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ABSTRACT

Due to population growth and the massive production of automotive vehicles,
traffic congestion problems have become larger and more common. This is a reality that
governments are facing everywhere, even in medium sized cities that were not used to this
scenario. However, despite the growth of the number of vehicles, traffic congestion can
be lessened using different strategies. One possibility, that is explored in this research, is
assigning tolls to roads, inducing users to take alternative paths, and thus better distributing
the traffic across the road network. This problem is called the toll booth problem and
is NP-hard. We propose mathematical formulations for variations of the toll booth
problem, using two piecewise linear functions to approximate the congestion cost. We test
these models on a set of real-world instances, and apply a previously proposed genetic
algorithm to all instances. The experimental results show that the proposed piecewise
linear functions approximates the original convex function quite well, and the genetic
algorithm produces high quality solutions.

KEYWORDS. Transportation networks, Genetic algorithms, Toll both problem,
Combinatorial Optimization.
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1. Introduction
The quality of transportation people have available plays an important role in mod-

ern life. Keeping the time spent driving as short as possible for doing daily activities
directly impacts the quality of life for individuals in a society. If we consider the case
where high quality roads have been already built, there are not many alternatives for re-
ducing driving time. However, if a given road has high traffic, reducing or distributing
the resulting congestion across the road network is certainly a possibility that should be
explored.

Due to the population growth and the massive production of vehicles, traffic con-
gestion problems become larger and more common every day, mainly in metropolitan ar-
eas. To a commuter or traveler, congestion means loss of time, potential missed business
opportunities, stress, and frustration. To an employer, congestion means lost worker pro-
ductivity, trade opportunities, delivery delays, and increased costs (W. and Wen, 2008).
For example, one significant aspect is the value of wasted fuel and additional time. In 2010
traffic congestion cost about $115 billion in the 439 urban areas of EUA (Schrank et al.,
2011).

Plan improvements in these systems require a careful analysis of several factors.
These alternatives are evaluated using different models that attempt to capture the nature
of transportation systems and thus allow the estimation of the effect of future changes in
system performance. Performance measures include efficiency in time and money, security,
and social and environmental impacts, among others.

There are some strategies aimed at reducing traffic congestion. Among them, in-
stalling tolls on certain roads can induce drivers to choose alternative routes, which reduces
congestion as a result of a better distribution of traffic flow. Naturally, tolls can increase
the cost of a trip, but it can be compensated with less time, fuel and stress spent in traf-
fic. In the 1950’s Beckmann et al. (1956) proposed the use of tolls, and recently this idea
has been used in practice. In 1975 Singapore implemented the “Electronic Road Pricing
- ERP”program. Norway, London and some cities in the United States have implemented
projects to use toll roads (Bai et al., 2010). Tolls are also commonly applied in old Euro-
pean towns to reduce vehicular congestion in downtown areas.

Given a set of input data, defining the location of the toll booths and their tariffs can
be formulated as a combinatorial optimization problem. This problem has aroused interest
in the scientific community, both by its intrinsic difficulty as well as the social importance
and impact of its solution.

Optimizing transportation network performance has been widely discussed in the
literature. The minimum toll booth problem (MINTB), first introduced by Hearn and Ra-
mana (1998), aims at minimizing the number of toll locations to achieve a system opti-
mum. Yang and Zhang (2003) approach the second-best link-based pricing formulated as
a bi-level program and solved it by a genetic algorithm. In Bai et al. (2010) it was shown
that the problem is NP-hard and a local search metaheuristic was proposed. Another
similar problem is to minimize total revenue without (MINSYS) or with (MINREV) the
possibility for negative tolls or subsidies in some links (Hearn and Ramana, 1998; Dial,
1999a,b; Hearn and Yildrim, 2002; Bai et al., 2004). For a complete review of the design
and evaluation of road network pricing schemes we refer to the survey by Tsekeris and Voß
(2009).
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Road and telecommunication routing problems have some similarities: they are
modeled by a directed weighted graph, where each link has capacity and delay (or link
travel time), and a demand matrix defines the amount of flow required between each pair
of nodes. Different from a road network, whose flow depends on the routes used by the
users, in telecommunication networks the flow is sent according to a protocol. One of the
most commonly used protocols within autonomous systems is the Open Shortest First Pro-
tocol (OSPF) that sends flow between origin and destination by the shortest path, splitting
traffic evenly among alternative paths. A classical NP-Hard optimization problem in this
area is the weight setting problem (WSP) (Fortz and Thorup, 2004) which attributes an in-
teger weight to each link in a telecomunication network such that when flow is sent by the
shortest path (calculated considering the weights) the traffic in the network is minimized.
Metaheuristics were successfully applied for solving the WSP (Fortz and Thorup, 2004;
Buriol et al., 2005).

In this paper we approach the toll booth problem with routing through shortest
paths, first studied in Buriol et al. (2010). In this problem the objective is to allocate a
fixed number K of toll booths and set their tariffs so that the users travel through shortest
paths between origin and destination, reducing network congestion. Untolled links are
considered to have zero weight (no tariff). The least cost paths are calculated based only
on the tariffs of the tolled arcs, and flow is sent by these shortest paths, in analogy to the
OSPF protocol. In this work we present models of variations of the toll booth problem.
We further propose two piecewise linear functions that approximate the convex travel cost
function of Bureau of Public Roads (1964) for measuring the congestion on each link.
Finally, we extend the work in Buriol et al. (2010) presenting a larger set of experiments.

This paper is organized as follows. In Section 2 we present the mathematical mod-
els for minimal average link usage and the average link travel time, and the two approx-
imate piecewise linear functions. These mathematical models provide some information
about the network and are intermediate steps for constructing the mathematical model for
the toll both problem. The genetic algorithm with local search proposed in Buriol et al.
(2010) is presented in Section 3. Computational results are reported in Section 4. Finally,
conclusions are drawn in Section 5.

2. Problem formulation
The road network is represented as a directed graph G = (V,A) where V repre-

sents the set of nodes (i.e., vertices or points of interest), and A the set of arcs (i.e., links
or roads). Each arc a ∈ A has an associated capacity ca, and a time ta spent to traverse
the unloaded arc (i.e., the free flow time). For calculating the congestion on each link,
a cost Φa is calculated as a function of the load `a (or flow) on the arc, plus two tuning
parameters pa (power), and βa (cost). In addition, K ⊆ V × V is the set of commodities
or Origin-Destination (OD) pairs, where o(k) and d(k) represent the origination and desti-
nation nodes for each k ∈ K. Each commodity k ∈ K has an associated demand of traffic
flow dk, i.e., for each OD pair {o(k), d(k)}, there is an associated amount of flow dk that
emanates from node o(k) and terminates at node d(k).

Before presenting the models, some notation is introduced. We denote by IN(v)
the set of incoming links to node v, OUT (v) the set of outgoing links from node v,
TK =

∑
k∈K dk is the total sum of demands dk. Moreover, we denote by Φa the traffic

congestion of arc a, whilst ϕa and ϕla are approximations of traffic congestion cost on arc
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a given by piecewise linear functions. We note that throughout the text, flow and load are
synonymous, as are commodity and demand.

The subsections 2.1 and 2.3 introduce the mathematical models and the piecewise
linear functions proposed in this work, while subsection 2.2 presents the model proposed
in Buriol et al. (2010).

2.1. First Mathematical Model (MM1): Minimal Average Link Usage
This problem aims at minimizing the maximum utilization of links, where the usage

of a link to is defined by `a
ca

, the ratio of load allocated to a link and the maximum load the
link is able to accommodate.

Decision Variables:
xka = proportion of commodity k on arc a;
`a = load or flow of arc a;
Θ = maximum utilization;

minimize Θ (1)
subject to: `a/ca ≤ Θ ∀a ∈ A (2)

`a =
∑
k∈K

dkx
k
a ∀a ∈ A (3)

∑
a∈IN(v)

xka −
∑

a∈OUT (v)

xka =


1, if v = d(k)

−1, if v = o(k)

0, otherwise
∀v ∈ V, k ∈ K (4)

xka ∈ [0, 1], `a ≥ 0 ∀a ∈ A, ∀k ∈ K. (5)

Objective function (1) represents minimizing the maximum utilization among all
links. Constraint set (2) defines the maximum value of Θ. Constraint set (3) defines total
flow on arc a considering all commodities. Constraint set (4) guarantee flow conservation,
and the last constraint set defines the domain of the variables (5).

This model provides important information about the network traffic, which is the
ability to distribute the demands without exceeding the capacity of links (case of Θ > 1).

2.2. Second Mathematical Model (MM2): Average Link Travel Time
The evaluation costs of a route can be defined in different ways according to specific

goals. The cost function Φa = `ata
[
1 + βa(

`a
ca

)pa
]

represents the average link travel time
for the system. We normalized this value dividing it by TK . The function Φa is convex and
nonlinear and we assume that Φa is a strictly increasing function.

The model presented below aims at defining the flows on each link such that the
overall cost is minimized. Decision variables xka and `a are defined as in MM1.

minimize Φ =
∑
a∈A

`ata
[
1 + βa(`a/ca)

pa
]
/TK (6)

subject to: (3)-(5)

The objective function (6) represents the average link travel time for the system.
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2.3. Mathematical model 3 (MM3): Linear Approximate Average Link Travel Time
The performance of commercial mixed integer linear programming solvers has im-

proved considerably over the last few years, whose efficiency cannot be disregarded by
the scientific community. This current state motivates the creation of linear mathematical
models (approximating the original mathematical models) so that these resources can be
utilized. Thus, we propose the model below which describes a piecewise linear approxi-
mation of function Φ.

Decision Variables:
ϕa = cost on arc a;

minimize
∑
a∈A

ϕa (7)

subject to: (3) and (4)

(mi
a/ca)`a + bia ≤ ϕa ∀ a ∈ A, i = 1, ..., n (8)

xka ∈ [0, 1], ϕa ≥ 0, `a ≥ 0 ∀a ∈ A, ∀k ∈ K. (9)

Where:

mi
a = (Yi − Yi−1)/(Xi −Xi−1)

bia = Yi −Xim
i
a

with Yi = Xicata(1 + βa(Xi)
pa)/TK

for X0 = 0 < X1 < ... < Xn.

The objective function (7) minimizes link costs. Constraint set (8) evaluates the
partial cost on each arc, while the last constraint set (9) defines the domain of variables.

The cost Φa is approximated by a piecewise linear function ϕa defined in constraint
set (8). The linearized function and the values of X and Y are described in the next sub-
section.

2.3.1. Piecewise linear functions ϕa and ϕla

The piecewise linear function is an estimation of the cost function Φ. This lineariza-
tion requires a balance between the accuracy of the solution found and computational time.
A lower value of n (number of line segments composing the approximation) can lead to
a poor approximation of the original objective function, while a large value of n can lead
to a considerable increase in computational time since each element entails |A| additional
constraints to the model.

We describe two linearizations of the cost function Φ for a ∈ A. In both cases it
is necessary to define a vector X whose values are computed as a function of ( `a

ca
). This

vector can be arbitrarily defined according to the accuracy required for the linearization of
the cost function, or according to characteristics of the set of instances. The linearization
ϕ is an overestimation of Φ. The second linearization, denoted ϕl, is an underestimation,
which gives a lower bound of Φ. A representation of these three functions is depicted in
Figure 1. It shows the behavior of the cost function Φ (solid line) and the linear piecewise
cost functions ϕ and ϕl for an arc with ta = 5, ca = 200, pa = 4, βa = 0.15, and
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TK = 1000 to vector X with n = 6 for a given instance. The filled circle dots are defined
by vector X and the square filled dots by vector X l.
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Figure 1. Comparison of the cost function with the linear piecewise cost function.

For ϕ, the values of Yi are calculated given the values of Xi as Yi = Φ(Xi). For
each pair of points Pi−1 = (Xi−1, Yi−1) and Pi = (Xi, Yi) we can write the linear equation
of the straight line that links these two points. The slope is represented by mi

a and the
independent term by bia. For ϕl we use ∂Φ

∂x
= ta

TK
+ (pa+1)taβaxpa

cpaa TK
to calculate the slope in a

point x. By convention we use the vector X of the first case to calculate the vector X l used
in this case, where X l

i = Xi−1+Xi

2
. We empirically defined X={0, 0.65, 1, 1.25, 1.7, 2.7, 5}

based on the set of instances tested.

Proposition 1: if `a
ca
≤ Xn ∀ a ∈ A, then ϕl ≤ Φ ≤ ϕ.

By construction ϕla ≤ Φa, then Φ =
∑

a∈A Φa ≥
∑

a∈A ϕ
l
a = ϕl. Thus Φ ≥ ϕl.

Furthermore, if `a
ca
≤ Xn by construction ϕa ≥ Φa, then ϕ =

∑
a∈A ϕa ≥

∑
a∈A Φa = Φ.

Thus ϕ ≥ Φ. Therefore ϕl ≤ Φ ≤ ϕ.

3. A Hybrid Genetic Algorithm for the Toll Booth Problem
In this section we describe the hybrid genetic algorithm used for solving the toll

booth problem proposed in Buriol et al. (2010).

Each solution is represented by two arrays w′ and b. Array w′ stores the integer arc
weights, while b is a binary array indicating the set of tolls. An arc a of the network has
weight equal to wa = w′a · ba. Each individual weight belongs to the interval [1, wmax].
Each demand is routed forward to its destination through the shortest path calculated based
on the weights of the tolled arcs. Un-tolled links are considered to have zero weight.
Depending on the number of tolls and the network, there can be several shortest paths of
zero cost. In this case we evaluate the shortest path through the number of hop counts.
Traffic at intermediate nodes is split equally among all outgoing links on shortest paths to
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the destination. After the flow is defined, the solution is associated with a fitness value
defined by the objective function Φ. The initial population is randomly generated, with arc
weights selected uniformly in the interval [1, wmax]. Also, the position of K toll booths is
chosen at random.

The population is partitioned into three setsA, B, and C. The best solutions are kept
inA, while the worst ones are in C. All solutions inA are promoted to the next generation.
|B| other solutions are generated by crossover of one parent from A with another from
B ∪ C using the random keys crossover scheme. Solutions from class C of the previous
generation are replaced by new randomly generated solutions.

A local search procedure is incorporated into the genetic algorithm to enhance its
ability to find better-quality solutions with less computational effort. Local search is ap-
plied to each solution generated by the crossover operator. In short, the local search ap-
proach works as follows. Given a solution, the five arcs with largest congestion cost are
selected. For each of these arcs, in the case there is a toll already installed on it, its weight
is increased by one, in order to induce a reduction of its load. The increases are repeated
until the weight reaches wmax or Φ does not improve. For each of the arcs that do not cur-
rently have a toll installed , a toll is installed with initial weight one, and a toll is removed
from some other link (using a circular order). The procedure stops at a local minimum
when there is no improved solution changing the weights of the candidate arcs.

4. Computational results
This section presents and discusses the computational experiments performed.

First, we present the dataset used in the experiments. Next, we detail the experiments
performed. Two sets of experiments were performed: the first explores CPLEX results for
the models presented in Section 2, while the second explores the GA results.

For the experiments, we used a computer with an Intel i5-2300 2.80GHz CPU, with
4GB of main memory and Ubuntu 10.10. The genetic algorithms were implemented in the
C programming language and compiled with the gcc compiler, version 4.4.5 with opti-
mization flag -03. The commercial solver CPLEX 12.3 was used to solve the mathematical
models presented in Section 2.

Table 1 presents details of the ten real-world instances considered in our experi-
ments and available by Bar-Gera (2011).

4.1. Minimal average link usage MM1 and linear piecewise cost MM3
The first set of experiments tests the performance of CPLEX (set up to use the pri-

mal algorithm) applied to a subset of the instances, considering the models introduced in
sections 2.1 and 2.3. Table 2 presents, for each instance and model, the objective func-
tion values and the computational time (in seconds) needed to solve the problem instance.
The objective function is Θ for MM1, while for MM3 the results for both piecewise lin-
earizations are presented. For every solution found, the corresponding Φ (6) value is also
calculated for the sake of comparison.

From the results in Table 2, there are four main observations that can be drawn.
First, minimizing the maximum utilization (Θ) is not effective in minimizing the link travel
time as measured by Φ. However, we were not expecting a close relation among these
functions. Second, there are instances where in any given feasible solution, at least one arc
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Table 1. Attributes of problem instances. The columns represent the instance name, num-
ber of vertices, number of links, number of OD demand pairs, number of nodes that origi-
nate demands, and number of nodes that are destinations of demands, respectively.

Instance Vertices Links Demands Origins Destinations
SiouxFalls 24 76 528 24 24
Friedrichshain Center 224 523 506 23 23
Prenzlauerberg Center 352 749 1406 38 38
Tiergarten Center 361 766 644 26 26
Mitte Center 398 871 1260 36 36
Stockholm 416 962 1623 45 45
MPF Center 975 2184 9505 98 98
Barcelona 1020 2522 7922 97 108
Winnipeg 1067 2975 4345 135 138
ChicagoSketch 933 2950 93513 387 387

Table 2. Computational results for MM1 and MM3
MM1 MM3

Instance Θ Φ Time ϕ Φ Time ϕl Φ Time
SiouxFalls 1.91 28.03 2.67 21.68 20.52 1.40 18.10 20.92 1.08
Friedrichshain Center 0.40 77.55 12.98 47.61 43.11 3.78 39.57 43.34 2.96
Prenzlauerberg Center 0.66 92.65 60.69 67.21 60.80 34.00 56.98 61.07 29.16
Tiergarten Center 0.41 91.85 15.31 59.68 52.91 53.52 47.63 53.61 45.91
Mitte Center 0.58 120.53 35.52 71.08 63.11 160.24 58.76 63.59 33.67
Stockholm 9,316.94 152,053.61 7.75 108.63 111.03 494.85 79.08 106.84 503.84

carries more flow than its capacity, since Θ > 1. Third, both piecewise linear functions
have values close to Φ, which shows that they are good approximations. Finally, for the
Stockholm instance, the objective function value is very high. This is expected since node
5 is a destination for a demand of size 9316.94, but has only one incoming link, the capacity
of which is 1.

The remaining instances listed in Table 1 cannot be solved because of the size of the
problems. The large number of constraints generated by these problem instances increase
the memory requirements beyond the capacity of our test machine.

4.2. Computational results of genetic algorithms

This section presents results of the genetic algorithm for the ten test instances. We
extend the experimental study performed by Buriol et al. (2010) which presents results for
four of these instances (the other six were only available recently). Moreover, we provide
an analysis of the best solution for each combination of instance and K.

In the first experiment we compare the results obtained between the genetic algo-
rithm (GA) and the genetic algorithm with local search procedure (GA+LS). The stopping
criteria are a time limit of 1800 seconds and a maximum number of generations (5000 for
GA and 1000 for GA+LS). Table 3 shows the results obtained, averaged over five runs with
different random seeds and over the seven different values of K (the number of toll booths
used in this experiment are the same as shown in Table 4). Table 3 presents the number
of generations and average running times for the GA and the GA+LS. Furthermore, the
last column of Table 3 presents the average gap between the fitness value of both meth-
ods, showing the superiority of the GA+LS over the GA (a negative average gap means
that GA+LS performed better than GA alone). On average, GA+LS spent less time and
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found better solutions than GA on the experiments performed. We note that the only cases
where the times were comparable was when both approaches reached the time limit of
1800 seconds.

Table 3. Comparison of GA and GA+LS algorithms.
Number of generations Run Time (s)

Instance GA GA+LS GA GA+LS Av. gap
SiouxFalls 5,000.00 1,000.00 37.04 48.59 -1.21
Friedrichshain Center 5,000.00 1,000.00 407.28 243.68 -0.56
Prenzlauerberg Center 5,000.00 1,000.00 988.56 527.99 -0.91
Tiergarten Center 5,000.00 1,000.00 722.11 447.31 -0.16
Mitte Center 5,000.00 1,000.00 1,157.31 702.29 -0.18
Stockholm 5,000.00 1,000.00 1,507.18 836.92 -9.57
MPF Center 1,044.43 347.77 1,801.11 1,802.88 -0.83
Barcelona 903.71 300.57 1,801.19 1,802.90 -14.94
Winnipeg 668.43 225.60 1,801.50 1,804.82 -12.94
ChicagoSketch 257.91 86.03 1,803.80 1,809.69 -52.70

For the next experiments we only consider GA+LS. The stopping criteria were set
to 1800 seconds or 2000 generations. We also added a third criterium: the number of gen-
erations without improvement of the fitness value, set as 5% of the maximum number of
generations. Table 4 shows the average over five runs. For each K (number of installed
tolls), in the first vertical half of the table we show the number of generations (gen), best
solution value (best Φ) over the five runs, average fitness values (avg Φ), standard devia-
tion (SD), and average running time in seconds. For the best solution found among the five
runs, the second half of the table presents the average number of paths for each OD pair
(#Path), the average number of hops among all OD shortest paths (#Hops), the average
number of tolled arcs among the shortest path (#Toll), the average sum of the tariffs on a
path (

∑
Tariff), and the number of different arcs used in each OD pair (#Arcs).

As K increases, the cost tends to decrease and present small oscillations. In most
cases, the best solutions were not found with larger K, which is close to |E| (the number
of arcs), but for K ≈ |E|

2
or slightly larger than that. Also, we can see that the standard

deviation is small in most cases showing that the algorithm is robust.

The column #Path highlights the number of shortest paths on average used between
each OD pair. With no tolls, or with few tolls, there are on average about two shortest
paths. However, as K increases, the number of shortest paths decreases. With a small K,
there are alternative paths with no tolls. In this case only the hop count is used to evaluate
the shortest path, increasing the possibility of paths with the same cost.

In computer networking, hop count refers to intermediate devices through which a
piece of data must pass between source and destination. We extend this concept to road
networks where the intermediate devices are vertices which represent intersecting roads or
waypoints. Thus, we show in column #Hops the average hop count for all shortest paths
between OD pairs. When compared with the situation without tolls (K = 0) we observe
that as the number of installed tolls increases, so does the hop counts.

The column #Tolls shows the average number of tolls installed on OD shortest
paths. Clearly, this value increases with K. In the column

∑
Tariff we show the average

value of tariff in each path. In this problem our objective is to install K tolls such that
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Table 4. Detailed results of GA+LS algorithm.
GA+LS results Analysis of the best solution found by the GA+LS

Instance K gen best Φ avg Φ SD time (s) #Path #Hops #Toll
∑

Tariff UArcs
0 - 83.97 - - - 1.97 1.94 - - 4.97

10 167.00 49.59 53.60 3.61 11.87 1.72 2.15 0.22 4.27 4.73
20 236.20 33.99 38.81 6.37 16.32 1.41 2.24 0.65 2.81 4.25

SiouxFalls 30 369.80 26.45 31.70 3.33 22.85 1.20 2.33 0.97 7.50 3.81
40 461.20 22.49 23.70 0.81 22.12 1.10 2.20 1.45 12.69 3.43
50 446.80 21.91 22.23 0.42 18.28 1.13 2.18 1.91 12.90 3.50
60 460.40 21.72 22.08 0.53 13.82 1.09 2.16 2.37 12.31 3.36
70 495.20 21.52 21.90 0.28 11.46 1.08 2.16 2.77 13.21 3.37
0 - 94.87 - - - 1.96 8.16 - - 11.94

10 235.20 56.46 57.32 0.56 90.57 1.98 8.74 0.12 2.00 12.50
50 700.20 47.71 50.62 2.37 247.87 1.41 9.35 0.50 2.63 12.22

Friedrichshain Center 100 754.80 44.10 45.05 0.99 197.46 1.39 10.46 1.76 10.68 12.74
200 873.20 43.36 43.76 0.27 204.67 1.18 10.45 3.14 9.95 11.97
300 1,087.40 43.58 44.03 0.55 209.14 1.06 10.58 5.59 9.93 11.73
400 945.40 43.80 44.13 0.32 173.23 1.12 10.39 7.65 9.66 11.80
500 936.40 44.93 45.28 0.25 148.49 1.00 10.19 10.51 8.03 11.19

0 - 149.64 - - - 2.75 12.46 - - 17.11
10 156.20 78.52 80.77 2.07 136.30 2.58 13.00 0.08 6.00 17.47
50 593.80 68.28 71.28 2.16 473.40 1.96 13.98 0.35 4.38 17.30

Prenzlauerberg Center 100 1,199.00 62.80 63.73 0.83 718.60 1.56 14.71 1.09 7.17 16.91
200 1,201.40 62.27 62.69 0.39 538.35 1.28 15.77 3.84 10.28 17.31
450 1,376.80 62.22 62.63 0.44 579.74 1.08 14.99 7.82 10.59 16.16
600 1,626.40 62.88 64.23 1.08 583.70 1.00 14.75 11.00 8.86 15.79
700 1,513.40 65.03 65.29 0.31 517.25 1.00 14.12 14.18 9.17 15.12

0 - 73.65 - - - 1.92 13.42 - - 17.32
10 207.40 62.03 62.25 0.15 144.90 2.07 14.41 0.00 0.00 18.57
50 448.60 56.69 57.29 0.38 284.24 1.35 15.67 0.00 0.00 18.99

Tiergarten Center 100 806.20 54.67 55.21 0.51 467.96 1.32 16.77 1.34 4.84 18.93
200 1,161.40 53.74 54.17 0.44 512.54 1.08 16.43 3.54 10.64 17.93
450 1,103.20 53.30 53.67 0.23 365.15 1.00 15.69 8.34 9.62 16.69
600 896.20 53.27 54.01 0.60 261.38 1.02 15.96 11.21 9.78 17.10
700 1,450.20 53.65 54.06 0.27 434.97 1.00 15.43 14.43 8.52 16.43

0 - 105.98 - - - 2.79 12.55 - - 17.75
10 170.00 81.34 81.69 0.35 176.96 3.24 13.47 0.00 0.00 19.43
50 832.60 69.96 71.20 0.99 801.77 1.70 14.02 0.06 2.00 17.56

Mitte Center 100 937.00 69.57 71.13 1.54 869.77 1.51 14.79 0.58 10.70 18.34
200 1,041.60 65.42 66.34 0.55 694.24 1.19 15.07 3.27 9.94 16.78
400 1,062.60 64.76 65.39 0.65 665.55 1.02 15.28 6.58 10.91 16.46
600 1,615.20 64.20 64.60 0.54 833.25 1.03 15.16 8.41 10.56 16.41
800 1,254.00 64.96 65.68 0.49 554.51 1.01 15.08 13.29 9.29 16.18

0 - 14,933.87 - - - 2.62 18.95 - - 25.45
10 197.00 491.04 512.80 45.39 248.16 2.07 19.57 0.00 0.00 24.27
50 715.80 345.09 388.57 27.58 835.91 1.36 20.17 0.19 9.65 22.68

Stockholm 100 981.20 291.76 342.87 41.82 1,215.07 1.95 21.07 1.66 5.89 25.11
300 1,494.00 164.79 193.80 20.86 1,159.01 1.25 21.31 6.10 9.16 22.92
500 1,920.20 145.45 154.21 8.03 1,293.88 1.01 21.30 10.98 9.88 22.36
700 1,694.00 149.25 156.45 7.83 995.69 1.04 20.29 14.60 10.04 21.53
900 1,615.40 161.59 187.68 21.84 850.32 1.01 20.12 19.36 9.76 21.21

0 - 108.81 - - - 5.09 18.73 - - 27.54
10 287.00 92.09 92.41 0.25 1,803.60 5.56 19.29 0.00 0.00 28.30

100 292.20 82.47 83.79 1.26 1,803.21 2.89 21.48 0.02 1.00 27.53
MPF Center 250 305.00 83.14 84.07 0.64 1,804.66 3.40 22.13 0.27 6.58 28.86

500 315.80 83.86 86.45 2.04 1,802.35 2.45 25.16 4.35 8.48 28.48
1000 320.20 76.63 78.73 1.60 1,802.81 1.20 23.99 8.30 10.68 25.40
1500 352.20 75.63 76.09 0.53 1,802.31 1.09 23.40 13.77 9.55 24.74
2000 510.40 74.61 75.35 0.70 1,801.53 1.03 22.39 20.07 9.24 23.46

0 - 687.58 - - - 7.37 12.24 - - 20.82
10 215.40 15.56 15.80 0.13 1,805.60 7.28 13.88 0.01 1.00 24.92

100 280.80 9.34 9.51 0.15 1,803.96 6.30 14.82 0.05 7.95 25.13
Barcelona 500 289.00 9.99 10.31 0.30 1,802.56 3.63 16.22 0.09 3.56 24.97

1000 249.20 15.50 19.65 6.81 1,802.23 2.88 21.89 5.11 4.11 26.29
1500 267.40 10.10 10.65 0.68 1,804.63 1.51 19.10 8.28 8.28 21.41
2000 290.20 8.78 9.17 0.30 1,803.82 1.08 16.37 11.97 8.93 17.76
2500 443.00 8.47 8.64 0.16 1,802.97 1.06 15.39 16.06 8.53 16.54

0 - 1,384.34 - - - 3.92 17.41 - - 25.96
10 172.60 35.60 36.82 1.05 1,806.89 3.84 18.12 0.00 0.00 26.64

100 176.60 20.97 21.30 0.32 1,807.81 3.88 20.66 0.01 14.76 29.34
Winnipeg 500 189.00 31.82 34.73 3.16 1,805.93 4.36 25.01 0.48 6.28 33.18

1000 183.20 24.89 28.19 3.40 1,807.95 2.51 24.90 6.49 7.93 29.08
1500 187.00 20.76 21.59 1.14 1,804.83 1.21 22.92 9.03 9.65 24.38
2000 206.80 18.05 19.12 0.88 1,804.25 1.08 21.69 13.23 9.20 22.94
2800 335.80 17.41 17.68 0.25 1,803.30 1.05 19.52 20.33 9.66 20.71

0 - 4,310.54 - - - 20.04 10.18 - - 23.69
10 70.40 100.33 100.33 0.00 1,815.87 21.59 10.33 0.00 0.00 24.38

100 75.40 23.59 24.20 0.40 1,807.66 22.84 10.90 0.05 10.80 24.96
ChicagoSketch 500 80.00 27.45 29.84 2.59 1,808.34 9.78 11.65 0.44 11.03 22.38

1000 78.80 84.25 119.04 23.41 1,812.11 5.02 13.14 0.84 9.86 20.93
1500 76.80 330.25 590.58 227.10 1,813.40 2.62 16.05 5.46 5.65 19.22
2000 74.60 56.81 72.86 11.89 1,810.44 1.27 13.78 7.48 7.40 15.39
2900 106.00 20.02 21.39 1.20 1,811.54 1.08 11.84 12.63 8.97 13.07

congestion costs are minimized. Since minimizing the tariff is not part of the objective
of this problem, that results in more variability in this column. By the last column we
conclude that the increase of K slightly influence the average number of arcs used to send
flow for an OD pair.
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5. Conclusions
In this paper we proposed various mathematical formulations for different problems

of traffic assignment, using two piecewise linear functions to approximate the link travel
time. We tested these models on a set of real-world instances, and we applied a previously
proposed genetic algorithm for the toll booth problem to all these instances.

The mathematical model MM1 provided information about the network such as the
ability to handle the flow without exceeding the capacity. The results demonstrated that in
some instances this constraint could not be satisfied. We also observed that the proposed
piecewise linear functions closely approximate the original convex function and provided
a lower bound for their value.

For the toll booth problem, although being computationally demanding, Also, the
procedure produced high quality solutions even for large problem instances.

Finally, considering that users would take the least costly path, toll setting can
be used for the distribution of better the flow on the network, thereby reducing traffic
congestion.

In future work we intend to include shortest path constraints to the formulation, and
to solve larger instances with the GA+LS algorithm.
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