In our
tests we used the faster InfiniBand network.

We varied the number of populations fromto 256. To speedup the execution, each population
evolves locally in parallel using threads, but to quantify only the effect of the number of pations,
we held the number of generations constaraoat

Figures 7-8 show the best solution found over all populatasa function of the number populations,
forinstancesi er 50a, hi er 50b,r and50 andr and50a, respectively. The solution values are given
as the optimality gap in percent above the theoretical aptirras determined by the linear program OPT
described in Sectidn 1.

In all four instances and three demand levels, the solutitity improves with an increasing number
of populations. The improvements are more significant fetances with a higher total demand, and
range from a small absolute improvement0of% for instancehi er 50a/06 up to100% for instance
rand50a/12. Since the instances with a smaller total demand areleinbp optimize the absolute
improvement with a larger number of populations is lescaldie. In almost all instances, the solution
quality did not improve significantly with more thd28 populations.

hiers0a/6 —— hier506/6 ——
hier50a/9 ---x—- i hiers0b/9 ---x-—-
hier50a/12 -—--- ! hier50b/12 -~
35k

30

25

20 f:

Optimality gap (%)
Optimality gap (%)

0 50 100 150 200 250 300 0 50 100 150 200 250 300
# of populations # of populations

Figure 7: Solution quality as a function of the number of gdapians for instancéni er 50a (left) and
hi er 50b (right).
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Figure 8: Solution quality as a function of the number of dapans for instance and50 (left) and
r and50a (right).

6 Conclusions and future work

We have studied two improvements of a memetic algorithm Herweight setting problem in OSPF
and DEFT: a multi-deme variant of the algorithm as well asareth-memory and distributed-memory
parallelization.

We have shown that a good per-population speedup can bevedhidgth a shared memory paral-
lelization using OpenMP. Parallelization of the princifmdps of the memetic algorithm can speedup the
evolution of a single population by a factor of upito.

The multi-deme, distributed memory parallelization basedMPI has improved the result quality
for all tested networks. Our parallelization allows the neéimalgorithm to increase the number of par-
ticipating populations up to the number of available maekinThe memetic algorithm could improve
the solution quality consistently with the number of popiolas, although, in the tested instances, the
improvement abové28 populations is only marginal. In a hybrid execution modenbming shared-
memory and distributed-memory we can optimally use a lalggsaf parallel machines, reducing exe-
cution time and improving result quality.

As future work, we intend to test some other communicatigologies with the aim of obtaining
more benefit of the exchanged solutions among populations.eXgect not just to increase solution
quality, but also to reduce the time that the algorithm needsonverge. Furthermore, we intend to
perform more detailed parameter studies to examine theslmelad the algorithm with more generations,
different population sizes, and more complex network gsaph
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