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RESUMO

O problema de roteamento de transporte urbano consiste em encontrar rotas satisfatórias para
transporte público em uma cidade ou região. Cenários urbanos se tornam maiores e mais complexos
com o passar do tempo, tornando o planejamento de rotas uma tarefa proibitivamente difı́cil, cujos
resultados são frequentemente insatisfatórios, com altos custos e tempos de viagem. Nós propomos
uma formulação MIP exata e um algoritmo genético multiobjetivo para a solução do problema com
mais qualidade e eficiência do que técnicas atuais. Testamos nossas soluções com cenários reais e
artificiais publicados anteriormente e obtemos resultados superiores para todos.

PALAVRAS CHAVES. Problema de Roteamento Urbano.
Área principal: L&T – Logı́stica e transporte, MH – Metaheuristicas, OC – Otimização
combinatória

ABSTRACT

The urban transit routing problem (UTRP) consists of finding satisfying routes for public trans-
portation within a city or region. Urban scenarios get bigger and more complex every day, making
the design of routes an overwhelming task whose results are often unsatisfactory, with high costs
and travel times. We develop an exact MIP formulation and a multi-objective genetic algorithm to
solve this problem with higher quality and more efficiently than with current techniques. We bench-
mark our solutions on generally available real and artificial test cases and achieve better results for
all of them.

KEYWORDS. Urban Transit Routing Problem.
Main area: L&T – Logistics and transport, MH – Metaheuristics, OC – Combinatorial
optimization
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1 Introduction

The urban transit routing problem is of vital importance in public transport systems since it
directly defines the routes taken by city dwellers on their daily tasks. Given the size of towns with
high populations, their transportation demands get quickly out of manageable complexity for human
planners. Concerns for the environment, and also the simple lack of space for more cars incentives
the use of public transport. Thus, there is clear demand for cost and travel efficient public transit
networks.

To deal with this demand, the urban transit network design problem (UTNDP) is defined. Its
concerns are the definition of routes and schedules for the urban transport system. It is an NP-
hard problem with multiple criteria, such as the satisfaction of the users, the cost for operating the
network and others. Its research is timely in order to improve urban transit worldwide. The UTNDP
is commonly divided into two components: the transit routing problem and the transit scheduling
problem (Chakroborty (2004)). Given the problem complexity, it is usual to separate solutions to
the UTNDP in these two components. Our concern here is solving the transit routing problem.

The initial task is formally defining the problem as simply as possible, but taking into consid-
eration all of the aspects which are necessary to make the problem definition realistic. Based in
previous works (Fan et al. (2009)), we choose a simple and adaptable definition that allows the
comparison of multiple previous works. The advantage in choosing such a definition is the pos-
sibility to compare algorithms directly, and thus be able to select the best approaches to solve the
UTRP, without stumbling on problem definition differences. This definition is given in Section 2.

We propose two solutions to the problem. The first one is based on Mixed Integer Programming,
and solves the problem exactly. Exact solutions have been proposed and realized partially before,
e.g. Israeli & Ceder (1989) takes a multi-step approach, where some steps are completed with a
linear programming formulation, and others are decided by the traffic planner. Another example is
the approach of Borndörfer et al. (2007), that generates feasible initial solutions using Linear Pro-
gramming heavily, although not taking transfers into consideration. To the best of our knowledge,
no complete exact solver for the UTRP has been published before. Our exact solver is described in
Section 3.

The second solution is a genetic algorithm. Heuristics and metaheuristics are the common
choice for solving the UTRP (Álvarez et al. (2010)), giving the problem complexity and high num-
ber of constraints. We base our solution on previous works which were able to achieve good results,
and take advantage of key aspects that were not used before. Such aspects include a simplification
operator, the use of minimum spanning tree based initial route sets, besides use of the linear relax-
ation of our MIP formulation for the generation of more feasible initial routes. This algorithm is
described in Section 4.

Finally, to assess the quality of the heuristics, we compare our work with previous ones (Mandl
(1980), Baaj & Mahmassani (1991), Kidwai (1998), Chakroborty (2004), Fan et al. (2009), Fan &
Mumford (2010)) that use a common benchmark (Mandl’s Swiss road network), since many new
algorithms are not tested against common or openly available targets and thus cannot be compared
directly (Agrawal & Mathew (2004), Fan & Machemehl (2008), Álvarez et al. (2010)). The results
are presented and analyzed in Section 5. Our conclusions and final remarks are then presented in
Section 6.

2 UTRP Definition

The urban transit routing problem consists of finding a set of traffic routes, given passengers and
operator constraints, that achieves good average travel times, low number of transfers, low costs for
the operator, or a combination of these goals. This and the next definition follow (Fan et al. (2009)).
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A graph G(V,E) represents the traffic network, where V = {v1, . . . , vn} is the set of nodes
representing bus stops, train stops, or more broadly, access points where the transport is able do
pick up and drop off passengers, and where E = {e1, . . . , en} ⊆ V ×V represents the set of direct
physical connections between nodes.

A route in the traffic network G(V,E) is a path ra = (vi1 , . . . , viq), where ik ∈ {1, . . . , n}. A
set of routes R = {ra : 1 ≤ a ≤ N}, where N is the number of possible routes, defines a solution
to the UTRP problem.

2.1 Objective function

To evaluate the quality of a route set, one must first define a route network, which contains only
the edges of the respective route. We define as Ea the set of edges of the route ra. Then, the transit
network can be defined as a graph H(V ′, E′) in which V ′ ⊆ R × V . The node wia ∈ V ′ in the
transit network is a pair that combines the route ra and the node vi ∈ V from the transport network.
Consequently, we define the edges in E′ in two parts. E′1 corresponds to the set of edges within
individual routes, and E′2 represents transfers:

E′1 =
⋃

ra∈R
{(wia, wja) : (vi, vj) ∈ Ea}, E′2 =

⋃
vi∈V
{(wia, wib) : vi ∈ ra ∩ rb}.

Given the transit network, one can define two cost functions, one measuring the user cost and one
the operator cost. The operator objective function is defined as:

CO(R) =
∑
ra∈R

∑
e∈Ea

c(e),

where c(e) is the cost of operating edge e.
To define the user cost, we use te, the time required to travel through edge e, and the travel

penalty tpen, which is the time it takes to make a transfer. The value tpen is assumed to be constant
since we do not deal with scheduling. The value tpen also includes a time penalty regarding the
inconvenience of having to make a transfer instead of staying on the same route. Given that, the
edges in E′2 are set to the length tpen, while the edges (wia, wja) ∈ E′1 to the length t(vi,vj). Now,
the minimum journey time in transit networkR from vi to vj , αij(R), is defined as the shortest path
from a node in {wia : vi ∈ ra} to a node in {wjb : vj ∈ rb}.

Let dij denote the transit demand from node vi to node vj (defined as the number of passengers
wishing to travel from vi to vj). Assuming the passengers will always choose to travel on the
shortest paths, the user cost functions TTT (Total Travel Time) and ATT (Average Travel Time)
can be defined as follows:

TTT =
∑

(vi,vj)∈V×V

dijαij(R), ATT = TTT

( ∑
(vi,vj)∈V×V

dij

)−1

Since there is more than one objective function to be optimized in this problem, solutions can be
classified as dominated or undominated. In a set of solution candidates, a solution s is undominated
if and only if no other candidate in the set is better than s on both quality measurements.

2.2 Restrictions

Besides the restriction requiring every route to be a path, further restrictions are often enforced
in variants of the problem. It is common not to allow cycles or backtracks within routes, to limit
the size of routes, and it is often assumed that routes are undirected, i.e. that the public transport
travels in both directions of the route. Nevertheless, it is not uncommon there to be different paths
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depending on the direction of the route, and cycles are also known to occur. Therefore, we do
not assume any of those restrictions as necessary, and all of our algorithms are able to deal with
any subset of desired restrictions, within those mentioned above, and produce solutions that satisfy
them.

Another common characteristic in the previous models of this problem is that they fix the num-
ber of desired routes. This may or may not be realistic, since on the one hand having more routes
may reflect in more costs, but on the other hand, one already considers operator costs within the
operator cost function. For this reason, a lower and upper bound on the number of routes can also
be configured in our algorithms.

3 Mixed Integer Programing formulation

In this section we present a formulation that solves the UTRP using mixed integer programming.

3.1 Variables

Our formulation uses the following decision variables: let R be a set of routes. For every route
r ∈ R, srv indicates if vertex v is the initial vertex of route r. Similarly, frv indicates if v is the
final vertex of route r. xre is 1 if and only if the edge e ∈ E belongs to route r, and xre is 0 if
e /∈ E. For every pair of vertices v and w, s∗vwr indicates if the best path between v and w starts on
route r. Likewise, f∗vwr indicates if r is the final route of the best path between v and w. Finally,
x∗vwe′rnsm

indicates if edge e′rnsm ∈ E′ is on the best path between v and w, where E′ is the set of
edges of the transit network, as explained in Section 2. Additionally, the real variables prv indicate
the position, starting from 0, of the vertex v on route r. To save space, we use Iverson’s brackets
[P ]: the expression [P ] is 1 if the predicate P is true, and 0 otherwise.

3.2 Constraints

∑
v∈V

srv = 1 ∀r ∈ R (1)∑
v∈V

frv = 1 ∀r ∈ R (2)∑
e=(v,w)∈E

xre + frv =
∑

ē=(w,v)∈E

xrē + srv ∀r ∈ R (3)

∑
e=(v,w)∈E

xre + frv ≤ 1 ∀r ∈ R, v ∈ V (4)

prv ≤ |V | − |V |srv ∀r ∈ R, v ∈ V (5)

prw − |V |+ |V |xre ≤ prv + 1 ∀r ∈ R, (v, w) ∈ E (6)

prv + 1 ≤ prw + |V | − |V |xre ∀r ∈ R, (v, w) ∈ E (7)

x∗vwe′rnrm
≤ xre + xrē ∀v, w ∈ V, r ∈ R, e = (n,m) ∈ E (8)

x∗vwe′rnsm
= 0 ∀v, w ∈ V, n 6= m ∈ V, r 6= s ∈ R (9)∑

r∈R
s∗vwr = 1 ∀v, w ∈ V (10)∑

r∈R
f∗vwr = 1 ∀v, w ∈ V (11)
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∑
s∈R,
m∈V

x∗vwe′rnsm
+ [w = n]f∗vwr =

∑
s∈R,
m∈V

x∗vwe′smrn
+ [v = n]s∗vwr ∀v, w ∈ V, n ∈ V, r ∈ R (12)

There are also constraints for improving performance, such as not allowing multiple transfers on
the same node and path, not allowing cycles in the best paths, and ordering the routes such that
shorter ones have smaller indices. These constraints only decrease search space without affecting
the set of feasible solutions.

3.3 Objective functions

Given that c(e) is the cost for operating edge e, te is the time for traversing edge e, dij is the
demand between nodes i and j, and tpen is the time penalty for making a transfer between routes,
the following two objective functions are defined (as explained in Section 2.1):

minimize
∑
r∈R,
e∈E

c(e)xre (operator cost)

minimize
∑
r∈R,

v,w∈V,
e=(n,m)∈E

tedvwx
∗
vwe′rnrm

+
∑

r,s∈R,
v,w,n∈V

tpendvwx
∗
vwe′rnsn

(user travel time)

3.4 Discussion

The formulation begins by fixing the number of routes |R| (where R = {1, 2, . . . , |R|}) in
the solution route set. This implies in multiple optimizations when a range of number of routes is
acceptable, one for each size.

Each route must then be defined. For each route r ∈ R there are 2|V | + |E| binary variables
that define it completely. Constraints (1) and (2) guarantee that there will be unique start and end
nodes for each route. Constraints (3) and (4) assure that every node within a route will have an
equal number of outgoing and incoming edges active in the route, and this number shall be smaller
or equal to one, except for the start and end nodes, which shall have zero incoming or outgoing
edges, respectively.

To remove closed loops which may be left in the previous steps, the prv variables and the
Constraints (5)–(7). Constraint (5) sets the position of the first node in a route to 0. Constraints (6)
and (7) set the position of a node that comes after another node in a route to one plus the position of
the previous node, assuring sequential positioning. Therefore, the first node will have the smallest
position. Since a closed loop has no start, no potential position can successfully be assigned to a
node in it. It should be kept in mind that, if extra closed loop routes are acceptable in a solution (i.e.
if the number of routes can be bigger than the given |R|), these constraints can be removed.

The rest of the formulation finds |V |2 shortest paths, for each pair origin-destiny, based on the
available routes, following a standard approach for shortest paths LP formulations. Constraint (8)
assures that best paths will consist only of edges available in the chosen routes. Constraint (9)
disallows moving between routes, except when this movement is from a node to itself, in which
case it would characterize a transfer (and thus is allowed).

Constraints (10) and (11) guarantee that there will be unique start and end routes for each best
path. Constraint (12) assures that every best path will actually be a path, by balancing the number
of ingoing and outgoing edges of every node (which is, in this case, a pair in R× V , as per Section
2.1).
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The variables s∗vwr, f∗vwr and x∗vwe′ are actually implemented as real variables between 0 and 1.
If their values end up being non-integer on an optimal solution, the solution is still valid and can be
interpreted as follows: the best path can be taken in several different manners, and each manner is
used in proportion to the value of the corresponding variable. e.g. if s∗vwr is 0.5, then 50% of the
demand from v to w starts on route r. Furthermore, every single path has the same length, since
otherwise the rest of the demand would also use the shortest path, and this would provide a solution
which is better than the optimal, a contradiction. This also means that there is at least one integer
solution which is equivalent to any optimal non-integer solution found.

Finally, using mixed integer programming, one can only optimize a single objective function.
To handle this, we use two approaches: either summing both functions, each weighted by an im-
portance factor, or setting one of the goals as a constraint, giving it a maximum value. This gives
the traffic planner the possibility to find the best solution for one of the goals, respecting boundaries
on the other, or to find the best solution given a certain linear trade-off between the two objective
functions.

4 Metaheuristic approach

The metaheuristic used here is a genetic algorithm (Holland (1975)). Each solution consists of a
set of routes, and each route is represented as a sequence of nodes. There are operations to add nodes
to and delete nodes from routes, and add and remove routes from route sets. It follows the well-
known structure of a genetic algorithm: an initial population is generated (as described in Section
4.1), and the constant sized population evolves until some stopping criterion, e.g. the number of
generations, is satisfied. In each generation, each member of the population suffers a mutation, is
evaluated, and in case it dominates an existing solution in the population, it will replace it. If more
than one solution would be dominated by this new element, only the first solution found will be
replaced (the search begins on its original self).

An important aspect of our approach is the representation, that is not as simple as commonly
seen (Agrawal & Mathew (2004), Chakroborty (2004), Fan et al. (2009)). It consists of dynamic
data structures such as sets and vectors instead of simple strings. This is justified because represent-
ing, moving, copying and modifying routes is not the bottleneck in this problem, but the evaluation
of route sets. This means the structure is made more generic, easier to program and to adapt to new
restrictions, without significant performance loss.

The next key aspect are the operators. The mutation operator is based on the Make-Small-
Change procedure, from Fan et al. (2009). It applies very small changes to routes, and thus navigates
through the neighborhood of solutions. This is important in order to find local minima, maximizing
the potential of some route set, but must be complemented so that other areas of the solution space
may also be explored. The only operations that are executed are the addition and removal of nodes
at the start or end of a route. Only one node is added or removed at a time.

The last important characteristic is the maintenance of a base and an undominated solution list,
apart from the population. The first one is used for the initialization procedure, and the second one
maintains every undominated solution found. Every time a new solution is created by an operator,
it may not dominate any solutions, but still be undominated. Since the population size is constant,
this new undominated solution would be lost. Instead, it is kept in the undominated list, whose size
is dynamic.

We attempt to achieve a more effective algorithm by carefully selecting initial solutions, apply-
ing new operators such as simplification and crossover, not letting a feasible solution be removed
if it is undominated and allowing different route set sizes in the same population. These operations
and generation of initial solutions will be explained next.

Since this is a multi-objective optimization problem, we only consider domination for the clas-
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sification of solutions. Thus, there is no fitness level that rates and orders solutions, and all are
considered equal as long as one does not dominate another. Therefore, when applying operators,
every solution candidate has the same probability of being chosen, unless otherwise stated. Besides
that, every element in the population suffers exactly one mutation per evolution step.

The evaluation, the most expensive step of the algorithm, is done using Dijkstra’s algorithm.
In this way, a solution can be evaluated in time O(|R|2|V |2 log(|R||V |)), since there are O(|V |)
evaluations, one per node, and each one corresponds to an execution of Dijkstra’s algorithm over a
graph with O(|R||V |) nodes and O(|R|2|V |) edges.

The overall running time of the algorithm would be, then, for a population of size P and T evo-
lution steps, O(PT |R|2|V |2 log(|R||V |)). An advantage of having the bottleneck on the evaluation
of a solution is the fact that the overall running time can be parallelized up to a factor of P . This
has not been taken advantage of yet, and will be discussed further in Section 6.

4.1 Generation of initial solutions

The first step of the generation of initial solutions is the creation of a base list of solutions. These
are the minimum spanning trees of the transport network and the subgraph of the transport network
containing only shortest paths given by the Dijkstra or Floyd-Warshall algorithm. All routes con-
tained in one of those subgraphs are joined into a route set, and the route sets get simplified (as
described in Sections 4.2 and 4.3). Another source of viable routes is the relaxed solution of the
MIP formulation. One can create paths by randomly choosing a node and then random traveling
through edges with probability equal to xre and thus obtain new routes.

Then, the extraction of valid route sets begins. The extraction respects minimum and maximum
number of nodes in route, existence of cycles and number of routes per route set. It is a random pro-
cedure, possibly extracting a different part of the route or route set at each run. The extractions are
then performed several times (since they are random), and all of the resulting valid solutions initial-
ize the base list. Then, a variable number of crossovers is executed between random valid solutions.
At the end, every route gets simplified, and the base list is ready. Meanwhile, the undominated list
is also fed with every undominated solution in the base list.

The next step is actually creating the initial population. This is done by taking one third of
P solutions from the base list, one third of P solutions from the undominated list, and making
crossovers to fill the remaining third.

The process of creating a new population can then be repeated after a number of evolution steps.
This does not involve the creation of the base and undominated list anymore, and thus enables faster
renewal of the whole population.

4.2 Route set simplification operation

When finding a shortest path between two nodes, one will travel exactly through the shortest
paths between the intermediate nodes. This is a known characteristic of problems to which dynamic
programming can be applied, and here it is taken advantage of in a different way.

As explained in Section 4.1, some route sets are determined and saved on a list of base route
sets. This list will be used to build new initial route sets and candidate solutions. One of the
source of routes for the base route sets is the shortest path between nodes. These are all added into
the routes sets of the base list. But, as discussed above, there are many repetitions between these
shortest routes.

Besides, when using a random decision based algorithm, changes to routes can naturally lead to
the same situation: some routes can be contained in others. Even when not so, two routes may still
be joinable without any disadvantage to users or to operators. This is formally defined as follows:
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the route r can be joined with s if: ∃i0≤i≤|s|−1 : ∀j1≤j≤min(|r|,|s|−i) : rj = sj+i. Two routes r and
s are joinable if either one of them can be joined with the other.

These ideas lead to the development of an operation that attempts to combine every pair of
routes belonging to a route set. This operation leads to big savings of operator costs for the initial
route list, and improves the route set during the execution of the genetic algorithm.

4.3 Crossover

The route sets consist of many routes. The first crossover that has been implemented simply
exchanges some of the routes, chosen randomly, between route sets, and simplifies the route set
afterwards. This is useful to explore new solutions, but does not actually change routes.

In order to try to join two routes and perhaps keep qualities of both of them, a mix up operation
was also defined. With it, a crossover not only exchanges routes, but also mixes them up. The
operation works as follows: a cut point is randomly defined in both routes. From the beginning of
the first route until its cut point, all nodes are present in the result. From there on, the nodes are
copied from the cut point of the second route until its end. After that, all the currently applying
restrictions are considered, such as prohibition of cycles and limits on the number of nodes on a
route. Nodes are excluded from or included into the resulting route until it satisfies all restrictions.

5 Experimental Results

We tested our approaches on Mandl’s Swiss road network (Mandl (1980)), with 15 nodes and 21
links, the only, to the best of our knowledge, commonly used benchmark for the UTRP, in order to
compare our results with previous works (Baaj & Mahmassani (1991), Kidwai (1998), Chakroborty
(2004), Fan et al. (2009)). We also experimented with larger test cases produced by Fan et al. (2009)
to test the solution quality and scalability of our metaheuristic approach.

All results are evaluated using the following quantities, as in previous works: (a) the percent-
age di of the demand satisfied with i transfers, (b) the average travel time ATT (in minutes per
passenger), including transfer penalties, and (c) the cost for the operator CO, i.e., the total route
length (in minutes, considering constant transport speed). The only quantity that should be as high
as possible is d0, which indicates how much of the demand can be satisfied without transfers. All
other measures should be as small as possible.

When evaluating scenarios on which no tests have been previously made, it is clearly impossible
to compare qualities with previous results. In this case, a good alternative measurement of solution
quality is the gap between its Average Travel Time and theATT lower bound for the instance. This
lower limit can be obtained by calculating shortest paths between every demand pair, separately, in
the transport network (as opposed to the route network).

The exact algorithm was implemented in GNU MathProg Modeling Language, and the meta-
heuristics using the C++ Programming Language. All execution times have been measured in sec-
onds of real time. Results were obtained on a PC with an Intel Core 2 i5-460M 2.53 GHz processor
and 4GB of RAM using Linux Ubuntu 12.04 OS.

5.1 Mixed Integer Programming approach

We obtained the best possible route sets on Mandl’s network regarding user travel time for 2 and
3 routes. The IBM ILOG CPLEX Optimizer 12.4 was used to solve our Mixed Integer Programming
formulations. The quality, processing times and the actual routes of the solutions are given in
Table 1.

3724



September 24-28, 2012
Rio de Janeiro, Brazil

Table 1: Best possible route sets found using the Mixed Integer formulation

Number of routes 2 3
d0 84.90 % 93.67 %
d1 14.00 % 5.43 %
d2 1.10 % 0.90 %
ATT 11.33 min. 10.50 min.
CO 98 min. 150 min.

Processing time (s) 1065 78992
Two Routes 6-14-7-5-2-1-4-3-11-10-9-13-12

0-1-3-5-7-9-6-14-8
Three Routes 4-3-11-10-12-13-9-7-5-2-1-0

4-3-1-2-5-14-6-9-10-11
0-1-4-3-5-7-9-6-14-8

It is clear that solving the UTRP, a NP-hard problem, using exact methods is not scalable nor
feasible even for relatively small instances of the problem. Nevertheless, these experiments show
the problem size to which it can still be applied, and also validate the correctness of the formulation.

Since the 2 routes case has 144 binary variables and the 3 routes scenario has 216, and given the
processing times given in Table 1, one can estimate the processing time required for solving with 4
routes in about 77 days. These results were achieved using all available cores (the processing times
can be lowered by further parallelization).

5.2 Metaheuristic approach

5.2.1 Mandl’s network

The stopping criterion of the genetic algorithm when applied to Mandl’s network was 200, 400
and 600 evolution steps when testing with limits of respectively 4, 6 and 8 routes. The population
consisted of 1000 route sets. We chose these values proportional to the ones used in Fan et al.
(2009), in order to allow a fair comparison, since the actual processing times were not available.
Nevertheless, we decreased the number of iterations and total reruns in order to compensate for
hardware advances and possible longer execution times per iteration in our approach.

We first compare our results with the multi-objective approach proposed by Fan et al. (2009),
which is better suited for the UTRP since there are two major concerns when developing routes
for urban transit: the quality for the passengers and the costs for the operators. The results are
present in Table 2. We can see that, in comparison to previously published results, our solutions
were always better, i.e. we achieve superior solutions with equal or smaller prices and better travel
times. Moreover, they dominate the previous results, being better in all considered measures, or in
only of them, but without affecting the others. The four route sets whose results are shown in Table
2 can be obtained with the correspondence author.

To make a broader comparison, the results in all previous works we found on Mandl’s network
(Mandl (1980), Baaj & Mahmassani (1991), Kidwai (1998), Chakroborty (2004)) were analyzed,
and the best results are shown in Table 3, in comparison to our results. Here, the objective is only
one: decrease passenger travel time, without taking transfer penalties into consideration. This was
necessary to allow a comparison between heterogeneous penalty values. Not considering penalties
favors results that were achieved using lower penalty values, given that these are closer to not
having a penalty at all. Since we used five minutes penalty per transfer, and this is the highest
amount applied in the cited publications, our results should not be favored.

To calculate the Average Travel Time without penalty (ATTwop) the following formula is used
(where TMAX is the maximum number of transfers): ATTwop = ATT −

∑
i≤TMAX

tpendii.
It is important to keep in mind that the comparison made in this single-objective case is not as
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Table 2: Comparison between best UTRP multi-objective solutions on Mandl’s Network

Scenario Qp BKV Our
results

Best for d0 94.54 % 98.84 %
Passenger d1 5.46 % 1.16 %

d2 0.00 % 0.00 %
ATT 10.36 min. 10.10 min.
CO 283 min. 259 min.

Compromise d0 93.19 % 93.61 %
Solution d1 6.23 % 6.20 %
(CO ≤ 148) d2 0.58 % 0.19 %

ATT 10.46 min. 10.43 min.
CO 148 min. 147 min.

Scenario Qp BKV Our
results

Compromise d0 90.88 % 91.23 %
Solution d1 8.35 % 7.84 %
(CO ≤ 126) d2 0.77 % 0.93 %

ATT 10.65 min. 10.59 min.
CO 126 min. 126 min.

Best for d0 66.09 % 77.78 %
Operator d1 30.38 % 21.32 %

d2 3.53 % 0.90 %
ATT 13.34 min. 12.97 min.
CO 63 min. 63 min.

BKV: Best known value (Fan et al. (2009)).

Table 3: Comparison between best single-objective UTRP solutions on Mandl’s Network

|R| Best previous ATTwop ATTwop obtained
(Chakroborty (2004)) by our approach

4 10.33 min. 10.30 min.
6 10.43 min. 10.11 min.
7 10.53 min. 10.04 min.
8 11.22 min. 10.05 min.

fair as in the multi-objective scenario. This is so because, when comparing results from various
sources, slight differences in the definition of the problems occur, e.g. regarding the minimum and
maximum number of nodes per route, allowance of cycles and others. Besides this, the differences
in publishing dates, and therefore also in hardware used for running experiments, make it harder to
compare the running time of the approaches. Nevertheless, our approach showed to be successful
in the single-objective case as well.

5.2.2 British city based network

To assess the behavior of our metaheuristic approach when dealing with larger networks, we
applied it to the network defined and used in Fan et al. (2009), Fan & Mumford (2010), which has
110 nodes and 275 links, with 3603360 journeys per day. The network’s size and connectivity are
based on a major British city. Two scenarios were defined, each one with its own minimum and
maximum number of nodes per route, and total number of routes.

Since our approach can handle multiple route set sizes at the same time, the biggest difference
in each scenario is the number of nodes per route. The minimum number is 2 and the maximum
number is 29 in scenario I, being these limits derived from the transport network graph, its connec-
tivity and number of nodes, as is stated in Fan et al. (2009). In scenario II, the minimum number
is 10 and the maximum number is 22. The limits in scenario II are derived from the actual routes
used in the major British city upon which the artificial network was based.

The running time informed in previous works averages between 13000 and 19000 seconds of
processing, depending on the scenario. We used no more than 2500 seconds in each test case.

The full comparison between previous results and our outcome for this network is given in
Table 4. This time we do not assess di for i ≥ 1 because of space limitations. Nevertheless, one
can calculate how much demand is satisfied with transfers by taking 1− d0.

It can be noticed that we optimize the major objective of all scenarios better, with exception of
ATT for Scenario I-Passenger, where we got slightly higher results.

The fact that our route sets were superior when not considering penalties shows that most pas-
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Table 4: Comparison between best UTRP multi-objective solutions on artificial British city

Scenario Qp BKV Our
results

I-Passenger d0 72.91 % 55.80 %
ATT 36.28 min. 36.35 min.

ATTwop 34.60 min. 34.12 min.
CO 2986 min. 8406 min.

II-Passenger d0 71.21 % 46.25 %
ATT 37.52 min. 36.61 min.

ATTwop 35.68 min. 33.77 min.
CO 2378 min. 5181 min.

Scenario Qp BKV Our
results

I-Operator d0 48.62 % 9.48 %
ATT 40.88 min. 55.08 min.

ATTwop 37.36 min. 45.66 min.
CO 1077 min. 319 min.

II-Operator d0 46.97 % 8.47 %
ATT 41.26 min. 55.48 min.

ATTwop 37.655 min. 47.90 min.
CO 1265 min. 319 min.

BKV: Best known value (Fan et al. (2009)).

sengers travel through the fastest or almost fastest paths in the transport network. A reason for this
is the frequent use of these fastest paths as candidate routes in our algorithm.

Another important remark is that our outcome had much cheaper (to operate) route sets in the
operator-oriented scenarios. This shows that our metaheuristic approach was also successful when
optimizing prices instead of travel times. This helps producing a much wider range of available
compromise solutions to be chosen by a public transport network planner, thus improving overall
network quality.

The possible drawback in our passenger-oriented route sets is the high number of people that
need to make transfers. This is overcome, in most cases, by a faster arrival time, despite transfers
(and considering transfer penalties). Improvements for this are discussed in Section 6.

6 Concluding Remarks and Future Work

We developed an exact MIP formulation for the UTRP. To the best of our knowledge, a full exact
solution to this problem was never published before. With it, we obtained best possible solutions for
small sized scenarios. A time estimative for exactly solving a certain instance of the problem was
derived, and with it, limits on the problem size to which exact solutions are feasible can be derived.
From the MIP formulation, we were also able to obtain route suggestions for our metaheuristic
approach.

With a new approach, using a genetic algorithm, we achieved better results than every other
published in literature, with the exception of one test case configuration. Most of our solutions also
dominated previous solutions, and thus did not only improve the main goal, but all goals. This
was done with a more flexible implementation in comparison to previous approaches, which is not
bound to certain restrictions such as fixed number of routes, minimum and maximum number of
nodes per route, allowance of cycles, directedness of routes and more. Our processing times were
also significantly lower than in previous works. Thus, the algorithm achieves better results faster. A
reason for this may be due to bigger speed of exploration of the solution space, and the avoidance
of local minima by using operators which had not been used in previous algorithms, such as the
simplification operator. Another characteristic of our algorithm is that it can be parallelized up to a
factor equal to the population size. Actually implementing this remains as future work.

A possible drawback of our approach is the higher number of transfers on bigger networks
when compared to previous works. This is most likely because we do not create routes attempting
to maximize the covered demand, unlike previous approaches. Even though the main objectives
are nevertheless better in our solutions, the use of a demand oriented procedure for the creation of
routes is planned to be added to our algorithm to solve this.

To put the algorithm in real validation, we plan to use it on real networks for big capitals
such as Porto Alegre, Brazil and Berlin, Germany. We could also apply our solution route sets to
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simulation software to validate and assess further. A known simulation package, which we plan to
use, is MATSim (Balmer et al. (2009)). To handle greatly sized instances, the parallelization of the
algorithm may be necessary. The last suggestion for taking the work on is the broadening of the
problem definition as to take into consideration an already existing transit network, and the costs to
change it in comparison to the benefits of doing so.

With this work, we hope to help improve the overall quality of available algorithms to solve the
UTRP, which becomes more and more vital as public urban transit networks grow larger and more
complicated.
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