Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

A TASK-ORIENTED BRANCH-AND-BOUND METHOD FOR THE ASSEMBLY LINE
WORKER ASSIGNMENT AND BALANCING PROBLEM

Leonardo de Miranda Borba
Instituto de Informatica — Universidade Federal do Rio Grande do Sul

Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil
lmborba@inf.ufrgs.br

Marcus Rolf Peter Ritt
Instituto de Informatica — Universidade Federal do Rio Grande do Sul
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil
mrpritt@inf.ufrgs.br

ABSTRACT

This paper discusses an exact solution branch-and-bound solver for the Assembly Line
Worker Assignment and Balancing Problem Type 2 (ALWABP-2). This problem consists of as-
signing tasks to workers, satisfying precedence relationships between tasks, so that the production
rate is maximized. The problem is complicated by the fact that each worker may need a differ-
ent time to execute a task or even may be unable to execute it. The solution for this problem can
improve the production of Sheltered Work centres for Disabled (SWD), and thus create new job
opportunities for disabled persons. The proposed task-oriented branch-and-bound method solves it
by selecting only task-to-worker assignments that satisfy the problem constraints and can improve
the overall solution. Computational results show that the method achieves promising results on the
test instances in literature.

KEYWORDS. Branch-and-Bound. Assembly Line Balancing. ALWABP.

Combinatorial optimization

RESUMO

Este artigo discute um método de solucdo exata por branch-and-bound para o Tipo 2 do
Problema de Balanceamento e Atribui¢do de Trabalhadores em Linhas de Montagem (ALWABP-
2). Este problema consiste em atribuir tarefas a trabalhadores, satisfazendo relacdes de precedéncia
entre as tarefas, de forma que a taxa de producdo seja maximizada. O problema é complicado pelo
fato de que cada trabalhador pode necessitar de um tempo diferente para executar uma tarefa ou, até
mesmo, pode ser incapaz de executd-la. A solugdo para este problema pode melhorar a producao dos
Centros de Trabalho para Deficientes (CTDs) e, entdo, criar novas oportunidades de trabalho para
as pessoas com deficiéncia. O método de branch-and-bound orientado a tarefas proposto resolve o
problema selecionando somente atribui¢des de tarefa para trabalhador que satisfagam as restrigdes
e possam melhorar a solugdo global. Os resultados computacionais mostram que o método alcanca
resultados promissores nas instancias de teste da literatura.

PALAVRAS CHAVE. Branch-and-Bound, Balanceamento de Linhas de Producao, ALWABP.

Otimizacao combinatéria

3192

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

1. Introduction

There are more than 785 million disabled persons around the world, according to the WHO
(World Health Organization), 110 million of these with a severe deficiency degree (Organization,
2011). Additionally, because of common stereotypes, this group lacks job opportunities. Since
professional activities are both therapeutical treatment and social inclusion mechanisms for disabled
persons, Sheltered Work centres for Disabled (SWD) were created as a means to include these
people in the professional market.

Miralles et al. (2007) have demonstrated that an assembly line is a production method
that, when applied in SWD, by division of work in smaller tasks, make the differences among the
disabled workers almost invisible. Furthermore, with correctly assigned tasks, it becomes a good
therapeutic treatment. A SWD is a Not-For-Profit organization, so, the optimization of its assembly
line can help to create more jobs for disabled people, contributing to their social inclusion.

The optimization of traditional assembly lines is a well known problem. The simplest
variant is called the Simple Assembly Line Balancing Problem (SALBP) (Scholl and Becker, 2006).
This problem presupposes equal task execution times for all workers. In the SWD case, however,
the task execution time varies according to the degree of ability of the worker and some workers
may even be unable to execute some tasks. Therefore, a new problem based on SWD assembly lines
was defined in Miralles et al. (2008), called the Assembly Line Worker Assignment and Balancing
Problem (ALWABP).

The assembly of a product in the SWD requires the execution of all tasks of a set T by
workers in a set W. The constant p,,; represents the time for worker w € W to execute task 7 € T'.
Furthermore, the tasks in T are partially ordered. The precedences are modeled by a transitively
reduced graph G(T,E), whose nodes are the tasks and an arc represents a dependency between
two tasks. In other words, an arc (u,v) € E means that task u should be executed before task
v. Each workstation of the SWD must be controlled by a worker w € W, executing a subset of
tasks ST,, C T'. Stations are positioned along a conveyor belt, with all the above precedence graph
dependencies satisfied. Thus, if a task ¢ depends on a task 7, t must be executed at a station after
the workstation executing ¢’ or at the same station.

With a worker w and a subset ST,, assigned to a station, its total execution time, called the
station time, is given by the sum of p; ,, for all r € ST;,. The largest station time of all workstations
defines the cycle time C of the assembly line. Stated this, there are four possible objectives for
the problem: Minimize the number of stations needed to achieve a given cycle time (ALWABP-1),
minimize the cycle time using a fixed number of stations (ALWABP-2), verify the existence of a
solution with given cycle time and number of stations (ALWABP-F), or minimize the multiplication
of cycle time and number of stations (ALWABP-E). The main objective of a SWD is to increase the
number of workers, which is accomplished by optimizing the production rate, i.e. decreasing the
cycle time. Thus, the studied problem in this paper will be the ALWABP-2.

In the literature, there are only a few exact methods for the ALWABP-2, since it is a com-
plex problem. Therefore, this work proposes a new task-oriented branch-and-bound method for
solving the ALWABP-2.

In the following sections, we will describe solutions for the ALWABP-2, using the notation
presented in Table 1.

Section 2 of the paper gives a literature review of SALBP and ALWABP, providing the nec-
essary background for the later sections. The mixed integer programming model for the ALWABP-2
commonly used in literature is presented in Section 3. This model will be compared later to the pro-
posed task-oriented branch-and-bound which is explained in Section 4. Section 5 experimentally

3193

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

Table 1. Notation

S set of workstations;

w set of workers;

T set of tasks;

G(T,E) precedence graph of tasks;

Pwi €N execution time of task i/ when executed by worker w;

I,CT set of tasks unfeasible for worker w;

A, =T\I, set of admissible tasks for worker w;

Ai={weW|icA,} setof admissible workers for task i;

PCT set of immediate predecessors of task i in the precedence
graph;

M> Y Y puw, a large constant;

wew ieT

Xs,w,i a binary variable, equal to 1 if task i is assigned to worker w
at workstation s, and 0 otherwise;

Vs a binary variable, equal to 1 if worker w is assigned to
station s, and O otherwise;

a an integer variable, equal to the index of the worker assigned to task ;

C a real variable, representing the cycle time of a solution;

compares the two exact solution procedures presented and evaluates their effectiveness according
to execution time and the number of nodes in the branch-and-bound search tree. Finally, Section 6
gives a summary of this paper and proposes future research on this subject.

2. Related Work

The ALWABP-2 was proposed in Miralles et al. (2007). Since the ALWABP is an exten-
sion of the SALBP, the methods for solving the latter problem are the base for most of the algorithms
for the ALWABP. In the SALBP, a group of tasks should be assigned to a group of stations. But,
unlike ALWABP, the execution time of a task is the same regardless of the assigned station. In
practice, any instance of SALBP can be reduced to an instance of ALWABP by creating as many
workers as needed, with equal task execution times.

Baybars (1986) reviews the literature on solving the Simple Assembly Line Balancing
Problem. A more recent review is given by Scholl and Becker (2006), which deals with exact
and heuristic solutions for SALBP-1 and SALBP-2. The branch-and-bound methods referenced in
that paper are classified as station-oriented (Klein and Scholl, 1996), (Scholl and Klein, 1997) and
task-oriented (Sprecher, 2003), (Sprecher, 1999) methods.

Being a recently introduced problem, ALWABP has yet few solution procedures, and most
of them are based on meta-heuristics. In Chaves et al. (2007) and Chaves et al. (2009), for example,
the authors describe two Clustering Search methods for solving this problem. Furthermore, they
propose a set of four families of instances named Roszieg, Heskia, Tonge and Wee-Mag. The
total of 320 instances represent all combinations of low and high rates for the number of tasks,
the number of workers, the order strength, the variability of the execution time, and the number of
infeasibilities for worker-task pairs.

Moreira and Costa (2009) describes a Tabu Search method for ALWABP2, with better
results than Chaves et al. (2009) for large instances. Moreira et al. (2012) proposes a simple con-
structive heuristic based on the SALBP heuristic proposed by Scholl and Vo3 (1997), and uses it
inside a hybrid genetic algorithm, improving over previous works.

3194

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

All these solutions are heuristic algorithms, giving approximate solutions for the problem.
The only known branch-and-bound method for ALWABP-2 has been proposed by Miralles et al.
(2008). This method executes successive calls to a branch-and-bound procedure for ALWABP-1,
for an increasing cycle time. The first cycle time feasible for the specified number of stations is the
minimum cycle time for ALWABP-2. In the paper, the authors also propose an integer programming
formulation, subsequently implemented in Chaves (2009), which is the fastest exact method in the
literature.

3. Mathematical Model

In this section we present a mathematical model for the ALWABP-2 proposed by Miralles
et al. (2008).

minimize c (D
subjectto) Y x,i=1 VieT 2
WwEA; seS
Y v <1 Yw e W 3)
sES
Y ysw <1 VseS 4)
weWw
PR ILIESHESD M DRI VieT,ieP (5
wEA; seS WEA; s€S
Y puixewi <C YweW,s€S (6)
i€A,,
Z Xswi < Mys, YweW,seS @)
i€A,,
xs,w,i:() YweW,seS,iel, (8)
X, € {0,1} VseS,weW,icA, 9)
ysw € {0,1} VseSweWw (10)
CeR. (11)

The decision variables x; ,,; and yy ,,, as explained in Table 1, represent an assignment of
tasks to workers and stations. As stated in the constraint (2), a task ¢ should be assigned to one
and only one worker w at a workstation s. Furthermore, one station will be allocated to at most
one worker and one worker will be assigned to at most one station, as defined in (3) and (4). The
precedence graph dependencies constraints are guaranteed by (5). If a task ¢ depends on another
task u, the stations executing ¢ (SA;) and u (SA,) should respect SA,, < SA;. The cycle time C is
defined in (6), as the station time. Restriction (7) forces consistency of x;,,; with the assignments
ys,w- And finally, restriction (8) prohibits infeasible assignments.

4. A Branch-and-Bound Algorithm

A common characteristic of ALWABP and SALBP is the relation between the problem
types 1 and 2. The optimal solution of SALBP-2 can be obtained by successive executions of
the SALBP-1 instance. A similar relation is valid for ALWABP-1 and ALWABP-2. Miralles
et al. (2008) uses this fact to solve ALWABP-2 using subsequent branch-and-bound solutions of
ALWABP-1. This solution causes repetitive visits of nodes in the branch-and-bound search tree,
slowing down the program.

3195

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

Therefore, a direct approach to the ALWABP-2 seems more adequate. To this end, there are
two main branch-and-bound strategies, analogous to those used for solving the SALBP: a station-
oriented and a task-oriented strategy. In a station-oriented solution, the station n should be filled
before considering the next station n+ 1. In task-oriented methods, a task is assigned to any worker
and if the solution becomes invalid, according to the problem constraints, the node is rejected and
the branch-and-bound continues.

The order of the workers, in the task-oriented method, when applied to the ALWABP, is
implicit by the assignment of tasks, as will be explained later. Thus, the assignment of workers
to stations does not need to be considered when using this strategy. Because of this, this solution
tends to be simpler than the station-oriented methods. Therefore, in next subsections we propose a
task-oriented branch-and-bound method.

4.1. Branching strategy

The task-oriented method applied to the SALBP assigns in every node a task to a station.
For the ALWABP-2, the important choice is the worker which will execute a task. Therefore, we
propose a branching strategy which in every node assigns a task to a worker.

The next task to be assigned is selected greedily to be one of the tasks with the fewest
possible choices for the worker and if there is a tie, the task is selected from the assignment of one
of the tied tasks to a feasible worker with smallest lower bound. Then, a new branch is created for
each worker w that may execute ¢t. The procedure branch_tasks, shown in Algorithm 1, stops when
all the tasks are correctly assigned.

Algorithm 1: branch_tasks(11D)
input : A global upper bound gub.
input : A global subset UT C T of already used tasks.
input : A local lower bound, based on the already defined assignments.

if UT =T then
if [Ib < gub then gub < [1b;

return
end

select + € (T \ UT) according to the proposed tasks priority rule;
V < sort W according to the proposed workers priority rule ;
foreach w €V do
if assignment _is_valid(t,w) then
new_llb < calculate lower bound with new assignment (7, w);
if new_llb < gub then
set_assignment (t,w);
branch_tasks(new_I1b);
unset _assignment (t,w);
end
end
end

4.2. Lower and upper bounds

There are two types of lower bounds in this algorithm. The first type is the global lower
bound. This bound is calculated before the branch-and-bound algorithm and the result is used as
initial lower bound for branch_tasks. The second type are local lower bounds. In this second type,
according to the assignments already defined in a node, the algorithm updates the lower bounds used

3196

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

in the branches below the current node. These bounds are useful to define which partial solutions
can achieve better results than the current upper bound.

Let us define p;” = min{p,,; | w € W}. For each task i in the ALWABP instance, create a
task with execution time equal to p;” in a SALBP instance. An optimal solution for this SALBP, with
the same dependencies graph of ALWABP, will give a lower bound for the main problem. Thus, all
SALBP lower bounds can be applied to this subproblem to find lower bounds for ALWABP.

A first SALBP lower bound LB = [Y;c7 p; /|S|] is obtained by dividing the tasks equally
among the stations. Furthermore, since all tasks are executed non-preemptively, the maximum task
execution time for SALBP is also a lower bound LB, = maTx p; for this and, so, for ALWABP.

e

We also use an ALWABP-specific lower bound in this paper given by the linear relaxation
of the integer programming model above. This solution is not used as a local lower bound, since
solving the linear relaxation is too costly during the branch-and-bound procedure. Nevertheless, the
relaxation gives the best known global lower bound (Moreira et al., 2012).

During the branch-and-bound procedure, the local lower bounds can be calculated by up-
dating the previous values. For each new assignment of a task ¢ to a worker w, three local lower
bounds are considered. First of all, each assignment made is a new restriction for the problem.
Thus, the solution for the new partial problem will be greater or equal to the previous partial solu-
tion. Therefore, the lower bounds in the parent node are considered as lower bounds for the current
node. Since no further solution in the branch will eliminate assignments of tasks to workers, the
accumulated execution times of all tasks already assigned to any worker is also a local lower bound
LBj for a node. Moreover, the lower bound LB can be improved during the branch-and-bound pro-
cedure, by replacing the minimum task time p; by the task time of the worker already assigned to
task 7. All these local lower bounds can be calculated in time O(1), by simply updating the previous
results.

A simple global upper bound for the problem is presented in Moreira et al. (2012). The
authors propose a constructive heuristic to ALWABP, generating good feasible solutions for the
problem in a short time, so a simplification of this method is applied to provide an initial upper
bound for our branch-and-bound method.

In this upper bound procedure, a value v is heuristically tested as a solution for the problem
and is increased until the test succeeds. The test consists in filling all stations based on greedy task
assignments. For each worker w, the valid tasks are sorted according to the execution time p,,; and,
so, are assigned to w until the limit v is reached. The worker which executes the greatest number of
tasks assigned is selected and assigned to the current station. The algorithm proceeds, until the last
station. If all tasks are assigned to a station during this procedure, the solution is valid and hence,
yields an upper bound to the problem.

4.3. Valid partial solutions

To validate a solution, an important data structure is the precedence graph of workers,
defined by the precedences of the tasks which have been already assigned. For each task ¢ assigned
to a worker w, a new set of arcs is added to this precedence graph. If task r depends on a task
u, already assigned to worker a,, a new arc between w and a, is created. Furthermore, this is a
transitive graph. In other words, if another worker v has an arc to a,, v should have an arc to w too.
In Figure 1, an example of an update of the precedence graph of workers is shown. The graph at
the top shows the dependencies between the tasks and the bottom part of the figure shows how the
assignment of task 1 to worker 1 affects the partial worker dependency graph. When assigning a
new task to some worker, this graph can be updated in worst case time O(|T'||W|).

The worker precedence graph simplifies the implementation of the function

3197

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

@ Bl]
o o =P o 6l o
1 2 3 1 2 3

Figure 1. Worker dependencies after assignment of task 1 to worker 1

assignment _is_valid(t,w), used in branch_tasks, which verifies if a task 7 can be assigned to
worker w in the current partial solution. If a loop in the precedence graph of workers is created by
the insertion of this new assignment, the solution is invalid. In other words, if there is an arc from
task ¢ to task u in the dependencies graph of tasks, the precedence graph of workers must not have
an arc from a, to a;. Also, if a worker v # w is assigned to both a follower and a predecessor of ¢,
the assignment is invalid. This two verifications are performed in time O(|T|) in the worst case.

4.4. Priority rules

Selecting a task is an important part of this algorithm. If the tasks are selected in a correct
order, the branch-and-bound tree will be tightened, decreasing the number of nodes and, conse-
quently, the execution time of the procedure.

Suppose we select a task ¢, and V; = {w € W | assignment_is_valid(t,w)} is the set of
feasible workers for ¢. Since the workers for which the assignment of ¢ generates a local lower
bound greater than the upper bound can be pruned after branching, they are removed from V;, in the
search tree. In this way, |V;| defines the maximum number of children of the current node if task 7 is
selected. Thus, a local heuristic to decide which task will generate the smallest branch-and-bound
tree is to select the task with lowest |V;|. As a consequence, tasks with only one valid worker will
be assigned imediately, forcing dependencies among them to be satisfied earlier in the tree.

The branch-and-bound procedure sorts the workers that can be assigned to the chosen task
t according to another priority rule and visits the branches based on this order. The solution applied
in this paper uses the value of the local lower bound with the new assignment of task ¢ to a worker
w, i.e, we use a best bound strategy for choosing the next branch. Thus, the algorithm will visit
first the branches that can lead to better results, trying to find the optimal solution early during the
search.

5. Computational Results

Two methods will be compared in this section: the mixed integer programming model from
Miralles et al. (2008) solved by a standard solver and the proposed branch-and-bound algorithm.
The branch-and-bound method also proposed by (Miralles et al., 2008) is not analysed because no
time results for comparation were presented in that paper.

The main quantity of interest when comparing exact algorithms is their execution time.
Thus, these two methods were implemented and executed on identical machines, to make their
execution time comparable.

3198

(3, CLAIO

Congreso Latino-lberoamericano
de Investigacién Operativa

Septemher 24-28, 2012
Rio de Janeiro, Brazil

The two methods were implemented using C++. The MIP model of Section 3 were exe-
cuted using the CPLEX 12.4 library. The same library solved the linear relaxation of the model,
used as lower bound in the branch-and-bound algorithm. The experiments were conducted on a PC
with a 2.8 GHz Core 17 930 processor and 3GB of 1333 MHz DDR3 memory, running a 64 bit
Ubuntu Linux.

In the literature, 320 instances of ALWABP are mainly used as a benchmark. They consist
of the four groups Roszieg, Heskia, Tonge and Wee-Mag. These four groups differ by the number
of tasks and the order strength ! (OS) of the precedence graph. Internally, each of the instance types
is also divided in eight groups of ten instances, based on three parameters: the number of workers,
the variability of the task execution times > (Var) and the percentage of infeasibilities (Inf). For each
of these parameters, a low level and a high level are defined, as shown in Table 2.

Table 2. Parameter levels for ALWABP
Parameter Low Level High Level

|T| 25-29 70-75
W] 7)/7 /4
oS 20% - 25% 55% - 75%
Inf 10% 20%
Var L1 H3

Roszieg and Heskia are the sets of instances with a low number of tasks, and order strength
equal to 71,67% and 22,49% respectively. The other two groups have a high number of tasks with
a high order strength (59,42%) in the case of Tonge and a low order strength (22,67%) in the case
of Wee-Mag.

Two metrics were collected from the analysed methods. The first is the runtime of the
procedure, which is the main comparison metric. The second is the number of branch-and-bound
nodes visited during the search. This metric has an almost direct relationship with the runtime,
but is independent of machine specifications and can be reproduced more easily than the runtime
metric.

For each group of ten instances of Roszieg and Heskia, the average result for the two metrics
is calculated and shown in Table 3.

In other hand, neither of the two methods could solve the larger instances, Tonge and Wee-
Mag, in acceptable time. The ten first test cases of these sets were executed by the two methods,
but no instance could be solved in less than one hour.

Seven branch-and-bound executions of Tonge instances achieved the optimal solution in
less than four hours, but no Wee-Mag instance was solved by this method in this amount of time.
The MIP model solution by CPLEX had even worse results and solved only one Wee-Mag instance
in less than four hours. This corroborates the findings of Chaves (2009).

The proposed branch-and-bound method outperforms the MIP model in runtime for every
set of parameters tested, as presented in the Table 3. The total execution time of all Roszieg and
Heskia instances is 13.3 seconds in the branch-and-bound method against more than 37 minutes in
the MIP model solution, using a standard solver.

The number of nodes, on the other hand, is smaller in the CPLEX search tree, with excep-

I'The percentage of precedence relations of all possible relations || - (|T| — 1)/2 present in the instance.
2Based on a reference time #; for each task, the task times are randomically selected in [1,4] (L1) or [1,3#] (H3). This
interval defines the variability of task times.

3199

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

Table 3. Results for Roszieg and Heskia

Branch-and-Bound MIP Model
Instance |W| Var Inf Runtime(s) Nodes Runtime(s) Nodes

L1 10% 0.0660 681.1 3.4194 56.9

4 20% 0.0500 161.6 2.8039 1.1

3 10% 0.0776 1150.0 3.6433 156.6

. 20% 0.0676 647.4 3.9991 82.9
Roszieg

L1 10% 0.2247 6852.0 249134 2715.0

6 20% 0.1142 1723.6 28.5800 2601.3

H3 10% 0.2156 6392.7 29.9071 3467.0

20% 0.1567 3903.8 23.0671 2785.0

L1 10% 0.0332 551.0 2.0114 0.0

4 20% 0.0334 546.1 2.0602 25.0

H3 10% 0.0505 1354.7 2.5472 65.0

. 20% 0.0548 1364.2 2.0483 243

Heskia

L1 10% 0.0490 2104 26.7348 15359

7 20% 0.0377 202.7 20.1038 1174.1

H3 10% 0.0457 192.2 25.8845 1677.8

20% 0.0543 277.0 25.6675 1344.1

tion of five parameter sets, four of them in the Heskia instances. In these, the low order strength
of Heskia strenghtens the lower bounds, because they do not consider the dependencies among the
tasks. This, together with the better distribution of tasks on more workers, decreases the values
of valid solutions. Thus, with better lower and upper bounds, the algorithm will produce more
cuts, tightening the branch-and-bound tree for this set of instances. Besides that, the longer execu-
tion time of CPLEX is explained by the preprocessing techniques and by the intra-node processing
applied by the solver.

6. Conclusion and future work

In this paper we have proposed a new task-oriented branch-and-bound method for solving
the assembly line worker assignment and balancing problem. This algorithm has been found to
outperform a standard solver on the mixed integer programming model defined in the literature in
a series of computational tests, although the larger instances of the existing set of benchmarks are
not yet solved in acceptable execution time.

Further research is needed for exactly solving these larger instances. The MIP model can be
improved, decreasing the number of variables and creating new constraints, accelerating the CPLEX
solution of the model. Another possibility of improvement is to use better lower and upper bounds
in the branch-and-bound, which will prune the branch-and-bound search tree. Also, a strategy
similar to the algorithm described in Klein and Scholl (1996) applied to the ALWABP may produce
good results for larger instances. This is a station-oriented branch-and-bound method with stations
filled according to the current lower bound, i.e. the runtime of the algorithm depends more on the
optimal cycle time and less on the number of tasks. Thus, large instances, with small optimal cycle
times may take advantage of such a procedure.

3200

Congreso Latino-lberoamericano
de Investigacion Operativa Septemher 24-28, 2012

Rio de Janeiro, Brazil

References

Baybars, L. (1986), A survey of exact algorithms for the simple assembly line balancing problem,
Management Science, 32(8):909-932.

Chaves, A., Lorena, L., and Miralles, C. (2009), Hybrid metaheuristic for the assembly line
worker assignment and balancing problem, In Hybrid Metaheuristics, volume 5818 of Lecture
Notes in Computer Science, pages 1-14, Springer Berlin / Heidelberg.

Chaves, A. A. (2009), Uma meta-heuristica hibrida com busca por agrupamentos aplicada a
problemas de otimiza¢do combinatoria, PhD thesis, Instituto Nacional de Pesquisas Espaciais,
Sao José dos Campos.

Chaves, A. A., Miralles, C., and Lorena, L. A. N. (2007), Clustering search approach for the
assembly line worker assignment and balancing problem, Proceedings of ICC&IE, pages 1469—
1478.

Klein, R. and Scholl, A. (1996), Maximizing the production rate in simple assembly line
balancing—A branch and bound procedure, European Journal of Operational Research,
91(2):367-385.

Miralles, C., Garcia-Sabater, J. P., Andrés, C., and Cardos, M. (2007), Advantages of assembly
lines in sheltered work centres for disabled. A case study, International Journal of Production
Economics, 110(1-2):187-197.

Miralles, C., Garcia-Sabater, J. P., Andrés, C., and Cardés, M. (2008), Branch and bound
procedures for solving the assembly line worker assignment and balancing problem: Application
to sheltered work centres for disabled, Discrete Applied Mathematics, 156(3):352-367.

Moreira, M., Ritt, M., Costa, A., and Chaves, A. (2012), Simple heuristics for the assembly line
worker assignment and balancing problem, Journal of Heuristics, 18(3):505-524.

Moreira, M. C. O. and Costa, A. M. (2009), A minimalist yet efficient tabu search for balancing
assembly lines with disabled workers, Anais Do XLI Simpdésio Brasileiro de Pesquisa Opera-
cional, Porto Seguro.

Organization, W. H. (2011), World report on disability, Geneva: WHO.

Scholl, A. and Becker, C. (2006), State-of-the-art exact and heuristic solution procedures for
simple assembly line balancing, European Journal of Operational Research, 168(3):666—693.

Scholl, A. and Klein, R. (1997), SALOME: A bidirectional branch-and-bound procedure for
assembly line balancing, INFORMS Journal on Computing, 9(4):319-334.

Scholl, A. and VoB, S. (1997), Simple assembly line balancing - Heuristic approaches, Journal of
Heuristics, 2(3):217-244.

Sprecher, A. (1999), A competitive branch-and-bound algorithm for the simple assembly line
balancing problem, International Journal of Production Research, 37(8):1787-1816.

Sprecher, A. (2003), Dynamic search tree decomposition for balancing assembly lines by parallel
search, International Journal of Production Research, 41(7):1413-1430.

3201

	Introduction
	Related Work
	Mathematical Model
	A Branch-and-Bound Algorithm
	Branching strategy
	Lower and upper bounds
	Valid partial solutions
	Priority rules

	Computational Results
	Conclusion and future work

