
Heterogeneous workforce in job shop scheduling

Alexander J. Benavides
Instituto de Informática,
Universidad Federal do

Rio Grande do Sul, Brazil
Email: ajbenavides@inf.ufrgs.br

Marcus Ritt
Instituto de Informática,
Universidad Federal do

Rio Grande do Sul, Brazil
Email: marcus.ritt@inf.ufrgs.br

Cristobal Miralles
ROGLE, Departamento de
Organización de Empresas,

Universitat Politècnica de València, Spain
Email: cmiralles@omp.upv.es

Abstract—We introduce a new problem named Het-
erogeneous Job Shop Scheduling Problem (Het-JSSP)
that consists of two subproblems: the assignment of
workers to the workstations, and the interrelated job
shop scheduling problem. Solving the assignment of
workers simultaneously increases the difficulty of find-
ing an optimal schedule. We introduce a mathematical
model that extends a job shop model to admit the
assignment of heterogeneous workers. We also present
a construction heuristic based on a random assignment
of workers and the shifting bottleneck procedure. Com-
putational tests find good solutions within a short time.
This problem was motivated by Sheltered Work centers
for Disabled, where the heterogeneity of the workers’
capabilities is greater, but production managers of any
company that aim to overcome the traditional stan-
dardized vision of the workforce may use this approach
to maintain high productivity levels while respecting
the paces of their heterogeneous workers.

Keywords—Scheduling, Integer Programming,
Heuristics, Job shop, Heterogenous Workers

I. Introduction

The International Labour Organization estimates that
ten percent of the world population (i.e. 700 million
people) has some disability, 500 million of them are in
working age and suffering a higher unemployment rate
than other citizens. Many governments are implementing
policies for the integration of persons with disabilities in
the workforce, such as reserving a percentage of jobs,
or creating Sheltered Work centers for Disabled (SWDs).
Spain and other countries have successfully adopted SWDs
to facilitate transition jobs for the integration of disabled
workers and also as stable workplaces. Even when SWDs
receive some institutional support, they need to be efficient
and competitive to survive and to grow in the real labor
market. They also need to ensure the social integration of
their workers considering their limitations and developing
their capacities and capabilities [1].

Many approaches and tools of the Operations Research
and Management Science (OR/MS) area standardize the
processing time of the operation executed in a machine dis-
regarding the skills of the worker that performs it. This un-
realistic assumption may cause planning and control prob-
lems. For example, production managers need to compen-
sate manually the deviations of the workers performance,
or just use a worst case scenario, since their information
systems ignore the skills heterogeneity of the workers. This
leads to adopt suboptimal solutions and complicates the

verification of indicators because the defined scenarios are
different from the reality. It would be more reliable to take
into account the workers heterogeneity, and this would
allow to feed the planning/scheduling process with more
realistic data. The OR/MS area is continuously proposing
approaches for Design, Planning & Control of productive
systems that admit workers heterogeneity, for example by
using a stochastic model of processing times [2], or by
categorizing skilled and naive workers [3]. Another example
is the Assembly Line Worker Assignment and Balancing
Problem (ALWABP), that was originally motivated by the
workforce diversity of SWDs assembly lines. It focuses on
the heterogeneity of the workers with variable processing
times, and even considers possible incompatibilities due
to workers disabilities, defining a new set of realistic
hypotheses. Since the initial paper of Miralles et al. [4],
other authors have contributed to this problem by propos-
ing other extensions and methods to solve it [1], [5]–[8].
More recently, this heterogeneous vision has been extended
to other scenarios, such as the heterogeneous flow shop
scheduling problem (Het-FSSP) [9], that integrates the
scheduling problem with the heterogeneity and incompati-
bilities of the workers on their workstations in a flow shop.

A. Contribution and outline of the paper

Our literature research did not find any reference for
solving the worker assignment and job shop scheduling si-
multaneously when considering the workers heterogeneity.
When the workers are heterogeneous, the processing times
of an operation performed on a machine will also depend
on the worker assigned to it. In the job shop literature,
the term “machine” refers to a work center in which a
process may be performed automatically or manually. In
this scenario, the solution of the problem must include
the optimal allocation of the workers besides the usual
schedule of jobs that optimizes a certain objective function.
Solving the assignment of workers simultaneously increases
the number of possible schedules of the normal job shop
problem. Thus, advanced methods are necessary to find
an optimal schedule that corresponds to an optimal worker
allocation. Even when SWDs motivated the initial scenario
of this research, this paper aims to provide new models and
approaches for ordinary companies that take into account
the natural human diversity of workers.

Section II introduces the job shop scheduling problem
and reviews the literature. Section III exemplifies the
heterogeneous workers assignment and how they involve
the job shop scheduling subproblem. In Section IV presents

Table I. An instance of the JSSP.

Operations
Machine (processing time)

J1 M4 (2) M2 (2) M3 (2) M1 (3)
J2 M2 (2) M1 (1) M4 (3) M3 (2)
J3 M2 (2) M4 (2) M1 (1) M3 (1)
J4 M2 (3) M1 (1) M3 (3) M4 (1)

J1
J2
J3
J4

0 5 10

M1

M2

M3

M4

t

Figure 1. An optimal schedule for the JSSP instance of Table I.

a mathematical model for the situation of heterogeneous
workers in a job shop problem, and in Section V we
propose a multi-start search method. Section VI present
a set of instances for the new problem and computational
results from standard solvers and the proposed heuristic.
Finally, we analyze and discuss the results and conclude in
Section VII.

II. The job shop scheduling problem

The job shop scheduling problem is defined as follows.
Given a set of jobs J = {J1, . . . , Jn}, and machines
M = {M1, . . . ,Mm}, each job Jj consisting of a sequence
of m operations {o1j , . . . , omj}, each operation oij needs to
be processed on one machine M(oij) ∈M with processing
time pij without interruptions. Each job must be processed
on the machines in its own processing order. Operations
of the same job cannot be processed in parallel, and the
machines can execute only one operation at a time. The
most common objective is to find a schedule that mini-
mizes the maximum completion time among operations or
makespan Cmax.

Table I presents an example instance of a job shop
scheduling problem. For each operation, the table shows
the machine that processes it, and the processing times in
parentheses. Figure 1 shows an optimal schedule for this
instance with a makespan of 13 time units. The makespan
of a schedule is defined by a critical path, which is a
sequence of consecutive operations on the same machine or
of the same job that leads to the longest overall duration.
In the example of the schedule of Figure 1, the critical path
is given by the dotted operations.

This problem is not only NP-hard, but it is considered
one of the most computationally challenging combinatorial
optimization problems [10]. Early approaches to solve it
include exact methods such as branch and bound [11]–
[14] that were effective only with small instances. In
large instances, the computational time of enumerative
methods grows exponentially. For this reason, the main
efforts nowadays are concentrated in heuristic and meta-
heuristic methods and their hybridization. These methods
include: shifting bottleneck [15]–[17], simulated annealing

[18]–[20], tabu search [21]–[24], genetic algorithms [25]–
[28], greedy randomized adaptive search procedure [29] and
[30], particle swarm optimization [31] and [32], ant colony
optimization [33], artificial bee colony optimization [34],
differential evolution [35], global equilibrium search [36],
distance based search using the“backbone”and“big valley”
properties [37].

III. An example of the heterogeneous job shop
scheduling problem

Taking into account the job shop example of Table I,
and maintaining the operations precedence and processing
order through the machines, we have now four workers that
we want to assign to the four machines, each of which has
its own pace to accomplish the tasks on each machine.
Table II shows custom times for each worker to form an
heterogeneous job shop scheduling problem (Het-JSSP).
In the example, we choose processing times randomly
in the interval [p, 2p], where p is the standardized time
from the Table I. Moreover, some workers may be unable
to operate some machines (for strategic or therapeutic
reasons). In the example, worker W3 is unable to operate
machine M3. This is represented by a processing time of
∞. The average increase of the processing times (without
the incompatibilities) is 1.49, and the expected increase
over the makespan should be near of 19 time units.

The average makespan over the 18 different possible
worker assignments, maintaining the schedule that is op-
timal for the original instance, is 20.7 time units, the
best assignment has a makespan of 19, and the worst has
23; note that almost all workers combinations produce
makespans greaters than expected. The best assignment
(assigning workers w1, w3, w2, w4 to the machines in this
order) is shown in Figure 2. On the other hand, if we
take into account the workers heterogeneity during the
construction of the optimal schedule, we obtain a schedule
shown in Figure 3 with a completely different worker
assignment. This optimal schedule reduces the makespan
to 16, about 19% less than the best assignment of the
workers over the optimal job shop schedule.

IV. Problem formulation

This section presents a formulation of the heteroge-
neous job shop scheduling problem. We use the index i
for machines, j for jobs, and w for workers. We also use
the notation [n] = {1, . . . , n}, and the precedence relation
set Rj = {(i, i′)|oij ≺ oi′j} for the precedence of all pairs of
consecutive operations that belong to job j. The Het-JSSP
can be formulated as

min. Cmax, (1)

s.t. xmj + pmj ≤ Cmax, ∀j ∈ [n], (2)

xij + pij ≤ xi′j , ∀(i, i′) ∈ Rj , j ∈ [n], (3)

xij + pij ≤ xij′

+ M(1− yijj′), ∀i ∈ [m], j 6= j′ ∈ [n], (4)

yijj′ + yij′j = 1, ∀i ∈ [m], j 6= j′ ∈ [n], (5)

pij =
∑

w∈[m]

pijwziw, ∀i ∈ [m], j ∈ [n], (6)

Table II. times for an instance of the Het-JSSP.

Worker w1 Worker w2 Worker w3 Worker w4

Job M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

J1 4 3 2 4 3 2 2 3 5 2 ∞ 4 4 4 2 4
J2 2 2 2 6 1 2 3 5 2 4 ∞ 5 2 2 2 4
J3 2 3 1 2 2 2 2 4 2 3 ∞ 3 1 2 2 3
J4 1 6 6 2 2 5 4 1 1 3 ∞ 2 1 3 5 2
(*) The operations were reordered to show the worker assignment,

but their precedence is still the same than in Table I.

J1
J2
J3
J4

0 5 10 15

M1, w1

M2, w3

M3, w2

M4, w4

t

Figure 2. Best schedule obtained by reassigning workers and maintaining the optimal job shop schedule.

J1
J2
J3
J4

0 5 10 15

M1, w2

M2, w4

M3, w1

M4, w3

t

Figure 3. Optimal job shop schedule considering heterogeneous workers

∑
w∈[m]

ziw = 1, ∀i ∈ [m], (7)

∑
i∈[m]

ziw = 1, ∀w ∈ [m], (8)

xij ≥ 0, ∀i ∈ [m], j ∈ [n], (9)

yijj′ ∈ {0, 1}, ∀i ∈ [m], j 6= j′ ∈ [n], (10)

ziw ∈ {0, 1}, ∀i, w ∈ [m]. (11)

This formulation uses the auxiliary variables xij and pij
to represent the starting time and processing time of the
operation of job j that must be executed on machine i.
Constraints (2)–(5) solve the job shop subproblem for a
fixed worker allocation. Constraint (2) defines Cmax as
the latest completion time, and constraints (3) and (4)
set the starting time of all operations according to the
precedences. The precedence between two operations of
a job j that are executed consecutively on machines i
and i′ is fixed by constraint (3). The constant M should
be sufficiently large (e.g.

∑
i∈[m]

∑
j∈[n] maxw∈[m] pijw) in

constraint (4), we introduce a binary decision variable yijj′
for each pair of operations of different jobs j and j′ that
must be processed on the same machine i, and whose
precedence is not fixed. If j precedes j′ on machine i,
then yijj′ equals 1. Constraint (6) defines the processing
time of an operation depending on the worker assigned
to its machine, based on the processing time pijw of the
operation oij when executed by worker w. We introduce
a binary assignment variable ziw which equals 1 if worker
w is assigned to machine i. Constraints (7) and (8) define
the assignment of workers to machines.

Algorithm 1 A multi-start local search for the Het-JSSP.

Output: Best solution found Sbest

1: repeat
2: Create a new solution Snew

3: Apply a local search to Snew

4: Update Sbest with Snew if necessary
5: until stopping criterion is satisfied
6: return Sbest

V. A multi-start local search method for the
Het-JSSP

A multi-start local search heuristic for the heteroge-
neous job shop scheduling problem is shown in Algo-
rithm 1. In a multi-start local search, various different
initial solutions are generated by a constructive heuristic,
and improved by a local search. Multi-start heuristics are
efficient for problems where solutions are constructed eas-
ily, and neighbourhoods are difficult to be explored largely
by local search methods. A more detailed description of
multi-start methods is available in [38].

A. Construction method

Our construction method is described in Algorithm 2.
It first generates a random worker assignment and sets
the processing times for the incumbent JSSP. After that,
it creates a solution for the incumbent job shop scheduling
problem with the shifting bottleneck procedure (SBP).
The SBP was proposed by Carlier et.al. [11] for the job
shop scheduling problem. The SBP schedules iteratively
the machine that is considered a bottleneck. To do this,

Algorithm 2 A construction heuristic for the Het-JSSP.

Output: Constructed solution
1: Assign workers randomly
2: repeat
3: for all unscheduled machines do
4: Solve the one-machine sequencing problem

5: Schedule the bottleneck machine
6: Reoptimize all the previously scheduled machines
7: until all machines are scheduled
8: return constructed solution

it solves the one-machine sequencing problem with release
and due dates that minimizes the maximum lateness for
each unscheduled machine, and schedules the machine with
the worst maximum lateness (i.e. the bottleneck machine).
After each machine is scheduled, the procedure applies a
reoptimization over all the previously scheduled machines.
The reoptimization consists in trying to reschedule each
previously scheduled machine one by one, and updates the
partial schedule if there is a better one. This process is
repeated until all machines are scheduled.

B. Improvement method

A local search algorithm explores the neighbourhood
of a solution looking for better ones. In each step, a local
search chooses the best neighbour to replace the current
solution. It stops when there are no better solutions in the
neighbourhood. The local search applied in our heuristic
uses the N5 neighbourhood proposed by Nowicki and
Smutnicki [21]. N5 reduces the moves to the two first or
the two last consecutive operations of a block on a critical
path, excluding the two first and the two last operations of
the critical path. For example, the neighbourhood of the
schedule in Figure 1 contains three solutions, obtained by
swapping the job operation pairs (J1, J4) on M2, (J4, J1)
on M1, or (J1, J3) on M1.

VI. Computational Experiments

We created instances for the Het-JSSP based on the
job shop instances of Taillard [39], and on the instance
ft10 [40]. We modify the processing times pij of the
original instances in two ways: First, we introduce a fixed
percentage of incompatibilities to represent the case of
workers that are unable to operate some machines. Second,
we increase and multiply the processing times to simulate
the different paces of workers. Based on experiences with
existing SWDs, we generated instances with 0%, 10% and
20% of incompatibilities per worker, and we increased the
standard time p randomly in the interval [p, 2p] or [p, 5p]
for each of the m workers. We refer to instances in the
tables below by the name of the base instance, followed by
an i for processing times in [p, 2p] or an I for processing
times in [p, 5p], and the percentage of incompatibilities.
The instances as well as detailed computational results are
available at http://www.inf.ufrgs.br/algopt/hetJS/

Our multi-start local search was implemented in C++,
and compiled with GNU C++ 4.7.3 with optimization level
2 (-O2). We use the SBP implementation of Applegate and

Cook [12]. The stopping criterion was one thousand iter-
ations. We compare the solutions obtained by the multi-
start local search to those obtained by solving the mathe-
matical model of Section IV. The mathematical model has
been solved with CPLEX 12.5 running with a single thread
and a time limit of one hour. All computational tests were
executed on a PC with an AMD Opteron processor running
at 2.9 GHz and 64 GB of main memory.

Table III and IV present results for the CPLEX solver
with the proposed model and for the multi-start local
search for the instances based on the first fifty Taillard
instances. Table III presents results for instances with
processing times in [p, 2p], and Table IV for instances
with processing times in [p, 5p]. Each line of the tables
reports 10 instances, grouped by size and percentage of
incompatibility. All tables report the size of the instances
(n×m), the average of the best known upper bounds (ub)
obtained by this or by previous preliminary experiments,
the average of the relative deviation in percent (%R) of a
solution with makespan Cmax from the best known solution
%R = 100%×(Cmax−ub)/ub, the average of the percentage
relative gap (gap%) between the lower and upper bounds
found by CPLEX, and the average time t in seconds of the
multi-start search. For the multi-start search we present
the average deviation for the best solution found (%R)
and for all independent solutions find on each iteration of
construction and local search (%RI).

CPLEX was able to create solutions but not to prove
the optimality of any instance within the time limit of one
hour. CPLEX finds the best known upper bound in 100 of
the instances, 51 among the 60 instances of 15 jobs and 49
among the 120 instances of 20 jobs. The optimal value for
the original ft10 is found in less than 10 minutes, and its
optimality is proven in less than 15 minutes, but CPLEX
cannot prove optimality even for Het-JSSP instances of
size 10 × 10 based on ft10, and the average CPLEX gap
for these instances is 21% after one hour time limit. This
is expected, since the number of possible solutions is m!
times larger due to the worker assignment. CPLEX only
finds better solutions for the small instances, and the gap
between the CPLEX lower and upper bound increases with
the size of the instance from 30% to 61%.

The multi-start search reaches the best known values
in the other 200 instances, all the 120 instances of 30 jobs
using less than 12 minutes, 71 among the 120 instances
of 20 jobs using less than 5 minutes, and 9 among the
90 instances of 15 jobs using less than 1.1 minutes. The
average deviation of the best found solution %R decreases
from 2.3% to 0% for the instances with processing times
[p, 2p], and from 6.4% to 0% for the instances with pro-
cessing times [p, 5p]. The difficulty of the problem grows
with the size of the instance, and that the multi-start
approach shows scalability for bigger instances. The av-
erage deviation of all the created solutions %RI decreases
from 12.4% to 7.1% for the instances with processing times
[p, 2p], and from 21.4% to 9.7% for the instances with
processing times [p, 5p]. The local search improves less
than 5% of the constructed solutions, and the relative
improvement is less than 0.7%, but also the average time
that it consumes is less than 4% of the total running time.

http://www.inf.ufrgs.br/algopt/hetJS/

Table III. Average results for the Taillard instances with processing times between t and 2t.

CPLEX Multi-start

Instances n×m ub %R gap% t %R %RI

tai01i00 - tai10i00 15×15 1783.2 0.26 30.22 61.9 2.22 12.34
tai01i10 - tai10i10 15×15 1794.8 0.07 30.25 61.3 1.70 11.61
tai01i20 - tai10i20 15×15 1797.8 0.76 30.58 62.0 1.80 11.33
tai11i00 - tai20i00 20×15 2095.1 2.77 42.37 112.8 0.18 8.82
tai11i10 - tai20i10 20×15 2088.9 3.79 42.18 112.5 0.19 9.25
tai11i20 - tai20i20 20×15 2096.2 3.80 41.93 114.4 0.00 8.96
tai21i00 - tai30i00 20×20 2494.1 1.65 38.15 256.9 0.64 8.05
tai21i10 - tai30i10 20×20 2496.6 2.20 38.25 253.8 0.40 7.97
tai21i20 - tai30i20 20×20 2494.5 2.18 37.93 254.6 0.12 8.07
tai31i00 - tai40i00 30×15 2769.9 16.80 60.35 298.5 0.00 7.78
tai31i10 - tai40i10 30×15 2771.7 16.16 59.92 299.6 0.00 7.65
tai31i20 - tai40i20 30×15 2786.0 17.14 60.29 298.6 0.00 7.14
tai41i00 - tai50i00 30×20 3119.3 26.81 59.39 649.1 0.00 7.84
tai41i10 - tai50i10 30×20 3128.7 21.42 57.69 639.2 0.00 7.46
tai41i20 - tai50i20 30×20 3125.6 20.12 56.94 633.5 0.00 7.56

9.06 45.76 0.48 8.79

Table IV. Average results for the Taillard instances with processing times between t and 5t.

CPLEX Multi-start

Instances n×m ub %R gap% t %R %RI

tai01I00 - tai10I00 15×15 3407.9 0.19 35.83 62.7 5.86 20.65
tai01I10 - tai10I10 15×15 3396.6 0.41 35.22 62.4 6.33 21.35
tai01I20 - tai10I20 15×15 3448.8 0.06 34.91 62.2 4.75 19.47
tai11I00 - tai20I00 20×15 4028.4 1.27 46.99 115.0 1.72 15.49
tai11I10 - tai20I10 20×15 4029.7 1.56 46.61 117.0 1.66 15.45
tai11I20 - tai20I20 20×15 4065.5 2.48 46.59 116.7 1.03 14.48
tai21I00 - tai30I00 20×20 4766.4 1.59 42.53 261.8 3.31 15.13
tai21I10 - tai30I10 20×20 4802.1 0.70 41.74 270.2 2.95 14.37
tai21I20 - tai30I20 20×20 4822.4 0.48 41.30 269.7 2.74 13.86
tai31I00 - tai40I00 30×15 5445.2 15.38 63.47 302.8 0.00 10.83
tai31I10 - tai40I10 30×15 5428.1 16.42 63.40 303.9 0.00 10.94
tai31I20 - tai40I20 30×15 5407.4 15.06 62.32 304.5 0.00 11.31
tai41I00 - tai50I00 30×20 6186.2 23.13 62.09 711.6 0.00 10.06
tai41I10 - tai50I10 30×20 6208.6 19.69 60.83 682.1 0.00 9.70
tai41I20 - tai50I20 30×20 6178.2 21.66 60.91 711.9 0.00 10.39

8.00 49.65 2.02 14.23

This indicates that even the constructive heuristic alone
creates good quality solutions, but it needs a local search
to guarantee that the final solution is a local minimum.
This construction method is thorough, therefore we may
use a swifter construction, and invest better this time in
other local search and diversification methods.

VII. Concluding remarks

We have proposed an extension to the job shop schedul-
ing problem that considers heterogeneous workers with
their assignment and incompatibilities. We gave a mathe-
matical model of the problem, and proposed a multi-start
local search to solve it.

The Het-JSSP is considerably harder than a traditional
job shop problem. The Het-JSSP mathematical model
cannot be solved by standard software even for small
instances of size 10×10. On the other hand, computational
tests show that the problem can be solved satisfactorily by
a multi-start local search.

Our proposal may be beneficial to the operations man-
agement area, when all (or some) workers perform their
tasks with different execution times, and when both the
optimal schedule and the optimal assignment of workers
vary depending on each other.

The inclusion of workers heterogeneity within a job
shop system is an important step for those companies that
desire the integration of a percentage of disabled workers
as part of their policies of Corporate Social Responsibility
without loosing productivity.

Acknowledgment

We are grateful for the support by CAPES-Brazil and
MEC-Spain (project CAPES-DGU258-12/PHB-0012-PC),
by FAPERGS (project 12/2046-6), by Petrobras, by CNPq
(project 478847/2013-0), and by the National Center for
Supercomputing at UFRGS.

References

[1] C. Miralles, J. Marin-Garcia, G. Ferrus, and A. Costa,“OR/MS
tools for integrating people with disabilities into employment.
a study on valencia’s sheltered work centres for disabled,” Int.
Trans. Oper. Res., vol. 17, pp. 457–473, 2010.

[2] E. Erel, I. Sabuncuoglu, and H. Sekerci, “Stochastic assembly
line balancing using beam search,” Int. J. Prod. Res., vol. 43,
no. 7, pp. 1411–1426, 2005.

[3] A. Corominas, R. Pastor, and J. Plans, “Balancing assembly
line with skilled and unskilled workers,” Omega, vol. 36, no. 6,
pp. 1126–1132, 2008.

[4] C. Miralles, J. P. Garcia-Sabater, C. Andrés, and M. Cardos,
“Advantages of assembly lines in Sheltered Work Centres for
Disabled. A case study,” Int. J. Prod. Res., vol. 110, no. 2, pp.
187–197, 2007.

[5] C. Blum and C. Miralles, “On solving the assembly line worker
assignment and balancing problem via beam search,” Comput.
Oper. Res., vol. 38, no. 1, pp. 328–339, 2011.

[6] M. C. O. Moreira, M. Ritt, A. M. Costa, and A. A. Chaves,
“Simple heuristics for the assembly line worker assignment and
balancing problem,” J. Heuristics, vol. 18, no. 3, pp. 505–524,
2012.

[7] A. Corominas, L. Ferrer, and R. Pastor, “Assembly line bal-
ancing: general resource-constrained case,” Int. J. Prod. Res.,
vol. 49, no. 12, pp. 3527–3542, 2012.

[8] L. Borba and M. Ritt, “A heuristic and a branch-and-bound al-
gorithm for the assembly line worker assignment and balancing
problem,” Comput. Oper. Res., vol. 45, pp. 87–96, 2014.

[9] A. J. Benavides, M. Ritt, and C. Miralles, “Flow shop schedul-
ing with heterogeneous workers,” Eur. J. Oper. Res., vol. 237,
no. 2, pp. 713–720, 2014.

[10] J. Lenstra and A. Rinnooy Kan, “Computational complexity of
discrete optimization problems,” Annals of Discrete Mathemat-
ics, vol. 4, pp. 121–140, 1979.

[11] J. Carlier and E. Pinson,“An algorithm for solving the job-shop
problem,” Manag. Sci., vol. 35, no. 2, pp. 164–176, 1989.

[12] D. Applegate and W. Cook, “A computational study of the job-
shop scheduling problem,” ORSA J. Comput., vol. 3, no. 2, pp.
149–156, 1991.

[13] P. Brucker, B. Jurisch, and B. Sievers, “A branch and bound
algorithm for the job-shop scheduling problem,” Discrete App.
Math., vol. 49, no. 1, pp. 107–127, 1994.

[14] J. Carlier and E. Pinson, “A practical use of Jackson’s pre-
emptive schedule for solving the job-shop problem,”Ann. Oper.
Res., vol. 26, pp. 269–287, 1990.

[15] J. Adams, E. Balas, and D. Zawack, “The shifting bottleneck
procedure for job shop scheduling,” Manag. Sci., vol. 34, no. 3,
pp. 391–401, 1988.

[16] E. Balas, J. Lenstra, and A. Vazacopoulos, “The one-machine
problem with delayed precedence constraints and its use in job
shop scheduling,” Manag. Sci., vol. 41, no. 1, pp. 94–109, 1995.

[17] E. Balas and A. Vazacopoulos, “Guided local search with shift-
ing bottleneck for job shop scheduling,” Manag. Sci., vol. 44,
no. 2, pp. 262–275, 1998.

[18] P. Van Laarhoven, E. Aarts, and J. Lenstra, “Job shop schedul-
ing by simulated annealing,” Operations research, vol. 40, no. 1,
pp. 113–125, 1992.

[19] T. Yamada and R. Nakano, “Job-shop scheduling by simulated
annealing combined with deterministic local search,” Meta-
heuristics: Theory and applications, pp. 237–248, 1996.

[20] M. Kolonko, “Some new results on simulated annealing applied
to the job shop scheduling problem,” Eur. J. Oper. Res., vol.
113, no. 1, pp. 123–136, 1999.

[21] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm
for the job shop problem,” Manag. Sci., vol. 42, no. 6, pp. 797–
813, 1996.

[22] ——, “An advanced tabu search algorithm for the job shop
problem,” Journal of Scheduling, vol. 8, no. 2, pp. 145–159,
2005.

[23] ——, “Some new ideas in TS for job shop scheduling,” in Meta-
heuristic Optimization via Memory and Evolution, R. Sharda,
S. Voß, C. Rego, and B. Alidaee, Eds. Springer, 2005, pp.
165–190.

[24] J. Watson, A. Howe, and L. Darrell Whitley, “Deconstructing
Nowicki and Smutnicki’s i-TSAB tabu search algorithm for the
job-shop scheduling problem,” Comput. Oper. Res., vol. 33,
no. 9, pp. 2623–2644, 2006.

[25] T. Yamada and R. Nakano, “Scheduling by genetic local search
with multi-step crossover,” Parallel Problem Solving from Na-
ture IV, pp. 960–969, 1996.

[26] J. Gonçalves, J. de Magalhães Mendes, and M. Resende, “A
hybrid genetic algorithm for the job shop scheduling problem,”
Eur. J. Oper. Res., vol. 167, no. 1, pp. 77–95, 2005.

[27] J. F. Gon calves, M. G. C. Resende, and J. J. M. Mendes, “A
biased random-key genetic algorithm with forward-backward
improvement for the resource constrained project scheduling
problem,” J. Heuristics, 2010.

[28] J. F. Gonçalves and M. G. C. Resende, “An extended akers
graphical method with a biased random-key genetic algorithm
for job-shop scheduling,” Int. Trans. Oper. Res., vol. 21, no. 2,
pp. 215–246, 2014.

[29] R. Aiex, S. Binato, and M. Resende, “Parallel {GRASP} with
path-relinking for job shop scheduling,” Parallel Computing,
vol. 29, no. 4, pp. 393 – 430, 2003, parallel computing in
numerical optimization.

[30] S. Fernandes and H. Lourenço, “A simple optimised search
heuristic for the job shop scheduling problem,” in Recent Ad-
vances in Evolutionary Computation for Combinatorial Opti-
mization, ser. Studies in Computational Intelligence, C. Cotta
and J. van Hemert, Eds. Springer Berlin Heidelberg, 2008, vol.
153, pp. 203–218.

[31] T.-L. Lin, S.-J. Horng, T.-W. Kao, Y.-H. Chen, R.-S. Run, R.-J.
Chen, J.-L. Lai, I. Kuo et al., “An efficient job-shop scheduling
algorithm based on particle swarm optimization,” Exp. Syst.
Appl., vol. 37, no. 3, pp. 2629–2636, 2010.

[32] R. Zhang and C. Wu, “A neighbourhood property for the job
shop scheduling problem with application to hybrid particle
swarm optimization,” IMA Journal of Management Mathemat-
ics, vol. 24, no. 1, pp. 111–134, 2013.

[33] K. Huang and C. Liao,“Ant colony optimization combined with
taboo search for the job shop scheduling problem,” Comput.
Oper. Res., vol. 35, no. 4, pp. 1030–1046, 2008.

[34] A. Banharnsakun, B. Sirinaovakul, and T. Achalakul,“Job shop
scheduling with the best-so-far abc,” Engineering Applications
of Artificial Intelligence, vol. 25, no. 3, pp. 583–593, 2012.

[35] A. Ponsich and C. A. Coello Coello, “A hybrid differential
evolution—tabu search algorithm for the solution of job-shop
scheduling problems,” Applied Soft Computing, vol. 13, no. 1,
pp. 462–474, 2013.

[36] P. M. Pardalos and O. V. Shylo, “An algorithm for the job
shop scheduling problem based on global equilibrium search
techniques,” Computational Management Science, vol. 3, no. 4,
pp. 331–348, 2006.

[37] P. M. Pardalos, O. V. Shylo, and A. Vazacopoulos, “Solving job
shop scheduling problems utilizing the properties of backbone
and “big valley”,” Computational Optimization and Applica-
tions, vol. 47, no. 1, pp. 61–76, 2010.

[38] R. Mart́ı, M. G. Resende, and C. C. Ribeiro, “Multi-start
methods for combinatorial optimization,” Eur. J. Oper. Res.,
vol. 226, no. 1, pp. 1 – 8, 2013.

[39] E. Taillard, “Benchmarks for basic scheduling problems,” Eur.
J. Oper. Res., vol. 64, no. 2, pp. 278–285, 1993.

[40] H. Fischer and G. Thompson, Probabilistic Learning combina-
tions of local job-shop scheduling rules. -: Englewood Cliffs
(Prentice Hall), 1963, pp. 225–251.

	Introduction
	Contribution and outline of the paper

	The job shop scheduling problem
	An example of the heterogeneous job shop scheduling problem
	Problem formulation
	A multi-start local search method for the Het-JSSP
	Construction method
	Improvement method

	Computational Experiments
	Concluding remarks
	References

