
July 19, 2019

Note to readers:
Please ignore these
sidenotes; they’re just
hints to myself for
preparing the index,
and they’re often flaky!

KNUTH

THE ART OF

COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 5B

INTRODUCTION

TO

BACKTRACKING

DONALD E. KNUTH Stanford University

ADDISON–WESLEY
6

77

July 19, 2019

Internet
Stanford GraphBase
MMIX

Internet page http://www-cs-faculty.stanford.edu/~knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/~knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples in Chapter 7.

See also http://www-cs-faculty.stanford.edu/~knuth/mmixware.html for down-
loadable software to simulate the MMIX computer.

See also http://www-cs-faculty.stanford.edu/~knuth/programs.html for various
experimental programs that I wrote while writing this material (and some data files).

Copyright c© 2019 by Addison–Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision 1), 19 July 2019

July 19, 2019

CARROLL
Internet

PREFACE

Begin at the beginning, and do not allow yourself to gratify

a mere idle curiosity by dipping into the book, here and there.

This would very likely lead to your throwing it aside,

with the remark “This is much too hard for me!,”

and thus losing the chance of adding a very large item

to your stock of mental delights.

— LEWIS CARROLL, in Symbolic Logic (1896)

This booklet contains draft material that I’m circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material
has not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, 3,
and 4A were at the time of their first printings. And alas, those carefully-checked
volumes were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this portion of fascicle 5 previews the opening
pages of Section 7.2.2 of The Art of Computer Programming, entitled “Backtrack
programming.” The preceding section, 7.2.1, was about “Generating basic com-
binatorial patterns”—namely tuples, permutations, combinations, partitions,
and trees. Now it’s time to consider the non-basic patterns, the ones that have
a much less uniform structure. For these we generally need to make tentative
choices and then we need to back up when those choices need revision. Several
subsections (7.2.2.1, 7.2.2.2, etc.) will follow this introductory material.

∗ ∗ ∗

The explosion of research in combinatorial algorithms since the 1970s has
meant that I cannot hope to be aware of all the important ideas in this field.
I’ve tried my best to get the story right, yet I fear that in many respects I’m
woefully ignorant. So I beg expert readers to steer me in appropriate directions.

iii

July 19, 2019

iv PREFACE

stamping
Knuth

Please look, for example, at the exercises that I’ve classed as research
problems (rated with difficulty level 46 or higher), namely exercises 15, . . . ; I’ve
also implicitly mentioned or posed additional unsolved questions in the answers
to exercises 7, 9, 46, 48, Are those problems still open? Please inform me if
you know of a solution to any of these intriguing questions. And of course if no
solution is known today but you do make progress on any of them in the future,
I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to receive credit for
things that have already been published by others, and most of these results are
quite natural “fruits” that were just waiting to be “plucked.” Therefore please
tell me if you know who deserves to be credited, with respect to the ideas found
in exercises 29, 32, 36(b), 38, 47, 52, 53, 61, 62, 63, 67, 75–78, Furthermore
I’ve credited exercises . . . to unpublished work of Have any of those results
ever appeared in print, to your knowledge?

I’ve got a historical question too: Have you any idea who originated the
idea of “stamping” in data structures? (See 7.2.2–(). This concept is quite
different from the so-called time stamps in persistent data structures, and quite
different from the so-called time stamps in depth-first search algorithms, and
quite different from the so-called time stamps in cryptology, although many
programmers do use the name “time stamp” for those kinds of stamp.) It’s
a technique that I’ve seen often, in programs that have come to my attention
during recent decades, but I wonder if it ever appeared in a book or paper that
was published before, say, 1980.

∗ ∗ ∗
Special thanks are due to . . . for their detailed comments on my early attempts
at exposition, as well as to numerous other correspondents who have contributed
crucial corrections.

∗ ∗ ∗
I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is first
reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32/c each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in the eventual book:−)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
19 June 2019

July 19, 2019

MPR
English words
Internet

Part of the Preface to Volume 4B

During the years that I’ve been preparing Volume 4, I’ve often run across
basic techniques of probability theory that I would have put into Section 1.2
of Volume 1 if I’d been clairvoyant enough to anticipate them in the 1960s.
Finally I realized that I ought to collect most of them together in one place,
near the beginning of Volume 4B, because the story of these developments is too
interesting to be broken up into little pieces scattered here and there.

Therefore this volume begins with a special section entitled “Mathematical
Preliminaries Redux,” and future sections use the abbreviation ‘MPR’ to refer
to its equations and its exercises.

∗ ∗ ∗

Several exercises involve the lists of English words that I’ve used in preparing
examples. You’ll need the data from

http://www-cs-faculty.stanford.edu/~knuth/wordlists.tgz

if you have the courage to work those exercises.

v

July 19, 2019

MATHEMATICAL PRELIMINARIES REDUX

Many parts of this book deal with discrete probabilities, namely with a finite or
countably infinite set Ω of atomic events ω, each of which has a given probability
Pr(ω), where

0 ≤ Pr(ω) ≤ 1 and
∑

ω∈Ω

Pr(ω) = 1. ()

. . .

For the complete text of the special MPR section, please see Pre-Fascicle 5a.

Incidentally, Section 7.2.2 intentionally begins on a left-hand page, and its

illustrations are numbered beginning with Fig. 68, because Section 7.2.1 ended

on a right-hand page and its final illustration was Fig. 67. The editor has decided

to treat Chapter 7 as a single unit, even though it will be split across several

physical volumes.

1

July 19, 2019

2 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449)

KING
MASON
Gardner ES
LENNON
backtrack
Walker
domain
cutoff
properties: logical propositions (relations)

P0()
lexicographically

Nowhere to go but out,

Nowhere to come but back.

— BEN KING, in The Sum of Life (c. 1893)

When you come to one legal road that’s blocked,

you back up and try another.

— PERRY MASON, in The Case of the Black-Eyed Blonde (1944)

No one I think is in my tree.

— JOHN LENNON, in Strawberry Fields Forever (1967)

7.2.2. Backtrack Programming

Now that we know how to generate simple combinatorial patterns such as tuples,
permutations, combinations, partitions, and trees, we’re ready to tackle more
exotic patterns that have subtler and less uniform structure. Instances of almost
any desired pattern can be generated systematically, at least in principle, if we
organize the search carefully. Such a method was christened “backtrack” by
R. J. Walker in the 1950s, because it is basically a way to examine all fruitful
possibilities while exiting gracefully from situations that have been fully explored.

Most of the patterns we shall deal with can be cast in a simple, gen-
eral framework: We seek all sequences x1x2 . . . xn for which some property
Pn(x1, x2, . . . , xn) holds, where each item xk belongs to some given domain Dk

of integers. The backtrack method, in its most elementary form, involves the
invention of intermediate “cutoff” properties Pl(x1, . . . , xl) for 1 ≤ l < n, such
that

Pl(x1, . . . , xl) is true whenever Pl+1(x1, . . . , xl+1) is true; ()

Pl(x1, . . . , xl) is fairly easy to test, if Pl−1(x1, . . . , xl−1) holds. ()

(We assume that P0() is always true. Exercise 1 shows that all of the basic
patterns studied in Section 7.2.1 can easily be formulated in terms of domainsDk

and cutoff properties Pl.) Then we can proceed lexicographically as follows:

Algorithm B (Basic backtrack). Given domains Dk and properties Pl as above,
this algorithm visits all sequences x1x2 . . . xn that satisfy Pn(x1, x2, . . . , xn).

B1. [Initialize.] Set l ← 1, and initialize the data structures needed later.

B2. [Enter level l.] (Now Pl−1(x1, . . . , xl−1) holds.) If l > n, visit x1x2 . . . xn

and go to B5. Otherwise set xl ← minDl, the smallest element of Dl.

B3. [Try xl.] If Pl(x1, . . . , xl) holds, update the data structures to facilitate
testing Pl+1, set l← l + 1, and go to B2.

B4. [Try again.] If xl 6= maxDl, set xl to the next larger element of Dl and
return to B3.

B5. [Backtrack.] Set l← l−1. If l > 0, downdate the data structures by undoing
the changes recently made in step B3, and return to B4. (Otherwise stop.)

The main point is that if Pl(x1, . . . , xl) is false in step B3, we needn’t waste time
trying to append any further values xl+1 . . . xn. Thus we can often rule out huge
regions of the space of all potential solutions. A second important point is that
very little memory is needed, although there may be many, many solutions.

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 3

n queens–
diagonal
backtrack tree
profile

For example, let’s consider the classic problem of n queens : In how many
ways can n queens be placed on an n× n board so that no two are in the same
row, column, or diagonal? We can suppose that one queen is in each row, and
that the queen in row k is in column xk, for 1 ≤ k ≤ n. Then each domain Dk

is {1, 2, . . . , n}; and Pn(x1, . . . , xn) is the condition that

xj 6= xk and |xk − xj | 6= k − j, for 1 ≤ j < k ≤ n. ()

(If xj = xk and j < k, two queens are in the same column; if |xk − xj | = k − j,
they’re in the same diagonal.)

This problem is easy to set up for Algorithm B, because we can let property
Pl(x1, . . . , xl) be the same as () but restricted to 1 ≤ j < k ≤ l. Condition ()
is clear; and so is condition (), because Pl requires testing () only for k = l
when Pl−1 is known. Notice that P1(x1) is always true in this example.

One of the best ways to learn about backtracking is to execute Algorithm B
by hand in the special case n = 4 of the n queens problem: First we set x1 ← 1.
Then when l = 2 we find P2(1, 1) and P2(1, 2) false; hence we don’t get to l = 3
until trying x2 ← 3. Then, however, we’re stuck, because P3(1, 3, x) is false for
1 ≤ x ≤ 4. Backtracking to level 2, we now try x2 ← 4; and this allows us to
set x3 ← 2. However, we’re stuck again, at level 4; and this time we must back
up all the way to level 1, because there are no further valid choices at levels 3
and 2. The next choice x1 ← 2 does, happily, lead to a solution without much
further ado, namely x1x2x3x4 = 2413. And one more solution (3142) turns up
before the algorithm terminates.

The behavior of Algorithm B is nicely visualized as a tree structure, called a
search tree or backtrack tree. For example, the backtrack tree for the four queens
problem has just 17 nodes,

1 2 3 4

3 4

2

4

1

3 2

4

1

3

1 2

, ()

corresponding to the 17 times step B2 is performed. Here xl is shown as the
label of an edge from level l − 1 to level l of the tree. (Level l of the algorithm
actually corresponds to the tree’s level l − 1, because we’ve chosen to represent
patterns using subscripts from 1 to n instead of from 0 to n−1 in this discussion.)
The profile (p0, p1, . . . , pn) of this particular tree— the number of nodes at each
level— is (1, 4, 6, 4, 2); and we see that the number of solutions, pn = p4, is 2.

Figure 68 shows the corresponding tree when n = 8. This tree has 2057
nodes, distributed according to the profile (1, 8, 42, 140, 344, 568, 550, 312, 92).
Thus the early cutoffs facilitated by backtracking have allowed us to find all 92
solutions by examining only 0.01% of the 88 = 16,777,216 possible sequences
x1 . . . x8. (And 88 is only 0.38% of the

(

64
8

)

= 4,426,165,368 ways to put eight
queens on the board.)

July 19, 2019

4 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

data structures–
mems
downdating vs updating+
undoes

Fig. 68. The problem of placing eight nonattacking queens has this backtrack tree.

Notice that, in this case, Algorithm B spends most of its time in the vicinity
of level 5. Such behavior is typical: The backtrack tree for n = 16 queens has
1,141,190,303 nodes, and its profile is (1, 16, 210, 2236, 19688, 141812, 838816,
3998456, 15324708, 46358876, 108478966, 193892860, 260303408, 253897632,
171158018, 72002088, 14772512), concentrated near level 12.

Data structures. Backtrack programming is often used when a huge tree of
possibilities needs to be examined. Thus we want to be able to test property Pl

as quickly as possible in step B3.
One way to implement Algorithm B for the n queens problem is to avoid

auxiliary data structures and simply to make a bunch of sequential comparisons
in that step: “Is xl−xj ∈ {j−l, 0, l−j} for some j < l?” Assuming that we must
access memory whenever referring to xj , given a trial value xl in a register, such
an implementation performs approximately 112 billion memory accesses when
n = 16; that’s about 98 mems per node.

We can do better by introducing three simple arrays. Property Pl in ()
says essentially that the numbers xk are distinct, and so are the numbers xk+k,
and so are the numbers xk − k. Therefore we can use auxiliary Boolean arrays
a1 . . . an, b1 . . . b2n−1, and c1 . . . c2n−1, where aj means ‘some xk = j’, bj means
‘some xk + k − 1 = j’, and cj means ‘some xk − k + n = j’. Those arrays are
readily updated and downdated if we customize Algorithm B as follows:

B1*. [Initialize.] Set a1 . . . an ← 0 . . . 0, b1 . . . b2n−1 ← 0 . . . 0, c1 . . . c2n−1 ←
0 . . . 0, and l← 1.

B2*. [Enter level l.] (Now Pl−1(x1, . . . , xl−1) holds.) If l > n, visit x1x2 . . . xn

and go to B5*. Otherwise set t← 1.

B3*. [Try t.] If at = 1 or bt+l−1 = 1 or ct−l+n = 1, go to B4*. Otherwise set
at ← 1, bt+l−1 ← 1, ct−l+n ← 1, xl ← t, l ← l + 1, and go to B2*.

B4*. [Try again.] If t < n, set t← t+ 1 and return to B3*.

B5*. [Backtrack.] Set l ← l − 1. If l > 0, set t ← xl, ct−l+n ← 0, bt+l−1 ← 0,
at ← 0, and return to B4*. (Otherwise stop.)

Notice how step B5* neatly undoes the updates that step B3* had made, in the
reverse order. Reverse order for downdating is typical of backtrack algorithms,

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 5

registers
Walker
cutoff properties
visits
bitwise operations
historical notes+
Sprague

although there is some flexibility; we could, for example, have restored at before
bt+l−1 and ct−l+n, because those arrays are independent.

The auxiliary arrays a, b, c make it easy to test property Pl at the beginning
of step B3*, but we must also access memory when we update them and downdate
them. Does that cost us more than it saves? Fortunately, no: The running time
for n = 16 goes down to about 34 billion mems, roughly 30 mems per node.

Furthermore we could keep the bit vectors a, b, c entirely in registers, on a
machine with 64-bit registers, assuming that n ≤ 32. Then there would be just
two memory accesses per node, namely to store xl ← t and later to fetch t← xl.
However, quite a lot of in-register computation would become necessary.

Walker’s method. The 1950s-era programs of R. J. Walker organized back-
tracking in a somewhat different way. Instead of letting xl run through all
elements of Dl, he calculated and stored the set

Sl ←
{

x ∈ Dl

∣

∣ Pl(x1, . . . , xl−1, x) holds} ()

upon entry to each node at level l. This computation can often be done efficiently
all at once, instead of piecemeal, because some cutoff properties make it possible
to combine steps that would otherwise have to be repeated for each x ∈ Dl. In
essence, he used the following variant of Algorithm B:

AlgorithmW (Walker’s backtrack). Given domainsDk and cutoffs Pl as above,
this algorithm visits all sequences x1x2 . . . xn that satisfy Pn(x1, x2, . . . , xn).

W1. [Initialize.] Set l← 1, and initialize the data structures needed later.

W2. [Enter level l.] (Now Pl−1(x1, . . . , xl−1) holds.) If l > n, visit x1x2 . . . xn

and go to W4. Otherwise determine the set Sl as in ().

W3. [Try to advance.] If Sl is nonempty, set xl ← minSl, update the data
structures to facilitate computing Sl+1, set l ← l+ 1, and go to W2.

W4. [Backtrack.] Set l ← l − 1. If l > 0, downdate the data structures by
undoing changes made in step W3, set Sl ← Sl \ xl, and retreat to W3.

Walker applied this method to the n queens problem by computing Sl =
U \Al \Bl \ Cl, where U = Dl = {1, . . . , n} and
Al = {xj | 1≤ j < l}, Bl = {xj+j− l | 1≤ j < l}, Cl = {xj−j+ l | 1≤ j < l}. ()

He represented these auxiliary sets by bit vectors a, b, c, analogous to (but
different from) the bit vectors of Algorithm B* above. Exercise 10 shows that
the updating in step W3 is easy, using bitwise operations on n-bit numbers;
furthermore, no downdating is needed in step W4. The corresponding run time
when n = 16 turns out to be just 9.1 gigamems, or 8 mems per node.

Let Q(n) be the number of solutions to the n queens problem. Then we have

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q(n) = 1 1 0 0 2 10 4 40 92 352 724 2680 14200 73712 365596 2279184 14772512

and the values for n ≤ 11 were computed independently by several people during
the nineteenth century. Small cases were relatively easy; but when T. B. Sprague

July 19, 2019

6 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

Sprague
Onnen
Ahrens
Walker
SWAC computer
UCLA
Kennedy
University of Tennessee
IBM 1620
Bunch
University of Illinois
IBM System 360-75
Bitner
Preußer
Engelhardt
distributed computation
FPGA
permutation
data structures
Langford pairs
dual
linked list

had finished computing Q(11) he remarked that “This was a very heavy piece of
work, and occupied most of my leisure time for several months. . . . It will, I imag-
ine, be scarcely possible to obtain results for larger boards, unless a number of
persons co-operate in the work.” [See Proc. Edinburgh Math. Soc. 17 (1899), 43–
68; Sprague was the leading actuary of his day.] Nevertheless, H. Onnen went on
to evaluate Q(12) = 14,200—an astonishing feat of hand calculation— in 1910.
[See W. Ahrens, Math. Unterhaltungen und Spiele 2, second edition (1918), 344.]

All of these hard-won results were confirmed in 1960 by R. J. Walker, using
the SWAC computer at UCLA and the method of exercise 10. Walker also
computed Q(13); but he couldn’t go any further with the machine available to
him at the time. The next step, Q(14), was computed by Michael D. Kennedy at
the University of Tennessee in 1963, commandeering an IBM 1620 for 120 hours.
S. R. Bunch evaluated Q(15) in 1974 at the University of Illinois, using about
two hours on an IBM System 360-75; then J. R. Bitner found Q(16) after about
three hours on the same computer, but with an improved method.

Computers and algorithms have continued to get better, of course, and such
results are now obtained almost instantly. Hence larger and larger values of n
lie at the frontier. The whopping value Q(27) = 234,907,967,154,122,528, found
in 2016 by Thomas B. Preußer and Matthias R. Engelhardt, probably won’t be
exceeded for awhile! [See J. Signal Processing Systems 88 (2017), 185–201. This
distributed computation occupied a dynamic cluster of diverse FPGA devices for
383 days; those devices provided a total peak of more than 7000 custom-designed
hardware solvers to handle 2,024,110,796 independent subproblems.]

Permutations and Langford pairs. Every solution x1 . . . xn to the n queens
problem is a permutation of {1, . . . , n}, and many other problems are permu-
tation-based. Indeed, we’ve already seen Algorithm 7.2.1.2X, which is an ele-
gant backtrack procedure specifically designed for special kinds of permutations.
When that algorithm begins to choose the value of xl, it makes all of the appropri-
ate elements {1, 2, . . . , n} \ {x1, . . . , xl−1} conveniently accessible in a linked list.

We can get further insight into such data structures by returning to the
problem of Langford pairs, which was discussed at the very beginning of Chap-
ter 7. That problem can be reformulated as the task of finding all permutations
of {1, 2, . . . , n} ∪ {−1,−2, . . . ,−n} with the property that

xj = k implies xj+k+1 = −k, for 1 ≤ j ≤ 2n and 1 ≤ k ≤ n. ()

For example, when n = 4 there are two solutions, namely 2342̄13̄1̄4̄ and 4131̄24̄3̄2̄.
(As usual we find it convenient to write 1̄ for −1, 2̄ for −2, etc.) Notice that if
x = x1x2 . . . x2n is a solution, so is its “dual” −xR = (−x2n) . . . (−x2)(−x1).

Here’s a Langford-inspired adaptation of Algorithm 7.2.1.2X, with the for-
mer notation modified slightly to match Algorithms B and W: We want to main-
tain pointers p0p1 . . . pn such that, if the positive integers not already present in
x1 . . . xl−1 are k1 < k2 < · · · < kt when we’re choosing xl, we have the linked list

p0 = k1, pk1
= k2, . . . , pkt−1

= kt, pkt
= 0. ()

Such a condition turns out to be easy to maintain.

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 7

undoes
deletion operation
dancing links
search tree
cutoff principle

Algorithm L (Langford pairs). This algorithm visits all solutions x1 . . . x2n

to () in lexicographic order, using pointers p0p1 . . . pn that satisfy (), and also
using an auxiliary array y1 . . . y2n for backtracking.

L1. [Initialize.] Set x1 . . . x2n ← 0 . . . 0, pk ← k+1 for 0 ≤ k < n, pn ← 0, l ← 1.

L2. [Enter level l.] Set k ← p0. If k = 0, visit x1x2 . . . x2n and go to L5.
Otherwise set j ← 0, and while xl < 0 set l← l + 1.

L3. [Try xl = k.] (At this point we have k = pj .) If l + k + 1 > 2n, go to L5.
Otherwise, if xl+k+1 = 0, set xl ← k, xl+k+1 ← −k, yl ← j, pj ← pk,
l← l + 1, and return to L2.

L4. [Try again.] (We’ve found all solutions that begin with x1 . . . xl−1k or
something smaller.) Set j ← k and k ← pj , then go to L3 if k 6= 0.

L5. [Backtrack.] Set l ← l − 1. If l > 0 do the following: While xl < 0, set
l ← l − 1. Then set k ← xl, xl ← 0, xl+k+1 ← 0, j ← yl, pj ← k, and go
back to L4. Otherwise terminate the algorithm.

Careful study of these steps will reveal how everything fits together nicely. Notice
that, for example, step L3 removes k from the linked list () by simply setting
pj ← pk. That step also sets xl+k+1 ← −k, in accordance with (), so that we
can skip over position l + k + 1 when we encounter it later in step L2.

The main point of Algorithm L is the somewhat subtle way in which step L5
undoes the deletion operation by setting pj ← k. The pointer pk still retains the
appropriate link to the next element in the list, because pk has not been changed

by any of the intervening updates. (Think about it.) This is the germ of an idea
called “dancing links” that we will explore in Section 7.2.2.1.

To draw the search tree corresponding to a run of Algorithm L, we can label
the edges with the positive choices of xl as we did in (), while labeling the
nodes with any previously set negative values that are passed over in step L2.
For instance the tree for n = 4 is

1

2

1 1

213 2

314

21 132 13 1

432

1 2 3
4

2
3

4

3 2 3

3 4

1 4

1

1

1 4

2 4 2

1 2

3

2

3

. ()

Solutions appear at depth n in this tree, even though they involve 2n values
x1x2 . . . x2n.

Algorithm L sometimes makes false starts and doesn’t realize the problem
until probing further than necessary. Notice that the value xl = k can appear
only when l + k + 1 ≤ 2n; hence if we haven’t seen k by the time l reaches
2n − k − 1, we’re forced to choose xl = k. For example, the branch 121̄ in ()
needn’t be pursued, because 4 must appear in {x1, x2, x3}. Exercise 20 explains
how to incorporate this cutoff principle into Algorithm L. When n = 17, it
reduces the number of nodes in the search tree from 1.29 trillion to 330 billion,

July 19, 2019

8 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

break the symmetry
dual
word rectangles–
footnote doesn’t show up here
n-letter words
WORDS
5-letter words
Stanford GraphBase
trie

and reduces the running time from 25.0 teramems to 8.1 teramems. (The amount
of work has gone up from 19.4 mems per node to 24.4 mems per node, because
of the extra tests for cutoffs, yet there’s a significant overall reduction.)

Furthermore, we can “break the symmetry” by ensuring that we don’t
consider both a solution and its dual. This idea, exploited in exercise 21, reduces
the search tree to just 160 billion nodes and costs just 3.94 teramems—that’s
24.6 mems per node.

Word rectangles. Let’s look next at a problem where the search domains Dl

are much larger. An m× n word rectangle is an array of n-letter words* whose
columns are m-letter words. For example,

S T A T U S
L O W E S T
U T O P I A
M A K I N G
S L E D G E

()

is a 5×6 word rectangle whose columns all belong to WORDS(5757), the collection
of 5-letter words in the Stanford GraphBase. To find such patterns, we can sup-
pose that column l contains the xlth most common 5-letter word, where 1 ≤ xl ≤
5757 for 1 ≤ l ≤ 6; hence there are 57576 = 36,406,369,848,837,732,146,649 ways
to choose the columns. In () we have x1 . . . x6 = 1446 185 1021 2537 66 255.
Of course very few of those choices will yield suitable rows; but backtracking will
hopefully help us to find all solutions in a reasonable amount of time.

We can set this problem up for Algorithm B by storing the n-letter words
in a trie (see Section 6.3), with one trie node of size 26 for each l-letter prefix of
a legitimate word, 0 ≤ l ≤ n.

For example, such a trie for n = 6 represents 15727 words with 23667 nodes.
The prefix ST corresponds to node number 260, whose 26 entries are

(484,0,0,0,1589,0,0,0,2609,0,0,0,0,0,1280,0,0,251,0,0,563,0,0,0,1621,0); ()

this means that STA is node 484, STE is node 1589, . . . , STY is node 1621, and
there are no 6-letter words beginning with STB, STC, . . . , STX, STZ. A slightly
different convention is used for prefixes of length n− 1; for example, the entries
for node 580, ‘CORNE’, are

(3879,0,0,3878,0,0,0,0,0,0,0,9602,0,0,0,0,0,171,0,5013,0,0,0,0,0,0), ()

meaning that CORNEA, CORNED, CORNEL, CORNER, and CORNET are ranked 3879,
3878, 9602, 171, and 5013 in the list of 6-letter words.

* Whenever five-letter words are used in the examples of this book, they’re taken from the
5757 Stanford GraphBase words as explained at the beginning of Chapter 7. Words of other
lengths are taken from The Official SCRABBLE R© Players Dictionary, fourth edition (Hasbro,
2005), because those words have been incorporated into many widely available computer games.
Such words have been ranked according to the British National Corpus of 2007—where ‘the’
occurs 5,405,633 times and the next-most common word, ‘of’, occurs roughly half as often
(3,021,525). The OSPD4 list includes respectively (101, 1004, 4002, 8887, 15727, 23958, 29718,
29130, 22314, 16161, 11412) words of lengths (2, 3, . . . , 12), of which (97, 771, 2451, 4474, 6910,
8852, 9205, 8225, 6626, 4642, 3061) occur at least six times in the British National Corpus.

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 9

teramems
profile
search tree
data structure
commafree codes–
4-letter codewords
four-letter words
coding theory
concatenating
codewords
self-synchronizing block code
block code
Crick
Griffith
Orgel
Golomb
Gordon
Welch

Suppose x1 and x2 specify the 5-letter column-words SLUMS and TOTAL as
in (). Then the trie tells us that the next column-word x3 must have the form
c1c2c3c4c5 where c1 ∈ {A, E, I, O, R, U, Y}, c2 /∈ {E, H, J, K, Y, Z}, c3 ∈ {E, M, O, T},
c4 /∈ {A, B, O}, and c5 ∈ {A, E, I, O, U, Y}. (There are 221 such words.)

Let al1 . . . alm be the trie nodes corresponding to the prefixes of the first
l columns of a partial solution to the word rectangle problem. This auxiliary
array enables Algorithm B to find all solutions, as explained in exercise 24. It
turns out that there are exactly 625,415 valid 5 × 6 word rectangles, according
to our conventions; and the method of exercise 24 needs about 19 teramems of
computation to find them all. In fact, the profile of the search tree is

(1, 5757, 2458830, 360728099, 579940198, 29621728, 625415), ()

indicating for example that just 360,728,099 of the 57573 = 190,804,533,093
choices for x1x2x3 will lead to valid prefixes of 6-letter words.

With care, exercise 24’s running time can be significantly decreased, once
we realize that every node of the search tree for 1 ≤ l ≤ n requires testing 5757
possibilities for xl in step B3. If we build a more elaborate data structure for the
5-letter words, so that it becomes easy to run though all words that have a specific
letter in a specific position, we can refine the algorithm so that the average
number of possibilities per level that need to be investigated becomes only

(5757.0, 1697.9, 844.1, 273.5, 153.5, 100.8); ()

the total running time then drops to 1.15 teramems. Exercise 25 has the details.
And exercise 28 discusses a method that’s faster yet.

Commafree codes. Our next example deals entirely with four -letter words.
But it’s not obscene; it’s an intriguing question of coding theory. The problem
is to find a set of four-letter words that can be decoded even if we don’t put
spaces or other delimiters between them. If we take any message that’s formed
from words of the set by simply concatenating them together, likethis, and
if we look at any seven consecutive letters . . . x1x2x3x4x5x6x7 . . . , exactly one
of the four-letter substrings x1x2x3x4, x2x3x4x5, x3x4x5x6, x4x5x6x7 will be a
codeword. Equivalently, if x1x2x3x4 and x5x6x7x8 are codewords, then x2x3x4x5

and x3x4x5x6 and x4x5x6x7 aren’t. (For example, iket isn’t.) Such a set is
called a “commafree code” or a “self-synchronizing block code” of length four.

Commafree codes were introduced by F. H. C. Crick, J. S. Griffith, and
L. E. Orgel [Proc. National Acad. Sci. 43 (1957), 416–421], and studied further
by S. W. Golomb, B. Gordon, and L. R. Welch [Canadian Journal of Mathematics

10 (1958), 202–209], who considered the general case ofm-letter alphabets and n-
letter words. They constructed optimum commafree codes for all m when n = 2,
3, 5, 7, 9, 11, 13, and 15; and optimum codes for all m were subsequently found
also for n = 17, 19, 21, . . . (see exercise 37). We will focus our attention on the
four-letter case here (n = 4), partly because that case is still very far from being
resolved, but mostly because the task of finding such codes is especially instruc-
tive. Indeed, our discussion will lead us naturally to an understanding of several
significant techniques that are important for backtrack programming in general.

July 19, 2019

10 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

periodic
aperiodic
cyclic shifts
prime strings
lookahead
dynamic ordering–
search rearrangement, see dynamic ordering
cutoff properties

To begin, we can see immediately that a commafree codeword cannot be
“periodic,” like dodo or gaga. Such a word already appears within two adjacent
copies of itself. Thus we’re restricted to aperiodic words like item, of which there
are m4 − m2. Notice further that if item has been chosen, we aren’t allowed
to include any of its cyclic shifts temi, emit, or mite, because they all appear
within itemitem. Hence the maximum number of codewords in our commafree
code cannot exceed (m4 −m2)/4.

For example, consider the binary case, m = 2, when this maximum is 3.
Can we choose three four-bit “words,” one from each of the cyclic classes

[0001] = {0001, 0010, 0100, 1000},
[0011] = {0011, 0110, 1100, 1001},
[0111] = {0111, 1110, 1101, 1011},

()

so that the resulting code is commafree? Yes: One solution in this case is simply
to choose the smallest word in each class, namely 0001, 0011, and 0111. (Alert
readers will recall that we studied the smallest word in the cyclic class of any
aperiodic string in Section 7.2.1.1, where such words were called prime strings

and where some of the remarkable properties of prime strings were proved.)
That trick doesn’t work when m = 3, however, when there are (81− 9)/4 =

18 cyclic classes. Then we cannot include 1112 after we’ve chosen 0001 and 0011.
Indeed, a code that contains 0001 and 1112 can’t contain either 0011 or 0111.

We could systematically backtrack through 18 levels, choosing x1 in [0001]
and x2 in [0011], etc., and rejecting each xl as in Algorithm B whenever we
discover that {x1, x2, . . . , xl} isn’t commafree. For example, if x1 = 0010 and
we try x2 = 1001, this approach would backtrack because x1 occurs inside x2x1.

But a näıve strategy of that kind, which recognizes failure only after a
bad choice has been made, can be vastly improved. If we had been clever
enough, we could have looked a little bit ahead, and never even considered the
choice x2 = 1001 in the first place. Indeed, after choosing x1 = 0010, we can
automatically exclude all further words of the form ∗001, such as 2001 when
m ≥ 3 and 3001 when m ≥ 4.

Even better pruning occurs if, for example, we’ve chosen x1 = 0001 and
x2 = 0011. Then we can immediately rule out all words of the forms 1∗∗∗ or
∗∗∗0, because x11∗∗∗ includes x2 and ∗∗∗0x2 includes x1. Already we could then
deduce, in the case m ≥ 3, that classes [0002], [0021], [0111], [0211], and [1112]
must be represented by 0002, 0021, 0111, 0211, and 2111, respectively; each of
the other three possibilities in those classes has been wiped out!

Thus we see the desirability of a lookahead mechanism.

Dynamic ordering of choices. Furthermore, we can see from this example
that it’s not always good to choose x1, then x2, then x3, and so on when trying
to satisfy a general property Pn(x1, x2, . . . , xn) in the setting of Algorithm B.
Maybe the search tree will be much smaller if we first choose x5, say, and then
turn next to some other xj , depending on the particular value of x5 that was
selected. Some orderings might have much better cutoff properties than others,
and every branch of the tree is free to choose its variables in any desired order.

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 11

frame
move
sequential lists–
downdating vs updating
cache-friendly
unordered sequential list
cells of memory
MEM, an array of “cells”–

Indeed, our commafree coding problem for ternary 4-tuples doesn’t dictate
any particular ordering of the 18 classes that would be likely to keep the search
tree small. Therefore, instead of calling those choices x1, x2, . . . , x18, it’s better
to identify them by the various class names, namely x0001, x0002, x0011, x0012,
x0021, x0022, x0102, x0111, x0112, x0121, x0122, x0211, x0212, x0221, x0222, x1112,
x1122, x1222. (Algorithm 7.2.1.1F is a good way to generate those names.) At
every node of the search tree we then can choose a convenient variable on which
to branch, based on previous choices. After beginning with x0001 ← 0001 at
level 1 we might decide to try x0011 ← 0011 at level 2; and then, as we’ve seen,
the choices x0002 ← 0002, x0021 ← 0021, x0111 ← 0111, x0211 ← 0211, and
x1112 ← 2111 are forced, so we should make them at levels 3 through 7.

Furthermore, after those forced moves are made, it turns out that they don’t
force any others. But only two choices for x0012 will remain, while x0122 will have
three. Therefore it will probably be wiser to branch on x0012 rather than on x0122

at level 8. (Incidentally, it also turns out that there is no commafree code with
x0001 = 0001 and x0011 = 0011, except when m = 2.)

It’s easy to adapt Algorithms B and W to allow dynamic ordering. Every
node of the search tree can be given a “frame” in which we record the variable
being set and the choice that was made. This choice of variable and value can
be called a “move” made by the backtrack procedure.

Dynamic ordering can be helpful also after backtracking has taken place. If
we continue the example above, where x0001 = 0001 and we’ve explored all cases
in which x0011 = 0011, we aren’t obliged to continue by trying another value
for x0011. We do want to remember that 0011 should no longer be considered
legal, until x0001 changes; but we could decide to explore next a case such as
x0002 ← 2000 at level 2. In fact, x0002 = 2000 is quickly seen to be impossible in
the presence of 0001 (see exercise 39). An even more efficient choice at level 2,
however, is x0012 ← 0012, because that branch immediately forces x0002 ← 0002,
x0022 ← 0022, x0122 ← 0122, x0222 ← 0222, x1222 ← 1222, and x0011 ← 1001.

Sequential allocation redux. The choice of a variable and value on which to
branch is a delicate tradeoff. We don’t want to devote more time to planning
than we’ll save by having a good plan.

If we’re going to benefit from dynamic ordering, we’ll need efficient data
structures that will lead to good decisions without much deliberation. On the
other hand, elaborate data structures need to be updated whenever we branch
to a new level, and they need to be downdated whenever we return from that
level. Algorithm L illustrates an efficient mechanism based on linked lists; but
sequentially allocated lists are often even more appealing, because they are cache-
friendly and they involve fewer accesses to memory.

Assume then that we wish to represent a set of items as an unordered
sequential list. The list begins in a cell of memory pointed to by HEAD, and
TAIL points just beyond the end of the list. For example,

3 9 1 4

HEAD TAIL

· · · · · ·
()

July 19, 2019

12 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

empty
insert
overflow
inverse list
inverse permutation
active

is one way to represent the set {1, 3, 4, 9}. The number of items currently in the
set is TAIL− HEAD; thus TAIL = HEAD if and only if the list is empty. If we wish
to insert a new item x, knowing that x isn’t already present, we simply set

MEM[TAIL]← x, TAIL← TAIL+ 1. ()

Conversely, if HEAD ≤ P < TAIL, we can easily delete MEM[P]:

TAIL← TAIL− 1; if P 6= TAIL, set MEM[P]← MEM[TAIL]. ()

(We’ve tacitly assumed in () that MEM[TAIL] is available for use whenever a
new item is inserted. Otherwise we would have had to test for memory overflow.)

We can’t delete an item from a list without knowing its MEM location. Thus
we will often want to maintain an “inverse list,” assuming that all items x lie in
the range 0 ≤ x < M. For example, () becomes the following, if M = 10:

3 9 1 4

HEAD TAIL

· · · · · ·

IHEAD

· · · · · ·

()

(Shaded cells have undefined contents.) With this setup, insertion () becomes

MEM[TAIL]← x, MEM[IHEAD+ x]← TAIL, TAIL← TAIL+ 1, ()

and TAIL will never exceed HEAD+M. Similarly, deletion of x becomes

P← MEM[IHEAD+ x], TAIL← TAIL− 1;

if P 6= TAIL, set y ← MEM[TAIL], MEM[P]← y, MEM[IHEAD+ y]← P. ()

For example, after deleting ‘9’ from (19) we would obtain this:

3 4 1

HEAD TAIL

IHEAD

· · · · · ·

· · · · · ·

()

In more elaborate situations we also want to test whether or not a given
item x is present. If so, we can keep more information in the inverse list.
A particularly useful variation arises when the list that begins at IHEAD contains
a complete permutation of the values {HEAD, HEAD+ 1, . . . , HEAD+M − 1}, and
the memory cells beginning at HEAD contain the inverse permutation—although
only the first TAIL− HEAD elements of that list are considered to be “active.”

For example, in our commafree code problem with m = 3, we can begin by
putting items representing the M = 18 cycle classes [0001], [0002], . . . , [1222]
into memory cells HEAD through HEAD + 17. Initially they’re all active, with

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 13

delete
data structures
periodic
radix m

TAIL = HEAD + 18 and MEM[IHEAD+ c] = HEAD + c for 0 ≤ c < 18. Then
whenever we decide to choose a codeword for class c, we delete c from the active
list by using a souped-up version of () that maintains full permutations:

P← MEM[IHEAD+ c], TAIL← TAIL− 1;

if P 6= TAIL, set y ← MEM[TAIL], MEM[TAIL]← c, MEM[P]← y,

MEM[IHEAD+ c]← TAIL, MEM[IHEAD+ y]← P. ()

Later on, after backtracking to a state where we once again want c to be consid-
ered active, we simply set TAIL← TAIL+ 1, because c will already be in place!

Lists for the commafree problem. The task of finding all four-letter comma-
free codes is not difficult when m = 3 and only 18 cycle classes are involved. But
it already becomes challenging when m = 4, because we must then deal with
(44− 42)/4 = 60 classes. Therefore we’ll want to give it some careful thought as
we try to set it up for backtracking.

The example scenarios for m = 3 considered above suggest that we’ll repeat-
edly want to know the answers to questions such as, “How many words of the
form 02∗∗ are still available for selection as codewords?” Redundant data struc-
tures, oriented to queries of that kind, appear to be needed. Fortunately, we shall
see that there’s a nice way to provide them, using sequential lists as in ()–().

In Algorithm C below, each of the m4 four-letter words is given one of three
possible states during the search for commafree codes. A word is green if it’s part
of the current set of tentative codewords. It is red if it’s not currently a candidate
for such status, either because it is incompatible with the existing green words
or because the algorithm has already examined all scenarios in which it is green
in their presence. Every other word is blue, and sort of in limbo; the algorithm
might or might not decide to make it red or green. All words are initially blue—
except for the m2 periodic words, which are permanently red.

We’ll use the Greek letter α to stand for the integer value of a four-letter
word x in radix m. For example, if m = 3 and if x is the word 0102, then
α = (0102)3 = 11. The current state of word x is kept in MEM[α], using one of
the arbitrary internal codes 2 (GREEN), 0 (RED), or 1 (BLUE).

The most important feature of the algorithm is that every blue word x =
x1x2x3x4 is potentially present in seven different lists, called P1(x), P2(x),
P3(x), S1(x), S2(x), S3(x), and CL(x), where

• P1(x), P2(x), P3(x) are the blue words matching x1∗∗∗, x1x2∗∗, x1x2x3∗;
• S1(x), S2(x), S3(x) are the blue words matching ∗∗∗x4, ∗∗x3x4, ∗x2x3x4;
• CL(x) hosts the blue words in {x1x2x3x4, x2x3x4x1, x3x4x1x2, x4x1x2x3}.

These seven lists begin respectively in MEM locations P1OFF + p1(α), P2OFF +
p2(α), P3OFF+p3(α), S1OFF+s1(α), S2OFF+s2(α), S3OFF+s3(α), and CLOFF+
4cl(α); here (P1OFF, P2OFF, P3OFF, S1OFF, S2OFF, S3OFF, CLOFF) are respectively
(2m4, 5m4, 8m4, 11m4, 14m4, 17m4, 20m4). We define p1((x1x2x3x4)m) =
(x1000)m, p2((x1x2x3x4)m) = (x1x200)m, p3((x1x2x3x4)m) = (x1x2x30)m; and
s1((x1x2x3x4)m)= (x4000)m, s2((x1x2x3x4)m)= (x3x400)m, s3((x1x2x3x4)m)=
(x2x3x40)m; and finally cl((x1x2x3x4)m) is an internal number, between 0 and

July 19, 2019

14 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

reflection
symmetry breaking
closed

Table 1

LISTS USED BY ALGORITHM C (m = 2), ENTERING LEVEL 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 RED BLUE BLUE BLUE RED RED BLUE BLUE RED BLUE RED BLUE BLUE BLUE BLUE RED

10 20 21 22 23 24 29 2c 28 2b 2a

20 0001 0010 0011 0110 0111 1100 1001 1110 1101 1011 P1

30 25 2d

40 50 51 52 54 55 58 59 5c 5e 5d

50 0001 0010 0011 0110 0111 1001 1011 1100 1110 1101 P2

60 53 56 5a 5f

70 80 82 83 86 87 88 8a 8c 8d 8e

80 0001 0010 0011 0110 0111 1001 1011 1100 1101 1110 P3

90 81 84 84 88 89 8b 8e 8f

a0 b8 b0 b9 b1 bb ba bd b2 bc b3

b0 0010 0110 1100 1110 0001 0011 1001 0111 1101 1011 S1

c0 b4 be

d0 e4 e8 ec e9 ed e5 ee e0 e6 ea

e0 1100 0001 1001 1101 0010 0110 1110 0011 0111 1011 S2

f0 e1 e7 eb ef

100 112 114 116 11c 11e 113 117 118 11a 11d

110 0001 1001 0010 0011 1011 1100 1101 0110 1110 0111 S3

120 110 114 115 118 119 11b 11e 11f

130 140 141 144 145 148 147 14b 146 14a 149

140 0001 0010 0011 0110 1100 1001 0111 1110 1101 1011 CL

150 142 148 14c

This table shows MEM locations 0000 through 150f, using hexadecimal notation. (For
example, MEM[40d]=5e; see exercise 41.) Blank entries are unused by the algorithm.

(m4−m2)/4−1, assigned to each class. The seven MEM locations where x appears
in these seven lists are respectively kept in inverse lists that begin in MEM locations
P1OFF−m4 + α, P2OFF−m4 + α, . . . , CLOFF−m4 + α. And the TAIL pointers,
which indicate the current list sizes as in ()–(), are respectively kept in MEM

locations P1OFF + m4 + p1(α), P2OFF + m4 + p2(α), . . . , CLOFF + m4 + cl(α).
(Whew; got that?)

This vast apparatus, which occupies 22m4 cells of MEM, is illustrated in
Table 1, at the beginning of the computation for the case m = 2. Fortunately
it’s not really as complicated as it may seem at first. Nor is it especially vast:
After all, 22m4 is only 13,750 when m = 5.

(A close inspection of Table 1 reveals incidentally that the words 0100 and
1000 have been colored red, not blue. That’s because we can assume without
loss of generality that class [0001] is represented either by 0001 or by 0010. The
other two cases are covered by left-right reflection of all codewords.)

Algorithm C finds these lists invaluable when it is deciding where next to
branch. But it has no further use for a list in which one of the items has become
green. Therefore it declares such lists “closed”; and it saves most of the work
of list maintenance by updating only the lists that remain open. A closed list is
represented internally by setting its TAIL pointer to HEAD− 1.

For example, Table 2 shows how the lists in MEM will have changed just
after x = 0010 has been chosen to be a tentative codeword. The elements
{0001, 0010, 0011, 0110, 0111} of P1(x) are effectively hidden, because the tail

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 15

undoing–
Floyd
compiler

Table 2

LISTS USED BY ALGORITHM C (m = 2), ENTERING LEVEL 2

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 RED RED GREEN BLUE RED RED BLUE BLUE RED RED RED BLUE BLUE BLUE BLUE RED

10 29 28 2b 2a

20 1100 1011 1110 1101 P1

30 1f 2c

40 54 55 58 5c 5e 5d

50 0110 0111 1011 1100 1110 1101 P2

60 4f 56 59 5f

70 86 87 8a 8c 8d 8e

80 0110 0111 1011 1100 1101 1110 P3

90 80 81 84 88 88 8b 8e 8f

a0 b9 bb b8 ba

b0 1011 0011 1101 0111 S1

c0 af bc

d0 ec ed ee e0 e4

e0 1100 1101 0011 0111 1011 S2

f0 e1 e5 e7 ef

100 116 11c 11e 117 118 11a 11d

110 0011 1011 1100 1101 0110 1110 0111 S3

120 110 112 113 118 119 11b 11e 11f

130 144 145 148 14b 146 14a 149

140 0011 0110 1100 0111 1110 1101 1011 CL

150 13f 147 14c

The word 0010 has become green, thus closing its seven lists and making 0001 red. The
logic of Algorithm C has also made 1001 red. Hence 0001 and 1001 have been deleted
from the open lists in which they formerly appeared (see exercise 42).

pointer MEM[30] = 1f = 20−1 marks that list as closed. (Those list elements ac-
tually do still appear in MEM locations 200 through 204, just as they did in Table 1.
But there’s no need to look at that list while any word of the form 0∗∗∗ is green.)

A general mechanism for doing and undoing. We’re almost ready to
finalize the details of Algorithm C and to get on with the search for commafree
codes, but a big problem still remains: The state of computation at every level
of the search involves all of the marvelous lists that we’ve just specified, and
those lists aren’t tiny. They occupy more than 5000 cells of MEM when m = 4,
and they can change substantially from level to level.

We could make a new copy of the entire state, whenever we advance to a
new node of the search tree. But that’s a bad idea, because we don’t want to
perform thousands of memory accesses per node. A much better strategy would
be to stick with a single instance of MEM, and to update and downdate the lists
as the search progresses, if we could only think of a simple way to do that.

And we’re in luck: There is such a way, first formulated by R. W. Floyd
in his classic paper “Nondeterministic algorithms” [JACM 14 (1967), 636–644].
Floyd’s original idea, which required a special compiler to generate forward and
backward versions of every program step, can in fact be greatly simplified when
all of the changes in state are confined to a single MEM array. All we need to
do is to replace every assignment operation of the form ‘MEM[a] ← v’ by the

July 19, 2019

16 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

UNDO
stack
reversible-memory
stamping
fallback point
bump
overflow
lookahead
poison list

slightly more cumbersome operation

store(a, v) : Set UNDO[u]←
(

a, MEM[a]
)

, MEM[a]← v, and u← u+ 1. ()

Here UNDO is a sequential stack that holds (address, value) pairs; in our appli-
cation we could say ‘UNDO[u]← (a≪ 16) + MEM[a]’, because the cell addresses
and values never exceed 16 bits. Of course we’ll also need to check that the stack
pointer u doesn’t get too large, if the number of assignments has no a priori limit.

Later on, when we want to undo all changes to MEM that were made after
the time when u had reached a particular value u0, we simply do this:

unstore(u0) : While u > u0, set u← u− 1,

(a, v)← UNDO[u], and MEM[a]← v. ()

In our application the unstacking operation ‘(a, v) ← UNDO[u]’ here could be
implemented by saying ‘a← UNDO[u]≫ 16, v ← UNDO[u]& #ffff’.

A useful refinement of this reversible-memory technique is often advanta-
geous, based on the idea of “stamping” that is part of the folklore of program-
ming. It puts only one item on the UNDO stack when the same memory address
is updated more than once in the same round.

store(a, v) : If STAMP[a] 6= σ, set STAMP[a]← σ,

UNDO[u]←
(

a, MEM[a]
)

, and u← u+ 1.

Then set MEM[a]← v. ()

Here STAMP is an array with one entry for each address in MEM. It’s initially
all zero, and σ is initially 1. Whenever we come to a fallback point, where
the current stack pointer will be remembered as the value u0 for some future
undoing, we “bump” the current stamp by setting σ ← σ + 1. Then () will
continue to do the right thing. (In programs that run for a long time, we must
be careful when integer overflow causes σ to be bumped to zero; see exercise 43.)

Notice that the combination of () and () will perform five memory
accesses for each assignment and its undoing. The combination of () and ()
will cost seven mems for the first assignment to MEM[a], but only two mems
for every subsequent assignment to the same address. So () wins, if multiple
assignments exceed one-time-only assignments.

Backtracking through commafree codes. OK, we’re now equipped with
enough basic knowhow to write a pretty good backtrack program for the problem
of generating all commafree four-letter codes.

Algorithm C below incorporates one more key idea, which is a lookahead
mechanism that is specific to commafree backtracking; we’ll call it the “poison
list.” Every item on the poison list is a pair, consisting of a suffix and a prefix
that the commafree rule forbids from occurring together. Every green word
x1x2x3x4 —that is, every word that will be a final codeword in the current
branch of our backtrack search—contributes three items to the poison list,
namely

(∗x1x2x3, x4∗∗∗), (∗∗x1x2, x3x4∗∗), and (∗∗∗x1, x2x3x4∗). ()

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 17

inverse list
Laxdal
Jiggs
stamping++

If there’s a green word on both sides of a poison list entry, we’re dead: The
commafree condition fails, and we must backtrack. If there’s a green word on
one side but not the other, we can kill off all blue words on the other side by
making them red. And if either side of a poison list entry corresponds to an
empty list, we can remove this entry from the poison list because it will never
affect the outcome. (Blue words become red or green, but red words stay red.)

For example, consider the transition from Table 1 to Table 2. When word
0010 becomes green, the poison list receives its first three items:

(∗001, 0∗∗∗), (∗∗00, 10∗∗), (∗∗∗0, 010∗).

The first of these kills off the ∗001 list, because 0∗∗∗ contains the green word 0010.
That makes 1001 red. The last of these, similarly, kills off the 010∗ list; but
that list is empty when m = 2. The poison list now reduces to a single
item, (∗∗00, 10∗∗), which remains poisonous because list ∗∗00 contains the blue
word 1100 and 10∗∗ contains the blue word 1011.

We’ll maintain the poison list at the end of MEM, following the CL lists. It
obviously will contain at most 3(m4−m2)/4 entries, and in fact it usually turns
out to be quite small. No inverse list is required; so we shall adopt the simple
method of () and (), but with two cells per entry so that TAIL will change
by ±2 instead of by ±1. The value of TAIL will be stored in MEM at key times so
that temporary changes to it can be undone.

The case m = 4, in which each codeword consists of four quaternary digits
{0, 1, 2, 3}, is particularly interesting, because an early backtrack program by Lee
Laxdal found that no such commafree code can make use of all 60 of the cycle
classes [0001], [0002], . . . , [2333]. [See B. H. Jiggs, Canadian Journal of Math. 15

(1963), 178–187.] Laxdal’s program also reportedly showed that at least three of
those classes must be omitted; and it found several valid 57-word sets. Further
details were never published, because the proof that 58 codewords are impossible
depended on what Jiggs called a “quite time-consuming” computation.

Because size 60 is impossible, our algorithm cannot simply assume that a
move such as 1001 is forced when the other words 0011, 0110, 1100 of its class
have been ruled out. We must also consider the possibility that class [0011] is
entirely absent from the code. Such considerations add an interesting further
twist to the problem, and Algorithm C describes one way to cope with it.

Algorithm C (Four-letter commafree codes). Given an alphabet size m ≤ 7
and a goal g in the range L−m(m− 1) ≤ g ≤ L, where L = (m4 −m2)/4, this
algorithm finds all sets of g four-letter words that are commafree and include
either 0001 or 0010. It uses an array MEM of M = ⌊23.5m4⌋ 16-bit numbers, as
well as several more auxiliary arrays: ALF of size 163m; STAMP of size M ; X, C,
S, and U of size L + 1; FREE and IFREE of size L; and a sufficiently large array
called UNDO whose maximum size is difficult to guess.

C1. [Initialize.] Set ALF[(abcd)16] ← (abcd)m for 0 ≤ a, b, c, d < m. Set
STAMP[k] ← 0 for 0 ≤ k < M and σ ← 0. Put the initial prefix, suffix,
and class lists into MEM, as in Table 1. Also create an empty poison list by

July 19, 2019

18 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

Running time
estimates of run time–
Monte Carlo algorithm
random sampling
pencil-and-paper method
cutoff strategies
data structures
author

setting MEM[PP] ← POISON, where POISON = 22m4 and PP = POISON − 1.
Set FREE[k]← IFREE[k]← k for 0 ≤ k < L. Then set l ← 1, x← #0001,
c ← 0, s ← L − g, f ← L, u ← 0, and go to step C3. (Variable l is the
level, x is a trial word, c is its class, s is the “slack,” f is the number of free
classes, and u is the size of the UNDO stack.)

C2. [Enter level l.] If l > L, visit the solution x1 . . . xL and go to C6. Otherwise
choose a candidate word x and class c as described in exercise 44.

C3. [Try the candidate.] Set U[l]← u and σ ← σ+1. If x < 0, go to C6 if s = 0
or l = 1, otherwise set s ← s − 1. If x ≥ 0, update the data structures to
make x green, as described in exercise 45, escaping to C5 if trouble arises.

C4. [Make the move.] Set X[l] ← x, C[l] ← c, S[l] ← s, p ← IFREE[c], f ←
f−1. If p 6= f , set y ← FREE[f], FREE[p]← y, IFREE[y]← p, FREE[f]←
c, IFREE[c]← f . (This is ().) Then set l← l+ 1 and go to C2.

C5. [Try again.] While u > U[l], set u ← u − 1 and MEM[UNDO[u]≫ 16] ←
UNDO[u]&#ffff. (Those operations restore the previous state, as in ().)
Then σ ← σ + 1 and redden x (see exercise 45). Go to C2.

C6. [Backtrack.] Set l← l − 1, and terminate if l = 0. Otherwise set x← X[l],
c ← C[l], f ← f − 1. If x < 0, repeat this step (class c was omitted from
the code). Otherwise set s← S[l] and go back to C5.

Exercises 44 and 45 provide the instructive details that flesh out this skeleton.

Algorithm C needs just 13, 177, and 2380 megamems to prove that no solu-
tions exist for m = 4 when g is 60, 59, and 58. It needs about 22800 megamems
to find the 1152 solutions for g = 57; see exercise 47. There are roughly (14,
240, 3700, 38000) thousand nodes in the respective search trees, with most of
the activity taking place on levels 30 ± 10. The height of the UNDO stack never
exceeds 2804, and the poison list never contains more than 12 entries at a time.

Running time estimates. Backtrack programs are full of surprises. Sometimes
they produce instant answers to a supposedly difficult problem. But sometimes
they spin their wheels endlessly, trying to traverse an astronomically large search
tree. And sometimes they deliver results just about as fast as we might expect.

Fortunately, we needn’t sit in the dark. There’s a simple Monte Carlo algo-
rithm by which we can often tell in advance whether or not a given backtrack
strategy will be feasible. This method, based on random sampling, can actually
be worked out by hand before writing a program, in order to help decide whether
to invest further time while following a particular approach. In fact, the very act
of carrying out this pleasant pencil-and-paper method often suggests useful cutoff
strategies and/or data structures that will be valuable later when a program is
being written. For example, the author developed Algorithm C above after first
doing some armchair experiments with random choices of potential commafree
codewords; these dry runs revealed that a family of lists such as those in Tables
1 and 2 would be quite helpful when making further choices.

To illustrate the method, let’s consider the n queens problem again, as rep-
resented in Algorithm B* above. When n = 8, we can obtain a decent “ballpark

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 19

search tree
root node
degree
pi as source+
rejection method
e, as source
phi, as source
gamma, as source
random variables
cost function

q

8

q

5

q

4

q

3

q

1

q

1

q

1
0

ˆ
001

ˆ
001

ˆ
00
ˆ
00
ˆ

(a)

q

8

q

5

q

3

q

3

q

2

q

1

q

1
0

ˆ
101

ˆ
101

ˆ
111

ˆ
110

ˆ
000

ˆ
10
ˆ
10
ˆ
1
ˆ

(b)

q

8

q

5

q

4

q

2

q

1

q

2
0

ˆ
100

ˆ
111

ˆ
100

ˆ
01
ˆ
1
ˆ
0
ˆ

(c)

q

8

q

5

q

4

q

3

q

2

q

1
0

ˆ
100

ˆ
100

ˆ
11
ˆ
11
ˆ
00
ˆ
0
ˆ

(d)

Fig. 69. Four random attempts to solve the 8 queens problem. Such experiments help
to estimate the size of the backtrack tree in Fig. 68. The branching degrees are shown at
the right of each diagram, while the random bits used for sampling appear below. Cells
have been shaded in gray if they are attacked by one or more queens in earlier rows.

estimate” of the size of Fig. 68 by examining only a few random paths in that
search tree. We start by writing down the number D1 ← 8, because there are
eight ways to place the queen in row 1. (In other words, the root node of the
search tree has degree 8.) Then we use a source of random numbers— say the
binary digits of π mod 1 = (.001001000011 . . .)2 —to select one of those place-
ments. Eight choices are possible, so we look at three of those bits; we shall set
X1 ← 2, because 001 is the second of the eight possibilities (000, 001, . . . , 111).

Given X1 = 2, the queen in row 2 can’t go into columns 1, 2, or 3. Hence
five possibilities remain for X2, and we write down D2 ← 5. The next three bits
of π lead us to set X2 ← 5, since 5 is the second of the available columns (4, 5, 6,
7, 8) and 001 is the second value of (000, 001, . . . , 100). If π had continued with
101 or 110 or 111 instead of 001, we would incidentally have used the “rejection
method” of Section 3.4.1 and moved to the next three bits; see exercise 49.

Continuing in this way leads to D3 ← 4, X3 ← 1; then D4 ← 3, X4 ← 4.
(Here we used the two bits 00 to select X3, and the next two bits 00 to select X4.)
The remaining branches are forced: D5 ← 1, X5 ← 7; D6 ← 1, X6 ← 3; D7 ← 1,
X7 ← 6; and we’re stuck when we reach level 8 and find D8 ← 0.

These sequential random choices are depicted in Fig. 69(a), where we’ve
used them to place each queen successively into an unshaded cell. Parts (b), (c),
and (d) of Fig. 69 correspond in the same way to choices based on the binary
digits of emod 1, φmod 1, and γ mod 1. Exactly 10 bits of π, 20 bits of e, 13 bits
of φ, and 13 bits of γ were used to generate these examples.

In this discussion the notation Dk stands for a branching degree, not for a
domain of values. We’ve used uppercase letters for the numbers D1, X1, D2,
etc., because those quantities are random variables. Once we’ve reached Dl = 0
at some level, we’re ready to estimate the overall cost, by implicitly assuming
that the path we’ve taken is representative of all root-to-leaf paths in the tree.

The cost of a backtrack program can be assessed by summing the individual
amounts of time spent at each node of the search tree. Notice that every node on
level l of that tree can be labeled uniquely by a sequence x1 . . . xl−1, which defines
the path from the root to that node. Thus our goal is to estimate the sum of all
c(x1 . . . xl−1), where c(x1 . . . xl−1) is the cost associated with node x1 . . . xl−1.

July 19, 2019

20 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

subtree
size of the tree
standard deviation

For example, the four queens problem is represented by the search tree (),
and its cost is the sum of 17 individual costs

c() + c(1) + c(13) + c(14) + c(142) + c(2) + c(24) + · · ·+ c(413) + c(42). ()

If C(x1 . . . xl) denotes the total cost of the subtree rooted at x1 . . . xl, then

C(x1 . . . xl) = c(x1 . . . xl) + C(x1 . . . xlx
(1)
l+1) + · · ·+ C(x1 . . . xlx

(d)
l+1) ()

when the choices for xl+1 at node x1 . . . xl are {x(1)
l+1, . . . , x

(d)
l+1}. For instance

in () we have C(1) = c(1) + C(13) + C(14); C(13) = c(13); and C() = c() +
C(1) + C(2) + C(3) + C(4) is the overall cost ().

In these terms a Monte Carlo estimate for C() is extremely easy to compute:

Theorem E. Given D1, X1, D2, X2, . . . as above, the cost of backtracking is

C() = E
(

c() +D1(c(X1) +D2(c(X1X2) +D3(c(X1X2X3) + · · ·)))
)

. ()

Proof. Node x1 . . . xl, with branch degrees d1, . . . , dl above it, is reached with
probability 1/d1 . . . dl; so it contributes d1 . . . dlc(x1 . . . xl)/d1 . . . dl = c(x1 . . . xl)
to the expected value in this formula.

For example, the tree () has six root-to-leaf paths, and they occur with
respective probabilities 1/8, 1/8, 1/4, 1/4, 1/8, 1/8. The first one contributes
1/8 times c()+4(c(1)+2(c(13))), namely c()/8+ c(1)/2+ c(13), to the expected
value. The second contributes c()/8 + c(1)/2 + c(14) + c(142); and so on.

A special case of Theorem E, with all c(x1 . . . xl) = 1, tells us how to estimate
the total size of the tree, which is often a crucial quantity:

Corollary E. The number of nodes in the search tree, given D1, D2, . . . , is

E(1 +D1 +D1D2 + · · ·) = E
(

1 +D1

(

1 +D2(1 +D3(1 + · · ·))
))

. ()

For example, Fig. 69 gives us four estimates for the size of the tree in Fig. 68,
using the numbers Dj at the right of each 8 × 8 diagram. The estimate from
Fig. 69(a) is 1+8

(

1+5
(

1+4(1+3(1+1(1+1(1+1))))
))

= 2129; and the other
three are respectively 2689, 1489, 2609. None of them is extremely far from the
true number, 2057, although we can’t expect to be so lucky all the time.

The detailed study in exercise 53 shows that the estimate () in the case
of 8 queens turns out to be quite well behaved:

(

min 489, ave 2057, max 7409, dev
√
1146640 ≈ 1071

)

. ()

The analogous problem for 16 queens has a much less homogeneous search tree:
(

min 2597105, ave 1141190303, max 131048318769, dev ≈ 1234000000
)

. ()

Still, this standard deviation is roughly the same as the mean, so we’ll usually
guess the correct order of magnitude. (For example, ten independent experiments
predicted .632, .866, .237, 1.027, 4.006, .982, .143, .140, 3.402, and .510 billion
nodes, respectively. The mean of these is 1.195.) A thousand trials with n = 64
suggest that the problem of 64 queens will have about 3× 1065 nodes in its tree.

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 21

binomial tree
estimating solutions

Let’s formulate this estimation procedure precisely, so that it can be per-
formed conveniently by machine as well as by hand:

Algorithm E (Estimated cost of backtrack). Given domains Dk and properties
Pl as in Algorithm B, together with node costs c(x1 . . . xl) as above, this algo-
rithm computes the quantity S whose expected value is the total cost C() in ().
It uses an auxiliary array y1y2 . . . whose size should be ≥ max(|D1|, . . . , |Dn|).
E1. [Initialize.] Set l← D ← 1, S ← 0, and initialize any data structures needed.

E2. [Enter level l.] (At this point Pl−1(X1, . . . , Xl−1) holds.) Set S ← S +
D · c(X1 . . . Xl−1). If l > n, terminate the algorithm. Otherwise set d ← 0
and set x← minDl, the smallest element of Dl.

E3. [Test x.] If Pl(X1, . . . , Xl−1, x) holds, set yd ← x and d← d+ 1.

E4. [Try again.] If x 6= maxDl, set x to the next larger element of Dl and return
to step E3.

E5. [Choose and try.] If d = 0, terminate. Otherwise set D ← D ·d and Xl ← yI ,
where I is a uniformly random integer in {0, . . . , d − 1}. Update the data
structures to facilitate testing Pl+1, set l ← l + 1, and go back to E2.

Although Algorithm E looks rather like Algorithm B, it never backtracks.

Of course we can’t expect this algorithm to give decent estimates in cases
where the backtrack tree is wildly erratic. The expected value of S, namely ES,
is indeed the true cost; but the probable values of S might be quite different.

An extreme example of bad behavior occurs if property Pl is the simple con-
dition ‘x1 > · · · > xl’, and all domains are {1, . . . , n}. Then there’s only one so-
lution, x1 . . . xn = n . . . 1; and backtracking is a particularly stupid way to find it!

The search tree for this somewhat ridiculous problem is, nevertheless, quite
interesting. It is none other than the binomial tree Tn of Eq. 7.2.1.3–(), which
has

(

n
l

)

nodes on level l + 1 and 2n nodes in total. If we set all costs to 1,
the expected value of S is therefore 2n = en ln 2. But exercise 52 proves that
S will almost always be much smaller, less than e(lnn)2 ln lnn. Furthermore the
average value of l when Algorithm E terminates with respect to Tn is onlyHn+1.
When n = 100, for example, the probability that l ≥ 20 on termination is only
0.0000000027, while the vast majority of the nodes are near level 51.

Many refinements of Algorithm E are possible. For example, exercise 54
shows that the choices in step E5 need not be uniform. We shall discuss improved
estimation techniques in Section 7.2.2.9, after having seen numerous examples
of backtracking in practice.

*Estimating the number of solutions. Sometimes we know that a problem
has more solutions than we could ever hope to generate, yet we still want to
know roughly how many there are. Algorithm E will tell us the approximate
number, in cases where the backtrack process never reaches a dead end—that
is, if it never terminates with d = 0 in step E5. There may be another criterion
for successful termination in step E2 even though l might still be ≤ n. The
expected final value of D is exactly the total number of solutions, because every
solutionX1 . . .Xl constructed by the algorithm is obtained with probability 1/D.

July 19, 2019

22 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

king
chessboard
simple paths
paths, simple
π for guidance
statistics
sample variance
variance
error bars
discarded data
Diaconis
Chatterjee

For example, suppose we want to know the number of different paths by
which a king can go from one corner of a chessboard to the opposite corner,
without revisiting any square. One such path, chosen at random using the bits
of π for guidance as we did in Fig. 69(a), is shown here. Starting in the upper left
corner, we have 3 choices for the first move.
Then, after moving to the right, there are
4 choices for the second move. And so on.
We never make a move that would discon-
nect us from the goal; in particular, two of
the moves are actually forced. (Exercise 58
explains one way to avoid fatal mistakes.)

k

3 4

6 6

2

6

7545

4

1

4

3

4

4

2

5

2

6

3 5

5

4

4

4

5

6

5

5

6

4

1

3

5

2

The probability of obtaining this partic-
ular path is exactly 1

3
1
4
1
6
1
6
1
2
1
6
1
7 . . .

1
2 = 1/D,

where D = 3×4×6×6×2×6×7×· · ·×2 =
12 · 24 · 34 · 410 · 59 · 66 · 71 ≈ 8.7× 1020. Thus
we can reasonably guess, at least tentatively,
that there are 1021 such paths, more or less.

Of course that guess, based on a single
random sample, rests on very shaky grounds.
But we know that the average value MN = (D(1) + · · ·+D(N))/N of N guesses,
in N independent experiments, will almost surely approach the correct number.

How large should N be, before we can have any confidence in the results?
The actual values of D obtained from random king paths tend to vary all over
the map. Figure 70 plots typical results, as N varies from 1 to 10000. For each
value of N we can follow the advice of statistics textbooks and calculate the
sample variance VN = SN/(N − 1) as in Eq. 4.2.2–(); then MN ±

√

VN/N is
the textbook estimate. The top diagram in Fig. 70 shows these “error bars” in
gray, surrounding black dots for MN . This sequence MN does appear to settle
down after N reaches 3000 or so, and to approach a value near 5× 1025. That’s
much higher than our first guess, but it has lots of evidence to back it up.

On the other hand, the bottom chart in Fig. 70 shows the distribution of
the logarithms of the 10000 values of D that were used to make the top chart.
Almost half of those values were totally negligible— less than 1020. About 75%
of them were less than 1024. But some of them* exceeded 1028. Can we really
rely on a result that’s based on such chaotic behavior? Is it really right to throw
away most of our data and to trust almost entirely on observations that were
obtained from comparatively few rare events?

Yes, we’re okay! Some of the justification appears in exercise MPR–124,
which is based on theoretical work by P. Diaconis and S. Chatterjee. In the
paper cited with that exercise, they defend a simple measure of quality,

QN = max(D(1), . . . , D(N))/(NMN) =
max(D(1), . . . , D(N))

D(1) + · · ·+D(N)
, ()

* Four of the actual values that led to Fig. 70 were larger than 1028; the largest, ≈ 2.1×1028 ,
came from a path of length 57. The smallest estimate, 19361664, came from a path of length 10.

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 23

ZDD
Hamiltonian paths
knight

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.0

0.5

2×1025

5×1025

8×1025

1025

≤1020

Fig. 70. Estimates of the number of king paths, based on up to 10000 random trials.
The middle graph shows the corresponding quality measures of Eq. (). The lower
graph shows the logarithms of the individual estimates D(k), after they’ve been sorted.

arguing that a reasonable policy in most experiments such as these is to stop
sampling when QN gets small. (Values of this statistic QN have been plotted in
the middle of Fig. 70.)

Furthermore we can estimate other properties of the solutions to a backtrack
problem, instead of merely counting those solutions. For example, the expected
value of lD on termination of the random king’s path algorithm is the total
length of such paths. The data underlying Fig. 70 suggests that this total is
(2.66± .14)× 1027; hence the average path length appears to be about 53. The
samples also indicate that about 34% of the paths pass through the center; about
46% touch the upper right corner; about 22% touch both corners; and about 7%
pass through the center and both corners.

For this particular problem we don’t actually need to rely on estimates,
because the ZDD technology of Section 7.1.4 allows us to compute the true

values. (See exercise 59.) The total number of simple corner-to-corner king paths
on a chessboard is exactly 50,819,542,770,311,581,606,906,543; this value lies
almost within the error bars of Fig. 70 for all N ≥ 250, except for a brief interval
near N = 1400. And the total length of all these paths turns out to be exactly
2,700,911,171,651,251,701,712,099,831, which is a little higher than our estimate.
The true average length is therefore ≈ 53.15. The true probabilities of hitting the
center, a given corner, both corners, and all three of those spots are respectively
about 38.96%, 50.32%, 25.32%, and 9.86%.

The total number of corner-to-corner king paths of the maximum length, 63,
is 2,811,002,302,704,446,996,926. This is a number that can not be estimated
well by a method such as Algorithm E without additional heuristics.

The analogous problem for corner-to-corner knight paths, of any length, lies
a bit beyond ZDD technology because many more ZDD nodes are needed. Using
Algorithm E we can estimate that there are about (8.6± 1.2)× 1019 such paths.

July 19, 2019

24 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

factorization of problems–

independent subproblems
backtrack tree
tree sizes
dynamic ordering
divide and conquer paradigm
latin squares
Parker
homomorphic images
lifted
Schossow
Patent
Tantalizer, see Instant InsanityTM
Armbruster
Instant InsanityTM
Carteblanche

Factoring the problem. Imagine an instance of backtracking that is equivalent
to solving two independent subproblems. For example, we might be looking for
all sequences x = x1x2 . . . xn that satisfy Pn(x1, x2, . . . , xn) = F (x1, x2, . . . , xn),
where

F (x1, x2, . . . , xn) = G(x1, . . . , xk) ∧ H(xk+1, . . . , xn). ()

Then the size of the backtrack tree is essentially the product of the tree sizes for
G and for H , even if we use dynamic ordering. Hence it’s obviously foolish to
apply the general setup of () and (). We can do much better by finding all
solutions to G first, then finding all solutions to H , thereby reducing the amount
of computation to the sum of the tree sizes. Again we’ve divided and conquered,
by factoring the compound problem () into separate subproblems.

We discussed a less obvious application of problem factorization near the
beginning of Chapter 7, in connection with latin squares: Recall that E. T.
Parker sped up the solution of 7–() by more than a dozen orders of magnitude,
when he discovered 7–() by essentially factoring 7–() into ten subproblems
whose solutions could readily be combined.

In general, each solution x to some problem F often implies the existence of
solutions x(p) = φp(x) to various simpler problems Fp that are “homomorphic
images” of F . And if we’re lucky, the solutions to those simpler problems can
be combined and “lifted” to a solution of the overall problem. Thus it pays to
be on the lookout for such simplifications.

Let’s look at another example. F. A. Schossow invented a tantalizing puzzle
[U.S. Patent 646463 (3 April 1900)] that “went viral” in 1967 when a marketing
genius decided to rename it Instant Insanity R©. The problem is to take four cubes
such as

♣

♠♦

♣

♠

♥

Cube 1

♣

♦♣

♥

♣

♠

Cube 2

♥ ♣

♠

♦

♥

♦

Cube 3

♦
♥♥

♠

♠
♣

Cube 4

()

where each face has been marked in one of four ways, and to arrange them in a
row so that all four markings appear on the top, bottom, front, and back sides.
The placement in () is incorrect, because there are two ♣s (and no ♠) on top.
But we get a solution if we rotate each cube by 90◦.

There are 24 ways to place each cube, because any of the six faces can be
on top and we can rotate four ways while keeping the top unchanged. So the
total number of placements is 244 = 331776. But this problem can be factored
in an ingenious way, so that all solutions can be found quickly by hand! [See
F. de Carteblanche, Eureka 9 (1947), 9–11.] The idea is that any solution to the
puzzle gives us two each of {♣,♦,♥,♠}, if we look only at the top and bottom
or only at the front and back. That’s a much easier problem to solve.

For this purpose a cube can be characterized by its three pairs of markings
on opposite faces; in () these face-pairs are respectively

{♣♠,♣♦,♠♥}, {♣♣,♣♥,♠♦}, {♥♥,♠♦,♣♦}, {♠♦,♠♥,♣♥}. ()

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 25

2-regular graph
disjoint
lifting
relaxation
Bernoulli
Tot tibi
depth-first search
Lucas
Trémaux
eight queens problem
Bezzel
Nauck
Gauss
Schumacher
lexicographically
Walker

Which of the 34 = 81 ways to choose one face-pair from each cube will give us
{♣,♣,♦,♦,♥,♥,♠,♠}? They can all be discovered in a minute or two, by list-
ing the nine possibilities for cubes (1, 2) and the nine for (3, 4). We get just three,

(♣♦,♣♥,♠♦,♠♥), (♠♥,♣♥,♣♦,♠♦), (♠♥,♠♦,♣♦,♣♥). ()

Notice furthermore that each solution can be “halved” so that one each of
{♣,♦,♥,♠} appears on both sides, by swapping face-pairs; we can change () to

(♦♣,♣♥,♠♦,♥♠), (♥♠,♣♥,♦♣,♠♦), (♥♠,♠♦,♦♣,♣♥). ()

Each of these solutions to the opposite-face subproblem can be regarded as a
2-regular graph, because every vertex of the multigraph whose edges are (say)
♦−−−♣, ♣−−−♥, ♠−−−♦, ♥−−−♠ has exactly two neighbors.

A solution to Instant Insanity R© will give us two such 2-regular factors, one
for top-and-bottom and one for front-and-back. Furthermore those two factors
will have disjoint edges: We can’t use the same face-pair in both. Therefore
problem () can be solved only by using the first and third factor in ().

Conversely, whenever we have two disjoint 2-regular graphs, we can always
use them to position the cubes as desired, thus “lifting” the factors to a solution
of the full problem.

Exercise 67 illustrates another kind of problem factorization. We can con-
veniently think of each subproblem as a “relaxation” of constraints.

Historical notes. The origins of backtrack programming are obscure. Equiva-
lent ideas must have occurred to many people, yet there was hardly any reason to
write them down until computers existed. We can be reasonably sure that James
Bernoulli used such principles in the 17th century, when he successfully solved
the “Tot tibi sunt dotes” problem that had eluded so many others (see Section
7.2.1.7), because traces of the method exist in his exhaustive list of solutions.

Backtrack programs typically traverse the tree of possibilities by using what
is now called depth-first search, a general graph exploration procedure that
Édouard Lucas credited to a student named Trémaux [Récréations Mathéma-

tiques 1 (Paris: Gauthier-Villars, 1882), 47–50].
The eight queens problem was first proposed by Max Bezzel [Schachzeitung

3 (1848), 363; 4 (1849), 40] and by Franz Nauck [Illustrirte Zeitung 14, 361
(1 June 1850), 352; 15, 377 (21 September 1850), 182], perhaps independently.
C. F. Gauss saw the latter publication, and wrote several letters about it to
his friend H. C. Schumacher. Gauss’s letter of 27 September 1850 is especially
interesting, because it explained how to find all the solutions by backtracking—
which he called ‘Tatonniren’, from a French term meaning “to feel one’s way.”
He also listed the lexicographically first solutions of each equivalence class under
reflection and rotation: 15863724, 16837425, 24683175, 25713864, 25741863,
26174835, 26831475, 27368514, 27581463, 35281746, 35841726, and 36258174.

Computers arrived a hundred years later, and people began to use them
for combinatorial problems. The time was therefore ripe for backtracking to
be described as a general technique, and Robert J. Walker rose to the occasion
[Proc. Symposia in Applied Math. 10 (1960), 91–94]. His brief note introduced

July 19, 2019

26 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

Golomb
Baumert
commafree codes
optimization
lookahead
dynamic ordering
minimum remaining values
integer programming problems
Balas
Geoffrion
implicit enumeration
Wells
Bitner
Reingold
Gaschnig
backmarking
backjumping
Monte Carlo estimates
Hall
Knuth
importance sampling
Hammersley
Handscomb
self-avoiding walks
king paths
Rosenbluth
Rosenbluth
parallel programming
search tree
Lehmer
load balancing
Finkel
Manber
Alekhnovich
Borodin
Buresh-Oppenheim
Impagliazzo
Magen
Pitassi
priority branching trees

Algorithm W in machine-oriented form, and mentioned that the procedure could
readily be extended to find variable-length patterns x1 . . . xn where n is not fixed.

The next milestone was a paper by Solomon W. Golomb and Leonard D.
Baumert [JACM 12 (1965), 516–524], who formulated the general problem care-
fully and presented a variety of examples. In particular, they discussed the search
for maximum commafree codes, and noted that backtracking can be used to find
successively better and better solutions to combinatorial optimization problems.
They introduced certain kinds of lookahead, as well as the important idea of
dynamic ordering by branching on variables with the fewest remaining choices.

Backtrack methods allow special cutoffs when applied to integer program-
ming problems [see E. Balas, Operations Research 13 (1965), 517–546]. A. M.
Geoffrion simplified and extended that work, calling it “implicit enumeration”
because many cases aren’t enumerated explicitly [SIAM Rev. 9 (1967), 178–190].

Other noteworthy early discussions of backtrack programming appear in
Mark Wells’s book Elements of Combinatorial Computing (1971), Chapter 4; in
a survey by J. R. Bitner and E. M. Reingold, CACM 18 (1975), 651–656; and
in the Ph.D. thesis of John Gaschnig [Report CMU-CS-79-124 (Carnegie Mellon
University, 1979), Chapter 4]. Gaschnig introduced techniques of “backmarking”
and “backjumping” that we shall discuss later.

Monte Carlo estimates of the cost of backtracking were first described briefly
by M. Hall, Jr., and D. E. Knuth in Computers and Computing, AMM 72, 2,
part 2, Slaught Memorial Papers No. 10 (February 1965), 21–28. Knuth gave a
much more detailed exposition a decade later, in Math. Comp. 29 (1975), 121–
136. Such methods can be considered as special cases of so-called “importance
sampling”; see J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods

(London: Methuen, 1964), 57–59. Studies of random self-avoiding walks such
as the king paths discussed above were inaugurated by M. N. Rosenbluth and
A. W. Rosenbluth, J. Chemical Physics 23 (1955), 356–359.

Backtrack applications are nicely adaptable to parallel programming, be-
cause different parts of the search tree are often completely independent of
each other; thus disjoint subtrees can be explored on different machines, with
a minimum of interprocess communication. Already in 1964, D. H. Lehmer
explained how to subdivide a problem so that two computers of different speeds
could work on it simultaneously and finish at the same time. The problem that
he considered had a search tree of known shape (see Theorem 7.2.1.3L); but
we can do essentially similar load balancing even in much more complicated
situations, by using Monte Carlo estimates of the subtree sizes. Although many
ideas for parallelizing combinatorial searches have been developed over the years,
such techniques are beyond the scope of this book. Readers can find a nice intro-
duction to a fairly general approach in the paper by R. Finkel and U. Manber,
ACM Transactions on Programming Languages and Systems 9 (1987), 235–256.

M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Ma-
gen, and T. Pitassi have defined priority branching trees, a general model of com-
putation with which they were able to prove rigorous bounds on what backtrack
programs can do, in Computational Complexity 20 (2011), 679–740.

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 27

n-tuples
tuples
permutations
combinations
integer partitions
partitions
set partitions
nested parentheses
parentheses
domains
cutoff
properties
backtrack tree
recursive
global variables
author
recursion versus iteration
Sprague
bitwise operations
Ahrens
quarterturn symmetry
Rotation by 90

◦

Wraparound queens
broken diagonal, see wraparound
torus
n queens problem
queen bees
bees
honeycomb
hexagons
Quick

EXERCISES

x 1. [22] Explain how the tasks of generating (i) n-tuples, (ii) permutations of distinct
items, (iii) combinations, (iv) integer partitions, (v) set partitions, and (vi) nested
parentheses can all be regarded as special cases of backtrack programming, by present-
ing suitable domains Dk and cutoff properties Pl(x1, . . . , xl) that satisfy () and ().

2. [10] True or false: We can choose D1 so that P1(x1) is always true.

3. [20] Let T be any tree. Is it possible to define domains Dk and cutoff properties
Pl(x1, . . . , xl) so that T is the backtrack tree traversed by Algorithm B?

4. [16] Using a chessboard and eight coins to represent queens, one can follow the
steps of Algorithm B and essentially traverse the tree of Fig. 68 by hand in about three
hours. Invent a trick to save half of the work.

x 5. [20] Reformulate Algorithm B as a recursive procedure called try (l), having global
variables n and x1 . . . xn, to be invoked by saying ‘try (1)’. Can you imagine why the
author of this book decided not to present the algorithm in such a recursive form?

6. [20] Given r, with 1 ≤ r ≤ 8, in how many ways can 7 nonattacking queens be
placed on an 8× 8 chessboard, if no queen is placed in row r?

7. [20] (T. B. Sprague, 1890.) Are there any values n > 5 for which the n queens
problem has a “framed” solution with x1 = 2, x2 = n, xn−1 = 1, and xn = n− 1?

8. [20] Are there two 8-queen placements with the same x1x2x3x4x5x6?

9. [21] Can a 4m-queen placement have 3m queens on “white” squares?

x 10. [22] Adapt Algorithm W to the n queens problem, using bitwise operations on
n-bit numbers as suggested in the text.

11. [M25] (W. Ahrens, 1910.) Both solutions of the n queens problem
when n = 4 have quarterturn symmetry : Rotation by 90◦ leaves them
unchanged, but reflection doesn’t.
a) Can the n queens problem have a solution with reflection symmetry?
b) Show that quarterturn symmetry is impossible if nmod 4 ∈ {2, 3}.
c) Sometimes the solution to an n queens problem contains four queens

that form the corners of a tilted square, as shown here. Prove that we
can always get another solution by tilting the square the other way (but
leaving the other n− 4 queens in place).
d) Let Cn be the number of solutions with 90◦ symmetry, and suppose

cn of them have xk > k for 1 ≤ k ≤ n/2. Prove that Cn = 2⌊n/4⌋cn.

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

12. [M28] (Wraparound queens.) Replace () by the stronger conditions ‘xj 6= xk,
(xk − xj) mod n 6= k − j, (xj − xk) mod n 6= k − j’. (The n× n grid becomes a torus.)
Prove that the resulting problem is solvable if and only if n is not divisible by 2 or 3.

13. [M30] For which n ≥ 0 does the n queens problem have at least one solution?

14. [M25] If exercise 12 has T (n) toroidal solutions, show that Q(mn) ≥ Q(m)nT (n).

15. [HM47] Does (lnQ(n))/(n lnn) approach a positive constant as n→∞?

16. [21] Let H(n) be the number of ways that n queen bees can occupy
an n × n honeycomb so that no two are in the same line. (For example,
one of the H(4) = 7 ways is shown here.) Compute H(n) for small n.

Q

Q

Q

Q

17. [15] J. H. Quick (a student) noticed that the loop in step L2 of Algorithm L can
be changed from ‘while xl < 0’ to ‘while xl 6= 0’, because xl cannot be positive at

July 19, 2019

28 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

Langford pairs+
domains
dual
loose Langford pairs
word rectangle
orthogonal lists
trie
word squares
De Morgan
Babbage
OSPD4
reverse dictionaries
colex order

that point of the algorithm. So he decided to eliminate the minus signs and just set
xl+k+1 ← k in step L3. Was it a good idea?

18. [17] Suppose that n = 4 and Algorithm L has reached step L2 with l = 4 and
x1x2x3 = 241. What are the current values of x4x5x6x7x8, p0p1p2p3p4, and y1y2y3?

19. [M19] What are the domains Dl in Langford’s problem ()?

x 20. [21] Extend Algorithm L so that it forces xl ← k whenever k /∈ {x1, . . . , xl−1}
and l ≥ 2n− k − 1.

x 21. [M25] If x = x1x2 . . . x2n, let x
D = (−x2n) . . . (−x2)(−x1) = −x

R be its dual.

a) Show that if n is odd and x solves Langford’s problem (), we have xk = n for
some k ≤ ⌊n/2⌋ if and only if xD

k = n for some k > ⌊n/2⌋.

b) Find a similar rule that distinguishes x from xD when n is even.

c) Consequently the algorithm of exercise 20 can be modified so that exactly one of
each dual pair of solutions {x, xD} is visited.

22. [M26] Explore “loose Langford pairs”: Replace ‘j + k + 1’ in () by ‘j + ⌊3k/2⌋’.

23. [17] We can often obtain one word rectangle from another by changing only a
letter or two. Can you think of any 5× 6 word rectangles that almost match ()?

24. [20] Customize Algorithm B so that it will find all 5× 6 word rectangles.

x 25. [25] Explain how to use orthogonal lists, as in Fig. 13 of Section 2.2.6, so that it’s
easy to visit all 5-letter words whose kth character is c, given 1 ≤ k ≤ 5 and a ≤ c ≤ z.
Use those sublists to speed up the algorithm of exercise 24.

26. [21] Can you find nice word rectangles of sizes 5× 7, 5× 8, 5× 9, 5× 10?

27. [22] What profile and average node costs replace () and () when we ask the
algorithm of exercise 25 for 6× 5 word rectangles instead of 5× 6?

x 28. [23] The method of exercises 24 and 25 does n levels of backtracking to fill the
cells of an m× n rectangle one column at a time, using a trie to detect illegal prefixes
in the rows. Devise a method that does mn levels of backtracking and fills just one

cell per level, using tries for both rows and columns.

29. [20] Do any 5× 6 word rectangles contain fewer than 11 different words?

30. [22] Symmetric word squares, whose columns are the same as their rows, were
popular in England during the 1850s. For example, A. De Morgan praised the square

L E A V E

E L L E N

A L O N E

V E N O M

E N E M Y

because it actually is “meaningful”! Determine the total number of symmetric 5 × 5
word squares, by adapting the method of exercise 28. How many belong to WORDS(500)?

31. [20] (Charles Babbage, 1864.) Do any of the symmetric 5× 5 word squares also
have valid words on both diagonals?

32. [22] How many symmetric word squares of sizes 2× 2, 3× 3, . . . , are supported
by The Official SCRABBLE

R© Players Dictionary (fourth edition, 2005)?

33. [21] Puzzlers who tried to construct word squares by hand found long ago that
it was easiest to work from bottom to top. Therefore they used “reverse dictionaries,”
whose words appear in colex order. Does this idea speed up computer experiments?

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 29

commafree
two-letter block code
digraph
commafree
Eastman
aperiodic words
periodic sequence
substrings
boundary markers
lexicographic comparison
dips
pi, as “random” data
worst-case bound
analysis of algs

34. [15] What’s the largest commafree subset of the following words?

aced babe bade bead beef cafe cede dada dead deaf face fade feed

x 35. [22] Let w1, w2, . . . , wn be four-letter words on an m-letter alphabet. Design an
algorithm that accepts or rejects each wj , according as wj is commafree or not with
respect to the accepted words of {w1, . . . , wj−1}.

36. [M22] A two-letter block code on an m-letter alphabet can be represented as a
digraph D on m vertices, with a→ b if and only if ab is a codeword.

a) Prove that the code is commafree ⇐⇒ D has no oriented paths of length 3.

b) How many arcs can be in an m-vertex digraph with no oriented paths of length r?

x 37. [M30] (W. L. Eastman, 1965.) The following elegant construction yields a comma-
free code of maximum size for any odd block length n, over any alphabet. Given a
sequence x = x0x1 . . . xn−1 of nonnegative integers, where x differs from each of its
other cyclic shifts xk . . . xn−1x0 . . . xk−1 for 0 < k < n, the procedure outputs a cyclic
shift σx with the property that the set of all such σx is commafree.

We regard x as an infinite periodic sequence 〈xn〉 with xk = xk−n for all k ≥ n.
Each cyclic shift then has the form xkxk+1 . . . xk+n−1. The simplest nontrivial example
occurs when n = 3, where x = x0x1x2x0x1x2x0 . . . and we don’t have x0 = x1 = x2.
In this case the algorithm outputs xkxk+1xk+2 where xk > xk+1 ≤ xk+2; and the set
of all such triples clearly satisfies the commafree condition.

One key idea is to think of x as partitioned into t substrings by boundary mark-
ers bj , where 0 ≤ b0 < b1 < · · · < bt−1 < n and bj = bj−t + n for j ≥ t. Then substring
yj is xbjxbj+1 . . . xbj+1−1. The number t of substrings is always odd. Initially t = n
and bj = j for all j; ultimately t = 1, and σx = y0 is the desired output.

Eastman’s algorithm is based on comparison of adjacent substrings yj−1 and yj .
If those substrings have the same length, we use lexicographic comparison; otherwise
we declare that the longer substring is bigger.

The second key idea is the notion of “dips,” which are substrings of the form
z = z1 . . . zk where k ≥ 2 and z1 ≥ · · · ≥ zk−1 < zk. It’s easy to see that any string
y = y0y1 . . . in which we have yi < yi+1 for infinitely many i can be factored into a
sequence of dips, y = z(0)z(1) . . . , and this factorization is unique. For example,

3141592653589793238462643383 . . . = 314 15 926 535 89 79 323 846 26 4338 3

Furthermore, if y is a periodic sequence, its factorization into dips is also ultimately
periodic, although some of the initial factors may not occur in the period. For example,

123443550123443550123443550 . . . = 12 34 435 501 23 4435 501 23 4435

Given a periodic, nonconstant sequence y described by boundary markers as above,
where the period length t is odd, its periodic factorization will contain an odd number
of odd-length dips. Each round of Eastman’s algorithm simply retains the boundary
points at the left of those odd-length dips. Then t is reset to the number of retained
boundary points, and another round begins if t > 1.

a) Play through the algorithm by hand when n = 19 and x = 3141592653589793238.

b) Show that the number of rounds is at most ⌊log3 n⌋.

c) Exhibit a binary x that achieves this worst-case bound when n = 3e.

d) Implement the algorithm with full details. (It’s surprisingly short!)

e) Explain why the algorithm yields a commafree code.

July 19, 2019

30 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

Eastman
generating function
analysis of algs
data structures
Sequential Allocation
undoing scheme
bumped
stamp
poison list
nonisomorphic
symmetries
“random” bits
Monte Carlo
martingale
coins
Stirling cycle numbers
q.s.
variance

38. [HM28] What is the probability that Eastman’s algorithm finishes in one round?
(Assume that x is a random m-ary string of odd length n > 1, unequal to any of its
other cyclic shifts. Use a generating function to express the answer.)

39. [18] Why can’t a commafree code of length (m4−m2)/4 contain 0001 and 2000?

x 40. [15] Why do you think sequential data structures such as ()–() weren’t fea-
tured in Section 2.2.2 of this series of books (entitled “Sequential Allocation”)?

41. [17] What’s the significance of (a) MEM[40d]=5e and (b) MEM[904]=84 in Table 1?

42. [18] Why is (a) MEM[f8] = e7 and (b) MEM[a0d] = ba in Table 2?

43. [20] Suppose you’re using the undoing scheme () and the operation σ ← σ + 1
has just bumped the current stamp σ to zero. What should you do?

x 44. [25] Spell out the low-level implementation details of the candidate selection
process in step C2 of Algorithm C. Use the routine store(a, v) of () whenever changing
the contents of MEM, and use the following selection strategy:

a) Find a class c with the least number r of blue words.

b) If r = 0, set x← −1; otherwise set x to a word in class c.

c) If r > 1, use the poison list to find an x that maximizes the number of blue words
that could be killed on the other side of the prefix or suffix list that contains x.

x 45. [28] Continuing exercise 44, spell out the details of step C3 when x ≥ 0.

a) What updates should be done to MEM when a blue word x becomes red?

b) What updates should be done to MEM when a blue word x becomes green?

c) Step C3 begins its job by making x green as in part (b). Explain how it should
finish its job by updating the poison list.

46. [M30] Is there a binary (m = 2) commafree code with one codeword in each of
the (

∑
d\n µ(d)2n/d)/n cycle classes, for every word length n?

47. [HM29] A commafree code on m letters is equivalent to 2m! such codes if we
permute the letters and/or replace each codeword by its left-right reflection.

Determine all of the nonisomorphic commafree codes of length 4 on m letters when
m is (a) 2 (b) 3 (c) 4 and there are (a) 3 (b) 18 (c) 57 codewords.

48. [M42] Find a maximum-size commafree code of length 4 on m = 5 letters.

49. [20] Explain how the choices in Fig. 69 were determined from the “random” bits
that are displayed. For instance, why was X2 set to 1 in Fig. 69(b)?

50. [M15] Interpret the value E(D1 . . . Dl), in the text’s Monte Carlo algorithm.

51. [M22] What’s a simple martingale that corresponds to Theorem E?

x 52. [HM25] Elmo uses Algorithm E with Dk = {1, . . . , n}, Pl = [x1 > · · ·>xl], c = 1.

a) Alice flips n coins independently, where coin k yields “heads” with probability 1/k.
True or false: She obtains exactly l heads with probability

[
n
l

]
/n!.

b) Let Y1, Y2, . . . , Yl be the numbers on the coins that come up heads. (Thus Y1 = 1,
and Y2 = 2 with probability 1/2.) Show that Pr(Alice obtains Y1, Y2, . . . , Yl) =
Pr(Elmo obtains X1 = Yl, X2 = Yl−1, . . . , Xl = Y1).

c) Prove that Alice q.s. obtains at most (lnn)(ln lnn) heads.

d) Consequently Elmo’s S is q.s. less than exp((lnn)2(ln lnn)).

x 53. [M30] Extend Algorithm B so that it also computes the minimum, maximum,
mean, and variance of the Monte Carlo estimates S produced by Algorithm E.

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 31

biased distribution
commafree code
lookahead
dynamic ordering
reversible memory
simple paths
random walks
dynamic shortest distances
shortest distances, dynamic
ZDD
corner-to-corner
king paths
chessboard
biased random walks
Cayley
binary partitions
partitions
profiles
height n
Instant Insanity
2-regular graphs
factored
speedy schizophrenia
cubes
uppercase letters
LEXI-CUBES
alphabet blocks
Instant Insanity
5-letter words

54. [M21] Instead of choosing each yi in step E5 with probability 1/d, we could use
a biased distribution where Pr(I = i |X1, . . . , Xl−1) = pX1...Xl−1

(yi) > 0. How should
the estimate S be modified so that its expected value in this general scheme is still C()?

55. [M20] If all costs c(x1, . . . , xl) are positive, show that the biased probabilities of
exercise 54 can be chosen in such a way that the estimate S is always exact.

x 56. [M25] The commafree code search procedure in Algorithm C doesn’t actually
fit the mold of Algorithm E, because it incorporates lookahead, dynamic ordering,
reversible memory, and other enhancements to the basic backtrack paradigms. How
could its running time be reliably estimated with Monte Carlo methods?

57. [HM21] Algorithm E can potentially follow M different paths X1 . . . Xl−1 before
it terminates, where M is the number of leaves of the backtrack tree. Suppose the final

values of D at those leaves are D(1), . . . , D(M). Prove that (D(1) . . . D(M))
1/M
≥ M .

58. [27] The text’s king path problem is a special case of the general problem of
counting simple paths from vertex s to vertex t in a given graph.

We can generate such paths by random walks from s that don’t get stuck, if we
maintain a table of values DIST(v) for all vertices v not yet in the path, representing
the shortest distance from v to t through unused vertices. For with such a table we
can simply move at each step to a vertex for which DIST(v) <∞.

Devise a way to update the DIST table dynamically without unnecessary work.

59. [26] A ZDD with 3,174,197 nodes can be constructed for the family of all simple
corner-to-corner king paths on a chessboard, using the method of exercise 7.1.4–225.
Explain how to use this ZDD to compute (a) the total length of all paths; (b) the
number of paths that touch any given subset of the center and/or corner points.

x 60. [20] Experiment with biased random walks (see exercise 54), weighting each non-
dead-end king move to a new vertex v by 1 + DIST(v)2 instead of choosing every such
move with the same probability. Does this strategy improve on Fig. 70?

61. [HM26] Let Pn be the number of integer sequences x1 . . . xn such that x1 = 1 and
1 ≤ xk+1 ≤ 2xk for 1 ≤ k < n. (The first few values are 1, 2, 6, 26, 166, 1626, . . . ;
this sequence was introduced by A. Cayley in Philosophical Magazine (4) 13 (1857),
245–248, who showed that Pn enumerates the partitions of 2n − 1 into powers of 2.)
a) Show that Pn is the number of different profiles that are possible for a binary tree

of height n.
b) Find an efficient way to compute Pn for large n. Hint: Consider the more general

sequence P
(m)
n , defined similarly but with x1 = m.

c) Use the estimation procedure of Theorem E to prove that Pn ≥ 2(
n
2)/(n− 1)!.

x 62. [22] When the faces of four cubes are colored randomly with four colors, estimate
the probability that the corresponding “Instant Insanity” puzzle has a unique solution.
How many 2-regular graphs tend to appear during the “factored” solution process?

63. [20] Find five cubes, each of whose faces has one of five colors, and where every
color occurs at least five times, such that the corresponding puzzle has a unique solution.

64. [24] Assemble five cubes with uppercase letters on each face, using the patterns

P O E

Z

G

H

S G S

U

R

Z

A R T

H I Z

D T E

U

W

C

U Y L

Z O H

By extending the principles of Instant Insanity, show that these cubes can be placed in a
row so that four 5-letter words are visible. (Each word’s letters should have a consistent
orientation. The letters C and U, H and I, N and Z are related by 90◦ rotation.)

July 19, 2019

32 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

NP-complete
Fool’s Disk
Royal Aquarium Thirteen Puzzle
Le Nombre Treize, see Royal Aquarium Thirteen
Hoffmann
Factor
de Ruiter
pi day
self-reference
π
Bousquet-Mélou
self-avoiding paths
variance

65. [25] Show that the generalized “Instant Insanity” problem, with n cubes and
n colors on their faces, is NP-complete, even though cases with small n are fairly easy.

x 66. [23] (The Fool’s Disk.) “Rotate the four disks of the lefthand illustration below so
that the four numbers on each ray sum to 12.” (The current sums are 4+3+2+4 = 13,
etc.) Show that this problem factors nicely, so that it can be solved readily by hand.

4
2
3
4

3
4

3
3

1355

4
1

4
1

3
2
3
5

2
3
1
4

3 1 2 2

5
5
2
3

The Fool’s Disk

2

5

1

5
1

1

5

3

2

7

4

5

4

5

4

2

7

2

5

4

7
5

5

7

8

3

7

4

3

4

5

4

5

7

3

5

The Royal Aquarium Thirteen Puzzle

x 67. [26] (The Royal Aquarium Thirteen Puzzle.) “Rearrange the nine cards of the
righthand illustration above, optionally rotating some of them by 180◦, so that the six
horizontal sums of gray letters and the six vertical sums of black letters all equal 13.”
(The current sums are 1 + 5 + 4 = 10, . . . , 7 + 5 + 7 = 19.) The author of Hoffmann’s

Puzzles Old and New (1893) stated that “There is no royal road to the solution. The
proper order must be arrived at by successive transpositions until the conditions are
fulfilled.” Prove that he was wrong: “Factor” this problem and solve it by hand.

x 68. [28] (Johan de Ruiter, 14 March 2018.) Put a digit into each empty box, in such
a way that every box names the exact number of distinct digits that it points to.

3 1 4 1 5 9

2 6 5

3 5 8 9

7

9 3

2 3

8

4 6 2 6

4 3 3

8 3 2 7 9 5

69. [40] Is there a puzzle like exercise 68 whose clues contain more than 32 digits of π?

70. [HM40] (M. Bousquet-Mélou.) Consider self-avoiding paths from the upper left
corner of an m × n grid to the lower right, where each step is either up, down, or to
the right. If we generate such paths at random, making either 1 or 2 or 3 choices at
each step as in Algorithm E, the expected value EDmn is the total number of such
paths, mn−1. But the variance is considerably larger: Construct polynomials Pm(z)
and Qm(z) such that we have Gm(z) =

∑∞
n=1(ED2

mn)z
n = zPm(z)/Qm(z) for m ≥ 2.

For example, G3(z) = (z+ z2)/(1− 9z− 6z2) = z+10z2+96z3 +924z4+8892z5 + · · · .
Prove furthermore that ED2

mn = Θ(ρnm), where ρm = 2m +O(1).

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 33

Woods
questionnaire
paradoxical

Table 666

TWENTY QUESTIONS (SEE EXERCISE 71)

1. The first question whose answer is A is:
(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
2. The next question with the same answer as this one is:
(A) 4 (B) 6 (C) 8 (D) 10 (E) 12
3. The only two consecutive questions with identical answers are questions:
(A) 15 and 16 (B) 16 and 17 (C) 17 and 18 (D) 18 and 19 (E) 19 and 20
4. The answer to this question is the same as the answers to questions:
(A) 10 and 13 (B) 14 and 16 (C) 7 and 20 (D) 1 and 15 (E) 8 and 12
5. The answer to question 14 is:
(A) B (B) E (C) C (D) A (E) D
6. The answer to this question is:
(A) A (B) B (C) C (D) D (E) none of those
7. An answer that appears most often is:
(A) A (B) B (C) C (D) D (E) E
8. Ignoring answers that appear equally often, the least common answer is:
(A) A (B) B (C) C (D) D (E) E
9. The sum of all question numbers whose answers are correct and the same as this one is:
(A) ∈ [59 . . 62] (B) ∈ [52 . . 55] (C) ∈ [44 . . 49] (D) ∈ [61 . . 67] (E) ∈ [44 . . 53]

10. The answer to question 17 is:
(A) D (B) B (C) A (D) E (E) wrong

11. The number of questions whose answer is D is:
(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

12. The number of other questions with the same answer as this one is the same as the number
of questions with answer:

(A) B (B) C (C) D (D) E (E) none of those
13. The number of questions whose answer is E is:

(A) 5 (B) 4 (C) 3 (D) 2 (E) 1
14. No answer appears exactly this many times:

(A) 2 (B) 3 (C) 4 (D) 5 (E) none of those
15. The set of odd-numbered questions with answer A is:

(A) {7} (B) {9} (C) not {11} (D) {13} (E) {15}
16. The answer to question 8 is the same as the answer to question:

(A) 3 (B) 2 (C) 13 (D) 18 (E) 20
17. The answer to question 10 is:

(A) C (B) D (C) B (D) A (E) correct
18. The number of prime-numbered questions whose answers are vowels is:

(A) prime (B) square (C) odd (D) even (E) zero
19. The last question whose answer is B is:

(A) 14 (B) 15 (C) 16 (D) 17 (E) 18
20. The maximum score that can be achieved on this test is:

(A) 18 (B) 19 (C) 20 (D) indeterminate
(E) achievable only by getting this question wrong

x 71. [M29] (Donald R. Woods, 2000.) Find all ways to maximize the number of correct
answers to the questionnaire in Table 666. Each question must be answered with a
letter from A to E. Hint: Begin by clarifying the exact meaning of this exercise. What
answers are best for the following two-question, two-letter “warmup problem”?

1. (A) Answer 2 is B. (B) Answer 1 is A.

2. (A) Answer 1 is correct. (B) Either answer 2 is wrong or answer 1 is A, but not both.

72. [HM28] Show that exercise 71 has a surprising, somewhat paradoxical answer if
two changes are made to Table 666: 9(E) becomes ‘∈ [39 . . 43]’; 15(C) becomes ‘{11}’.

July 19, 2019

34 COMBINATORIAL SEARCHING (F5B: 19 Jul 2019@0449) 7.2.2

clueless
anacrostic
five-letter words
WORDS(n)
mystery text
English words
factorization
Connected subsets
canonical
grid
pentominoes
SGB format
ARCS
TIP
NEXT
polyominoes
v-reachable subset
reachable subsets
grid, oriented
oriented grid

x 73. [30] (A clueless anacrostic.) The letters of 29 five-letter words

1 2 3 4 5

,
6 7 8 9 10

,
11 12 13 14 15

,
16 17 18 19 20

, . . . ,
141142143144145

,

all belonging to WORDS(1000), have been shuffled to form the following mystery text:

30 29 9 140 12 13 145 90 45 99 26 107 47 84 53 51 27 133 39 137139 66 112 69 14 8 20 91 129 70

16 7 93 19 85 101 76 78 44 10 106 60 118119 24 25 100 1 5 64 11 71 42 122123

103104 63 49 31 121 98 79 80 46 48 134135131 143 96 142120 50 132 33 43 34 40

. . . .

111 97 113105 38 102 62 65 114 74 82 81 83 136 37 21 61 88 86 55

(
32 35 117116 23 52

56 17 18 94 67 128 15 57 58 89 87 109 2 4 6 28 95 3 126 77 144 54 41

)
68 115

75 138 73 124 36 130127141 22 92 72 59 108125110

.

Furthermore, their initial letters
1

,
6

,
11

,
16

, . . . ,
141

identify the source of that

quotation, which consists entirely of common English words. What does it say?

74. [21] The fifteenth mystery word in exercise 73 is ‘
134135131

’. Why does its special

form lead to a partial factorization of that problem?

x 75. [30] (Connected subsets.) Let v be a vertex of some graph G, and let H be a
connected subset of G that contains v. The vertices of H can be listed in a canonical
way by starting with v0 ← v and then letting v1, v2, . . . be the neighbors of v0 that
lie in H, followed by the neighbors of v1 that haven’t yet been listed, and so on. (We
assume that the neighbors of each vertex are listed in some fixed order.)

For example, if G is the 3× 3 grid P3 P3, exactly 21 of its connected five-element
subsets contain the upper left corner element v. Their canonical orderings are

0 1

2

3

4

0 1

2

3

4

0 1

2

3

4

0 1

2 3

4

0 1

2 3 4

0 1

2 3

4

0 1

2

3 4

0 1 2

3 4

0 1 2

3

4

0 1 2

3

4

0 1

2 3

4

0 1

2 3

4

0 1

2

34

0 1

2

3 4

0

1 2

3

4

0

1 2

3 4

0

1 2 3

4

0

1 2 3

4 0

1 2 3

4

0

1 2

3 4

0

1

2 3 4

if we order the vertices top-to-bottom, left-to-right when listing their neighbors. (Ver-
tices labeled 0 , 1 , 2 , 3 , 4 indicate v0, v1, v2, v3, v4. Other vertices are not in H.)

Design a backtrack algorithm to generate all of the n-element connected subsets
that contain a specified vertex v, given a graph that is represented in SGB format
(which has ARCS, TIP, and NEXT fields, as described near the beginning of Chapter 7).

76. [23] Use the algorithm of exercise 75 to generate all of the connected n-element
subsets of a given graph G. How many such subsets does Pn Pn have, for 1 ≤ n ≤ 9?

77. [M22] A v-reachable subset of a directed graph G is a nonempty set of vertices H
with the property that every u ∈ H can be reached from v by at least one oriented
path in G |H . (In particular, v itself must be in H .)

a) The digraph P→
3 P→

3 is like P3 P3, except that all arcs between vertices are
directed downward or to the right. Which of the 21 connected subsets in exercise
75 are also v-reachable from the upper left corner element v of P→

3 P→
3 ?

July 19, 2019

7.2.2 BACKTRACK PROGRAMMING 35

dual oriented spanning tree
oriented tree
parent
directed graph versus undirected
undirected graph versus directed
weighted graphs
author
wife
pipe organ
royalties, use of
music
organ
playable sounds
playable sound
Bach

b) True or false: H is v-reachable if and only if G |H contains a dual oriented spanning
tree rooted at v. (An oriented tree has arcs u−−→pu, where pu is the parent of the
nonroot node u; in a dual oriented tree, the arcs are reversed: pu−−→u.)

c) True or false: If G is undirected, so that w−−→u whenever u−−→w, its v-reachable
subsets are the same as the connected subsets that contain v.

d) Modify the algorithm of exercise 75 so that it generates all of the n-element v-
reachable subsets of a digraph G, given n, v, and G.

78. [22] Extend the algorithm of exercise 77 to weighted graphs, in which every vertex
has a nonnegative weight: Generate all of the connected induced subgraphs whose total
weight w satisfies L ≤ w < U .

x 79. [M30] The author and his wife own a pipe organ that contains 812 pipes, each
of which is either playing or silent. Therefore 2812 different sounds (including silence)
can potentially be created. However, the pipes are controlled by a conventional organ
console, which has only 56+56+32 = 144 keys and pedals that can be played by hands
and feet, together with 20 on-off switches to define the connections between keys and
pipes. Therefore at most 2164 different sounds are actually playable! The purpose of
this exercise is to determine the exact number of n-pipe playable sounds, for small n.

The keys are binary vectors s = s0s1 . . . s55 and g = g0g1 . . . g55; the pedals are
p = p0p1 . . . p31; the console control switches are c = c0c1 . . . c19; and the pipes are ri,j
for 0 ≤ i < 16 and 0 ≤ j < 56. Here are the precise rules that define the pipe activity
ri,j in terms of the input vectors s, g, p, and c that are governed by the organist:

ri,j =

{
cipj ∨ ci+15pj−12, i ∈ {0, 1};
cipj , i ∈ {2};

ri,j =

(ci ∨ ci+1[j < 12])s∗j , i ∈ {3};
ci[j≥ 12]s∗j , i ∈ {4, 8};
cis

∗
j , i ∈ {5, 6, 7};

ri,j =

(ci ∨ ci+1[j < 12])g∗j , i ∈ {9};
ci[j≥ 12]g∗j , i ∈ {10};
cig

∗
j , i ∈ {11, 12};

(c13 ∨ c14)g
∗
j , i ∈ {13};

c14g
∗
j . i ∈ {14, 15}.

Here pj = 0 if j < 0 or j ≥ 32; s∗j = sj ∨c17gj ∨c18pj ; g
∗
j = gj ∨c19pj . [In organ jargon,

the array of pipes has 16 “ranks”; ranks {0, 1, 2}, {3, . . . , 8}, {9, . . . , 15} constitute the
Pedal, Swell, and Great divisions. Ranks 3 and 4 share their lower 12 pipes, as do ranks
9 and 10. Ranks 13, 14, and 15 form a “mixture,” c14. Unit ranks c15 and c16 extend
ranks 0 and 1, twelve notes higher. Console switches c17, c18, c19 are “couplers” Swell→
Great, Swell→ Pedal, Great→ Pedal, which explain the formulas for s∗j and g∗j .]

A playable sound S is a set of pairs (i, j) such that we have ri,j = [(i, j)∈S] for
at least one choice of the input vectors s, g, p, c. For example, the first chord of Bach’s
Toccata in d minor is the 8-pipe sound {(3, 33), (3, 45), (4, 33), (4, 45), (5, 33), (5, 45),
(6, 33), (6, 45)}, which is achievable when s33 = s45 = c3 = c4 = c5 = c6 = 1 and all
other inputs are 0. We want to find the number Qn of playable sounds with ‖S‖ = n.
a) There are 16 × 56 variables ri,j but only 812 actual pipes, because some of the

ranks are incomplete. For which pairs (i, j) is ri,j always false?
b) True or false: If s ⊆ s′, g ⊆ g′, p ⊆ p′, and c ⊆ c′, then r ⊆ r′.
c) Show that every playable sound is achievable with c17 = c18 = c19 = 0.
d) Find a 5-pipe playable sound in which just five of the sj , gj , pj , cj are nonzero.
e) For which i and i′ are the 2-pipe sounds {(i, 40), (i′, 50)} playable?
f) Determine Q1 by hand, and explain why it is less than 812.
g) Determine Q811 by hand.
h) Determine Q2, . . . , Q10 by computer, and compare them to

(
812
2

)
, . . . ,

(
812
10

)
.

July 19, 2019

36 ANSWERS TO EXERCISES 7.2.2

restricted growth strings
Dewey decimal notation
reflection
Schumacher
Gauss
symmetric
inner loop
backtracking, efficient
iteration versus recursion
Preußer
Engelhardt
de Jaenisch
mask

SECTION 7.2.2

1. Although many formulations are possible, the following may be the nicest: (i) Dk

is arbitrary (but hopefully finite), and Pl is always true. (ii) Dk = {1, 2, . . . , n} and
Pl = ‘xj 6= xk for 1 ≤ j < k ≤ l’. (iii) For combinations of n things from N ,
Dk = {1, . . . , N + 1 − k} and Pl = ‘x1 > · · · > xl’. (iv) Dk = {0, 1, . . . , ⌊n/k⌋}; Pl =
‘x1 ≥ · · · ≥ xl and n− (n− l)xl ≤ x1 + · · ·+ xl ≤ n’. (v) For restricted growth strings,
Dk = {0, . . . , k−1} and Pl = ‘xj+1 ≤ 1+max(x1, . . . , xj) for 1 ≤ j < l’. (vi) For indices
of left parentheses (see 7.2.1.6–()), Dk = {1, . . . , 2k − 1} and Pl = ‘x1 < · · · < xl’.

2. True. (If not, set D1 ← D1 ∩ {x | P1(x)}.)

3. Let Dk = {1, . . . ,max degree on level k − 1}, and let Pl(x1, . . . , xl) = ‘x1. · · · .xl

is a label in T ’s Dewey decimal notation’ (see Section 2.3).

4. We can restrict D1 to {1, 2, 3, 4}, because the reflection (9−x1) . . . (9−x8) of every
solution x1 . . . x8 is also a solution. (H. C. Schumacher made this observation in a letter
to C. F. Gauss, 24 September 1850.) Notice that Fig. 68 is left-right symmetric.

5. try (l) = “If l > n, visit x1 . . . xn. Otherwise, for xl ← minDl, minDl + 1, . . . ,
maxDl, if Pl(x1, . . . , xl) call try (l + 1).”

This formulation is elegant, and fine for simple problems. But it doesn’t give any
clue about why the method is called “backtrack”! Nor does it yield efficient code for
important problems whose inner loop is performed billions of times. We will see that
the key to efficient backtracking is to provide good ways to update and downdate the
data structures that speed up the testing of property Pl. The overhead of recursion can
get in the way, and the actual iterative structure of Algorithm B isn’t difficult to grasp.

6. Excluding cases with j = r or k = r from () yields respectively (312, 396, 430,
458, 458, 430, 396, 312) solutions. (With column r also omitted there are just (40, 46,
42, 80, 80, 42, 46, 40).)

7. Yes, almost surely for all n > 16. One such is x1x2 . . . x17 = 2 17 12 10 7 14 3
5 9 13 15 4 11 8 6 1 16. [See Proc. Edinburgh Math. Soc. 8 (1890), 43 and Fig. 52.]
Preußer and Engelhardt found 34,651,355,392 solutions when n = 27.

8. Yes: (42736815, 42736851); also therefore (57263148, 57263184).

9. Yes, at least when m = 4; e.g., x1 . . . x16 = 5 8 13 16 3 7 15 11 6 2 10 14 1 4
9 12. There are no solutions when m = 5, but 7 10 13 20 17 24 3 6 23 11 16 21 4 9
14 2 19 22 1 8 5 12 15 18 works for m = 6. (Are there solutions for all even m ≥ 4?
C. F. de Jaenisch, Traité des applications de l’analyse mathématique au jeu des échecs

2 (1862), 132–133, noted that all 8-queen solutions have four of each color. He proved
that the number of white queens must be even, because

∑4m
k=1(xk + k) is even.)

10. Let bit vectors al, bl, cl represent the “useful” elements of the sets in (), with al =∑
{2x−1 | x ∈ Al}, bl =

∑
{2x−1 | x ∈ Bl ∩ [1 . . n]}, cl =

∑
{2x−1 | x ∈ Cl ∩ [1 . . n]}.

Then step W2 sets sl ← µ& āl & b̄l & c̄l, where µ is the mask 2n − 1.
In step W3 we can set t ← sl & (−sl), al ← al−1 + t, bl ← (bl−1 + t) ≫ 1,

cl ← ((cl−1+ t)≪1)&µ; and it’s also convenient to set sl ← sl− t at this time, instead
of deferring this change to step W4.

(There’s no need to store xl in memory, or even to compute xl in step W3 as an
integer in [1 . . n], because xl can be deduced from al − al−1 when a solution is found.)

11. (a) Only when n = 1, because reflected queens can capture each other.
(b) Queens not in the center must appear in groups of four.
(c) The four queens occupy the same rows, columns, and diagonals in both cases.

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 37

Ahrens
Pólya
Hurwitz
Lucas
Franel
Pauls
tree
breadth first search
Rivin
Vardi
Zimmermann
semi-queens
Cavenagh
Wanless

(d) In each solution counted by cn we can independently tilt (or not) each of the
⌊n/4⌋ groups of four. [Mathematische Unterhaltungen und Spiele 1, second edition
(Leipzig: Teubner, 1910), 249–258.]

12. With distinct xk,
∑n

k=1(xk + k) = 2
(
n+1
2

)
≡ 0 (modulo n). If the (xk + k) mod n

are also distinct, we have also
∑n

k=1 k ≡
(
n+1
2

)
. But that’s impossible when n is even.

Now suppose further that the numbers (xk − k) mod n are distinct. Then we
have

∑n
k=1(xk + k)2 ≡

∑n
k=1(xk − k)2 ≡

∑n
k=1 k

2 = n(n + 1)(2n + 1)/6. And we

also have
∑n

k=1(xk + k)2 +
∑n

k=1(xk − k)2 = 4n(n + 1)(2n + 1)/6 ≡ 2n/3, which is
impossible when n is a multiple of 3. [See W. Ahrens, Mathematische Unterhaltungen

und Spiele 2, second edition (1918), 364–366, where G. Pólya cites a more general
result of A. Hurwitz that applies to wraparound diagonals of other slopes.]

Conversely, if n isn’t divisible by 2 or 3, we can let xn = n and xk = (2k) mod n
for 1 ≤ k < n. [The rule xk = (3k) mod n also works. See Édouard Lucas, Récréations

Mathématiques 1 (1882), 84–86.]

13. The (n+ 1) queens problem clearly has a solution with a queen in a corner if and
only if the n queens problem has a solution with a queen-free main diagonal. Hence by
the previous answer there’s always a solution when nmod 6 ∈ {0, 1, 4, 5}.

Another nice solution was found by J. Franel [L’Intermédiaire des Mathématiciens

1 (1894), 140–141] when nmod 6 ∈ {2, 4}: Let xk = (n/2 + 2k− 3[2k≤n])mod n+1,
for 1 ≤ k ≤ n. With this setup we find that xk − xj = ±(k − j) and 1 ≤ j < k ≤ n
implies (1 or 3)(k − j) + (0 or 3) ≡ 0 (modulo n); hence k − j = n− (1 or 3). But the
values of x1, x2, x3, xn−2, xn−1, xn give no attacking queens except when n = 2.

Franel’s solution has empty diagonals, so it provides solutions also for nmod 6 ∈
{3, 5}. We conclude that only n = 2 and n = 3 are impossible.

[A more complicated construction for all n > 3 had been given earlier by E. Pauls,
in Deutsche Schachzeitung 29 (1874), 129–134, 257–267. Pauls also explained how to
find all solutions, in principle, by building the tree level by level (not backtracking).]

14. For 1 ≤ j ≤ n, let x
(j)
1 . . . x

(j)
m be a solution for m queens, and let y1 . . . yn be a

solution for n toroidal queens. Then X(i−1)n+j = (x
(j)
i − 1)n + yj (for 1 ≤ i ≤ m and

1 ≤ j ≤ n) is a solution for mn queens. [I. Rivin, I. Vardi, and P. Zimmermann, AMM

101 (1994), 629–639, Theorem 2.]

15. [Rivin, Vardi, and Zimmermann, in the paper just cited, observe that in fact the
sequence (lnQ(n))/(n lnn) appears to be increasing.]

16. Let the queen in row k be in cell k. Then we have a “relaxation” of the n queens
problem, with |xk − xj | becoming just xk − xj in (); so we can ignore the b vector in
Algorithm B* or in exercise 10. We get

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

H(n) = 1 1 1 3 7 23 83 405 2113 12657 82297 596483 4698655 40071743 367854835

[N. J. Cavenagh and I. M. Wanless, Discr. Appl. Math. 158 (2010), 136–146, Table 2.]

17. It fails spectacularly in step L5. The minus signs, which mark decisions that were
previously forced, are crucial tags for backtracking.

18. x4 . . . x8 = 2̄1̄04̄0, p0 . . . p4 = 33300, and y1y2y3 = 130. (If xi ≤ 0 the algorithm
will never look at yi; hence the current state of y4 . . . y8 is irrelevant. But y4y5 happens
to be 20, because of past history; y6, y7, and y8 haven’t yet been touched.)

19. We could say Dl is {−n, . . . ,−2,−1, 1, 2, . . . , n}, or {k | k 6= 0 and 2 − l ≤ k ≤
2n− l − 1}, or anything in between. (But this observation isn’t very useful.)

July 19, 2019

38 ANSWERS TO EXERCISES 7.2.2

parity argument
trie
signature
trie
bitwise AND

20. First we add a Boolean array a1 . . . an, where ak means “k has appeared,” as in
Algorithm B*. It’s 0 . . . 0 in step L1; we set ak ← 1 in step L3, ak ← 0 in step L5.

The loop in step L2 becomes “while xl < 0, go to L5 if l ≥ n− 1 and a2n−l−1 = 0,
otherwise set l← l + 1.” After finding l+ k + 1 ≤ 2n in L3, and before testing xl+k+1

for 0, insert this: “If l ≥ n−1 and a2n−l−1 = 0, while l+k+1 6= 2n set j ← k, k ← pk.”

21. (a) In any solution xk = n ⇐⇒ xk+n+1 = −n ⇐⇒ xD
n−k = n.

(b) xk = n− 1 for some k ≤ n/2 if and only if xD
k = n− 1 for some k > n/2.

(c) Let n′ = n− [n is even]. Change ‘l ≥ n− 1 and a2n−l−1 = 0’ in the modified
step L2 to ‘(l = ⌊n/2⌋ and an′ = 0) or (l ≥ n−1 and a2n−l−1 = 0)’. Insert the following
before the other insertion into step L3: “If l = ⌊n/2⌋ and an′ = 0, while k 6= n′ set
j ← k, k ← pk.” And in step L5—this subtle detail is needed when n is even—go to
L5 instead of L4 if l = ⌊n/2⌋ and k = n′.

22. The solutions 11̄ and 211̄2̄ for n = 1 and n = 2 are self-dual; the solutions for n = 4
and n = 5 are 4311̄23̄4̄2̄, 2452̄311̄4̄3̄5̄, 4511̄234̄2̄5̄3̄, and their duals. The total number
of solutions for n = 1, 2, . . . is 1, 1, 0, 2, 4, 20, 0, 156, 516, 2008, 0, 52536, 297800,
1767792, 0, 75678864, . . . ; there are none when nmod 4 = 3, by a parity argument.

Algorithm L needs only obvious changes. To compute solutions by a streamlined
method like exercise 21, use n′ = n− (0, 1, 2, 0) and substitute ‘l = ⌊n/4⌋ + (0, 1, 2, 1)’
for ‘l = ⌊n/2⌋’, when nmod 4 = (0, 1, 2, 3); also replace ‘l ≥ n − 1 and a2n−l−1 = 0’
by ‘l ≥ ⌈n/2⌉ and a⌊(4n+2−2l)/3⌋ = 0’. The case n = 15 is proved impossible with 397
million nodes and 9.93 gigamems.

23. slums → sluff, slump, slurs, slurp, or sluts; (slums, total)→ (slams, tonal).

24. Build the list of 5-letter words and the trie of 6-letter words in step B1; also set
a01a02a03a04a05 ← 00000. Use minDl = 1 in step B2 and maxDl = 5757 in step B4. To
test Pl in step B3, if word x3 is c1c2c3c4c5, form al1 . . . al5, where alk = trie [a(l−1)k, ck]
for 1 ≤ k ≤ 5; but jump to B4 if any alk is zero.

25. There are 5 × 26 singly linked lists, accessed from pointers hkc, all initially zero.
The xth word cx1cx2cx3cx4cx5, for 1 ≤ x ≤ 5757, belongs to 5 lists and has five pointers
lx1lx2lx3lx4lx5. To insert it, set lxk ← hkcxk

, hkcxk
← x, and skcxk

← skcxk
+ 1, for

1 ≤ k ≤ 5. (Thus skc will be the length of the list accessed from hkc.)

We can store a “signature”
∑26

c=1 2
c−1[trie [a, c] 6= 0] with each node a of the trie.

For example, the signature for node 260 is 20+24+28+214+217+220+224 = #1124111,
according to (); here A↔ 1, . . . , Z↔ 26.

The process of running through all x that match a given signature y with respect
to position z, as needed in steps B2 and B4, now takes the following form: (i) Set
i ← 0. (ii) While 2i & y = 0, set i ← i + 1. (iii) Set x ← hz(i+1); go to (vi) if x = 0.
(iv) Visit x. (v) Set x← lxz; go to (iv) if x 6= 0. (vi) Set i← i+ 1; go to (ii) if 2i ≤ y.

Let trie [a, 0] be the signature of node a. We choose z and y = trie [a(l−1)z, 0] in

step B2 so that the number of nodes to visit,
∑26

c=1 szc[2
c−1 & y 6=0], is minimum for

1 ≤ z ≤ 5. For example, when l = 3, x1 = 1446, and x2 = 185 as in (), that sum for
z = 1 is s11+s15+s19+s1(15)+s1(18)+s1(21)+s1(25) = 296+129+74+108+268+75+47 =
997; and the sums for z = 2, 3, 4, 5 are 4722, 1370, 5057, and 1646. Hence we choose
z = 1 and y = #1124111; only 997 words, not 5757, need be tested for x3.

The values yl and zl are maintained for use in backtracking. (In practice we keep
x, y, and z in registers during most of the computation. Then we set xl ← x, yl ← y,
zl ← z before increasing l ← l + 1 in step B3; and we set x ← xl, y ← yl, z ← zl in

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 39

author
McIlroy
compressed trie
trie, compressed
poetic
palindromes

step B5. We also keep i in a register, while traversing the sublists as above; this value
is restored in step B5 by setting it to the zth letter of word x, decreased by ’A’.)

26. Here are the author’s favorite 5× 7 and 5× 8, and the only 5× 9’s:

S M A S H E S
P A R T I A L
I M M E N S E
E M E R G E D
S A D N E S S

G R A N D E S T
R E N O U N C E
E P I S O D E S
B A S E M E N T
E Y E S O R E S

P A S T E L I S T
A C C I D E N C E
M O R T G A G O R
P R O R E F O R M
A N D E S Y T E S

V A R I S T O R S
A G E N T I V A L
C O E L O M A T E
U N D E L E T E D
O Y S T E R E R S

No 5× 10 word rectangles exist, according to our ground rules.

27. (1, 15727, 8072679, 630967290, 90962081, 625415) and (15727.0, 4321.6, 1749.7,
450.4, 286.0). Total time ≈ 18.3 teramems.

28. Build a separate trie for the m-letter words; but instead of having trie nodes
of size 26 as in (), it’s better to convert this trie into a compressed representation
that omits the zeros. For example, the compressed representation of the node for prefix
‘CORNE’ in () consists of five consecutively stored pairs of entries (‘T’, 5013), (‘R’, 171),
(‘L’, 9602), (‘D’, 3878), (‘A’, 3879), followed by (0, 0). Similarly, each shorter prefix with
c descendants is represented by c consecutive pairs (character, link), followed by (0, 0)
to mark the end of the node. Steps B3 and B4 are now very convenient.

Level l corresponds to row il = 1+(l−1) modm and column jl = 1+ ⌊(l−1)/m⌋.
For backtracking we store the n-trie pointer ail,jl as before, together with an index xl

into the compressed m-trie.

This method was used by M. D. McIlroy in 1975 (see answer 32). It finds all 5× 6
word rectangles in just 400 gigamems; and its running time for “transposed” 6 × 5
rectangles turns out to be slightly less (380 gigamems). Notice that only one mem is
needed to access each (character, link) pair in the compressed trie.

29. Yes, exactly 1618 of the 625415 solutions have repeated words. For example:

A C C E S S
M O O L A H
I M M U N E
N E E D E D
O T T E R S

A S S E R T
J A I L E R
U G L I F Y
G E O D E S
A S S E R T

B E G G E D
R E A L E R
A R T E R Y
W I E N I E
L E S S E R

M A G M A S
O N L I N E
D I O X I N
A S S E S S
L E S S E E

T R A D E S
R E V I S E
O T I O S E
T R A D E S
H O N E S T

30. The use of a single compressed trie both horizontally and vertically leads to a very
pretty algorithm, which needs only 120 Mµ to find all 541,968 solutions. De Morgan’s
example isn’t among them, because the proper name ‘ELLEN’ doesn’t qualify as a word
by our conventions. But some of the squares might be “meaningful,” at least poetically:

B L A S T
L U N C H
A N G E R
S C E N E
T H R E E

W E E K S
E V E N T
E E R I E
K N I F E
S T E E L

T R A D E
R U L E D
A L O N G
D E N S E
E D G E S

S A F E R
A G I L E
F I X E S
E L E C T
R E S T S

A D M I T
D R O N E
M O V E S
I N E P T
T E S T S

Y A R D S
A P A R T
R A D I I
D R I L L
S T I L L

Just six of the solutions belong to the restricted vocabulary WORDS(500); three of them
actually belong to WORDS(372), namely **ASS|*IGHT|AGREE|SHEEP|STEPS, where *** is
either CLL or GLL or GRR. (And *** = GRL gives an unsymmetric 5× 5 in WORDS(372).
There are (1787056 − 541968)/2 = 622544 unsymmetric squares in WORDS(5757).)

31. Yes, 27 of them. The search is greatly facilitated by noting that the NE-to-SW
diagonal word must be one of the 18 palindromes in WORDS(5757). ‘SCABS|CANAL|ANGLE|
BALED|SLEDS’, which belongs to WORDS(3025), has the most common words. [See the end
of Chapter 18 in Babbage’s Passages from The Life of a Philosopher (London: 1864).]

July 19, 2019

40 ANSWERS TO EXERCISES 7.2.2

minimax
fourfold symmetry
palindromes
Winthrop
DE MORGAN
Dudeney
McIlroy
double word squares
word square, double
history of word squares
word cubes
word squares, history
Eckler

32. There are (717, 120386, 2784632, 6571160, 1117161, 13077, 6) of sizes 2 × 2, . . . ,
8× 8, and none larger than this. Each of these runs needed fewer than 6 gigamems of
computation. Example solutions with words as common as possible are

T O
O F

I T S
T H E
S E E

A W A Y
W E R E
A R E A
Y E A R

H E A R T
E R R O R
A R G U E
R O U T E
T R E E S

E S T A T E
S L A V E S
T A L E N T
A V E N U E
T E N U R E
E S T E E M

C U R T A I L
U T E R I N E
R E V E R T S
T R E B L E S
A I R L I N E
I N T E N S E
L E S S E E S

N E R E I D E S
E T E R N I S E
R E L O C A T E
E R O T I Z E D
I N C I T E R S
D I A Z E P A M
E S T E R A S E
S E E D S M E N

with the following numeric ranks of “minimax rarity” within their lists: TO = 2, SEE =
25, AREA = 86, ERROR = 438, ESTEEM = 1607, TREBLES = 5696, ETERNISE = 23623.

[Word squares go back thousands of years; ‘SATOR|AREPO|TENET|OPERA|ROTAS ’,
a famous 5 × 5 example that is found in many places including the ruins of Pom-
peii, actually has fourfold symmetry. But 6 × 6 squares appear to have been un-
known until William Winthrop, the U.S. consul in Malta(!), published ‘CIRCLE|ICARUS|
RAREST|CREATE|LUSTRE|ESTEEM’ in Notes & Queries (2) 8 (2 July 1859), page 8, claim-
ing to have thereby “squared the circle.” (If he had been told not to use a proper name
like Icarus, he could have said ‘CIRCLE|INURES|RUDEST|CREASE|LESSER|ESTERS’.)]

The conclusion to be drawn about exercises of this kind

is that four letters are nothing at all; that five letters are so easy

that nothing is worth notice unless the combination have meaning;

that six letters, done in any way, are respectable;

and that seven letters would be a triumph.

— AUGUSTUS DE MORGAN, in Notes & Queries (3 September 1859)

Henry Dudeney constructed several 7×7 examples and used them in clever puzzles,
beginning with ‘PALATED|ANEMONE|LEVANTS|AMASSES|TONSIRE|ENTERER|DESSERT’ [The
Weekly Dispatch (25 October and 8 November 1896)] and ‘BOASTER|OBSCENE|ASSERTS|
SCEPTRE|TERTIAN|ENTRANT|RESENTS’ [The Weekly Dispatch (21 November and 5 De-
cember 1897)]. Years later he was particularly pleased to have found ‘NESTLES|ENTRANT|
STRANGE|TRAITOR|LANTERN|ENGORGE|STERNER’ [Strand 55 (1918), 488; 56 (1919), 74;
The World’s Best Word Puzzles (1925), Puzzles 142 and 145]. M. Douglas McIlroy was
the first to apply computers to this task [Word Ways 8 (1975), 195–197], discovering
52 examples such as ‘WRESTLE|RENEWAL|ENPLANE|SELFDOM|TWADDLE|LANOLIN|ELEMENT ’.
Then he turned to the more difficult problem of double word squares, which are un-
symmetric and contain 2n distinct words: He presented 117 double squares, such as
‘REPAST|AVESTA|CIRCUS|INSECT|SCONCE|MENTOR ’, in Word Ways 9 (1976), 80–84. (His
experiments allowed proper names, but avoided plurals and other derived word forms.)

For an excellent history of word squares and word cubes, chronicling the subsequent
computer developments as well as extensive searches for 10 × 10 examples using vast
dictionaries, see Ross Eckler, Making the Alphabet Dance (New York: St. Martin’s
Griffin, 1997), 188–203; Tribute to a Mathemagician (A. K. Peters, 2005), 85–91.

33. Working from bottom to top and right to left is equivalent to working from top to
bottom and left to right on the word reversals. This idea does make the tries smaller;
but unfortunately it makes the programs slower. For example, the 6×5 computation of
answer 28 involves a 6347-node trie for the 6-letter words and a 63060-node compressed
trie for the 5-letter words. Those sizes go down to 5188 and 56064, respectively, when
we reverse the words; but the running time goes up from 380 Gµ to 825 Gµ.

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 41

saturating ternary addition
superdip

34. Leave out face and (of course) dada; the remaining eleven are fine.

35. Keep tables pi, p
′
ij , p

′′
ijk, si, s

′
ij , s

′′
ijk, for 0 ≤ i, j, k < m, each capable of storing a

ternary digit, and initially zero. Also keep a table x0, x1, . . . of tentatively accepted
words. Begin with g ← 0. Then for each input wj = abcd, where 0 ≤ a, b, c, d < m, set
xg ← abcd and also do the following: Set pa ← pa +̇ 1, p′ab ← p′ab +̇ 1, p′′abc ← p′′abc +̇ 1,
sd ← sd+̇1, s′cd ← s′cd+̇1, s′′bcd ← s′′bcd+̇1, where x+̇y = min(2, x+y) denotes saturating
ternary addition. Then if sa′ p′′b′c′d′ + s′a′b′ p

′
c′d′ + s′′a′b′c′ pd′ = 0 for all xk = a′b′c′d′,

where 0 ≤ k ≤ g, set g ← g+1. Otherwise reject wj and set pa ← pa−1, p′ab ← p′ab−1,
p′′abc ← p′′abc − 1, sd ← sd − 1, s′cd ← s′cd − 1, s′′bcd ← s′′bcd − 1.

36. (a) The word bc appears in message abcd if and only if a→ b, b→ c, and c→ d.

(b) For 0 ≤ k < r, put vertex v into class k if the longest path from v has
length k. Given any such partition, we can include all arcs from class k to class j < k
without increasing the path lengths. So it’s a question of finding the maximum of∑

0≤j<k<r pjpk subject to p0+p1+· · ·+pr−1 = m. The values pj = ⌊(m+j)/r⌋ achieve

this (see exercise 7.2.1.4–68(a)). When r = 3 the maximum simplifies to ⌊m2/3⌋.

37. (a) The factors of the period, 15 926 535 89 79 323 8314, begin at the respective
boundary points 3, 5, 8, 11, 13, 15, 18 (and then 3 + 19 = 22, etc.). Thus round 1
retains boundaries 5, 8, and 15. The second-round substrings y0 = 926, y1 = 5358979,
y2 = 323831415 have different lengths, so lexicographic comparison is unnecessary; the
answer is y2y0y1 = x15 . . . x33.

(b) Each substring consists of at least three substrings of the previous round.
(c) Let a0 = 0, b0 = 1, ae+1 = aeaebe, be+1 = aebebe; use ae or be when n = 3e.

(d) We use an auxiliary subroutine ‘less(i)’, which returns [yi−1 <yi], given i > 0:
If bi−bi−1 6= bi+1−bi, return [bi − bi−1 <bi+1 − bi]. Otherwise, for j = 0, 1, . . . , while
bi + j < bi+1, if xbi−1+j 6= xbi+j return [xbi−1+j <xbi+j]. Otherwise return 0.

The tricky part of the algorithm is to discard initial factors that aren’t periodic.
The secret is to let i0 be the smallest index such that yi−3 ≥ yi−2 < yi−1; then we can
be sure that a factor begins with yi.

O1. [Initialize.] Set xj ← xj−n for n ≤ j < 2n, bj ← j for 0 ≤ j < 2n, and t← n.

O2. [Begin a round.] Set t′ ← 0. Find the smallest i > 0 such that less(i) = 0.
Then find the smallest j ≥ i+ 2 such that less(j − 1) = 1 and j ≤ t+ 2. (If
no such j exists, report an error: The input x was equal to one of its cyclic
shifts.) Set i← i0 ← j mod t. (Now a dip of the period begins at i0.)

O3. [Find the next factor.] Find the smallest j ≥ i+ 2 such that less (j − 1) = 1.
If j − i is even, go to O5.

O4. [Retain a boundary.] If j < t, set b′t′ ← bj ; otherwise set b′k ← b′k−1 for
t′ ≥ k > 0 and b′0 ← bj−t. Finally set t′ ← t′ + 1.

O5. [Done with round?] If j < i0 + t, set i ← j and return to O3. Otherwise, if
t′ = 1, terminate; σx begins at item xb′

0
. Otherwise set t ← t′, bk ← b′k for

0 ≤ k < t, and bk ← bk−t + n for k ≥ t while bk−t < n. Return to O2.

(e) Say that a “superdip” is a dip of odd length followed by zero or more dips of
even length. Any infinite sequence y that begins with an odd-length dip has a unique
factorization into superdips. Those superdips can, in turn, be regarded as atomic
elements of a higher-level string that can be factored into dips. The result σx of Algo-
rithm O is an infinite periodic sequence that allows repeated factorization into infinite
periodic sequences of superdips at higher and higher levels, until becoming constant.

July 19, 2019

42 ANSWERS TO EXERCISES 7.2.2

Eastman
Scholtz
aperiodic
stacks
queues
memory constraints, historic
unordered sets
Linked lists
deletion

Notice that the first dip of σx ends at position i0 in the algorithm, because its
length isn’t 2. Therefore we can prove the commafree property by observing that, if
codeword σx′′ appears within the concatenation σxσx′ of two codewords, its superdip
factors are also superdip factors of those codewords. This yields a contradiction if any
of σx, σx′, or σx′′ is a superdip. Otherwise the same observation applies to the superdip
factors at the next level. [Eastman’s original algorithm was essentially the same, but
presented in a more complicated way; see IEEE Trans. IT-11 (1965), 263–267. R. A.
Scholtz subsequently discovered an interesting and totally different way to define the
set of codewords produced by Algorithm O, in IEEE Trans. IT-15 (1969), 300–306.]

38. Let fk(m) be the number of dips of length k for which m > z1 and zk < m. The
number of such sequences with z2 = j is (m − j − 1)

(
m−j+k−3

k−2

)
= (k − 1)

(
m−j+k−3

k−1

)
;

summing for 0 ≤ j < m gives fk(m) = (k−1)
(
m+k−2

k

)
. Thus Fm(z) =

∑∞
k=0 fk(m)zk =

(mz−1)/(1−z)m. (The fact that f0(m) = −1 in these formulas turns out to be useful!)
Algorithm O finishes in one round if and only if some cyclic shift of x is a superdip.

The number of aperiodic x that finish in one round is therefore n[zn]Gm(z), where

Gm(z) =
Fm(−z)− Fm(z)

Fm(−z) + Fm(z)
=

(1 +mz)(1− z)m − (1−mz)(1 + z)m

(1 +mz)(1− z)m + (1−mz)(1 + z)m
.

To get the stated probability, divide by
∑

d\n µ(d)mn/d, the number of aperiodic x.

(See Eq. 7.2.1.1–(). For n = 3, 5, 7, 9 these probabilities are 1, 1, 1, and 1−3/
(
m3−1

3

)
.)

39. If so, it couldn’t have 0011, 0110, 1100, or 1001.

40. That section considered such representations of stacks and queues, but not of
unordered sets, because large blocks of sequential memory were either nonexistent or
ultra-expensive in olden days. Linked lists were the only decent option for families of
variable-size sets, because they could more readily fit in a limited high-speed memory.

41. (a) The blue word x with α = d (namely 1101) appears in its P2 list at location 5e.
(b) The P3 list for words of the form 010∗ is empty. (Both 0100 and 0101 are red.)

42. (a) The S2 list of 0010 has become closed (hence 0110 and 1110 are hidden).
(b) Word 1101 moved to the former position of 1001 in its S1 list, when 1001

became red. (Previously 1011 had moved to the former position of 0001.)

43. In this case, which of course happens rarely, it’s safe to set all elements of STAMP
to zero and set σ ← 1. (Do not be tempted to save one line of code by setting all STAMP
elements to −1 and leaving σ = 0. That might fail when σ reaches the value −1!)

44. (a) Set r ← m+1. Then for k ← 0, 1, . . . , f−1, set t← FREE[k], j ← MEM[CLOFF+
4t+m4]− (CLOFF+ 4t), and if j < r set r ← j, c← t; break out of the loop if r = 0.

(b) If r > 0 set x← MEM[CLOFF + 4cl(ALF[x])].
(c) If r > 1 set q ← 0, p′ ← MEM[PP], and p ← POISON. While p < p′ do the

following steps: Set y ← MEM[p], z ← MEM[p+ 1], y′ ← MEM[y +m4], and z′ ←
MEM[z +m4]. (Here y and z point to the heads of prefix or suffix lists; y′ and z′ point
to the tails.) If y = y′ or z = z′, delete entry p from the poison list; this means, as
in (), to set p′ ← p′−2, and if p 6= p′ to store(p, MEM[p′]) and store(p+1, MEM[p′ + 1]).
Otherwise set p← p+2; if y′−y ≥ z′−z and y′−y > q, set q ← y′−y and x← MEM[z];
if y′ − y < z′ − z and z′ − z > q, set q ← z′ − z and x ← MEM[y]. Finally, after p has
become equal to p′, store(PP, p′) and set c← cl(ALF[x]). (Experiments show that this
“max kill” strategy for r > 1 slightly outperforms a selection strategy based on r alone.)

45. (a) First there’s a routine rem(α, δ, o) that removes an item from a list, following
the protocol (): Set p ← δ + o and q ← MEM[p+m4] − 1. If q ≥ p (meaning that

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 43

Niho
CNF
SAT solver
unit clauses

list p isn’t closed or being killed), store(p + m4, q), set t ← MEM[α+ o−m4]; and if
t 6= q also set y ← MEM[q], store(t, y), and store(ALF[y]+ o−m4, t).

Now, to redden x we set α ← ALF[x], store(α, RED); then rem(α, p1(α), P1OFF),
rem(α, p2(α), P2OFF), . . . , rem(α, s3(α), S3OFF), and rem(α, 4cl(α), CLOFF).

(b) A simple routine close(δ, o) closes list δ+o: Set p← δ+o and q ← MEM[p +m4];
if q 6= p− 1, store(p+m4, p− 1).

Now, to green x we set α ← ALF[x], store(α, GREEN); then close(p1(α), P1OFF),
close(p2(α), P2OFF), . . . , close(s3(α), S3OFF), and close(4cl(α), CLOFF). Finally, for p ≤
r < q (using the p and q that were just set within ‘close’), if MEM[r] 6= x redden MEM[r].

(c) First set p′ ← MEM[PP]+6, and store(p′−6, p1(α)+S1OFF), store(p′−5, s3(α)+
P3OFF), store(p′ − 4, p2(α) + S2OFF), store(p′ − 3, s2(α) + P2OFF), store(p′ − 2, p3(α) +
S3OFF), store(p′ − 1, s1(α) + P1OFF); this adds the three poison items ().

Then set p ← POISON and do the following while p < p′: Set y, z, y′, z′ as in
answer 44(c), and delete poison entry p if y = y′ or z = z′. Otherwise if y′ < y and
z′ < z, go to C6 (a poisoned suffix-prefix pair is present). Otherwise if y′ > y and
z′ > z, set p← p+ 2. Otherwise if y′ < y and z′ > z, store(z +m4, z), redden MEM[r]
for z ≤ r < z′, and delete poison entry p. Otherwise (namely if y′ > y and z′ < z),
store(y +m4, y), redden MEM[r] for y ≤ r < y′, and delete poison entry p.

Finally, after p has become equal to p′, store(PP, p′).

46. Exercise 37 exhibits such codes explicitly for all odd n. The earliest papers on
the subject gave solutions for n = 2, 4, 6, 8. Yoji Niho subsequently found a code for
n = 10 but was unable to resolve the case n = 12 [IEEE Trans. IT-19 (1973), 580–581].

This problem can readily be encoded in CNF and given to a SAT solver. The
case n = 10 involves 990 variables and 8.6 million clauses, and is solved by Algo-
rithm 7.2.2.2C in 10.5 gigamems. The case n = 12 involves 4020 variables and 175
million clauses. After being split into seven independent subproblems (by appending
mutually exclusive unit clauses), it was proved unsatisfiable by that algorithm after
about 86 teramems of computation.

So the answer is “No.” The maximum-size code for n = 12 remains unknown.

47. (a) There are 28 commafree binary codes of size 3 and length 4; Algorithm C
produces half of them, because it assumes that cycle class [0001] is represented by
0001 or 0010. They form eight equivalence classes, two of which are symmetric under
the operation of complementation-and-reflection; representatives are {0001, 0011, 0111}
and {0010, 0011, 1011}. The other six are represented by {0001, 0110, 0111 or 1110},
{0001, 1001, 1011 or 1101}, {0001, 1100, 1101}, {0010, 0011, 1101}.

(b) Algorithm C produces half of the 144 solutions, which form twelve equivalence
classes. Eight are represented by {0001, 0002, 1001, 1002, 2201, 2001, 2002, 2011,
2012, 2102, 2112, 2122 or 2212} and ({0102, 1011, 1012} or {2010, 1101, 2101}) and
({1202, 2202, 2111} or {2021, 2022, 1112}); four are represented by {0001, 0020, 0021,
0022, 1001, 1020, 1021, 1022, 1121 or 1211, 1201, 1202, 1221, 2001, 2201, 2202} and
({1011, 1012, 2221} or {1101, 2101, 1222}).

(c) Algorithm C yields half of the 2304 solutions, which form 48 equivalence classes.
Twelve classes have unique representatives that omit cycle classes [0123], [0103], [1213],
one such being the code {0010, 0020, 0030, 0110, 0112, 0113, 0120, 0121, 0122, 0130,
0131, 0132, 0133, 0210, 0212, 0213, 0220, 0222, 0230, 0310, 0312, 0313, 0320, 0322,
0330, 0332, 0333, 1110, 1112, 1113, 2010, 2030, 2110, 2112, 2113, 2210, 2212, 2213,
2230, 2310, 2312, 2313, 2320, 2322, 2330, 2332, 2333, 3110, 3112, 3113, 3210, 3212,
3213, 3230, 3310, 3312, 3313}. The others each have two representatives that omit

July 19, 2019

44 ANSWERS TO EXERCISES 7.2.2

uniformly random
reject
Knuth
Yao
complexity of calculation
computational complexity
Traub
profile
generating function
tail inequality
cumulative binomial distribution
recursive formulas

classes [0123], [0103], [0121], one such being the code {0001, 0002, 0003, 0201, 0203,
1001, 1002, 1003, 1011, 1013, 1021, 1022, 1023, 1031, 1032, 1033, 1201, 1203, 1211,
1213, 1221, 1223, 1231, 1232, 1233, 1311, 1321, 1323, 1331, 2001, 2002, 2003, 2021,
2022, 2023, 2201, 2203, 2221, 2223, 3001, 3002, 3003, 3011, 3013, 3021, 3022, 3023,
3031, 3032, 3033, 3201, 3203, 3221, 3223, 3321, 3323, 3331} and its isomorphic image
under reflection and (01)(23).

48. (The maximum size of such a code is currently unknown. Algorithm C isn’t fast
enough to solve this problem on a single computer, but a sufficiently large cluster of
machines and/or an improved algorithm should be able to discover the answer. The
case m = 3 and n = 6 is also currently unsolved; a SAT solver shows quickly that a full
set of (36 − 33 − 32 + 31)/6 = 116 codewords cannot be achieved.)

49. The 3-bit sequences 101, 111, 110 were rejected before seeing 000. In general, to
make a uniformly random choice from q possibilities, the text suggests looking at the
next t = ⌈lg q⌉ bits b1 . . . bt. If (b1 . . . bt)2 < q, we use choice (b1 . . . bt)2 + 1; otherwise
we reject b1 . . . bt and try again. [This simple method is optimum when q ≤ 4, and the
best possible running time for other values of q uses more than half as many bits. But a
better scheme is available for q = 5, using only 3 1

3
bits per choice instead of 4 4

5
; and for

q = 6, one random bit reduces to the case q = 3. See D. E. Knuth and A. C. Yao, Al-

gorithms and Complexity , edited by J. F. Traub (Academic Press, 1976), 357–428, §2.]

50. It’s the number of nodes on level l+1 (depth l) of the search tree. (Hence we can
estimate the profile. Notice that D = D1 . . . Dl−1 in step E2 of Algorithm E.)

51. Z0 = C(), Zl+1 = c() +D1c(X1) +D1D2c(X1X2) + · · · +D1 . . . Dlc(X1 . . . Xl) +
D1 . . . Dl+1C(X1 . . . Xl+1).

52. (a) True: The generating function is z(z+1) . . . (z+n− 1)/n!; see Eq. 1.2.10–().
(b) For instance, suppose Y1Y2 . . . Yl = 1457 and n = 9. Alice’s probability is

1
1

1
2

2
3

1
4

1
5

5
6

1
7

7
8

8
9
= 1

3
1
4

1
6

1
9
. Elmo obtains X1X2 . . . Xl = 7541 with probability 1

9
1
6

1
4

1
3
.

(c) The upper tail inequality (see exercise 1.2.10–22 with µ = Hn) tells us that
Pr(l ≥ (lnn)(ln lnn)) ≤ exp(−(lnn)(ln lnn)(ln ln lnn) +O(lnn)(ln lnn)).

(d) If k ≤ n/3 we have
∑k

j=0

(
n
j

)
≤ 2

(
n
k

)
. By exercise 1.2.6–67, the number of nodes

on the first (lnn)(ln lnn) levels is therefore at most 2(ne/((lnn)(ln lnn)))(lnn)(ln lnn).

53. The key idea is to introduce recursive formulas analogous to ():

m(x1 . . . xl) = c(x1 . . . xl) +min(m(x1 . . . xlx
(1)
l+1)d, . . . , m(x1 . . . xlx

(d)
l+1)d);

M(x1 . . . xl) = c(x1 . . . xl) +max(M(x1 . . . xlx
(1)
l+1)d, . . . ,M(x1 . . . xlx

(d)
l+1)d);

Ĉ(x1 . . . xl) = c(x1 . . . xl)
2 +

d∑

i=1

(Ĉ(x1 . . . xlx
(i)
l+1)d+ 2c(x1 . . . xl)C(x1 . . . xlx

(i)
l+1)).

They can be computed via auxiliary arrays MIN, MAX, KIDS, COST, and CHAT as follows:
At the beginning of step B2, set MIN[l] ← ∞, MAX[l] ← KIDS[l] ← COST[l] ←

CHAT[l]← 0. Set KIDS[l]← KIDS[l] + 1 just before l← l + 1 in step B3.
At the beginning of step B5, set m ← c(x1 . . . xl−1) + KIDS[l] × MIN[l], M ←

c(x1 . . . xl−1) + KIDS[l]× MAX[l], C ← c(x1 . . . xl−1) + COST[l], Ĉ ← c(x1 . . . xl−1)
2 +

KIDS[l] × CHAT[l] + 2 × COST[l]. Then, after l ← l − 1 is positive, set MIN[l] ←
min(m, MIN[l]), MAX[l] ← max(M, MAX[l]), COST[l] ← COST[l] + C, CHAT[l] ←

CHAT[l] + Ĉ. But when l reaches zero in step B5, return the values m, M, C, Ĉ − C2.

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 45

a posteriori
cost function
search tree
poison list
slack
bias
Kullback
Leibler
divergence
queue

54. Let p(i) = pX1...Xl−1
(yi), and simply set D ← D/p(I) instead of D ← Dd. Then

node x1 . . . xl is reached with probability Π(x1 . . . xl) = p(x1)px1(x2) . . . px1...xl
(xl),

and c(x1 . . . xl) has weight 1/Π(x1 . . . xl) in S; the proof of Theorem E goes through
as before. Notice that p(I) is the a posteriori probability of having taken branch I .

(The formulas of answer 53 should now use ‘/p(i)’ instead of ‘d’; and that algorithm
should be modified appropriately, no longer needing the KIDS array.)

55. Let pX1...Xl−1
(yi) = C(x1 . . . xl−1yi)/(C(x1 . . . xl−1)− c(x1 . . . xl−1)). (Of course

we generally need to know the cost of the tree before we know the exact values of these
ideal probabilities, so we cannot achieve zero variance in practice. But the form of this
solution shows what kinds of bias are likely to reduce the variance.)

56. The effects of lookahead, dynamic ordering, and reversible memory are all captured
easily by a well-designed cost function at each node. But there’s a fundamental
difference in step C2, because different codeword classes can be selected for branching
at the same node (that is, with the same ancestors x1 . . . xl−1) after C5 has undone
the effects of a prior choice. The level l never surpasses L + 1, but in fact the search
tree involves hidden levels of branching that are implicitly combined into single nodes.

Thus it’s best to view Algorithm C’s search tree as a sequence of binary branches:
Should x be one of the codewords or not? (At least this is true when the “max kill”
strategy of answer 44 has selected the branching variable x. But if r > 1 and the poison
list is empty, an r-way branch is reasonable (or an (r + 1)-way branch when the slack
is positive), because r will be reduced by 1 and the same class c will be chosen after x
has been explored.)

If x has been selected because it kills many other potential codewords, we probably
should bias the branch probability as in exercise 54, giving smaller weight to the “yes”
branch because the branch that includes x is less likely to lead to a large subtree.

57. Let pk = 1/D(k) be the probability that Algorithm E terminates at the kth leaf.
Then

∑M
k=1(1/M) lg(1/(Mpk)) is the Kullback–Leibler divergence D(q ||p), where q is

the uniform distribution (see exercise MPR–121). Hence 1
M

∑M
k=1 lgD

(k) ≥ lgM . (The
result of this exercise is essentially true in any probability distribution.)

58. Let ∞ be any convenient value ≥ n. When vertex v becomes part of the path we
will perform a two-phase algorithm. The first phase identifies all “tarnished” vertices,
whose DIST must change; these are the vertices u from which every path to t passes
through v. It also forms a queue of “resource” vertices, which are untarnished but
adjacent to tarnished ones. The second phase updates the DISTs of all tarnished vertices
that are still connected to t. Each vertex has LINK and STAMP fields in addition to DIST.

For the first phase, set d← DIST(v), DIST(v)←∞+1, R← Λ, T← v, LINK(v)←
Λ, then do the following while T 6= Λ: (∗) Set u← T, T ← S← Λ. For each w−−−u, if
DIST(w) < d do nothing (this happens only when u = v); if DIST(w) ≥ ∞ do nothing
(w is gone or already known to be tarnished); if DIST(w) = d, make w a resource (see
below); otherwise DIST(w) = d+1. If w has no neighbor at distance d, w is tarnished:
Set LINK(w) ← T, DIST(w) ← ∞, T ← w. Otherwise make w a resource (see below).
Then set u← LINK(u), and return to (∗) if u 6= Λ.

The queue of resources will start at R. We will stamp each resource with v so
that nothing is added twice to that queue. To make w a resource when DIST(w) = d,
do the following (unless u = v or STAMP(w) = v): Set STAMP(w) ← v; if R = Λ, set
R ← RT ← w; otherwise set LINK(RT) ← w and RT ← w. To make w a resource when
DIST(w) = d + 1 and u 6= v and STAMP(w) 6= v, put it first on stack S as follows: Set
STAMP(w)← v; if S = Λ, set S← SB← w; otherwise set LINK(w)← S, S← w.

July 19, 2019

46 ANSWERS TO EXERCISES 7.2.2

generating function
Venn diagram
recurrence

Finally, when u = Λ, we append S to R: Nothing needs to be done if S = Λ.
Otherwise, if R = Λ, set R ← S and RT ← SB; but if R 6= Λ, set LINK(RT) ← S and
RT← SB. (These shenanigans keep the resource queue in order by DIST.)

Phase 2 operates as follows: Nothing needs to be done if R = Λ. Otherwise we set
LINK(RT) ← Λ, S ← Λ, and do the following while R 6= Λ or S 6= Λ: (i) If S = Λ, set
d ← DIST(R). Otherwise set u ← S, d ← DIST(u), S ← Λ; while u 6= Λ, update the
neighbors of u and set u ← LINK(u). (ii) While R 6= Λ and DIST(R) = d, set u ← R,
R ← LINK(u), and update the neighbors of u. In both cases “update the neighbors
of u” means to look at all w −−− u, and if DIST(w) = ∞ to set DIST(w) ← d + 1,
STAMP(w)← v, LINK(w)← S, and S← w. (It works!)

59. (a) Compute the generating function g(z) (see exercise 7.1.4–209) and then g′(1).

(b) Let (A,B,C) denote paths that touch (center, NE corner, SW corner). Re-
cursively compute eight counts (c0, . . . , c7) at each node, where cj counts paths π
with j = 4[π ∈A] + 2[π ∈B] + [π ∈C]. At the sink node ⊤ we have c0 = 1,
c1 = · · · = c7 = 0. Other nodes have the form x = (ē? xl: xh) where e is an edge.
Two edges go across the center and affect A; three edges affect each of B and C. Say
that those edges have types 4, 2, 1, respectively; other edges have type 0. Suppose the
counts for xl and xh are (c′0, . . . , c

′
7) and (c′′0 , . . . , c

′′
7), and e has type t. Then count cj

for node x is c′j + [t=0]c′′j + [t & j 6= 0](c′′j + c′′j−t).

(This procedure yields the following exact “Venn diagram” set counts at the root:
c0 = |A ∩ B ∩ C| = 7653685384889019648091604; c1 = c2 = |A ∩ B ∩ C| = |A ∩ B ∩
C| = 7755019053779199171839134; c3 = |A ∩ B ∩ C| = 7857706970503366819944024;
c4 = |A∩B∩C| = 4888524166534573765995071; c5 = c6 = |A∩B∩C| = |A∩B∩C| =
4949318991771252110605148; c7 = |A ∩B ∩ C| = 5010950157283718807987280.)

60. Yes, the paths are less chaotic and the estimates are better:

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.0

0.5

2×1025

5×1025

8×1025

1025

≤1020

61. (a) Let xk be the number of nodes at distance k − 1 from the root.

(b) Let Q
(m)
n = P

(1)
n + · · · + P

(m)
n . Then we have the joint recurrence P

(m)
1 = 1,

P
(m)
n+1 = Q

(2m)
n ; in particular, Q

(m)
1 = m. And for n ≥ 2, we have Q

(m)
n =

∑n
k=1 ank

(
m
k

)

for certain constants ank that can be computed as follows: Set tk ← P
(k)
n for 1 ≤ k ≤ n.

Then for k = 2, . . . , n set tn ← tn − tn−1, . . . , tk ← tk − tk−1. Finally ank ← tk for
1 ≤ k ≤ n. For example, a21 = a22 = 2; a31 = 6, a32 = 14, a33 = 8. The numbers P

(m)
n

have O(n2 + n logm) bits, so this method needs O(n5) bit operations to compute Pn.

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 47

Cook
Kleber
Mahler
unique solution
Gridgeman
Robertson
Munro
exact cover problem
invariant

(c) P
(m)
n corresponds to random paths withX1 = m, Dk = 2Xk, Xk+1 = ⌈2UkXk⌉,

where each Uk is an independent uniform deviate. Therefore P
(m)
n = E(D1 . . . Dn−1)

is the number of nodes on level n of an infinite tree. We have Xk+1 ≥ 2kU1 . . . Ukm,

by induction; hence P
(m)
n ≥ E(2(

n
2)Un−2

1 Un−3
2 . . . U1

n−2m
n−1) = 2(

n
2)mn−1/(n− 1)!.

[M. Cook and M. Kleber have discussed similar sequences in Electronic Journal

of Combinatorics 7 (2000), #R44. See also K. Mahler’s asymptotic formula for binary
partitions, in J. London Math. Society 15 (1940), 115–123, which shows that lgPn =(
n
2

)
− lg(n− 1)! +

(
lgn
2

)
+O(1).]

62. Random trials indicate that the expected number of 2-regular graphs is ≈ 3.115,
and that the number of disjoint pairs is (0, 1, . . . , 9, and ≥10) approximately (74.4,
4.3, 8.7, 1.3, 6.2, 0.2, 1.5, 0.1, 2.0, 0.0, and 12.2) percent of the time. If the cubes are
restricted to cases where each color occurs at least five times, these numbers change to
≈ 4.89 and (37.3, 6.6, 17.5, 4.1, 16.3, 0.9, 5.3, 0.3, 6.7, 0.2, 5.0).

However, the concept of “unique solution” is tricky, because a 2-regular graph with
k cycles yields 2k ways to position the cubes. Let’s say that a set of cubes has a strongly

unique solution if (i) it has a unique disjoint pair of 2-regular graphs, and furthermore
(ii) both elements of that pair are n-cycles. Such sets occur with probability only about
0.3% in the first case, and 0.4% in the second.

[N. T. Gridgeman, in Mathematics Magazine 44 (1971), 243–252, showed that
puzzles with four cubes and four colors have exactly 434 “types” of solutions.]

63. It’s easy to find such examples at random, as in the second part of the previous
answer, since strongly unique sets occur about 0.5% of the time (and weakly unique
sets occur with probability ≈ 8.4%). For example, the pairs of opposite faces might be
(12, 13, 34), (02, 03, 14), (01, 14, 24), (04, 13, 23), (01, 12, 34).

(Incidentally, if we require each color to occur exactly six times, every set of cubes
that has at least one solution will have at least three solutions, because the “hidden”
pairs can be chosen in three ways.)

64. Each of these cubes can be placed in 16 different ways that contribute legitimate
letters to all four of the visible words. (A cube whose faces contain only letters in
{C,H,I,N,O,U,X,Z} can be placed in 24 ways. A cube with a pattern like

B

A

D

cannot be placed at all.) We can restrict the first cube to just two placements; thus
there are 2 · 16 · 16 · 16 · 16 = 131072 ways to place those cubes without changing their
order. Of these, only 6144 are “compatible,” in the sense that no rightside-up-only
letter appears together with an upside-down-only letter in the same word.

The 6144 compatible placements can then each be reordered in 5! = 120 ways. One
of them, whose words before reordering are GRHTI, NCICY,

NWRGO

,
OUNNI

,
leads to the unique solution. (There’s a partial solution with three words out of four.
There also are 39 ways to get two valid words, including one that has UNTIL adjacent
to HOURS, and several with SYRUP opposite ECHOS.)

65. E. Robertson and I. Munro, in Utilitas Mathematica 13 (1978), 99–116, have
reduced the exact cover problem to this problem.

66. Call the rays N, NE, E, SE, S, SW, W, NW; call the disks 1, 2, 3, 4 from inside
to outside. We can keep disk 1 fixed. The sum of rays N, S, E, W must be 48. It is
16 (on disk 1) plus 13 or 10 (on disk 2) plus 8 or 13 (on disk 3) plus 11 or 14. So it
is attained either as shown, or after rotating disks 2 and 4 clockwise by 45◦. (Or we
could rotate any disk by a multiple of 90◦, since that keeps the desired sum invariant.)

July 19, 2019

48 ANSWERS TO EXERCISES 7.2.2

Ernst
Goldstein
Slocum
Botermans
Washington Monument Puzzle, see Fool’s Disk
Rotating Century Puzzle, see Fool’s Disk
Safe Combination Puzzle, see Fool’s Disk
digraph
stable

d+(v), the out-degree of v
bitwise tricks

ν(n), the sideways sum
sideways addition
Japanese arrow puzzles
Natsuhara

Next, with optional 90◦ rotations, we must make the sum of rays N + S equal to
24. In the first solution above it is 9 plus (6 or 7) plus (4 or 4) plus (7 or 4), hence
never 24. But in the other solution it’s 9 plus (4 or 6) plus (4 or 4) plus (5 or 9); hence
we must rotate disk 2 clockwise by 90◦, and possibly also disk 3. However, 90◦ rotation
of disk 3 would make the NE + SW sum equal to 25, so we musn’t move it.

Finally, to get NE’s sum to be 12, via optional rotations by 180◦, we have 1 plus
(2 or 5) plus (1 or 5) plus (3 or 4); we must shift disks 3 and 4. Hurrah: That makes
all eight rays correct. Factoring twice has reduced 83 trials to 23 + 23 + 23.

[See George W. Ernst and Michael M. Goldstein, JACM 29 (1982), 1–23. Such
puzzles go back to the 1800s; three early examples are illustrated on pages 28 of Slocum
and Botermans’s New Book of Puzzles (1992). One of them, with six rings and six rays,
factors from 65 trials to 25 +35. A five-ray puzzle would have defeated factorization.]

67. Call the cards 1525, 5113, . . . , 3755. The key observation is that all 12 sums
must be odd, so we can first solve the problem mod 2. For this purpose we may call
the cards 1101, 1111, . . . , 1111; only three cards now change under rotation, namely
1101, 0100, and 1100 (which are the mod 2 images of 1525, 4542, and 7384).

A second observation is that each solution gives 6 × 6 × 2 others, by permuting
rows and/or columns and/or by rotating all nine cards. Hence we can assume that
the upper left card is 0011 (8473). Then 0100 (4542) must be in the first column,
possibly rotated to 0001 (4245), to preserve parity in the left two black sums. We can
assume that it’s in row 2. In fact, after retreating from 13 mod 2 to 13, we see that it
must be rotated. Hence the bottom left card must be either 4725, 7755, or 3755.

Similarly we see that 1101 (1525) must be in the first row, possibly rotated to
0111 (2515); we can put it in column 2. It must be rotated, and the top right card
must be 3454 or 3755. This leaves just six scenarios to consider, and we soon obtain
the solution: 8473, 2515, 3454; 4245, 2547, 7452; 7755, 1351, 5537.

68. In general, let’s say that a vertex labeling of a digraph is stable if v’s label is the
number of distinct labels among {w | v −−→ w}, for all v. We wish to find all stable
labelings that extend a given partial labeling. We may assume that no vertex is a sink.

Let Λ(v) be a set of digits that includes every label that v could possibly have, in
a solution to this extension problem. Initially, Λ(v) = {d} if v’s label is supposed to
be d; otherwise Λ(v) = {1, . . . , d+(v)}. These sets are conveniently represented as the
binary numbers L(v) =

∑
{2k−1 | k ∈ Λ(v)}. Our goal is to reduce each L(v) to a 1-bit

number. A nice backtrack routine called “refine(v)” proves to be helpful in this regard.

Let v0 = v and let v1, . . . , vn be v’s successors. Let aj = L(vj). Following the
outline of Algorithm B, we let xl ⊆ al be a 1-bit number, accepted in step B3 only if
2νsl−1 ⊆ gl, where sl = x1 | · · · | xl and where the goal sets gl are defined by gn = a0,
gl = (gl+1 | gl+1≫1)&(2l−1). We start with all bj ← 0; then when visiting a solution
x1 . . . xn, we set bj ← bj | xj for 1 ≤ j ≤ n, and b0 ← b0 | 2

νsn−1. After finding all
solutions we’ll have bj ⊆ aj for all j; and whenever bj 6= aj we can reduce L(vj)← bj .

Operate in rounds, where all vertices are refined in round 1;
subsequent rounds refine only the vertices whose parameters aj

have changed. In each round we first refine the vertices with small-
est product (νa1) . . . (νan), because they have the fewest potential
solutions x1 . . . xn. This method isn’t guaranteed to succeed; but
fortunately it does solve the stated problem, after 301 refinements
in 6 rounds. [Such “Japanese arrow puzzles” were introduced by
Masanori Natsuhara on page 75 of Puzuraa 128 (July 1992).]

3 1 4 3 1 3 5 5 9 5

7 4 2 6 1 3 5 7 1 5

9 4 7 6 1 2 3 5 8 9

7 6 3 2 1 3 5 4 7 7

9 8 3 4 1 2 6 7 5 9

4 4 4 1 1 3 4 2 4 3

9 8 3 5 1 2 4 7 6 9

4 6 2 6 1 3 2 5 2 4

4 3 3 3 1 3 3 3 3 5

9 8 4 3 1 2 6 7 9 5

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 49

student
grader
valid
dynamic ordering
propagation algorithm
search tree
author

69. (The 33rd boxed clue will, of course, have to point outside the 10 × 10 array.
Maybe there’s even a puzzle whose empty boxes are symmetrical, as in exercise 68.)

70. An extremely instructive analysis [Combinatorics, Probability and Computing 23

(2014), 725–748] leads to the recurrences Pm = (5 + 9z)Pm−2 − 4Pm−4, Qm = (5 +
9z)Qm−2 − 4Qm−4, for m ≥ 6, where the initial values are (P2, P3, P4, P5) = (1, 1 +
z, 1 + 3z, 1 + 10z + 9z2); (Q2, Q3, Q4, Q5) = (1 − 4z, 1 − 9z − 6z2, 1 − 19z − 18z2, 1−
36z − 99z2 − 54z3). The denominator Qm(z) has all real roots, exactly one of which is
positive, namely 1/ρm.

71. Suppose there are n questions, whose answers each lie in a given set S. A student

supplies an answer list α = a1 . . . an, with each aj ∈ S; a grader supplies a Boolean
vector β = x1 . . . xn. There is a Boolean function fjs(α, β) for each j ∈ {1, . . . , n} and
each s ∈ S. A graded answer list (α, β) is valid if and only if F (α, β) is true, where

F (α, β) = F (a1 . . . an, x1 . . . xn) =
n∧

j=1

∧

s∈S

([aj = s] ⇒ xj ≡ fjs(α, β)).

The maximum score is the largest value of x1 + · · · + xn over all graded answer lists
(α, β) that are valid. A perfect score is achieved if and only if F (α, 1 . . . 1) holds.

Thus, in the warmup problem we have n = 2, S = {A,B}; f1A = [a2 =B];
f1B = [a1 =A]; f2A = x1; f2B = x̄2 ⊕ [a1 =A]. The four possible answer lists are:

AA: F = (x1 ≡ [A=B]) ∧ (x2 ≡ x1)
AB: F = (x1 ≡ [B=B]) ∧ (x2 ≡ x̄2 ⊕ [A=A])
BA: F = (x1 ≡ [B=A]) ∧ (x2 ≡ x1)
BB: F = (x1 ≡ [B=A]) ∧ (x2 ≡ x̄2 ⊕ [B=A])

Thus AA and BA must be graded 00; AB can be graded either 10 or 11; and BB has
no valid grading. Only AB can achieve the maximum score, 2; but 2 isn’t guaranteed.

In Table 666 we have, for example, f1C = [a2 6=A] ∧ [a3 =A]; f4D = [a1 =D] ∧
[a15 =D]; f12A = [ΣA − 1=ΣB], where Σs =

∑
1≤j≤20[aj = s]. It’s amusing to note

that f14E = [{ΣA, . . . ,ΣE}= {2, 3, 4, 5, 6}].

The other cases are similar (although often more complicated) Boolean functions—
except for 20D and 20E, which are discussed further in exercise 72.

Notice that an answer list that contains both 10E and 17E must be discarded: It
can’t be graded, because 10E says ‘x10 ≡ x̄17’ while 17E says ‘x17 ≡ x10’.

By suitable backtrack programming, we can prove first that no perfect score is
possible. Indeed, if we consider the answers in the order (3, 15, 20, 19, 2, 1, 17, 10, 5,
4, 16, 11, 13, 14, 7, 18, 6, 8, 12, 9), many cases can quickly be ruled out. For example,
suppose a3 = C. Then we must have a1 6= a2 6= · · · 6= a16 6= a17 = a18 6= a19 6= a20,
and early cutoffs are often possible. (We might reach a node where the remaining
choices for answers 5, 6, 7, 8, 9 are respectively {C,D}, {A,C}, {B,D}, {A,B,E},
{B,C,D}, say. Then if answer 8 is forced to be B, answer 7 can only be D; hence
answer 6 is also forced to be A. Also answer 9 can no longer be B.) An instructive little
propagation algorithm will make such deductions nicely at every node of the search
tree. On the other hand, difficult questions like 7, 8, 9, are best not handled with
complicated mechanisms; it’s better just to wait until all twenty answers have been
tentatively selected, and to check such hard cases only when the checking is easy and
fast. In this way the author’s program showed the impossibility of a perfect score by
exploring just 52859 nodes, after only 3.4 megamems of computation.

July 19, 2019

50 ANSWERS TO EXERCISES 7.2.2

recursively
quantified
fixed point
indeterminate

The next task was to try for score 19 by asserting that only xj is false. This turned
out to be impossible for 1 ≤ j ≤ 18, based on very little computation whatsoever
(especially, of course, when j = 6). The hardest case, j = 15, needed just 56 nodes and
fewer than 5 kilomems. But then, ta da, three solutions were found: One for j = 19 (185
kilonodes, 11 megamems) and two for j = 20 (131 kilonodes, 8 megamems), namely

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D C E A B E B C E A B E A E D B D A b B
A E D C A B C D C A C E D B C A D A A c
D C E A B A D C D A E D A E D B D B E e

(i)
(ii)
(iii)

(The incorrect answers are shown here as lowercase letters. The first two solutions
establish the truth of 20B and the falsity of 20E.)

72. Now there’s only one list of answers with score ≥ 19, namely (iii). But that is
paradoxical—because it claims 20E is false; hence the maximum score cannot be 19!

Paradoxical situations are indeed possible when the global function F of answer 71
is used recursively within one or more of the local functions fjs. Let’s explore a bit of
recursive territory by considering the following two-question, two-letter example:

1. (A) Answer 1 is incorrect. (B) Answer 2 is incorrect.

2. (A) Some answers can’t be graded consistently. (B) No answers achieve a perfect score.

Here we have f1A = x̄1; f1B = x̄2; f2A = ∃a1∃a2∀x1∀x2¬F (a1a2, x1x2); f2B =
∀a1∀a2¬F (a1a2, 11). (Formulas quantified by ∃a or ∀a expand into |S| terms, while ∃x
or ∀x expand into two; for example, ∃a∀xg(a,x) = (g(A, 0)∧g(A, 1))∨(g(B, 0)∧g(B, 1))
when S = {A,B}.) Sometimes the expansion is undefined, because it has more than
one “fixed point”; but in this case there’s no problem because f2A is true: Answer AA
can’t be graded, since 1A implies x1 ≡ x̄1. Also f2B is true, because both BA and BB
imply x1 ≡ x̄2. Thus we get the maximum score 1 with either BA or BB and grades 01.

On the other hand the simple one-question, one-letter questionnaire ‘1. (A) The
maximum score is 1’ has an indeterminate maximum score. For in this case f1A =
F (A, 1). We find that if F (A, 1) = 0, only (A, 0) is a valid grading, so the only possible
score is 0; similarly, if F (A, 1) = 1, the only possible score is 1.

OK, suppose that the maximum score for the modified Table 666 is m. We know
that m < 19; hence (iii) isn’t a valid grading. It follows that 20E is true, which means
that every valid graded list of score m has x20 false. And we can conclude that m = 18,
because of the following two solutions (which are the only possibilities with 20C false):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B A d A B E D C D A E D A E D E D B E c
A E D C A B C D C A C E D B a C D A A c

But wait: If m = 18, we can score 18 with 20A true and two errors, using (say)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D e D A B E D e C A E D A E D B D C C A

or 47 other answer lists. This contradicts m = 18, because x20 is true.

End of story? No. This argument has implicitly been predicated on the assumption
that 20D is false. What if m is indeterminate? Then a new solution arises

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D C E A B E D C E A E B A E D B D A d D

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 51

WOODS
Golomb
Baumert
two-letter
three-letter
British National Corpus
constraints
author
OSPD4
double-crostics
Kingsley
Spiegelthal
IBM 704
utility field
tagged

of score 19. With (iii) it yields m = 19! If m is determinate, we’ve shown that m
cannot actually be defined consistently; but if m is indeterminate, it’s definitely 19.

Question 20 was designed to create difficulties. [:-)]

— DONALD R. WOODS (2001)

73. The 29 words spark, often, lucky, other, month, ought, names, water, games,
offer, lying, opens, magic, brick, lamps, empty, organ, noise, after, raise, drink,
draft, backs, among, under, match, earth, roots, topic yield this: “The success or
failure of backtrack often depends on the skill and ingenuity of the programmer. . . .
Backtrack programming (as many other types of programming) is somewhat of an art.”
— Solomon W. Golomb, Leonard D. Baumert.

That solution can be found interactively, using inspired guesses based on a knowl-
edge of English and its common two-letter and three-letter words. But could a computer
that knows common English words discover it without understanding their meanings?

We can formulate that question as follows: Let w1, . . . , w29 be the unknown words
from WORDS(1000), and let q1, . . . , q29 be the unknown words of the quotation. (By
coincidence there happen to be just 29 of each.) We can restrict the q’s to words that
appear, say, 32 times or more in the British National Corpus. That gives respectively
(85, 562, 1863, 3199, 4650, 5631, 5417, 4724, 3657, 2448) choices for words of (2, 3, . . . ,
11) letters; in particular, we allow 3199 possibilities for the five-letter words q7, q11, q21,
q22, because they aren’t required to lie in WORDS(1000). Is there a unique combination
of words wi and qj that meets the given anacrostic constraints?

This is a challenging problem, whose answer turns out (surprisingly?) to be no.
In fact, here is the first solution found by the author’s machine(!): “The success or
failure of backtrack often depends on roe skill and ingenuity at the programmer. . . .
Backtrack programming (as lacy offal types of programming) as somewhat al an art.”
(The OSPD4 includes ‘al’ as the name of the Indian mulberry tree; the BNC has ‘al’
3515 times, mostly in unsuitable contexts, but that corpus is a blunt instrument.)
Altogether 720 solutions satisfy the stated constraints; they differ from the “truth”
only in words of at most five letters.

Anacrostic puzzles, which are also known by other names such as double-crostics,
were invented in 1933 by E. S. Kingsley. See E. S. Spiegelthal, Proceedings of the

Eastern Joint Computer Conference 18 (1960), 39–56, for an interesting early attempt
to solve them—without backtracking—on an IBM 704 computer.

74. Instead of considering 1000 possibilities for
131132133134135

, it suffices to consider

the 43 pairs xy such that cxyab is in WORDS(1000) and abc is a common three-letter
word. (Of these pairs ab, ag, . . . , ve, only ar leads to a solution. And indeed, the
720 solutions factor into three sets of 240, corresponding to choosing earth, harsh,
or large as the keyword for

131132133134135

.) Similar reductions, but not so dramatic,

occur with respect to
137139

,
118119

,
46 48

, and
32 35

.

75. The following algorithm uses an integer utility field TAG(u) in the representation of
each vertex u, representing the number of times u has been “tagged.” The operations
“tag u” and “untag u” stand respectively for TAG(u) ← TAG(u) + 1 and TAG(u) ←
TAG(u)−1. Vertices shown as ‘ ’ in the 21 examples have a nonzero TAG field, indicating
that the algorithm has decided not to include them in this particular H .

State variables vl (a vertex), il (an index), and al (an arc) are used at level l for
0 ≤ l < n. We assume that n > 1.

July 19, 2019

52 ANSWERS TO EXERCISES 7.2.2

Λ the null pointer
backtracking, variant structure
n-omino placement
monotone
factored
generating functions
convolution

R1. [Initialize.] Set TAG(u) ← 0 for all vertices u. Then set v0 ← v, i ← i0 ← 0,
a← a0 ← ARCS(v), TAG(v)← 1, l← 1, and go to R4.

R2. [Enter level l.] (At this point i = il−1, v = vi, and a = al−1 is an arc from v
to vl−1.) If l = n, visit the solution v0v1 . . . vn−1 and set l ← n− 1.

R3. [Advance a.] Set a← NEXT(a), the next neighbor of v.

R4. [Done with level?] If a 6= Λ, go to R5. Otherwise if i = l − 1, go to R6.
Otherwise set i← i+ 1, v ← vi, a← ARCS(v).

R5. [Try a.] Set u← TIP(a) and tag u. If TAG(u) > 1, return to R3. Otherwise
set il ← i, al ← a, vl ← u, l← l + 1, and go to R2.

R6. [Backtrack.] Set l ← l − 1, and stop if l = 0. Otherwise set i← il. Untag all
neighbors of vk, for l ≥ k > i. Then set a ← NEXT(al); while a 6= Λ, untag
TIP(a) and set a← NEXT(a). Finally set a← al and return to R3.

This instructive algorithm differs subtly from the conventional structure of Algorithm B.
Notice in particular that TIP(al) is not untagged in step R6; that vertex won’t be
untagged and chosen again until some previous decision has been reconsidered.

76. Let G have N vertices. For 1 ≤ k ≤ N , perform Algorithm R on the kth vertex v
of G, except that step R1 should tag the first k− 1 vertices so that they are excluded.
(A tricky shortcut can be used: If we untag all neighbors of v = v0 after Algorithm R
stops, the net effect will be to tag only v.)

The n-omino placement counts 1, 4, 22, 113, 571, 2816, 13616, 64678, 302574 are
computed almost instantly, for small n. (Larger n are discussed in Section 7.2.3.)

77. (a) All but the 13th and 18th, which require an upward or leftward step.
(b) True. If u ∈ H and u 6= v, let pu be any node of H that’s one step closer to v.
(c) Again true: The oriented spanning trees are also ordinary spanning trees.
(d) The same algorithm works, except that step R4 must return to itself after

setting a← ARCS(v). (We can no longer be sure that ARCS(v) 6= Λ.)

78. Extend Algorithm R to terminate immediately if WT(v) ≥ U , otherwise to visit
the singleton solution v. Also set w← WT(v) in step R1. Replace steps R2 and R5 by

R2′. [Enter level l]. If p ≥ L, visit the solution v0v1 . . . vl−1.

R5′. [Try a.] Set u← TIP(a) and tag u. If TAG(u) > 1 or w+ WT(u) ≥ U , return
to R3. Otherwise set il ← i, al ← a, vl ← u, w ← w + WT(u), l ← l+ 1, and
go to R2.

In step R6, set w ← w − WT(vl) just before setting i← il.

79. (a) (0, j) and (1, j) for j ≥ 44; (2, j) for j ≥ 32; (4, j), (8, j), (10, j) for j < 12.
(b) True, each of the Boolean functions ri,j is clearly monotone.
(c) The “couplers” can be simulated by playing s∗j and g∗j instead of sj and gj (as

if the organist had assistants). Therefore the problem can be factored into independent
subproblems for the Pedal, Swell, and Great separately: Let there be Pn, Sn, Gn

playable sounds on the Pedal, Swell, and Great, and define P (z) =
∑

n Pnz
n, S(z) =∑

n Snz
n, G(z) =

∑
n Gnz

n; then Q(z) =
∑

n Qnz
n is the convolution P (z)S(z)G(z).

(d) p0 = p12 = c0 = c1 = c15 = 1 gives (0, 0), (0, 12), (0, 24), (1, 0), (1, 12); s0 =
s19 = s28 = c3 = c4 = 1 gives (the beautiful) (3, 0), (3, 19), (3, 28), (4, 19), (4, 28); etc.

(e) It’s unplayable if and only if i ∈ {2, 14, 15} or i′ ∈ {0, 1, 2, 14, 15} or (i 6= i′

and either 3 ≤ i, i′ ≤ 8 or 9 ≤ i, i′ ≤ 15).
(f) Q1 = 812− 112 = 700, because we can’t have (14, j) or (15, j) without (13, j).

July 19, 2019

7.2.2 ANSWERS TO EXERCISES 53

generating functions(g) Q811 = 12 sounds lack only one pipe: With all inputs 1 except pj , for 12 ≤ j <
24, only r2,j is 0. (Thankfully there isn’t enough wind pressure to actually play this.)

(h) Brute-force backtrack programs can be written, using the monotonicity prop-
erty (b) for cutoffs, in order to check small values and to list the actual sounds. But
the best way to compute Pn, Sn, Gn, and Qn is to use generating functions.

For example, let G(z) = G0(z) + G1(z) + · · · + G63(z), where Gk(z) for k =
(c14c13c12c11c10c9)2 enumerates the sounds for a given setting of console switches,
excluding sounds already enumerated by Gj(z) for j < k. Then G0(z) = 1; Gk(z) = 0
if c13c14 = 1; otherwise Gk(z) = f(c9 + c11 + c12 + c13 + 3c14) when c10 = 0, and
Gk(z) = g(c9 +1+ c11+ c12+ c13 +3c14, 1+ c11+ c12 + c13+3c14) when c10 = 1, where

f(n) = (1 + zn)56 − 1, g(m,n) = (1 + zn)12((1 + zm)44 − 1).

Thus G(z) = 1+268z+8146z2+139452z3+ · · ·+178087336020z10+ · · ·+12z374+ z380.
Similarly, with S(z) =

∑63
k=0 Sk(z) and k = (c8c7c6c5c4c3)2, we have S0(z) = 1;

S32(z) = (1 + z)44 − 1; otherwise Sk(z) = f(c3 + c5 + c6 + c7) when c4 = c8 = 0,
Sk(z) = g(c3 + c4 + c5 + c6 + c7 + c8,max(c3, c4) + c5 + c6 + c7) when c4 + c8 > 0.
Thus S(z) = 1+312z+9312z2+155720z3+ · · ·+180657383126z10+ · · ·+12z308+ z312.
[Curiously we have Sn > Gn for 1 ≤ n ≤ 107.]

The generating functions for P (z) =
∑31

k=0 Pk(z), with k = (c16c15c2c1c0)2, are

trickier. Let h(w, z) = (1+3wz2+2w2z3+z2z4+w3z4)8((1+2wz2+w2z3)4−1). Then
P31(z) = h(z, z2), and there are three main cases when 0 < k < 31: If c0c15 = c1c16 = 0,
then Pk(z) = (1 + zc15+c16)32 − (1 + zc15+c16)20 if c0 + c1 + c2 = 0, otherwise Pk(z) =
(1 + zc0+c1+c2+c15+c16)32 − 1. If c0 = c15, c1 = c16, c2 = 0, then Pk(z) = q(zc0+c1),

q(z) = (1 + 3z2 + 2z3 + z4)8(1 + 2z2 + z3)4 − 2(1 + 2z2 + z3)8(1 + z2)4 + (1 + z2)8.

Otherwise we have Pk(z) = h(zc0+c1+c2+c15+c16−2, z). Thus P (z) = 1+120z+2336z2+
22848z3+ · · ·+ 324113168z10+ · · · + 8z119+ z120. And Q(z) = 1 + 700z + 173010z2+
18838948z3+ 1054376915z4+ 38386611728z5+ 1039287557076z6+ 22560539157160z7+
410723052356833z8+6457608682396156z9+89490036797524716z10+ · · ·+12z811+z812.
So (Q2/

(
812
2

)
, . . . , Q10/

(
812
10

)
) ≈ (.5, .2, .06, .01, .003, .0005, .00009, .00002, .000003).

July 19, 2019

GOLDSMITHINDEX AND GLOSSARY

He writes indexes to perfection.

— OLIVER GOLDSMITH, Citizen of the World (1762)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

2-letter block codes, 29.
2-letter words of English, 8, 51.
2-regular graphs, 25, 31.
3-letter words of English, 8, 28, 51.
4-letter codewords, 9–18, 29.
4-letter words of English, 8, 28, 51.
5-letter words of English, 8–9, 28, 31, 34, 40.
6-letter and k-letter words of English,

8–9, 28, 40, 51.
8 queens problem, 3–4, 19–20, 25–26.
90◦-rotational symmetry, 27.
γ (Euler’s constant), as source of

“random” data, 19.
Λ (the null link), 45, 51.
νx (1s count), see Sideways sum.
π (circle ratio), as source of “random”

data, 19–20, 22, 29, 32.
φ (golden ratio), as source of “random”

data, 19.

A posteriori probability, 45.
Active elements of a list, 12.
Ahrens, Joachim Heinrich Lüdecke,

6, 27, 37.
Alekhnovich, Michael (Misha) Valentinovich

(Alehnoviq, Mihail (Mixa)

Valentinoviq), 26.
Alphabet, 31.
Anacrostic puzzle, 34.
Analysis of algorithms, 29, 30.
Aperiodic words, 10, 29, 42.
ARCS(v) (first arc of vertex v), 34, 51.
Armbruster, Franz Owen, 24.

Babbage, Charles, 28.
Bach, Johann Sebastian, 35.
Backjumping, 26.
Backmarking, 26.
Backtrack programming, 2–∞.

efficiency of, 36.
history of, 2, 5–6, 25–26.
introduction to, 2–32.
variant structure, 52.

Backtrack trees, 3, 4, 7, 9–11, 18–20,
24, 26, 27, 44, 45, 49.

estimating the size of, 20–21, 30–31.
Balas (Blatt), Egon, 26.
Baumert, Leonard Daniel, 26, 50, 56.
Bees, queen, 27.

Bernoulli, Jacques (= Jakob = James), 25.
Bezzel, Max Friedrich Wilhelm, 25.
Biased random walks, 31, 45.
Binary partitions, 31.
Binomial trees, 21.
Bitner, James Richard, 6, 26.
Bitwise operations, 5, 27, 38, 48.
Block codes, 9, 28.
Borodin, Allan Bertram, 26.
Botermans, Jacobus (= Jack) Petrus

Hermana, 48.
Boundary markers, 29.
Bousquet-Mélou, Mireille Françoise, 32.
Breadth-first search, 37.
Breaking symmetry, 8, 14.
British National Corpus, 8, 51.
Broken diagonals, seeWraparound.
Bumping the current stamp, 16, 30.
Bunch, Steve Raymond, 6.
Buresh-Oppenheim, Joshua, 26.

Cache-friendly data structures, 11.
Canonical labeling, 34.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), iii.
Carteblanche, Filet de (pseudonym, most

likely of C. A. B. Smith), 24.
Cavenagh, Nicholas John, 37.
Cayley, Arthur, 31.
Cells of memory, 11.
Chatterjee, Sourav (esor& *;$;jRI), 22.
Chessboard, 2–6, 22–26, 27, 31.
Closed lists, 14–15.
Clueless anacrostic, 34.
CNF: Conjunctive normal form, 43.
Codewords, commafree, 9–18, 29–31.
Coin flipping, 30.
Colex order, 28.
Combinations, 27.
Commafree codes, 9–18, 26, 29–31.
Compilers, 15.
Complexity of calculation, 44.
Compressed tries, 39–40.
Computational complexity, 44.
Concatenation, 9.
Connected subsets, 34.
Constraints, 51.
Convolution, 52.
Cook, Matthew Makonnen, 47.

54

July 19, 2019

INDEX AND GLOSSARY 55

Corner-to-corner paths, 22–23, 31, 35.
Cost function, 19, 45.
Crick, Francis Harry Compton, 9.
Cubes, 24–25, 31.
Cumulative binomial distribution, 44.
Cutoff principle, 7.
Cutoff properties, 2, 5, 10, 18, 27.
Cyclic shifts, 10, 29.

d+(v) (out-degree of v), 48.
Dancing links, 7.
Data structures, 4–6, 9, 11–14, 18, 30.
de Carteblanche, Filet (pseudonym, most

likely of C. A. B. Smith), 24.
de Jaenisch, Carl Ferdinand Andreevitch

(�nix�, Karl� Andreeviq�), 36.
De Morgan, Augustus, 28, 39, 40.
de Ruiter, Johan, 32.
Dead end, 22.
Degree of a node, 19.
Deletion operation, 7, 12–13, 42–43.
Depth-first search, 25.
Dewey, Melville (= Melvil) Louis Kossuth,

notation for trees, 36.
Diaconis, Persi Warren, 22.
Diagonal lines (slope ±1), 3, 37, see

also Wraparound.
Dictionaries, 8, 28, 51.
Digraphs, 29, 34, 48.
Dips, 29.
Directed graphs versus undirected

graphs, 35.
Discarded data, 22.
Discrete probabilities, 1.
Disjoint sets, 25, 45.
Distributed computations, 6.
Divergence, Kullback–Leibler, 45.
Divide and conquer paradigm, 24.
Dodgson, Charles Lutwidge, iii.
Domains, 2, 27, 28.
Double-crostics, 51.
Double word squares, 40.
Downdating versus updating, 4–5, 11, 15.
Dual oriented spanning tree, 35.
Dual solutions, 6, 8, 28.
Dudeney, Henry Ernest, 40.
Dynamic ordering, 10–11, 24, 26, 31, 49.
Dynamic shortest distances, 31.

e, as source of “random” data, 19.
Eastman, Willard Lawrence, 29, 30, 42.
Eckler, Albert Ross, Jr., 40.
Eight queens problem, 3–4, 19–20, 25–26.
Empty lists, 12, 17.
Engelhardt, Matthias Rüdiger, 6, 36.
English words, v, 8–9, 28, 34.
Ernst, George Werner, 48.
Error bars, 22.
Estimates of run time, 18–21, 30–31.

Estimating the number of solutions, 21–23.
Exact cover problem, 47.

Factorization of problems, 24–25, 31,
32, 34, 52.

Fallback points, 16.
Finkel, Raphael Ari, 26.
Five-letter words, 8–9, 28, 31, 32, 40.
Fixed point of recursive formula, 50.
Floyd, Robert W, 15.
Fool’s Disk, 32.
Four-letter codewords, 9–18, 29.
FPGA devices: Field-programmable

gate arrays, 6.
Frames, 11.
Franel, Jérome, 37.

Gardner, Erle Stanley, 2.
Gaschnig, John Gary, 26.
Gauß (= Gauss), Johann Friderich Carl

(= Carl Friedrich), 25, 36.
Generating functions, 30, 44, 46, 52, 53.
Geoffrion, Arthur Minot, 26.
Gigamem (Gµ): One billion memory

accesses, 5.
Global variables, 27.
Golden ratio (φ), as source of “random”

data, 19.
Goldsmith, Oliver, 54.
Goldstein, Michael Milan, 48.
Golomb, Solomon Wolf, 9, 26, 50, 56.
Gordon, Basil, 9, 56.
Graders, 49.
Grid graphs, 27, 34–35.

oriented, 34.
Gridgeman, Norman Theodore, 47.
Griffith, John Stanley, 9.

Hales, Alfred Washington, 56.
Hall, Marshall, Jr., 26.
Hamilton, William Rowan, paths, 23.
Hammersley, John Michael, 26.
Handscomb, David Christopher, 26.
Height of binary trees, 31.
Hexagons, 27.
Historical notes, 2, 5–6, 25–26, 40.
Hoffmann, Louis (pen name of Angelo

John Lewis), 32.
Homomorphic images, 24.
Honeycombs, 27.
Hurwitz, Adolf, 37.

IBM 704 computer, 51.
IBM 1620 computer, 6.
IBM System 360-75 computer, 6.
Impagliazzo, Russell Graham, 26.
Implicit enumeration, 26.
Importance sampling, 26.
Independent subproblems, 24.
Indeterminate statements, 50–51.

July 19, 2019

56 INDEX AND GLOSSARY

Inner loops, 36.
Insertion operation, 12.
Instant Insanity, 24–25, 31.
Integer partitions, 27, 31.
Integer programming problems, 26.
Internet, ii, iii, v.
Invariant relations, 47.
Inverse lists, 12–15, 17.
Inverse permutations, 12–13.
Iteration versus recursion, 27, 36.

Jaenisch, Carl Ferdinand Andreevitch de
(�nix�, Karl� Andreeviq�), 36.

Japanese arrows, 48.
Jewett, Robert Israel, 56.
Jiggs, B. H. (pen name of Baumert, Hales,

Jewett, Imaginary, Golomb, Gordon,
and Selfridge), 17.

Kennedy, Michael David, 6.
Kilomem (Kµ): One thousand memory

accesses, 45.
King, Benjamin Franklin, Jr., 2.
King paths, 22–23, 26, 31.
Kingsley, Hannah Elizabeth Seelman, 51.
Kleber, Michael Steven, 47.
Knight moves, 23.
Knuth, Donald Ervin (), i, iv, 18,

26, 27, 35, 39, 44, 49, 51.
Knuth, Nancy Jill Carter (), 35.
Kullback, Solomon, 45.

Langford, Charles Dudley, pairs, 6–8, 27–28.
Latin squares, 24.
Laxdal, Albert Lee, 17.
Le Nombre Treize, see Royal Aquarium

Thirteen Puzzle.
Lehmer, Derrick Henry, 26.
Leibler, Richard Arthur, 45.
Lennon, John Winston Ono, 2.
Lewis, Angelo John, 55.
LEXI-CUBES, 31.
Lexicographic order, 2, 7, 25, 29, 34.
Lifting, 24–25.
Linked lists, 6–7, 42.
Load balancing, 26.
Lookahead, 10, 16, 26, 31.
Loose Langford pairs, 28.
Lucas, François Édouard Anatole, 25, 37.

Magen, Avner (OBN XEA�), 26.
Mahler, Kurt, 47.
Manber, Udi (XAPN ICER) [not ICE�!], 26.
Martingales, 30.
Masks, .
Mason, Perry, 2.
McIlroy, Malcolm Douglas, 39, 40.
Megamem (Mµ): One million memory

accesses, 18.

MEM, an array of “cells,” 11–18, 29.
Memory constraints, historic, 42.
Mem (µ): One 64-bit memory access, 4.
Minimax solutions, 40.
Minimum remaining values heuristic, 26.
MMIX computer, ii.
Monotone Boolean functions, 52.
Monte Carlo estimates, 18–23, 26, 30–31.
Moves, 11.
MPR: Mathematical Preliminaries

Redux, v, 1.
Munro, James Ian, 47.
Music, 35.
Mystery text, 34.

n-letter words of English, 8.
n-omino placement, 52.
n queens problem, 3–6, 18–20, 25–27.
n-tuples, 27.
Natsuhara, Masanori (), 48.
Nauck, Franz Christian, 25.
Nested parentheses, 27.
NEXT(a) (the next arc with the same initial

vertex as a), 34, 51.
Niho, Yoji Goff (), 43.
Nonisomorphic solutions, 30.
NP-complete problems, 32.

Onnen, Hendrick, Sr., 6.
Optimization, 26.
Organ sounds, 35.
Orgel, Leslie Eleazer, 9.
Oriented grids, 34.
Oriented trees, 35.
Orthogonal lists, 28.
OSPD4: Official SCRABBLE R© Players

Dictionary, 8, 28, 51.
Overflow of memory, 12, 16.

P0(), 2.
Palindromes, 39, 40.
Paradox, 33.
Parallel programming, 47.
Parent in a tree, 35.
Parentheses, 27.
Parity argument, 38, 46.
Parker, Ernest Tilden, 24.
Partitions, 27, 31.
Patents, 24.
Paths, simple, 22, 26, 31.
Pauls, Emil, 37.
Pencil-and-paper method, 18–20.
Pentominoes, 34.
Periodic sequences, 29.
Periodic words, 10, 13.
Permutations, 6, 27.
Phi (φ), as source of “random” data, 19.
Pi (π), as source of “random” data,

19–20, 22, 29, 32.
Pi day, 32.

July 19, 2019

INDEX AND GLOSSARY 57

Pipe organ, 35.
Pitassi, Toniann, 26.
Playable sounds, 35.
Poetic license, 39.
Poison list, 16–17, 30, 45.
Pólya, György (= George), 37.
Polyominoes, 34, 52.
Preußer, Thomas Bernd, 6, 36.
Prime strings, 10.
Priority branching trees, 26.
Probabilities, 1.
Profile of a tree, 3–4, 9, 28, 31, 44.
Propagation algorithm, 49.
Properties: Logical propositions

(relations), 2, 27.

q.s., 30.
Quantified Boolean formulas, 50.
Quarterturn symmetry, 27.
Queen bees, 27.
Queens, see n queens problem.
Questionnaires, 33.
Queues, 42, 45–46.
Quick, Jonathan Horatio, 27–28.

Radix m representation, 13.
Random bits, 30.
Random sampling, 18.
Random variables, 19.
Random walks, 18–23, 31.
Reachable subsets, 34–35.
Recurrence relations, 46.

in a Boolean equation, 50.
Recursion versus iteration, 27, 36.
Recursive algorithms, 27, 44, 50.
Reflection symmetry, 14, 27, 36, see

also Dual solutions.
Registers, 5, 38–39.
Reingold, Edward Martin (CLEBPIIX,

MIIG OA DYN WGVI), 26.
Rejection method, 19, 44.
Relaxation of constraints, 25.
Restricted growth strings, 36.
Reverse dictionaries, 28.
Reversible memory technique, 16, 31.
Rivin, Igor (Rivin, Igor~ Evgen~eviq), 37.
Robertson, Edward Lowell, III, 47.
Root node, 19.
Rosenbluth, Arianna Wright, 26.
Rosenbluth, Marshall Nicholas, 26.
Rotating Century Puzzle, see Fool’s Disk.
Rotation by 90◦, 27.
Royal Aquarium Thirteen Puzzle, 32.
Royalties, use of, 35.
Ruiter, Johan de, 32.
Running time estimates, 18–21.

Safe Combination Puzzle, see Fool’s Disk.
Sample variance, 22.
SAT solvers, 43.
Saturating ternary addition, 41.
Scholtz, Robert Arno, 42.
Schossow, Frederick Alvin, 24.
Schumacher, Heinrich Christian, 25, 36.
Search rearrangement, see Dynamic

ordering.
Search trees, 3, 4, 7, 9–11, 18–20, 24,

26, 37, 44, 45, 49.
estimating the size, 20–21, 30–31.

Self-avoiding walks, 22, 26, 31, 32.
Self-reference, 32, 33, 57.
Self-synchronizing block codes, 9.
Selfridge, John Lewis, 56.
Semi-queens, 37.
Sequential allocation, 30.
Sequential lists, 11–15.
Set partitions, 27.
SGB, see Stanford GraphBase.
Shortest distances, dynamic, 31.
Sideways sum (νx): Sum of binary

digits, 48.
Signature of a trie node, 38.
Simple paths, 22, 26, 31.
Slack, 18, 45.
Slocum, Gerald Kenneth (= Jerry), 48.
Smith, Cedric Austen Bardell, 54, 55.
Spanning trees, 34.
Speedy Schizophrenia, 31.
Spiegelthal, Edwin Simeon, 51.
Sprague, Thomas Bond, 5, 6, 27.
Stable labeling of digraphs, 48.
Stacks, 16, 42.
Stamping, iv, 16–19, 30.
Standard deviation, 20, 22, 30.
Stanford GraphBase, ii, 8.

format for digraphs and graphs, 34, 51.
Statistics, 22.
Stirling, James, cycle numbers, 30.
Students, 49.
Substrings, 29.
Subtrees, 20, 26.
Superdips, 41–42.
SWAC computer, 6.
Symmetries, 30, 36.

breaking, 8, 14.
fourfold, 40.

Tagged vertices, 51–52.
Tail inequality, 44.
Tantalizer, see Instant Insanity.
Teramem (Tµ): One trillion memory

accesses, 9.
TIP(a) (final vertex of arc a), 34, 51.
Torus, 27.
Tot tibi . . . , 25.
Traub, Joseph Frederick, 44.

July 19, 2019

58 INDEX AND GLOSSARY

Trémaux, Charles Pierre, 25.
Tries, 8–9, 28, 38.

compressed, 39–40.
Tuples, 27.
Twenty Questions, 33.
Two-letter block codes, 29.

UCLA: The University of California
at Los Angeles, 6.

Undirected graphs versus directed
graphs, 35.

UNDO stack, 16.
Undoing, 4–5, 7, 15–16, 30.
Uniformly random numbers, 44.
Unique solutions, 47.
Unit clauses, 43.
University of California, 6.
University of Dresden, 6.
University of Illinois, 6.
University of Tennessee, 6.
Unordered sequential lists, 11.
Unordered sets, 42.
Uppercase letters, 31.
Utility fields in SGB format, 51.

v-reachable subsets, 34–35.
Valid gradings, 49.
Vardi, Ilan, 37.
Variance of a random variable, 22, 30, 32.

Venn, John, diagram, 46.
Visiting an object, 2, 4, 5, 7, 18.

Walker, Robert John, 2, 5, 6, 25–26.
Wanless, Ian Murray, 37.
Washington Monument Puzzle, see

Fool’s Disk.
Weighted graphs, 35.
Welch, Lloyd Richard, 9.
Wells, Mark Brimhall, 26.
White squares, 27.
Winthrop Andrews, William, 40.
Woods, Donald Roy, 33, 50.
Word cubes, 40.
Word rectangles, 8–9, 28.
Word squares, 28.

double, 40.
history of, 40.

WORDS(n), the n most common five-letter
words of English, 8, 28, 34, 39.

Worst-case bounds, 29.
Wraparound, 27.

Yao, Andrew Chi-Chih (), 44.

ZDD: A zero-suppressed decision
diagram, 23, 31.

Zimmermann, Paul Vincent Marie, 37.

