
On the Smoothed Price of Anarchy of the Traffic
Assignment Problem
Luciana Buriol1, Marcus Ritt1, Félix Rodrigues1, and Guido
Schäfer2

1 Universidade Federal do Rio Grande do Sul
Informatics Institute, Theoretical Computer Science Department
{buriol,mrpritt,fcrodrigues}@inf.ufrgs.br

2 CWI Amsterdam
Algorithms, Combinatorics and Optimization Group
g.schaefer@cwi.nl

Abstract
We study the effect of perturbations on the Price of Anarchy for the Traffic Assignment Problem.
Adopting the smoothed analysis approach, we randomly perturb the latency functions of the
given network and estimate the expected Price of Anarchy on the perturbed instances. We
provide both theoretical and experimental results that show that the Smoothed Price of Anarchy
is of the same order of magnitude as the original one.

1998 ACM Subject Classification G.2.2 Network Problems

Keywords and phrases Traffic Assignment Problem, Smooth Analysis, Price of Anarchy

1 Introduction

The Traffic Assignment Problem [5, 12] models applications in which traffic participants
(also called users) choose routes in a given road network so as to minimize their individual
travel times. Each arc of the network has an associated latency function that expresses the
flow-dependent delay that users experience if they travel along that arc. The goal of every
user is to choose a path from his origin to his destination such that the total delay to travel
along this route is minimized. Because the delay of each user also depends on the choices
made by the others, this problem can also naturally be interpreted as a strategic game in
which players (users) compete for resources (roads) and every player acts selfishly in the
sense that he attempts to choose a route of minimum delay.

Wardrop’s first principle of equilibrium [12] states that each user seeks non-cooperatively
to minimize his own travel time. A route assignment satisfying this first principle is also
called a Wardrop equilibrium or user equilibrium (see Section 2 for formal definitions). Said
differently, in a Wardrop equilibrium no user has an incentive to switch to another path
because he travels along a shortest latency path from his origin to his destination. Wardrop’s
second principle of equilibrium [12] states that all users cooperatively choose their routes in
order to minimize the average travel time of all users. A route assignment satisfying this
second principle is called a system optimum. That is, a system optimum corresponds to
the best possible route assignment that one could enforce if a global authority were able to
control all users, regardless of their interests. It is a well-known fact that selfish route choices
may lead to suboptimal outcomes (see, e.g., [4]).

In recent years, the study of the inefficiency of equilibria has received a lot attention. The
Price of Anarchy (PoA) [8] is an inefficiency measure that refers to the maximum ratio (over
all possible input instances) of the cost of a worst possible equilibrium outcome and the cost

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Smoothed Price of Anarchy of the Traffic Assignment Problem

of an optimal outcome. In a seminal work, Roughgarden [9] analyzed the Price of Anarchy of
the Traffic Assignment Problem and revealed that it is independent of the network topology
and only depends on the type of latency functions. For example, for polynomial latency
functions of degree at most p the Price of Anarchy grows like Θ(p

ln p). Researchers have
investigated several “mechanisms” to reduce the Price of Anarchy for the Traffic Assignment
Problem. One such example is the use of road tolls (see, e.g., [2, 7]).

In this paper, we start the investigation of the Smoothed Price of Anarchy of the Traffic
Assignment Problem. Our motivation originates from the observation that in practical
applications delays are hardly ever exact but usually subject to (small) fluctuations. Such
fluctuations might be caused by various reasons such as roadworks, accidents, weather
conditions, varying driver behavior, etc. In our studies we adopt the smoothed analysis
approach introduced by Spielman and Teng [11]. The idea is to perturb each input instance
by adding some random noise to the latency functions and to study the Price of Anarchy
on the perturbed instances. The hope is that the Smoothed Price of Anarchy of the Traffic
Assignment improves quickly as the magnitude of random perturbation increases. Such a
result would provide some evidence that the worst-case point of view adopted in the studies
of the Price of Anarchy is overly pessimistic in the context of the Traffic Assignment Problem.
In a way, it suggests that the (high) Price of Anarchy is due to artificial worst-case instances
that hardly occur in practice.

We propose a simple smoothing model in which the latency function of every arc is
perturbed by a factor (1 + ε), where ε is chosen uniformly at random out of the range
[0, σ] (see Section 2.3 for details). We provide both theoretical and experimental results
that show that the Price of Anarchy is rather invariant under these random perturbations.
For Pigou instances with polynomial latency functions we derive a closed-form expression
for the Smoothed Price of Anarchy (see Section 3). Even for perturbations in the order
of the maximum degree of the polynomial, the Smoothed Price of Anarchy does not differ
significantly from the Price of Anarchy. We observe a similar effect in our experiments.
We consider some real-world instances from the Transportation Network Test Problems [1]
incorporating latency functions as suggested by the U.S. Bureau of Public Roads [3] (see
Section 4). Our experiments suggest that random perturbations only have a moderate effect
on the Price of Anarchy.

2 Preliminaries

2.1 Traffic Assignment Problem
The Traffic Assignment Problem (TAP) that we consider in this paper in defined as follows.
We assume that the road network is given by a directed multigraph G = (V,E), where V is
the set of vertices and E is the set of arcs. The users are modeled by a set of commodities
K with each commodity i ∈ K having an associated vertex pair (si, ti) ∈ V × V . Users that
have the same origin-destination pair (si, ti) are said to belong to the same commodity i. For
each commodity i ∈ K we are given a demand di which specifies the total flow (corresponding
to the users of commodity i) that has to be sent from si to ti.

The set of paths from si to ti is denoted as Pi. Let P = ∪i∈KPi. A flow f specifies
for each path P ∈ P a non-negative flow value that is sent along P , i.e., f is a function
f : P → R+. The flow on arc e ∈ E is defined as fe =

∑
P :e∈P fP , where P ∈ P . A flow f is

feasible if it satisfies the demand for every commodity, i.e.,
∑
P∈Pi

fP = di for every i ∈ K.
For each arc e ∈ E we are given a latency function le : R+ → R+ which maps the flow fe

of an edge e to the traversal time le(fe). The latency of a path P ∈ P is defined as the sum

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 3

of the edge latencies in the path, i.e., lP =
∑
e∈P le(fe). Subsequently, we use (G, d, l) to

refer to an instance of the Traffic Assignment Problem.
We assume that all latency functions are nonnegative, differentiable and nondecreasing.

For real-world instances, the most common type of latency functions originates form the U.S.
Bureau of Public Roads [3], which can be expressed as

le(fe) = te

(
1 + α

(
fe
ce

)β)
. (1)

Here te is the free-flow travel time of edge e, i.e., the time it takes to travel through road
e if there is no congestion. The constant ce stands for the capacity of edge e and α and β
are tuning parameters, usually set to 0.15 and 4, respectively (all variables are greater than
zero).

In order to evaluate the total travel time of the network, we define a cost function
c(f) =

∑
e∈E le(fe)fe. The system optimum refers to a feasible flow that minimizes this cost

function. Computing an optimal flow can be described by the following program:

minimize
f

c(f) =
∑
e∈E

le(fe)fe

subject to
∑
P∈Pi

fP = di ∀i ∈ K

∑
P∈P:e∈P

fP = fe ∀e ∈ E

fP ≥ 0 ∀P ∈ P.

(2)

A feasible flow f is a Wardrop flow (or user equilibrium) if the flow of every commodity
i travels along a minimum latency path available. That is, for every commodity i all flow-
carrying paths have the same latency and all other paths have no smaller latency. More
formally, a flow f is a Wardrop flow if

∀i ∈ K, ∀P1, P2 ∈ Pi, fP1 > 0 : lP1(f) ≤ lP2(f). (3)

An optimal flow corresponds to a Wardrop flow with respect to marginal cost functions.
In order for this equivalence to hold we further need to assume that all latency functions
are standard [9], i.e., x · l(x) is convex. The marginal cost function of edge e is defined as
l∗e(x) = le(x) + x d

dx (le(x)). Now, a feasible flow f∗ is an optimal flow for (G, d, l) if and only
if it is a Wardrop flow for the instance (G, d, l∗) (see [9] for details).

The problem of computing a Wardrop flow can be described by the following program:

minimize
f

∑
e∈E

∫ fe

0
le(x) dx

subject to
∑
P∈Pi

fP = di ∀i ∈ K

∑
P∈P:e∈P

fP = fe ∀e ∈ E

fP ≥ 0 ∀P ∈ P.

(4)

We note that the cost c(f) of a Wardrop flow f is unique (see [9]).
In this form, computing a Wardrop flow as well as an optimal flow can be done by using

the Frank-Wolfe algorithm [6]. The algorithm starts by finding a feasible solution to the

4 Smoothed Price of Anarchy of the Traffic Assignment Problem

linear constraints of the problem. Then in each iteration it finds a descent direction and
a distance to descend, thereby reducing the objective function value. The algorithm stops
when no improvement can be made to the objective function value.

2.2 Price of Anarchy

The Price of Anarchy (PoA) is a measure of the inefficiency of equilibria that was introduced
by Koutsoupias and Papadimitriou [8]. It measures how well players in a game perform when
they are at a Nash equilibrium, compared to an optimum outcome that could be achieved if
all players cooperated.

Suppose we are given a strategic game G with n players, a set of strategies Si for each
player i and a cost function ci : S → R, where S = S1 × · · · × Sn. Further assume that we
are given a social cost function C : S → R that maps every strategy profile s ∈ S to some
non-negative cost of the game. Given an instance I = (G, (Si), (ci)), let NE(I) be the set
of strategy profiles s ∈ S that are a Nash equilibrium for I. The Price of Anarchy of I is
defined as

PoA(I) =
maxs∈NE(I) C(s)

mins∈S C(s)

The Price of Anarchy of a class of games G is defined as PoA(G) = maxI∈G PoA(I).
In the context of the Traffic Assignment Problem (TAP), the above definition simplifies

to the following: Let I = (G, d, l) be an instance of TAP. The Price of Anarchy of I
is PoA(I) = c(f)/c(f∗), where f and f∗ are a Wardrop flow and an optimal flow of I,
respectively. (Recall that the cost of a Wardrop flow is unique.) The Price of Anarchy of
TAP is defined as PoA = maxI PoA(I), where the maximum is taken over all possible input
instances.

The Price of Anarchy depends on which types of latency functions we allow our instances
to have. Roughgarden and Tardos [10] proved that for linear latencies the Price of Anarchy
is 4

3 . Furthermore, Roughgarden proved that the Price of Anarchy is independent of
network topology [9]. Besides other results, these studies reveal that the Price of Anarchy
for polynomial latency functions is admitted on very simple single-commodity instances
consisting of two parallel arcs, also known as Pigou instances.

s t

Figure 1 Pigou instance with polynomial latency functions.

Consider the instance I = (G, d, l) depicted in Figure 1. There is one unit of flow that
has to be sent from s to t. The respective latency functions of the upper edge e1 and the
lower edge e2 are l1(x) = xp and l2(x) = 1. The Wardrop flow f sends the entire flow on e1,
i.e., f1 = 1 and f2 = 0, and has a cost c(f) = 1. In order to compute an optimal flow, we
exploit the equivalence that an optimal flow is a Wardrop flow with respect to marginal cost
functions l∗1(x) = (p+ 1)xp and l∗2(x) = 1. Equalizing these latency functions, we obtain that

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 5

f∗1 = (p+ 1)−1/p and f∗2 = 1− (p+ 1)−1/p. The cost of this flow is

c(f∗) = (p+ 1)−1/p
(

(p+ 1)−1/p
)p

+ 1− (p+ 1)−1/p = (p+ 1)(p+ 1)1/p − p
(p+ 1)(p+ 1)1/p .

The Price of Anarchy of this instance I is therefore

PoA(I) = c(f)
c(f∗) = (p+ 1) p

√
p+ 1

(p+ 1) p
√
p+ 1− p . (5)

This is actually the worst possible, and is Θ(p
ln p). Roughgarden [9] showed that the Price

of Anarchy of multi-commodity instances with polynomial latency functions of degree at
most p is at most PoA(I) as stated in (5).

2.3 Smoothed Price of Anarchy
Smoothed analysis was introduced by Spielman and Teng [11] in order to overcome the
pessimistic viewpoint adopted in worst-case analyses. It is a relatively new approach that
can be seen as a hybrid of worst-case and average-case analysis. It was originally introduced
to study the smoothed complexity of algorithms. But the concept naturally extends to other
performance criteria.

We extend the idea to the Price of Anarchy measure. The idea is to randomly perturb
a given input instance and to analyze the expected Price of Anarchy on the perturbed
instances. Suppose we are given a class of games G. Given an instance I = (G, (Si), (ci)) ∈ G,
we randomly perturb I by adding some random noise to the input data. (Note that there
might be several ways to perturb the input instance. How this should be done depends on
the underlying application.) Let Ī be an instance that can be obtained from I by random
perturbations and let σ be a parameter for the magnitude of perturbation. The Smoothed
Price of Anarchy (SPoA) of I is then defined as

SPoA(I, σ) =
E[maxs∈NE(Ī) C̄(s)]

E[mins∈S C̄(s)]
,

where the expectation is taken over all instances Ī that are obtainable from I by random
perturbations of magnitude σ. Here C̄ refers to the cost of the perturbed instance. The
Smoothed Price of Anarchy of G is then SPoA(G, σ) = maxI∈G SPoA(I, σ).

Perturbation Model for TAP Instances: In our context, we perturb TAP instances
by adding some random noise to the latency functions. Our perturbations thus reflect
fluctuations in the travel times of the edges. More specifically, suppose we are given an
instance I = (G, d, l) of TAP. We then define perturbed latency functions l̄ as follows:

∀e ∈ E : l̄e = (1 + εe)le, εe
i.u.r←− [0, σ]. (6)

Note that εe is chosen independently uniformly at random out of the range [0, σ] for every
edge e ∈ E. Let fI and f∗I denote a Wardrop flow and an optimal flow, respectively, for a
given instance I. The Smoothed Price of Anarchy of I is then defined as

SPoA(I, σ) = E[c̄(fĪ)]
E[c̄(f∗

Ī
] ,

6 Smoothed Price of Anarchy of the Traffic Assignment Problem

where c̄ refers to the total cost with respect to the perturbed latency functions, i.e., c̄(f) =∑
e∈E l̄e(fe)fe for a given flow f . As before, the expectation is taken over all instances Ī that

are obtainable from I by perturbations as defined in (6). The Smoothed Price of Anarchy of
G is defined as SPoA(G, σ) = maxI∈G SPoA(I, σ).

Clearly, other smoothing models are conceivable as well. However, here we have chosen
the one above because of its good trade-off between simplicity and relevance. Note that a
consequence of our relative perturbation model is that the effect of random perturbations is
more severe on edges that are sensitive to variations in traffic rate while it is less severe on
edges which are rather insensitive to changes in traffic rate.

Note that for our real-world instances, whose latency functions are of the form indicated
in (1), the above perturbation is equivalent to substituting the free-flow travel time te with
(1 + ε)te.

3 Smoothed PoA of Pigou Instances

We consider Pigou instances with polynomial latency functions. We will derive exact bounds
on the Smoothed Price of Anarchy under our random perturbations for these instances.
These bounds also establish a lower bound on the Smoothed Price of Anarchy for general
multi-commodity instances. We leave it as an important open problem to derive bounds
on the Smoothed Price of Anarchy for multi-commodity instances and polynomial latency
functions.

I Theorem 1. The Smoothed Price of Anarchy of the Pigou instance with polynomial latency
functions of degree p is

SPoA(I, σ) = 3 + σ

3 + 3σ
2 +

3p3((1+p)(1+σ))−1/p

(
−1+(1+σ)2+ 1

p

)(
−1−σ+(1+σ)

1
p

)
(1+2p)(−1+p2)σ2

(7)

Figure 2(a) illustrates the POA bound for Pigou instances for p = 2, 3, 4 as a function of
σ, while Figure 2(b) shows the POA bound as a function of p, with fixed σ = 0, 0.1, 0.5 and 1.

Figure 2 Smoothed Price of Anarchy of Pigou instances with polynomial latency functions.

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 7

Proof of Theorem 1. Let I be the original Pigou instance as introduced in Section 2.2. After
perturbing the latency functions of I as described above, we obtain the instance depicted in
Figure 3 with latency functions

l1(x) = (1 + ε1)xp and l2(x) = 1 + ε2,

where ε1, ε2 ∈ [0, σ] are random variables.

s t

Figure 3 Pigou instance with polynomial latency functions and perturbations ε1, ε2 ∈ [0, σ].

We first determine a Wardrop flow. With the addition of perturbation, edge e1 is used as
long as its latency is lower than the latency of e2. Therefore

f1 ≤ p

√
1 + ε2

1 + ε1
.

Since this can be greater than our maximum flow,

f1 = min
(

p

√
1 + ε2

1 + ε1
, 1
)

and f2 = 1−min
(

p

√
1 + ε2

1 + ε1
, 1
)
.

The flow f1 is going to be 1 as long as ε2 ≥ ε1. If this is the case, then c(f) = 1 + ε1.
If ε2 ≤ ε1, then

c(f) = p

√
1 + ε2

1 + ε1
(1 + ε1)

(
p

√
1 + ε2

1 + ε1

)p
+
(

1− p

√
1 + ε2

1 + ε1

)
(1 + ε2) = 1 + ε2.

In order to determine E[c(f)] for ε1, ε2 chosen uniformly at random from [0, σ], we need
to solve the following double integral. (Note that the combined probability density function
is 1

σ2).

E[c(f)] =
∫ σ

0

∫ ε2

0

1 + ε1

σ2 dε1dε2 +
∫ σ

0

∫ σ

ε2

1 + ε2

σ2 dε1dε2

= 3 + σ

6 + 3 + σ

6 = 1 + σ

3

In order to compute the system optimum flow, we exploit the fact that an optimal flow is
a Wardrop flow with respect to the marginal cost functions l∗1(x) = (p+ 1)(ε1 + 1)xp and
l∗2(x) = 1 + ε2. Then

f∗1 = p

√
1 + ε2

(p+ 1)(ε1 + 1) and f∗2 = 1− p

√
1 + ε2

(p+ 1)(ε1 + 1) .

8 Smoothed Price of Anarchy of the Traffic Assignment Problem

Note that σ must at most p for the optimum flow f∗1 to remain below the maximum flow.
The cost of f∗ is

c(f∗) = p

√
1 + ε2

(p+ 1)(ε1 + 1)(1 + ε1)
(

p

√
1 + ε2

(p+ 1)(ε1 + 1)

)p
+
(

1− p

√
1 + ε2

(p+ 1)(ε1 + 1)

)
(1 + ε2)

= 1 + ε2 − p(1 + p)−1− 1
p (1 + ε1)−

1
p (1 + ε2)1+ 1

p .

Taking the expectation over the random choices ε1, ε2 ∈ [0, σ], we obtain

E[c(f∗)] =
∫ σ

0

∫ σ

0

1 + ε2 − p(1 + p)−1− 1
p (1 + ε1)−

1
p (1 + ε2)1+ 1

p

σ2 dε1dε2

= 1 + σ

2 +
p3((1 + p)(1 + σ))−1/p

(
−1 + (1 + σ)2+ 1

p

)(
−1− σ + (1 + σ)

1
p

)
(1 + 2p) (−1 + p2)σ2

Thus

SPoA(I, σ) = 3 + σ

3 + 3σ
2 +

3p3((1+p)(1+σ))−1/p

(
−1+(1+σ)2+ 1

p

)(
−1−σ+(1+σ)

1
p

)
(1+2p)(−1+p2)σ2

(8)

J

Recall that the Pigou instance is the worst-case instance for the Price of Anarchy. Clearly,
the Smoothed Price of Anarchy either stays the same or improves (i.e., decreases). As our
bound shows, it improves but the decrease is rather low. Even for perturbations of the
magnitude σ = 1, the decrease is about 10% only. Note that in this case we may double
the latency functions. With increasing degree, this decrease becomes more significant. If we
restrict σ to be less than or equal to 1

p , which can be seen in Figure 4, then the Smoothed
Price of Anarchy asymptotically remains Θ(p

ln p) as in the deterministic case.

Figure 4 Smoothed Price of Anarchy of Pigou instances shown to remain Θ(p
ln p

)

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 9

4 Computational Results

4.1 Experimental Setup
In order to evaluate if real world instances behave in a different manner in relation to the
worst case instances for the Price of Anarchy, we tested a few benchmark instances freely
available for academic research from the Transportation Network Test Problems [1].

In these instances, the latencies follow the U.S. Bureau of Public Roads’ definition, shown
in (1), with α = 0.15 and β = 4. We chose a few instances to compare and perturb, with
both big and small instances evaluated. The instances details can be seen in Table 1.

Table 1 List of benchmark instances used in the experiments.

Instance Name |V| |E| |K| |E|·|K|
Sioux Falls 24 76 528 40,128

Friedrichshain 224 523 506 264,638
Chicago Sketch 933 2,950 83,113 245,183,350
Berlin Center 12,100 19,570 49,689 972,413,730

To find the user equilibrium and system optimum, we used the Frank-Wolfe algorithm [6].
The algorithm was implemented in C++ and compiled in 64 bit gcc version 4.4.5, in a Linux
kernel version 2.6.35. The machine used for the tests has an Intel® Core™ i7 CPU with 4
cores, with 12 GB of RAM memory.

4.2 Benchmark Instances Results
We perturbed the instances with σ ∈ {10−9, 10−8, ..., 10−2}. We also evaluated instances
with a greater perturbation, with σ ∈ {0.1, 0.2, ..., 0.9}. The algorithm was stopped when it
reached a relative gap less then of 0.00001, except the Sioux Falls instance which the minimum
relative gap was set to 0.000001. For each perturbation magnitude σi, 10 runs were executed
and the average value was considered. Then, the Price of Anarchy of the unperturbed
instances are presented in Table 2. Also, for among all averages for the different values of σ,
the mean, the standard variation, the minimum and maximum values are presented.

Table 2 Price of Anarchy and related measures found for each instance.

Instance Name POA Mean Minimum Maximum Standard Deviation
Sioux Falls 1.039682 1.039689 1.039676 1.039707 8.049609× 10−6

Friedrichshain 1.086374 1.086422 1.086345 1.086599 4.996005× 10−5

Chicago Sketch 1.023569 1.023567 1.023561 1.023572 2.137639× 10−6

Berlin Center 1.006141 1.006142 1.006133 1.006155 3.831177× 10−6

In Table 3 we can see the average time that the perturbed instances executed. It is clear
that for these instances the perturbations did not significantly alter their execution time.
Note that the Sioux Falls instance takes longer than the Friedrichshain instance due to the
smaller relative gap used on the Sioux Falls instance.

Both the smoothed and the original Price of Anarchy are close to one for all tested
instances, which gives some empirical evidence that the worst case is not so likely to occur
in real world instances. Furthermore, when we look at the Smoothed Price of Anarchy for all
instances, as is shown in Figure 5, we notice that even for relatively large σ, the Smoothed
Price of Anarchy remains almost constant and very close to the original Price of Anarchy.

10 Smoothed Price of Anarchy of the Traffic Assignment Problem

Table 3 Execution time found for original instances and the average for the perturbed instances,
in seconds.

Instance Name UE time SO time Average UE time Average SO time
Sioux Falls 1.58 1.6 1.5935 1.613314

Friedrichshain 0.43 0.92 0.431411 0.963976
Chicago Sketch 27.99 36.89 27.347117 36.568070
Berlin Center 233.91 360.07 220.975359 360.644545

The small trend that the Smoothed Price of Anarchy tends to follows on these instances
seems to be related more with the particular instance than with a more general rule. This
can be seen on the difference between the Friedrichshain instance and the Chicago instance,
while in the Berlin instance it appears to remains constant.

The fact that the Smoothed Price of Anarchy does not drop significantly from the original
Price of Anarchy, allied with these experimental results, shows that while perturbation does
occur frequently in real world scenarios, it does not have a great influence on the actual
distance from users equilibrium to the overall system optimum.

5 Conclusions

The Traffic Assignment Problem concerns the choice of routes in a road network given a set
of users with an origin and a destination. It is of extreme importance for traffic planning
and in real world cases perturbation occurs frequently, therefore it is useful to have a notion
of how much can this perturbation affect its instances. It is of particular interest how the
Price of Anarchy is affected in these situations, since the goal in road network planning is
usually to approximate the user equilibrium to the system optimum.

We propose a perturbation model and a measure of perturbation of the Price of Anarchy
based on the smoothed analysis for algorithms, the Smoothed Price of Anarchy. We give a
lower bound for the Smoothed Price of Anarchy that is in the same order as the worst case
Price of Anarchy for polynomial latencies.

Finally, we show experimentally that the effects of perturbation on the Price of Anarchy
of real world instances, at least for the known instance benchmarks in the literature present
in the Transportation Network Test Problems, are severely limited and show no general
trend.

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ

0.00000

0.00005

0.00010

0.00015

0.00020

P
o
A

+1.0396
Sioux Falls

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

σ

0.00000

0.00005

0.00010

0.00015

0.00020

P
o
A

+1.0396
Sioux Falls

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

P
o
A

+1.086
Friedrichshain

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

σ

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

P
o
A

+1.086
Friedrichshain

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

P
o
A

+1.0235
Chicago

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

σ

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

P
o
A

+1.0235
Chicago

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ

0.00000

0.00005

0.00010

0.00015

0.00020

P
o
A

+1.006
Berlin

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

σ

0.00000

0.00005

0.00010

0.00015

0.00020

P
o
A

+1.006
Berlin

Figure 5 Experimental Smoothed Price of Anarchy for the Sioux Falls (first), Friedrichshain
(second), Chicago sketch (third) and Berlin Center (forth). On the left σ ∈ {0.1, ..., 0.9} while on
the right side σ ∈ {10−9, ..., 10−2}.

12 Smoothed Price of Anarchy of the Traffic Assignment Problem

References
1 Bar-Gera, H.: Transportation Network Test Problems. http://www.bgu.ac.il/~bargera/

tntp/ (Jun 2011)
2 Bergendorff, P., Hearn, D.W., Ramana, M.V.: Congestion Toll Pricing of Traffic Networks,

pp. 51–71. Lecture Notes in Economics and Mathematical Systems, Springer-Verlag (1996)
3 Bureau of Public Roads: Traffic assignment manual. U.S. Department of Commerce, Urban

Planning Division, Washington, DC. (1964)
4 Dubey, P.: Inefficiency of nash equilibria. Math. Oper. Res. 11, 1–8 (February 1986), http:

//dx.doi.org/10.1287/moor.11.1.1
5 Florian, M., Hearn, D.: Network Equilibrium Models and Algorithms, vol. 8 (1995)
6 Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics

Quarterly 3(1-2), 95–110 (1956), http://dx.doi.org/10.1002/nav.3800030109
7 Hearn, D.W., Ramana, M.V.: Solving congestion toll pricing models. Equilibrium and

Advanced Transportation Modeling pp. 109–124 (1998)
8 Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: In Proceedings Of The 16Th

Annual Symposium On Theoretical Aspects Of Computer Science. pp. 404–413 (1999)
9 Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput.

Syst. Sci. 67, 341–364 (September 2003)
10 Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM (JACM)

49(2), 259 (2002), http://portal.acm.org/citation.cfm?id=506147.506153
11 Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: why the simplex algorithm

usually takes polynomial time. In: Journal of the ACM. pp. 296–305 (2001)
12 Wardrop, J.: Some theoretical aspects of road traffic research. Proceedings of the Institution

of Civil Engineers, Part II 1(36), 352–362 (1952)

http://www.bgu.ac.il/~bargera/tntp/
http://www.bgu.ac.il/~bargera/tntp/
http://dx.doi.org/10.1287/moor.11.1.1
http://dx.doi.org/10.1287/moor.11.1.1
http://dx.doi.org/10.1002/nav.3800030109
http://portal.acm.org/citation.cfm?id=506147.506153

	Introduction
	Preliminaries
	Traffic Assignment Problem
	Price of Anarchy
	Smoothed Price of Anarchy

	Smoothed PoA of Pigou Instances
	Computational Results
	Experimental Setup
	Benchmark Instances Results

	Conclusions

