Object-oriented message-passing with TPO++*

Tobias Grundmann, Marcus Ritt, and Wolfgang Rosenstiel

Wilhelm-Schickard-Institut fiir Informatik, University of Tiibingen
Department of Computer Engineering, Sand 13, 72076 Tiibingen
{grundman,ritt,rosen}@informatik.uni-tuebingen.de

Abstract. Message-passing is a well known approach for parallelizing
programs. The widely used standard MPI (Message passing interface)
also defines C++ bindings. Nevertheless, there is a lack of integration
of object-oriented concepts. In this paper, we describe our design of
TPO++!, an object-oriented message-passing library written in C++
on top of MPI. Its key features are easy transmission of objects, type-
safety, MPI-conformity and integration of the C++ Standard Template
Library.

1 Motivation and design goals

With MPI, a widely accepted standard for message-passing has been established.
At the same time, object-oriented programming concepts gain increased accep-
tance in scientific computing (see, for example [1]).

The MPI-2 standard [6, 7] defines C++ language bindings for MPI-1 and MPI-2,
but these bindings are no significant improvement compared to the C bindings.
The interface is not type-safe, does not simplify the MPI calls and defines no
way for transmitting objects. Other approaches such as the mpi++ system [4,
5], OOMPI [8] and Para++ [2] improve certain aspects of message-passing in
C++, but, besides some other topics, none of them integrates the STL (Standard
Template Library), an important part of the current C++ standard [3]. Further
they often don’t support user-defined types very well or there is a significant
difference to MPI conventions, even if not necessary to introduce object-oriented
concepts. In the design of TPO++, we try to address these problems:

A major goal in providing a class library for C++ is a tight integration of object-
oriented concepts, in particular the capability of transmitting objects in a simple,
efficient, and type-safe manner. Also, an implementation in C++ should take
into account all recent C++ features, like the usage of exceptions for error han-
dling and the integration of the Standard Template Library by supporting the
STL containers as well as adopting the STL interface conventions. The interface
design should conform to the MPI conventions and semantics as closely as pos-
sible without violating object-oriented concepts. This helps migrating from C
bindings and eases porting of existing C or C++ code. Further, the implemen-
tation should not differ much from MPI in terms of communication and memory

* This project is funded by the DFG within SFB 382.
! Tiibingen Parallel Objects



2 Tobias Grundmann, Marcus Ritt, and Wolfgang Rosenstiel

efficiency. Another goal is to guarantee thread-safety to provide maximum flex-
ibility for application software and parallel runtime systems. This topic will not
be further discussed here since thread-safety is optional in the MPI-Standard
and depends mostly on the underlying MPI-Implementation.

2 Interface and examples

The basic structure given in the C++ bindings of MPI is similar to our approach.
All common MPI objects, i.e. communicators, groups, are implemented as sep-
arate classes. After initialization, the user can use the global Communicator
object CommWorld.

Transmission of predefined C++ types In the case of sending a C++ basic type,
the send call reduces to:

double d;
CommWorld.send(d, dest_rank, message_tag);

STL containers can be sent using the same overloaded communicator method.
The STL conventions require two iterators specifying begin and end of a range,
which also allows to send subranges of containers:

vector<double> vd;
CommWorld.send(vd.begin(), vd.end(), dest_rank, message_tag);

The application can also use the blocking, synchronous and ready send modes
defined in MPI by calling the communicator methods bsend, ssend and rsend,
respectively. Asynchronous communication methods return an object of class
Request which can be used for the application to test or wait for the completion.
On the receiver side, a receive-call is done as follows (basic type):

Status status;
status=CommWorld.recv(d) ;

Note that the status object, different from MPI, is a return parameter, because
error handling is done via exceptions. This simplifies the receiver code, if no error
checking is necessary and makes send and receive calls more symmetric. The
receive methods take two optional arguments, the senders rank and a message
tag for selecting particular messages. If omitted, they default to any sender and
any tag, respectively.

To receive a container, a single argument, specifying the insertion point is suffi-
cient. Conforming to the STL, the data can be received into a container which
is large enough by means of an iterator, or into any container by means of an
inserter. The example shows both approaches:

vector<double> vd1(x); // must provide enough space
vector<double> vd2;

CommWorld.recv(vdl.begin());
CommWorld.recv(tpo_back_insert_iterator(vd2)); //allocates space



Object-oriented message-passing in C++ 3

Transmission of user-defined types To enable a class for transmission, the user
has to declare its marshalling category. The library distinguishes user-defined
objects having a trivial copy constructor and complex user-defined objects. En-
abling a class with a trivial copy constructor for transmission reduces to the
statement TPO_TRIVIAL (User_type). On transmission, the memory block occu-
pied by such an object will be copied directly to the net.

For transmitting complex objects (i.e. without a trivial copy constructor), the
user has to define the marshalling methods serialize and deserialize, as
part of the class definition. The presence of these methods must be signaled by
a declaration of TPO_ MARSHALL (User_type). They are supplied with a serializer
object. In a serialize method, insert () is called repeatedly for every member to
prepare the object for transmission. The serializer object does not copy the data,
but records its memory layout for later transmission. Similarly, a received mes-
sage can be unpacked to user-provided memory locations by calling extract ()
in the deserialize method.

Usually, user-defined objects do not have to inherit from any special “message”
class. Also note, that the code given in the marshalling methods can be reused
in derived classes.

For applications relying on virtual methods and generic interfaces an abstract
base class Message is also provided.

3 Comparison with MPI

The tests have been done on Sun Ultra 5 machines (Solaris 2.7) using MPICH
1.1.2 and on a Cray T3E a Cray T3E (512 nodes at 450 MHz) using the native
MPI implementation. We measured the efficiency of our library using a ping test
and compared the achieved latencies and bandwidths of MPI and TPO.

Bandwidth Latency
CRAY T3E CRAY T3E

MPI Bandwidth [Mb/s]
[s/aI] uipwpueg OdL
s] houaie OdL

Message size [B] Message size [B]

Fig. 1. Comparison of MPI (solid curves) and TPO (dashed curves) on a Cray T3E.

As shown in Figure 1 communication using TPO achieves the same bandwidth
as MPI for messages larger than approximately 16 KB. The loss in bandwidth



4 Tobias Grundmann, Marcus Ritt, and Wolfgang Rosenstiel

below this size is mainly due to the increased latency. Latencies of MPI and
TPO converge as messages are getting larger. For small messages TPO shows a
constant latency overhead of 15us compared to MPI.

4 Conclusions

We have presented our implementation of an object-oriented message-passing
system. It exploits object-oriented and generic programming concepts, allows
the easy transmission of objects and makes use of advanced C++ techniques
and features as well as supporting these features, most notably it supports STL
datatypes. The system introduces object-oriented techniques and type-safety to
message-passing while preserving MPI semantics and naming conventions as far
as possible. This simplifies the transition from existing code. In contrast to other
implementations the code to marshall an object can be reused in derived classes.
Also, our library is able to handle arbitrary complex and dynamic datatypes. An
object-oriented interface can be implemented with almost identical performance
compared to MPI. The library is designed as a base for parallelizing scientific
applications in an object-oriented environment.

References

1. F. Bassetti, K. Davis, and B. Mohr, editors. Proceedings of the Workshop on
Parallel/High-Performance Object-Oriented Scientific Computing (PO0OSC’99), Eu-
ropean Conference on Object-Oriented Programming (ECOOP’99), Technical Re-
port FZJ-ZAM-IB-9906. Forschungszentrum Jiilich, Germany, June 1999.

2. O. Coulaud and E. Dillon. Para++: C++ bindings for message-passing libraries.
Users guide. Technical report, INRIA, 1995.

3. International Standards Organization. Programming languages — C++. ISO/IEC
publication 14882:1998, 1998.

4. D. Kafure and L. Huang. mpi++: A C++ language binding for MPI. In Proceedings
MPI developers conference, Notre Dame, IN, June 1995.

5. D. Kafure and L. Huang. Collective communication and communicators in mpi++.
Technical report, Department of Computer Science Virginia Tech, 1996.

6. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical Report CS-94-230, Computer Science Department, University of Ten-
nessee, Knoxville, TN, May 1994.

7. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997.

8. J. M. Squyres, B. C. McCandless, and A. Lumsdaine. Object Oriented MPIL: A
Class Library for the Message Passing Interface. In Proceedings of the POOMA
conference, 1996.



