
September 23, 2015

Note to readers:
Please ignore these
sidenotes; they’re just
hints to myself for
preparing the index,
and they’re often flaky!

KNUTH

THE ART OF

COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 6A

A DRAFT OF

SECTION 7.2.2.2:

SATISFIABILITY

DONALD E. KNUTH Stanford University

ADDISON–WESLEY
6

77

September 23, 2015

Internet
Stanford GraphBase
MMIX

Internet page http://www-cs-faculty.stanford.edu/~knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/~knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples in Chapter 7.

See also http://www-cs-faculty.stanford.edu/~knuth/mmixware.html for down-
loadable software to simulate the MMIX computer.

Copyright c© 2015 by Addison–Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision 5), 15 September 2015

September 23, 2015

STERNE
Internet

PREFACE

These unforeseen stoppages,

which I own I had no conception of when I first set out;

— but which, I am convinced now, will rather increase than diminish as I advance,

— have struck out a hint which I am resolved to follow;

— and that is, — not to be in a hurry;

— but to go on leisurely, writing and publishing two volumes of my life every year;

— which, if I am suffered to go on quietly, and can make a tolerable bargain

with my bookseller, I shall continue to do as long as I live.

— LAURENCE STERNE, The Life and Opinions of

Tristram Shandy, Gentleman (1759)

This booklet contains draft material that I’m circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material
has not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2,
3, and 4A were at the time of their first printings. And those carefully-checked
volumes, alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this long pre-fascicle contains Section 7.2.2.2
of a long, long chapter on combinatorial algorithms. Chapter 7 will eventually
fill at least four volumes (namely Volumes 4A, 4B, 4C, and 4D), assuming that
I’m able to remain healthy. It began in Volume 4A with a short review of graph
theory and a longer discussion of “Zeros and Ones” (Section 7.1); that volume
concluded with Section 7.2.1, “Generating Basic Combinatorial Patterns,” which
was the first part of Section 7.2, “Generating All Possibilities.” Volume 4B will
begin with Section 7.2.2, about backtracking in general, and Section 7.2.2.1 will
discuss a family of methods called “dancing links,” for updating data structures
while backtracking. That sets the scene for the present section, which applies
those ideas to the important problem of Boolean satisfiability.

∗ ∗ ∗

iii

September 23, 2015

iv PREFACE

Heule

∗ ∗ ∗
After working on this material for more than three years, I’ve finally gotten most
of the major topics into place. Each time I finish drafting a small piece of the
final big picture, I’ve been testing it by adding it to these pages; hence there now
are quite a few scraps of text and exercises, which I plan to refine and polish (if
the FORCE stays with me).

I hope you will see why I’ve found this topic to be such a fascinating story;
and I hope you’ll not get too lost as I move through different parts of the tale.
I’ve tried to explain things in a natural order.

∗ ∗ ∗
My notes on combinatorial algorithms have been accumulating for more than
fifty years, yet I fear that in many respects my knowledge is woefully behind the
times. Please look, for example, at the exercises that I’ve classed as research
problems (rated with difficulty level 46 or higher), namely exercises 5, 39, 112,
193, 194, 236, 283, 516, . . . ; exercise 223 is also currently unsolved, although
I’ve rated it only ‘40’ because I once thought of an answer (which I have since
forgotten!). I’ve also implicitly mentioned or posed additional unsolved questions
in the answers to exercises 18, 19, 68, 84, 105(c,e), 111, 132, 183, 194, 204, 205,
316, 335, 351, 360, 365, 372, 397, 409(c), 476, 480, 486, 487, 488, 501, 511, 515,
. . . . And I still haven’t solved exercise 68. Are those problems still open? Please
inform me if you know of a solution to any of those intriguing enigmas. And of
course if no solution is known today but you do make progress on any of them
in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to receive credit for
things that have already been published by others, and most of these results are
quite natural “fruits” that were just waiting to be “plucked.” Therefore please
tell me if you know who deserves to be credited, with respect to the ideas found
in exercises 18, 19, 20, 21, 22, 24, 29, 38(b), 62, 63, 65(b), 74, 84(c,d,e), 101, 108,
132, 133, 149, 151, 161, 162, 177, 180, 181, 188, 191, 204(b,c,d), 206, 207, 208,
220, 228, 229, 232, 239, 242, 252, 259, 270, 272, 273, 279, 280, 282, 300, 305,
310, 311, 312, 327, 328, 329, 334, 335, 336(b), 337, 343, 349, 357, 358, 361, 390,
396, 399(c), 404, 406, 410, 411, 414, 419, 423, 427, 432, 433, 435, 439, 462, 463,
464, 465, 470, 472, 473, 475(d,e,f,g), 476, 479, 495, 498, . . . , and/or the answers
to exercises Furthermore I’ve credited exercise 170 to unpublished work of
Heule. Have any of those results ever appeared in print, to your knowledge?

I also wonder if Eq. 7.2.2.2–() is “well known.”

∗ ∗ ∗

September 23, 2015

PREFACE v

Biere
Bryant
Buss
Eén
Gent
Heule
Hoos
Janson
Jeavons
Kroening
Kullmann
Lauria
Pegden
Shortz
Sinz
Sörensson
Wermuth
Williams
Internet
MPR
Internet

Special thanks are due to Armin Biere, Randy Bryant, Sam Buss, Niklas Eén,
Ian Gent, Marijn Heule, Holger Hoos, Svante Janson, Peter Jeavons, Daniel
Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten
Sinz, Niklas Sörensson, Udo Wermuth, Ryan Williams, and . . . for their detailed
comments on my early attempts at exposition, as well as to numerous other cor-
respondents who have contributed crucial corrections. Thanks also to Stanford’s
Information Systems Laboratory for providing extra computer power when my
laptop machine was inadequate.

∗ ∗ ∗
Wow—Section 7.2.2.2 has turned out to be the longest section, by far, in

The Art of Computer Programming. The SAT problem is evidently a “killer
app,” because it is key to the solution of so many other problems. Consequently
I can only hope that my lengthy treatment does not also kill off my faithful
readers! As I wrote this material, one topic always seemed to flow naturally
into another, so there was no neat way to break this section up into separate
subsections. (And anyway the format of TAOCP doesn’t allow for a Section
7.2.2.2.1.)

I’ve tried to ameliorate the reader’s navigation problem by adding subhead-
ings at the top of each right-hand page. Furthermore, as in other sections,
the exercises appear in an order that roughly parallels the order in which corre-
sponding topics are taken up in the text. Numerous cross-references are provided
between text, exercises, and illustrations, so that you have a fairly good chance of
keeping in sync. I’ve also tried to make the index as comprehensive as possible.

I wrote more than three hundred computer programs while preparing this
material, because I find that I don’t understand things unless I try to program
them. Most of those programs were quite short, of course; but several of them
are rather substantial, and possibly of interest to others. Therefore I’ve made a
selection available by listing some of them on the following webpage:

http://www-cs-faculty.stanford.edu/~knuth/programs.html

I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32/c each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in the eventual book:−)

Volume 4B will begin with a special tutorial and review of probability
theory, in an unnumbered section entitled “Mathematical Preliminaries Redux.”
References to its equations and exercises use the abbreviation ‘MPR’. (Think of
the word “improvement.”) A preliminary version of that section can be found
online, as pre-fascicle 5a to Volume 4, if you knew how to find this one.

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

September 23, 2015

vi PREFACE

notational conventions
Knuth

The notational conventions that I’ve used in the mathematical formulas
of this section are summarized either in the Index to Notations of Volume 4A
(Appendix B on pages 822–827) or under the heading ‘Notational conventions’
in the index below.

Happy reading!

Stanford, California D. E. K.
69 Umbruary 2015

September 23, 2015

PREFACE vii

Langford pairs
exact cover problem
symmetry breaking
DEFOE
Crusoe

Here’s an exercise for Section 7.2.2.1 that I plan to put eventually into fascicle 5:

00. [20] The problem of Langford pairs on {1, 1, . . . , n, n} can be represented as an
exact cover problem using columns {d1, . . . , dn}∪{s1, . . . , s2n}; the rows are di sj sk for
1 ≤ i ≤ n and 1 ≤ j < k ≤ 2n and k = i+j+1, meaning “put digit i into slots j and k.”

However, that construction essentially gives us every solution twice, because the
left-right reversal of any solution is also a solution. Modify it so that we get only half
as many solutions; the others will be the reversals of these.

And here’s its cryptic answer (needed in exercise 7.2.2.2–13):

00. Omit the rows with i = n− [n even] and j > n/2.

(Other solutions are possible. For example, we could omit the rows with i = 1 and
j ≥ n; that would omit n− 1 rows instead of only ⌊n/2⌋. However, the suggested rule
turns out to make the dancing links algorithm run about 10% faster.)

Now I saw, tho’ too late, the Folly of

beginning a Work before we count the Cost,

and before we judge rightly of our own Strength to go through with it.

— DANIEL DEFOE, Robinson Crusoe (1719)

September 23, 2015

JOHNSON
Burney

CONTENTS

Chapter 7—Combinatorial Searching 0

7.2. Generating All Possibilities . 0

7.2.1. Generating Basic Combinatorial Patterns 0

7.2.2. Basic Backtrack . 0

7.2.2.1. Dancing links 0

7.2.2.2. Satisfiability . 1

Example applications 4

Backtracking algorithms 27

Random clauses . 47

Resolution of clauses 54

Clause-learning algorithms 60

Monte Carlo algorithms 77

The Local Lemma 81

*Message-passing algorithms 90

*Preprocessing of clauses 95

Encoding constraints into clauses 97

Unit propagation and forcing 103

Symmetry breaking 105

Satisfiability-preserving maps 107

One hundred test cases 113

Tuning the parameters 124

Exploiting parallelism 128

History . 129

Exercises . 133

Answers to Exercises . 185

Index to Algorithms and Theorems 292

Index and Glossary . 293

That your book has been delayed I am glad,

since you have gained an opportunity of being more exact.

— SAMUEL JOHNSON, letter to Charles Burney (1 November 1784)

viii

September 23, 2015

7.2.2.2 SATISFIABILITY 1

HUME
JAGGER
RICHARDS
Boolean formula
unsatisfiable
satisfying assignment
consistent, see satisfiable
inconsistent, see unsatisfiable

P = NP
NP-complete problem
Knuth
SAT solvers

He reaps no satisfaction but from low and sensual objects,

or from the indulgence of malignant passions.

— DAVID HUME, The Sceptic (1742)

I can’t get no . . .

— MICK JAGGER and KEITH RICHARDS, Satisfaction (1965)

7.2.2.2. Satisfiability. We turn now to one of the most fundamental problems
of computer science: Given a Boolean formula F (x1, . . . , xn), expressed in so-
called “conjunctive normal form” as an AND of ORs, can we “satisfy” F by
assigning values to its variables in such a way that F (x1, . . . , xn) = 1? For
example, the formula

F (x1, x2, x3) = (x1 ∨ x̄2) ∧ (x2 ∨ x3) ∧ (x̄1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ()

is satisfied when x1x2x3 = 001. But if we rule that solution out, by defining

G(x1, x2, x3) = F (x1, x2, x3) ∧ (x1 ∨ x2 ∨ x̄3), ()

then G is unsatisfiable: It has no satisfying assignment.

Section 7.1.1 discussed the embarrassing fact that nobody has ever been
able to come up with an efficient algorithm to solve the general satisfiability
problem, in the sense that the satisfiability of any given formula of sizeN could be
decided in NO(1) steps. Indeed, the famous unsolved question “does P = NP?”
is equivalent to asking whether such an algorithm exists. We will see in Section
7.9 that satisfiability is a natural progenitor of every NP-complete problem.*

On the other hand enormous technical breakthroughs in recent years have
led to amazingly good ways to approach the satisfiability problem. We now
have algorithms that are much more efficient than anyone had dared to believe
possible before the year 2000. These so-called “SAT solvers” are able to handle
industrial-strength problems, involving millions of variables, with relative ease,
and they’ve had a profound impact on many areas of research such as computer-
aided verification. In this section we shall study the principles that underlie
modern SAT-solving procedures.

* At the present time very few people believe that P = NP [see SIGACT News 43, 2 (June
2012), 53–77]. In other words, almost everybody who has studied the subject thinks that
satisfiability cannot be decided in polynomial time. The author of this book, however, suspects
that NO(1)-step algorithms do exist, yet that they’re unknowable. Almost all polynomial time
algorithms are so complicated that they lie beyond human comprehension, and could never be
programmed for an actual computer in the real world. Existence is different from embodiment.

September 23, 2015

2 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

variables
literal

notation: |v|
positive
negative
distinct
strictly distinct
covering problem
exact cover problems

To begin, let’s define the problem carefully and simplify the notation, so
that our discussion will be as efficient as the algorithms that we’ll be considering.
Throughout this section we shall deal with variables, which are elements of any
convenient set. Variables are often denoted by x1, x2, x3, . . . , as in (); but any
other symbols can also be used, like a, b, c, or even d′′′74. We will in fact often use
the numerals 1, 2, 3, . . . to stand for variables; and in many cases we’ll find it
convenient to write just j instead of xj , because it takes less time and less space
if we don’t have to write so many x’s. Thus ‘2’ and ‘x2’ will mean the same
thing in many of the discussions below.

A literal is either a variable or the complement of a variable. In other words,
if v is a variable, both v and v̄ are literals. If there are n possible variables in
some problem, there are 2n possible literals. If l is the literal x̄2, which is also
written 2̄, then the complement of l, l̄, is x2, which is also written 2.

The variable that corresponds to a literal l is denoted by |l|; thus we have
|v| = |v̄| = v for every variable v. Sometimes we write ±v for a literal that is
either v or v̄. We might also denote such a literal by σv, where σ is ±1. The
literal l is called positive if |l| = l; otherwise |l| = l̄, and l is said to be negative.

Two literals l and l′ are distinct if l 6= l′. They are strictly distinct if |l| 6= |l′|.
A set of literals {l1, . . . , lk} is strictly distinct if |li| 6= |lj | for 1 ≤ i < j ≤ k.

The satisfiability problem, like all good problems, can be understood in many
equivalent ways, and we will find it convenient to switch from one viewpoint to
another as we deal with different aspects of the problem. Example () is an AND

of clauses, where every clause is an OR of literals; but we might as well regard
every clause as simply a set of literals, and a formula as a set of clauses. With
that simplification, and with ‘xj ’ identical to ‘j’, Eq. () becomes

F =
{
{1, 2̄}, {2, 3}, {1̄, 3̄}, {1̄, 2̄, 3}

}
.

And we needn’t bother to represent the clauses with braces and commas either;
we can simply write out the literals of each clause. With that shorthand we’re
able to perceive the real essence of () and ():

F = {12̄, 23, 1̄3̄, 1̄2̄3}, G = F ∪ {123̄}. ()

Here F is a set of four clauses, and G is a set of five.
In this guise, the satisfiability problem is equivalent to a covering problem,

analogous to the exact cover problems that we considered in Section 7.2.2.1: Let

Tn =
{
{x1, x̄1}, {x2, x̄2}, . . . , {xn, x̄n}

}
= {11̄, 22̄, . . . , nn̄}. ()

“Given a set F = {C1, . . . , Cm}, where each Ci is a clause and each clause
consists of literals based on the variables {x1, . . . , xn}, find a set L of n literals
that ‘covers’ F ∪ Tn, in the sense that every clause contains at least one element
of L.” For example, the set F in () is covered by L = {1̄, 2̄, 3}, and so is the set
T3; hence F is satisfiable. The set G is covered by {1, 1̄, 2} or {1, 1̄, 3} or · · · or
{2̄, 3, 3̄}, but not by any three literals that also cover T3; so G is unsatisfiable.

Similarly, a family F of clauses is satisfiable if and only if it can be covered
by a set L of strictly distinct literals.

September 23, 2015

7.2.2.2 SATISFIABILITY 3

trivially SAT
polarities
De Morgan’s laws
TAUT
coNP-complete
SAT
kSAT
3SAT
unit clauses
unary clauses
Binary clauses
ternary clauses
empty clause
nullary clause
ǫ
multisets
tautological
℘
strictly distinct literals

If F ′ is any formula obtained from F by complementing one or more vari-
ables, it’s clear that F ′ is satisfiable if and only if F is satisfiable. For example,
if we replace 1 by 1̄ and 2 by 2̄ in () we obtain

F ′ = {1̄2, 2̄3, 13̄, 123}, G = F ∪ {1̄2̄3̄}.
In this case F ′ is trivially satisfiable, because each of its clauses contains a
positive literal: Every such formula is satisfied by simply letting L be the set of
positive literals. Thus the satisfiability problem is the same as the problem of
switching signs (or “polarities”) so that no all-negative clauses remain.

Another problem equivalent to satisfiability is obtained by going back to the
Boolean interpretation in () and complementing both sides of the equation. By
De Morgan’s laws 7.1.1–() and () we have

F (x1, x2, x3) = (x̄1 ∧ x2) ∨ (x̄2 ∧ x̄3) ∨ (x1 ∧ x3) ∨ (x1 ∧ x2 ∧ x̄3); ()

and F is unsatisfiable⇐⇒ F = 0⇐⇒ F = 1⇐⇒ F is a tautology. Consequently
F is satisfiable if and only if F is not a tautology: The tautology problem and
the satisfiability problem are essentially the same.*

Since the satisfiability problem is so important, we simply call it SAT. And
instances of the problem such as (), in which there are no clauses of length
greater than 3, are called 3SAT. In general, kSAT is the satisfiability problem
restricted to instances where no clause has more than k literals.

Clauses of length 1 are called unit clauses, or unary clauses. Binary clauses,
similarly, have length 2; then come ternary clauses, quaternary clauses, and so
forth. Going the other way, the empty clause, or nullary clause, has length 0 and
is denoted by ǫ; it is always unsatisfiable. Short clauses are very important in al-
gorithms for SAT, because they are easier to deal with than long clauses. But long
clauses aren’t necessarily bad; they’re much easier to satisfy than the short ones.

A slight technicality arises when we consider clause length: The binary
clause (x1 ∨ x̄2) in () is equivalent to the ternary clause (x1 ∨ x1 ∨ x̄2) as well
as to (x1 ∨ x̄2 ∨ x̄2) and to longer clauses such as (x1 ∨ x1 ∨ x1 ∨ x̄2); so we can
regard it as a clause of any length ≥ 2. But when we think of clauses as sets

of literals rather than ORs of literals, we usually rule out multisets such as 112̄
or 12̄2̄ that aren’t sets; in that sense a binary clause is not a special case of a
ternary clause. On the other hand, every binary clause (x ∨ y) is equivalent to
two ternary clauses, (x ∨ y ∨ z) ∧ (x ∨ y ∨ z̄), if z is another variable; and every
k-ary clause is equivalent to two (k + 1)-ary clauses. Therefore we can assume,
if we like, that kSAT deals only with clauses whose length is exactly k.

A clause is tautological (always satisfied) if it contains both v and v̄ for some
variable v. Tautological clauses can be denoted by ℘ (see exercise 7.1.4–222).
They never affect a satisfiability problem; so we usually assume that the clauses
input to a SAT-solving algorithm consist of strictly distinct literals.

When we discussed the 3SAT problem briefly in Section 7.1.1, we took a look
at formula 7.1.1–(), “the shortest interesting formula in 3CNF.” In our new

* Strictly speaking, TAUT is coNP-complete, while SAT is NP-complete; see Section 7.9.

September 23, 2015

4 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Rivest
associative block design
equally spaced occurrences
arithmetic progressions
backtracking
lexicographic order
van der Waerden

W (k0, . . . , kb−1)
waerden+

shorthand, it consists of the following eight unsatisfiable clauses:

R = {123̄, 234̄, 341, 41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄, 4̄12̄}. ()

This set makes an excellent little test case, so we will refer to it frequently below.
(The letter R reminds us that it is based on R. L. Rivest’s associative block design
6.5–().) The first seven clauses of R, namely

R′ = {123̄, 234̄, 341, 41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄}, ()

also make nice test data; they are satisfied only by choosing the complements of
the literals in the omitted clause, namely {4, 1̄, 2}. More precisely, the literals
4, 1̄, and 2 are necessary and sufficient to cover R′; we can also include either 3
or 3̄ in the solution. Notice that () is symmetric under the cyclic permutation
1 → 2 → 3 → 4 → 1̄ → 2̄ → 3̄ → 4̄ → 1 of literals; thus, omitting any clause
of () gives a satisfiability problem equivalent to ().

A simple example. SAT solvers are important because an enormous variety
of problems can readily be formulated Booleanwise as ANDs of ORs. Let’s begin
with a little puzzle that leads to an instructive family of example problems:
Find a binary sequence x1 . . . x8 that has no three equally spaced 0s and no
three equally spaced 1s. For example, the sequence 01001011 almost works; but
it doesn’t qualify, because x2, x5, and x8 are equally spaced 1s.

If we try to solve this puzzle by backtracking manually through all 8-bit
sequences in lexicographic order, we see that x1x2 = 00 forces x3 = 1. Then
x1x2x3x4x5x6x7 = 0010011 leaves us with no choice for x8. A minute or two of
further hand calculation reveals that the puzzle has just six solutions, namely

00110011, 01011010, 01100110, 10011001, 10100101, 11001100. ()

Furthermore it’s easy to see that none of these solutions can be extended to a
suitable binary sequence of length 9. We conclude that every binary sequence
x1 . . . x9 contains three equally spaced 0s or three equally spaced 1s.

Notice now that the condition x2x5x8 6= 111 is the same as the Boolean
clause (x̄2 ∨ x̄5 ∨ x̄8), namely 2̄5̄8̄. Similarly x2x5x8 6= 000 is the same as 258.
So we have just verified that the following 32 clauses are unsatisfiable:

123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,

1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.
()

This result is a special case of a general fact that holds for any given positive
integers j and k: If n is sufficiently large, every binary sequence x1 . . . xn contains
either j equally spaced 0s or k equally spaced 1s. The smallest such n is denoted
by W (j, k) in honor of B. L. van der Waerden, who proved an even more general
result (see exercise 2.3.4.3–6): If n is sufficiently large, and if k0, . . . , kb−1 are
positive integers, every b-ary sequence x1 . . . xn contains ka equally spaced a’s
for some digit a, 0 ≤ a < b. The least such n is W (k0, . . . , kb−1).

Let us accordingly define the following set of clauses when j, k, n > 0:

waerden (j, k;n) =
{
(xi ∨ xi+d ∨ · · · ∨ xi+(j−1)d)

∣∣ 1 ≤ i ≤ n− (j−1)d, d ≥ 1
}

∪
{
(x̄i ∨ x̄i+d ∨ · · · ∨ x̄i+(k−1)d)

∣∣ 1 ≤ i ≤ n− (k−1)d, d ≥ 1
}
. ()

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 5

Chvátal
Kouril
Paul
Kouril
Ahmed
Kullmann
Snevily
monotonic clauses
exact cover problems
dancing links
Langford pairs
symmetry

The 32 clauses in () are waerden(3, 3; 9); and in general waerden(j, k;n) is an
appealing instance of SAT, satisfiable if and only if n < W (j, k).

It’s obvious that W(1, k) = k andW(2, k) = 2k− [k even]; but when j and k
exceed 2 the numbersW(j, k) are quite mysterious. We’ve seen thatW (3, 3) = 9,
and the following nontrivial values are currently known:

k = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

W(3, k) = 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 312 349

W(4, k) = 18 35 55 73 109 146 309 ? ? ? ? ? ? ? ? ? ?

W(5, k) = 22 55 178 206 260 ? ? ? ? ? ? ? ? ? ? ? ?

W(6, k) = 32 73 206 1132 ? ? ? ? ? ? ? ? ? ? ? ? ?

V. Chvátal inaugurated the study ofW(j, k) by computing the values for j+k ≤ 9
as well asW(3, 7) [Combinatorial Structures and Their Applications (1970), 31–
33]. Most of the large values in this table have been calculated by state-of-the-art
SAT solvers [see M. Kouril and J. L. Paul, Experimental Math. 17 (2008), 53–
61; M. Kouril, Integers 12 (2012), A46:1–A46:13]. The table entries for j = 3
suggest that we might have W(3, k) < k2 when k > 4, but that isn’t true: SAT

solvers have also been used to establish the lower bounds

k = 20 21 22 23 24 25 26 27 28 29 30

W(3, k) ≥ 389 416 464 516 593 656 727 770 827 868 903

(which might in fact be the true values for this range of k); see T. Ahmed,
O. Kullmann, and H. Snevily [Discrete Applied Math. 174 (2014), 27–51].

Notice that the literals in every clause of waerden (j, k;n) have the same
sign: They’re either all positive or all negative. Does this “monotonic” property
make the SAT problem any easier? Unfortunately, no: Exercise 10 proves that
any set of clauses can be converted to an equivalent set of monotonic clauses.

Exact covering. The exact cover problems that we solved with “dancing links”
in Section 7.2.2.1 can easily be reformulated as instances of SAT and handed off
to SAT solvers. For example, let’s look again at Langford pairs, the task of
placing two 1s, two 2s, . . . , two n’s into 2n slots so that exactly k slots intervene
between the two appearances of k, for each k. The corresponding exact cover
problem when n = 3 has nine columns and eight rows (see 7.2.2.1–()):

d1 s1 s3, d1 s2 s4, d1 s3 s5, d1 s4 s6, d2 s1 s4, d2 s2 s5, d2 s3 s6, d3 s1 s5. ()

The columns are di for 1 ≤ i ≤ 3 and sj for 1 ≤ j ≤ 6; the row ‘di sj sk’ means
that digit i is placed in slots j and k. Left-right symmetry allows us to omit the
row ‘d3 s2 s6’ from this specification.

We want to select rows of () so that each column appears just once. Let
the Boolean variable xj mean ‘select row j’, for 1 ≤ j ≤ 8; the problem is then
to satisfy the nine constraints

S1(x1, x2, x3, x4) ∧ S1(x5, x6, x7) ∧ S1(x8)

∧ S1(x1, x5, x8) ∧ S1(x2, x6) ∧ S1(x1, x3, x7)

∧ S1(x2, x4, x5) ∧ S1(x3, x6, x8) ∧ S1(x4, x7), ()

September 23, 2015

6 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

S1(y1, . . . , yp)
symmetric Boolean function

langford (n)
unary clause
binary clauses
ternary clause
encoding
Langford pairs

langford ′(n)
coloring a graph
exclusion clauses
at-most-one

one for each column. (Here, as usual, S1(y1, . . . , yp) denotes the symmetric
function [y1 + · · ·+ yp =1].) For example, we must have x5 + x6 + x7 = 1,
because column d2 appears in rows 5, 6, and 7 of ().

One of the simplest ways to express the symmetric Boolean function S1 as
an AND of ORs is to use 1 +

(
p
2

)
clauses:

S1(y1, . . . , yp) = (y1 ∨ · · · ∨ yp) ∧
∧

1≤j<k≤p

(ȳj ∨ ȳk). ()

“At least one of the y’s is true, but not two.” Then () becomes, in shorthand,

{1234, 1̄2̄, 1̄3̄, 1̄4̄, 2̄3̄, 2̄4̄, 3̄4̄, 567, 5̄6̄, 5̄7̄, 6̄7̄, 8,
158, 1̄5̄, 1̄8̄, 5̄8̄, 26, 2̄6̄, 137, 1̄3̄, 1̄7̄, 3̄7̄,

245, 2̄4̄, 2̄5̄, 4̄5̄, 368, 3̄6̄, 3̄8̄, 6̄8̄, 47, 4̄7̄}; ()

we shall call these clauses langford (3). (Notice that only 30 of them are actually
distinct, because 1̄3̄ and 2̄4̄ appear twice.) Exercise 13 defines langford (n); we
know from exercise 7–1 that langford (n) is satisfiable ⇐⇒ nmod 4 = 0 or 3.

The unary clause 8 in () tells us immediately that x8 = 1. Then from the
binary clauses 1̄8̄, 5̄8̄, 3̄8̄, 6̄8̄ we have x1 = x5 = x3 = x6 = 0. The ternary clause
137 then implies x7 = 1; finally x4 = 0 (from 4̄7̄) and x2 = 1 (from 1234). Rows
8, 7, and 2 of () now give us the desired Langford pairing 3 1 2 1 3 2.

Incidentally, the function S1(y1, y2, y3, y4, y5) can also be expressed as

(y1 ∨ y2 ∨ y3 ∨ y4 ∨ y5) ∧ (ȳ1∨ ȳ2) ∧ (ȳ1∨ ȳ3) ∧ (ȳ1∨ t̄)
∧ (ȳ2∨ ȳ3) ∧ (ȳ2∨ t̄) ∧ (ȳ3∨ t̄) ∧ (t∨ ȳ4) ∧ (t∨ ȳ5) ∧ (ȳ4∨ ȳ5),

where t is a new variable. In general, if p gets big, it’s possible to express
S1(y1, . . . , yp) with only 3p−5 clauses instead of

(
p
2

)
+1, by using ⌊(p−3)/2⌋ new

variables as explained in exercise 12. When this alternative encoding is used to
represent Langford pairs of order n, we’ll call the resulting clauses langford ′(n).

Do SAT solvers do a better job with the clauses langford (n) or langford ′(n)?
Stay tuned: We’ll find out later.

Coloring a graph. The classical problem of coloring a graph with at most d
colors is another rich source of benchmark examples for SAT solvers. If the graph
has n vertices V , we can introduce nd variables vj , for v ∈ V and 1 ≤ j ≤ d,
signifying that v has color j; the resulting clauses are quite simple:

(v1 ∨ v2 ∨ · · · ∨ vd) for v ∈ V (“every vertex has at least one color”); ()

(ūj ∨ v̄j) for u−−−v, 1 ≤ j ≤ d (“adjacent vertices have different colors”). ()

We could also add n
(
d
2

)
additional so-called exclusion clauses

(v̄i ∨ v̄j) for v ∈V , 1≤ i < j≤ d (“every vertex has at most one color”); ()

but they’re optional, because vertices with more than one color are harmless.
Indeed, if we find a solution with v1 = v2 = 1, we’ll be extra happy, because it
gives us two legal ways to color vertex v. (See exercise 14.)

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 7

Gardner
chess
da Vinci
Ripoff
April Fool
Four Color Theorem
McGregor
Bryant
independent

Fig. 33. The McGregor graph
of order 10. Each region of this
“map” is identified by a two-
digit hexadecimal code. Can you
color the regions with four colors,
never using the same color for
two adjacent regions?

00 01 02 03 04 05 06 07 08 09

11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29

33 34 35 36 37 38 39

44 45 46 47 48 49

55 56 57 58 59

66 67 68 69

77 78 79

88 89

99

20 21

30 31 32

40 41 42 43

50 51 52 53 54

60 61 62 63 64 65

70 71 72 73 74 75 76

80 81 82 83 84 85 86 87

90 91 92 93 94 95 96 97 98

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

10

Martin Gardner astonished the world in 1975 when he reported [Scientific
American 232, 4 (April 1975), 126–130] that a proper coloring of the planar
map in Fig. 33 requires five distinct colors, thereby disproving the longstanding
four-color conjecture. (In that same column he also cited several other “facts”
supposedly discovered in 1974: (i) eπ

√
163 is an integer; (ii) pawn-to-king-rook-4

(‘h4’) is a winning first move in chess; (iii) the theory of special relativity is
fatally flawed; (iv) Leonardo da Vinci invented the flush toilet; and (v) Robert
Ripoff devised a motor that is powered entirely by psychic energy. Thousands
of readers failed to notice that they had been April Fooled!)

The map in Fig. 33 actually can be 4-colored; you are hereby challenged to
discover a suitable way to do this, before turning to the answer of exercise 18.
Indeed, the four-color conjecture became the Four Color Theorem in 1976, as
mentioned in Section 7. Fortunately that result was still unknown in April of
1975; otherwise this interesting graph would probably never have appeared in
print. McGregor’s graph has 110 vertices (regions) and 324 edges (adjacencies
between regions); hence () and () yield 110 + 1296 = 1406 clauses on 440
variables, which a modern SAT solver can polish off quickly.

We can also go much further and solve problems that would be extremely
difficult by hand. For example, we can add constraints to limit the number of
regions that receive a particular color. Randal Bryant exploited this idea in 2010
to discover that there’s a four-coloring of Fig. 33 that uses one of the colors only
7 times (see exercise 17). His coloring is, in fact, unique, and it leads to an
explicit way to 4-color the McGregor graphs of all orders n ≥ 3 (exercise 18).

Such additional constraints can be generated in many ways. We could,
for instance, append

(
110
8

)
clauses, one for every choice of 8 regions, specifying

that those 8 regions aren’t all colored 1. But no, we’d better scratch that idea:(
110
8

)
= 409,705,619,895. Even if we restricted ourselves to the 74,792,876,790

sets of 8 regions that are independent, we’d be dealing with far too many clauses.

September 23, 2015

8 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Sinz
Bailleux
Boufkhad
complete binary tree
cardinality constraints

S≤r(x1, . . . , xn)
symmetric threshold functions
binary multiplication
multiplication+

An interesting SAT-oriented way to ensure that x1 + · · ·+ xn is at most r,
which works well when n and r are rather large, was found by C. Sinz [LNCS
3709 (2005), 827–831]. His method introduces (n − r)r new variables skj for
1 ≤ j ≤ n− r and 1 ≤ k ≤ r. If F is any satisfiability problem and if we add the
(n− r − 1)r + (n− r)(r + 1) clauses

(s̄kj ∨ skj+1), for 1 ≤ j < n− r and 1 ≤ k ≤ r, ()

(x̄j+k ∨ s̄kj ∨ sk+1
j), for 1 ≤ j ≤ n− r and 0 ≤ k ≤ r, ()

where s̄kj is omitted when k = 0 and sk+1
j is omitted when k = r, then the new set

of clauses is satisfiable if and only ifF is satisfiable with x1+· · ·+xn ≤ r. (See ex-
ercise 26.) With this scheme we can limit the number of red-colored regions of
McGregor’s graph to at most 7 by appending 1538 clauses in 721 new variables.

Another way to achieve the same goal, which turns out to be even better,
has been proposed by O. Bailleux and Y. Boufkhad [LNCS 2833 (2003), 108–
122]. Their method is a bit more difficult to describe, but still easy to implement:
Consider a complete binary tree that has n−1 internal nodes numbered 1 through
n − 1, and n leaves numbered n through 2n − 1; the children of node k, for
1 ≤ k < n, are nodes 2k and 2k+1 (see 2.3.4.5–()). We form new variables bkj for
1 < k < n and 1 ≤ j ≤ tk, where tk is the minimum of r and the number of leaves
below node k. Then the following clauses, explained in exercise 27, do the job:

(b̄2ki ∨ b̄2k+1
j ∨ bki+j), for 0≤ i≤ t2k, 0≤ j≤ t2k+1, 1≤ i+j≤ tk+1, 1<k<n; ()

(b̄2i ∨ b̄3j), for 0≤ i≤ t2, 0≤ j≤ t3, i+ j= r + 1. ()

In these formulas we let tk = 1 and bk1 = xk−n+1 for n ≤ k < 2n; all literals b̄k0
and bkr+1 are to be omitted. Applying () and () to McGregor’s graph, with
n = 110 and r = 7, yields just 1216 new clauses in 399 new variables.

The same ideas apply when we want to ensure that x1+ · · ·+xn is at least r,
because of the identity S≥r(x1, . . . , xn) = S≤n−r(x̄1, . . . , x̄n). And exercise 30
considers the case of equality, when our goal is to make x1 + · · ·+ xn = r. We’ll
discuss other encodings of such cardinality constraints below.

Factoring integers. Next on our agenda is a family of SAT instances with quite
a different flavor. Given an (m + n)-bit binary integer z = (zm+n . . . z2z1)2, do
there exist integers x = (xm . . . x1)2 and y = (yn . . . y1)2 such that z = x × y?
For example, if m = 2 and n = 3, we want to invert the binary multiplication

y3 y2 y1
× x2x1
a3 a2 a1

b3 b2 b1
c3 c2 c1
z5 z4 z3 z2 z1

(a3a2a1)2 = (y3y2y1)2 × x1
(b3 b2 b1)2 = (y3y2y1)2 × x2

z1 = a1
(c1z2)2 = a2 + b1
(c2z3)2 = a3 + b2 + c1
(c3z4)2 = b3 + c2

z5 = c3

()

when the z bits are given. This problem is satisfiable when z = 21 = (10101)2,
in the sense that suitable binary values x1, x2, y1, y2, y3, a1, a2, a3, b1, b2, b3, c1,
c2, c3 do satisfy these equations. But it’s unsatisfiable when z = 19 = (10011)2.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 9

Boolean chain
full adder
half adders
unary clauses
Tseytin encoding
conjunctive normal form
DAVIS
PUTNAM
Napier
Dadda
binary number system
half adder
carry bit
full adder

notation 〈abc〉
median operation
ternary operations

Arithmetical calculations like () are easily expressed in terms of clauses
that can be fed to a SAT solver: We first specify the computation by constructing
a Boolean chain, then we encode each step of the chain in terms of a few clauses.
One such chain, if we identify a1 with z1 and c3 with z5, is

z1←x1∧y1,
a2←x1∧y2,
a3←x1∧y3,

b1←x2∧y1,
b2←x2∧y2,
b3←x2∧y3,

z2←a2⊕b1,
c1←a2∧b1,

s←a3⊕b2,
p←a3∧b2,

z3←s⊕c1,
q←s∧c1,
c2←p∨q,

z4←b3⊕c2,
z5←b3∧c2,

()

using a “full adder” to compute c2z3 and “half adders” to compute c1z2 and c3z4
(see 7.1.2–() and ()). And that chain is equivalent to the 49 clauses

(x1∨z̄1)∧(y1∨z̄1)∧(x̄1∨ȳ1∨z1)∧· · ·∧(b̄3∨c̄2∨z̄4)∧(b3∨z̄5)∧(c2∨z̄5)∧(b̄3∨c̄2∨z5)
obtained by expanding the elementary computations according to simple rules:

t← u ∧ v becomes (u ∨ t̄) ∧ (v ∨ t̄) ∧ (ū ∨ v̄ ∨ t);
t← u ∨ v becomes (ū ∨ t) ∧ (v̄ ∨ t) ∧ (u ∨ v ∨ t̄);
t← u⊕ v becomes (ū ∨ v ∨ t) ∧ (u ∨ v̄ ∨ t) ∧ (u ∨ v ∨ t̄) ∧ (ū ∨ v̄ ∨ t̄).

()

To complete the specification of this factoring problem when, say, z = (10101)2,
we simply append the unary clauses (z5) ∧ (z̄4) ∧ (z3) ∧ (z̄2) ∧ (z1).

Logicians have known for a long time that computational steps can readily
be expressed as conjunctions of clauses. Rules such as () are now called Tseytin

encoding, after Gregory Tseytin (1966). Our representation of a small five-bit
factorization problem in 49+5 clauses may not seem very efficient; but we will see
shortly that m-bit by n-bit factorization corresponds to a satisfiability problem
with fewer than 6mn variables, and fewer than 20mn clauses of length 3 or less.

Even if the system has hundreds or thousands of formulas,

it can be put into conjunctive normal form “piece by piece,”

without any “multiplying out.”

— MARTIN DAVIS and HILARY PUTNAM (1958)

Suppose m ≤ n. The easiest way to set up Boolean chains for multiplication
is probably to use a scheme that goes back to John Napier’s Rabdologiæ (Edin-
burgh, 1617), pages 137–143, as modernized by Luigi Dadda [Alta Frequenza
34 (1964), 349–356]: First we form all mn products xi ∧ yj , putting every such
bit into bin [i + j], which is one of m + n “bins” that hold bits to be added
for a particular power of 2 in the binary number system. The bins will contain
respectively (0, 1, 2, . . . , m, m, . . . , m, . . . , 2, 1) bits at this point, with n−m+1
occurrences of “m” in the middle. Now we look at bin [k] for k = 2, 3, If
bin [k] contains a single bit b, we simply set zk−1 ← b. If it contains two bits
{b, b′}, we use a half adder to compute zk−1 ← b⊕ b′, c← b∧ b′, and we put the
carry bit c into bin [k + 1]. Otherwise bin [k] contains t ≥ 3 bits; we choose any
three of them, say {b, b′, b′′}, and remove them from the bin. With a full adder we
then compute r← b⊕b′⊕b′′ and c← 〈bb′b′′〉, so that b+b′+b′′ = r+2c; and we
put r into bin [k], c into bin [k+1]. This decreases t by 2, so eventually we will have
computed zk−1. Exercise 41 quantifies the exact amount of calculation involved.

September 23, 2015

10 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

first-in-first-out
FIFO: first in first out
last-in-first-out
stack
queue

factor fifo(m,n, z)
factor lifo (m,n, z)
factor rand (m,n, z, s)
Fermat
Fault testing
ATPG: Automatic test pattern generation, see
test patterns
circuit
circuit: see also Boolean chain
single-stuck-at fault
fanout

This method of encoding multiplication into clauses is quite flexible, since
we’re allowed to choose any three bits from bin [k] whenever four or more bits are
present. We could use a first-in-first-out strategy, always selecting bits from the
“rear” and placing their sum at the “front”; or we could work last-in-first-out,
essentially treating bin [k] as a stack instead of a queue. We could also select
the bits randomly, to see if this makes our SAT solver any happier. Later in this
section we’ll refer to the clauses that represent the factoring problem by calling
them factor fifo(m,n, z), factor lifo (m,n, z), or factor rand (m,n, z, s), respec-
tively, where s is a seed for the random number generator used to generate them.

It’s somewhat mind-boggling to realize that numbers can be factored without
using any number theory! No greatest common divisors, no applications of
Fermat’s theorems, etc., are anywhere in sight. We’re providing no hints to
the solver except for a bunch of Boolean formulas that operate almost blindly
at the bit level. Yet factors are found.

Of course we can’t expect this method to compete with the sophisticated
factorization algorithms of Section 4.5.4. But the problem of factoring does dem-
onstrate the great versatility of clauses. And its clauses can be combined with
other constraints that go well beyond any of the problems we’ve studied before.

Fault testing. Lots of things can go wrong when computer chips are manufac-
tured in the “real world,” so engineers have long been interested in constructing
test patterns to check the validity of a particular circuit. For example, suppose
that all but one of the logical elements are functioning properly in some chip; the
bad one, however, is stuck: Its output is constant, always the same regardless of
the inputs that it is given. Such a failure is called a single-stuck-at fault.

x1x2y1y2y3

z1z2z3z4z5

z1b1a2b2a3b3

z2c1sp

z3q

c2

z4z5

Fig. 34. A circuit that
corresponds to ().

Figure 34 illustrates a typical digital circuit in
detail: It implements the 15 Boolean operations
of () as a network that produces five output sig-
nals z5z4z3z2z1 from the five inputs y3y2y1x2x1.
In addition to having 15 AND,OR, and XOR gates,
each of which transforms two inputs into one out-
put, it has 15 “fanout” gates (indicated by dots
at junction points), each of which splits one input
into two outputs. As a result it comprises 50
potentially distinct logical signals, one for each
internal “wire.” Exercise 47 shows that a circuit
with m outputs, n inputs, and g conventional 2-
to-1 gates will have g + m − n fanout gates and
3g+2m− n wires. A circuit with w wires has 2w
possible single-stuck-at faults, namely w faults in
which the signal on a wire is stuck at 0 and w
more on which it is stuck at 1.

Table 1 shows 101 scenarios that are possible
when the 50 wires of Fig. 34 are activated by one
particular sequence of inputs, assuming that at

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 11

default
bitwise

Table 1

SINGLE-STUCK-AT FAULTS IN FIGURE 34 WHEN x2x1 = 11, y3y2y1 = 110

OKx1x
1
1x

2
1x

3
1x

4
1x2x

1
2x

2
2x

3
2x

4
2y1y

1
1y

2
1y2y

1
2y

2
2y3y

1
3y

2
3z1a2a

1
2a

2
2a3a

1
3a

2
3b1 b11 b21 b2 b12 b22 b3 b13 b23 z2 c1 c11 c21 s s1 s2 p z3 q c2 c12 c22 z4z5

x1←input 1 000111

x1
1←x1 1 01000111

x2
1←x1 1 0111000111

x3
1←x1

1 1 010111000111

x4
1←x1

1 1 01011111000111

x2←input 1 1111111111000111

x1
2←x2 1 111111111101000111

x2
2←x2 1 11111111110111000111

x3
2←x1

2 1 1111111111010111000111

x4
2←x1

2 1 111111111101011111000111

y1←input 0 0000000000000000000000011100

y1
1←y1 0 000000000000000000000100011100

y2
1←y1 0 00000000000000000000010000011100

y2←input 1 11111111111111111111111111000111

y1
2←y2 1 1111111111111111111111111101000111

y2
2←y2 1 111111111111111111111111110111000111

y3←input 1 11111111111111111111111111111111000111

y1
3←y3 1 1111111111111111111111111111111101000111

y2
3←y3 1 111111111111111111111111111111110111000111

z1←x2
1∧y

1
1 0 0000000000000000000001010000000000000000011100

a2←x3
1∧y

1
2 1 0101110111111111111111111101011111111111000111

a1
2←a2 1 010111011111111111111111110101111111111101000111

a2
2←a2 1 01011101111111111111111111010111111111110111000111

a3←x4
1∧y

1
3 1 0101111101111111111111111111111101011111111111000111

a1
3←a3 1 010111110111111111111111111111110101111111111101000111

a2
3←a3 1 01011111011111111111111111111111010111111111110111000111

b1←x2
2∧y

2
1 0 000000000000000000000100010000000000000000000000000000011100

b11←b1 0 00000000000000000000010001000000000000000000000000000100011100

b21←b1 0 0000000000000000000001000100000000000000000000000000010000011100

b2←x3
2∧y

2
2 1 1111111111010111011111111101110111111111111111111111111111000111

b12←b2 1 111111111101011101111111110111011111111111111111111111111101000111

b22←b2 1 11111111110101110111111111011101111111111111111111111111110111000111111111111111111111111111111111111111

b3←x4
2∧y

2
3 1 11111111110101111101111111111111011101111111111111111111111111110001111111111111111111111111111111111111

b13←b3 1 11111111110101111101111111111111011101111111111111111111111111110100011111111111111111111111111111111111

b23←b3 1 11111111110101111101111111111111011101111111111111111111111111110111000111111111111111111111111111111111

z2←a1
2⊕b11 1 01011101111111111111101110010111111111110101111111111010111111111111110001111111111111111111111111111111

c1←a2
2∧b

2
1 0 00000000000000000000010001000000000000000000000000000100010000000000000000011100000000000000000000000000

c11←c1 0 00000000000000000000010001000000000000000000000000000100010000000000000001000111000000000000000000000000

c21←c1 0 00000000000000000000010001000000000000000000000000000100010000000000000001000001110000000000000000000000

s←a1
3⊕b12 0 10100000101010001000000000100010101000000000001010000000001010000000000000000000011100000000000000000000

s1←s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001000111000000000000000000

s2←s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001000001110000000000000000

p←a2
3∧b

2
2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111100011111111111111111

z3←s1⊕c11 0 10100000101010001000010001100010101000000000001010000100011010000000000001010001010000000111000000000000

q←s2∧c21 0 0001110000000000

c2←p∨q 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111100011111111111

c12←c2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111101000111111111

c22←c2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111101110001111111

z4←b13⊕c12 0 10100000100000001010000000100010001010000000001000100000001000101010000000000000000010000010100000011100

z5←b23∧c
2
2 1 01011111010101110101111111011101010101111111110111011111110111010111011111111111111101111101110111000111

most one stuck-at fault is present. The column headed OK shows the correct
behavior of the Boolean chain (which nicely multiplies x = 3 by y = 6 and
obtains z = 18). We can call these the “default” values, because, well, they have
no faults. The other 100 columns show what happens if all but one of the 50
wires have error-free signals; the two columns under b12, for example, illustrate
the results when the rightmost wire that fans out from gate b2 is stuck at 0
or 1. Each row is obtained bitwise from previous rows or inputs, except that the
boldface digits are forced. When a boldface value agrees with the default, its
entire column is correct; otherwise errors might propagate. All values above the
bold diagonal match the defaults.

If we want to test a chip that has n inputs and m outputs, we’re allowed
to apply test patterns to the inputs and see what outputs are produced. Close

September 23, 2015

12 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Boolean evaluation

prod
Stanford GraphBase
multiplies
parallel multiplier
factor fifo
fanout gates
wires
random
pi, as source of random data
e, as source of random data
bitwise operations

inspection shows, for instance, that the pattern considered in Table 1 doesn’t
detect an error when q is stuck at 1, even though q should be 0, because all five
output bits z5z4z3z2z1 are correct in spite of that error. In fact, the value of
c1 ← p ∨ q is unaffected by a bad q, because p = 1 in this example. Similarly,
the fault “x21 stuck at 0” doesn’t propagate into z1 ← x21 ∧ y11 because y11 = 0.
Altogether 44 faults, not 50, are discovered by this particular test pattern.

All of the relevant repeatable faults, whether they’re single-stuck-at or wildly
complicated, could obviously be discovered by testing all 2n possible patterns.
But that’s out of the question unless n is quite small. Fortunately, testing isn’t
hopeless, because satisfactory results are usually obtained in practice if we do
have enough test patterns to detect all of the detectable single-stuck-at faults.
Exercise 49 shows that just five patterns suffice to certify Fig. 34 by this criterion.

The detailed analysis in exercise 49 also shows, surprisingly, that one of the
faults, namely “s2 stuck at 1,” cannot be detected! Indeed, an erroneous s2 can
propagate to an erroneous q only if c21 = 1, and that forces x1 = x2 = y1 = y2 = 1;
only two possibilities remain, and neither y3 = 0 nor y3 = 1 reveals the fault.
Consequently we can simplify the circuit by removing gate q ; the chain ()
becomes shorter, with “q ← s ∧ c1, c2 ← p∨ q” replaced by “c2 ← p∨ c1.”

Of course Fig. 34 is just a tiny little circuit, intended only to introduce the
concept of stuck-at faults. Test patterns are needed for the much larger circuits
that arise in real computers; and we will see that SAT solvers can help us to find
them. Consider, for example, the generic multiplier circuit prod (m,n), which is
part of the Stanford GraphBase. It multiplies an m-bit number x by an n-bit
number y, producing an (m + n)-bit product z. Furthermore, it’s a so-called
“parallel multiplier,” with delay time O(log(m+n)); thus it’s much more suited
to hardware design than methods like the factor fifo schemes that we considered
above, because those circuits need Ω(m+ n) time for carries to propagate.

Let’s try to find test patterns that will smoke out all of the single-stuck-at
faults in prod (32, 32), which is a circuit of depth 33 that has 64 inputs, 64 out-
puts, 3660 AND gates, 1203 OR gates, 2145 XOR gates, and (therefore) 7008 fan-
out gates and 21,088 wires. How can we guard it against 42,176 different faults?

Before we construct clauses to facilitate that task, we should realize that
most of the single-stuck-at faults are easily detected by choosing patterns at
random, since faults usually cause big trouble and are hard to miss. Indeed,
choosing x = #3243F6A8 and y = #885A308D more or less at random already
eliminates 14,733 cases; and (x, y) = (#2B7E1516, #28AED2A6) eliminates 6,918
more. We might as well keep doing this, because bitwise operations such as those
in Table 1 are fast. Experience with the smaller multiplier in Fig. 34 suggests
that we get more effective tests if we bias the inputs, choosing each bit to be 1
with probability .9 instead of .5 (see exercise 49). A million such random inputs
will then generate, say, 243 patterns that detect all but 140 of the faults.

Our remaining job, then, is essentially to find 140 needles in a haystack of
size 264, after having picked 42,176 − 140 = 42,036 pieces of low-hanging fruit.
And that’s where a SAT solver is useful. Consider, for example, the analogous
but simpler problem of finding a test pattern for “q stuck at 0” in Fig. 34.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 13

tarnished
active path
Larrabee
AND
OR
XOR
Fanout gates
unit clause
SAT solver
Stanford GraphBase
GB GATES

We can use the 49 clauses F derived from () to represent the well-behaved
circuit; and we can imagine corresponding clauses F ′ that represent the faulty
computation, using “primed” variables z′1, a

′
2, . . . , z

′
5. Thus F ′ begins with

(x1∨ z̄′1)∧(y1∨ z̄′1) and ends with (b̄′3∨ c̄′2∨z′5); it’s like F except that the clauses
representing q′ ← s′∧ c′1 in () are changed to simply q̄′ (meaning that q′ is
stuck at 0). Then the clauses of F and F ′, together with a few more clauses to
state that z1 6= z′1 or · · · or z5 6= z′5, will be satisfiable only by variables for which
(y3y2y1)2 × (x2x1)2 is a suitable test pattern for the given fault.

This construction of F ′ can obviously be simplified, because z′1 is identical
to z1; any signal that differs from the correct value must be located “downstream”
from the one-and-only fault. Let’s say that a wire is tarnished if it is the faulty
wire or if at least one of its input wires is tarnished. We introduce new variables
g′ only for wires g that are tarnished. Thus, in our example, the only clauses F ′

that are needed to extend F to a faulty companion circuit are q̄′ and the clauses
that correspond to c′2 ← p ∨ q′, z′4 ← b3 ⊕ c′2, z′5 ← b3 ∧ c′2.

Moreover, any fault that is revealed by a test pattern must have an active

path of wires, leading from the fault to an output; all wires on this path must
carry a faulty signal. Therefore Tracy Larrabee [IEEE Trans. CAD-11 (1992),
4–15] decided to introduce additional “sharped” variables g♯ for each tarnished
wire, meaning that g lies on the active path. The two clauses

(ḡ♯ ∨ g ∨ g′) ∧ (ḡ♯ ∨ ḡ ∨ ḡ′) ()

ensure that g 6= g′ whenever g is part of that path. Furthermore we have (v̄♯∨g♯)
whenever g is an AND, OR, or XOR gate with tarnished input v. Fanout gates
are slightly tricky in this regard: When wires g1 and g2 fan out from a tarnished
wire g, we need variables g1♯ and g2♯ as well as g♯; and we introduce the clause

(ḡ♯ ∨ g1♯ ∨ g2♯) ()

to specify that the active path takes at least one of the two branches.
According to these rules, our example acquires the new variables q♯, c♯2, c

1♯
2 ,

c2♯2 , z♯4, z
♯
5, and the new clauses

(q̄♯∨q∨q′)∧ (q̄♯∨ q̄∨ q̄′)∧ (q̄♯∨c♯2)∧ (c̄♯2∨c2∨c′2)∧ (c̄♯2∨ c̄2∨ c̄′2)∧ (c̄♯2∨c1♯2 ∨c2♯2)∧
(c̄1♯2 ∨z♯4)∧ (z̄♯4∨z4∨z′4)∧ (z̄♯4∨ z̄4∨ z̄′4)∧ (c̄2♯2 ∨z♯5)∧ (z̄♯5∨z5∨z′5) ∧ (z̄♯5∨ z̄5∨ z̄′5).
The active path begins at q, so we assert the unit clause (q♯); it ends at a

tarnished output, so we also assert (z♯4 ∨ z♯5). The resulting set of clauses will
find a test pattern for this fault if and only if the fault is detectable. Larrabee
found that such active-path variables provide important clues to a SAT solver
and significantly speed up the solution process.

Returning to the large circuit prod (32, 32), one of the 140 hard-to-test faults
is “W 26

21 stuck at 1,” where W 26
21 denotes the 26th extra wire that fans out from

the OR gate called W21 in §75 of the Stanford GraphBase program GB GATES;
W 26

21 is an input to gate b4040 ← d1940 ∧W 26
21 in §80 of that program. Test patterns

for that fault can be characterized by a set of 23,194 clauses in 7,082 variables

September 23, 2015

14 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Knuth
GB GATES
number theory
Aurifeuillian
learning a Boolean function–
Boolean function–
DNF
disjunctive normal form

(of which only 4 variables are “primed” and 4 are “sharped”). Fortunately
the solution (x, y) = (#7F13FEDD, #5FE57FFE) was found rather quickly in the
author’s experiments; and this pattern also killed off 13 of the other cases, so
the score was now “14 down and 126 to go”!

The next fault sought was “A36,2
5 stuck at 1,” where A36,2

5 is the second
extra wire to fan out from the AND gate A36

5 in §72 of GB GATES (an input
to R36

11 ← A36,2
5 ∧ R35,2

1). This fault corresponds to 26,131 clauses on 8,342
variables; but the SAT solver took a quick look at those clauses and decided
almost instantly that they are unsatisfiable. Therefore the fault is undetectable,
and the circuit prod (32, 32) can be simplified by setting R36

11 ← R35,2
1 . A closer

look showed, in fact, that clauses corresponding to the Boolean equations

x = y ∧ z, y = v ∧ w, z = t ∧ u, u = v ⊕ w

were present (where t = R44
13, u = A45

58, v = R44
4 , w = A45

14, x = R46
23, y = R45

13,
z = R45

19); these clauses force x = 0. Therefore it was not surprising to find
that the list of unresolved faults also included R46

23, R
46,1
23 and R46,2

23 stuck at 0.
Altogether 26 of the 140 faults undetected by random inputs turned out to be
absolutely undetectable; and only one of these, namely “Q46

26 stuck at 0,” required
a nontrivial proof of undetectability.

Some of the 126−26 = 100 faults remaining on the to-do list turned out to be
significant challenges for the SAT solver. While waiting, the author therefore had
time to take a look at a few of the previously found solutions, and noticed that
those patterns themselves were forming a pattern! Sure enough, the extreme por-
tions of this large and complicated circuit actually have a fairly simple structure,
stuck-at-fault-wise. Hence number theory came to the rescue: The factorization
#87FBC059 × #F0F87817 = 263 − 1 solved many of the toughest challenges,
some of which occur with probability less than 2−34 when 32-bit numbers are
multiplied; and the “Aurifeuillian” factorization (231− 216 +1)(231 +216 +1) =
262 + 1, which the author had known for more than forty years (see Eq. 4.5.4–
()), polished off most of the others.

The bottom line (see exercise 51) is that all 42,150 of the detectable single-
stuck-at faults of the parallel multiplication circuit prod (32, 32) can actually be
detected with at most 196 well-chosen test patterns.

Learning a Boolean function. Sometimes we’re given a “black box” that
evaluates a Boolean function f(x1, . . . , xN). We have no way to open the box,
but we suspect that the function is actually quite simple. By plugging in various
values for x = x1 . . . xN , we can observe the box’s behavior and possibly learn the
hidden rule that lies inside. For example, a secret function of N = 20 Boolean
variables might take on the values shown in Table 2, which lists 16 cases where
f(x) = 1 and 16 cases where f(x) = 0.

Suppose we assume that the function has a DNF (disjunctive normal form)
with only a few terms. We’ll see in a moment that it’s easy to express such an
assumption as a satisfiability problem. And when the author constructed clauses
corresponding to Table 2 and presented them to a SAT solver, he did in fact learn

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 15

Table 2

VALUES TAKEN ON BY AN UNKNOWN FUNCTION

Cases where f(x) = 1

x1x2x3x4x5x6x7x8x9 . . . x20

1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1
1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1
0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1
0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0
0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0
1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0
1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0
0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 1
1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1

Cases where f(x) = 0

x1x2x3x4x5x6x7x8x9 . . . x20

1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1
0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0
1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0
0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1
1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1
0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1
1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1

almost immediately that a very simple formula is consistent with all of the data:

f(x1, . . . , x20) = x̄2x̄3x̄10 ∨ x̄6x̄10x̄12 ∨ x8x̄13x̄15 ∨ x̄8x10x̄12. ()

This formula was discovered by constructing clauses in 2MN variables pi,j
and qi,j for 1 ≤ i ≤ M and 1 ≤ j ≤ N , where M is the maximum number of
terms allowed in the DNF (here M = 4) and where

pi,j = [term i contains xj], qi,j = [term i contains x̄j]. ()

If the function is constrained to equal 1 at P specified points, we also use auxiliary
variables zi,k for 1 ≤ i ≤M and 1 ≤ k ≤ P , one for each term at every such point.

Table 2 says that f(1, 1, 0, 0, . . . , 1) = 1, and we can capture this specification
by constructing the clause

(z1,1 ∨ z2,1 ∨ · · · ∨ zM,1) ()

together with the clauses

(z̄i,1∨ q̄i,1) ∧ (z̄i,1∨ q̄i,2) ∧ (z̄i,1∨ p̄i,3) ∧ (z̄i,1∨ p̄i,4) ∧ · · · ∧ (z̄i,1∨ q̄i,20) ()

for 1 ≤ i ≤M . Translation: () says that at least one of the terms in the DNF

must evaluate to true; and () says that, if term i is true at the point 1100 . . .1,
it cannot contain x̄1 or x̄2 or x3 or x4 or · · · or x̄20.

Table 2 also tells us that f(1, 0, 1, 0, . . . , 1) = 0. This specification corre-
sponds to the clauses

(qi,1 ∨ pi,2 ∨ qi,3 ∨ pi,4 ∨ · · · ∨ qi,20) ()

for 1 ≤ i ≤ M . (Each term of the DNF must be zero at the given point; thus
either x̄1 or x2 or x̄3 or x4 or · · · or x̄20 must be present for each value of i.)

In general, every case where f(x) = 1 yields one clause like () of lengthM,
plus MN clauses like () of length 2. Every case where f(x) = 0 yields M
clauses like () of length N . We use qi,j when xj = 1 at the point in question,

September 23, 2015

16 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Kamath
Karmarkar
Ramakrishnan
Resende
fallacious
training set
author
bounded model checking–
verification
model checking+
transition relation
dynamical system, discrete
bug

and pi,j when xj = 0, for both () and (). This construction is due to
A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende
[Mathematical Programming 57 (1992), 215–238], who presented many exam-
ples. From Table 2, with M = 4, N = 20, and P = 16, it generates 1360 clauses
of total length 3904 in 224 variables; a SAT solver then finds a solution with
p1,1 = q1,1 = p1,2 = 0, q1,2 = 1, . . . , leading to ().

The simplicity of () makes it plausible that the SAT solver has indeed
psyched out the true nature of the hidden function f(x). The chance of agreeing
with the correct value 32 times out of 32 is only 1 in 232, so we seem to have
overwhelming evidence in favor of that equation.

But no: Such reasoning is fallacious. The numbers in Table 2 actually arose
in a completely different way, and Eq. () has essentially no credibility as a
predictor of f(x) for any other values of x! (See exercise 53.) The fallacy comes
from the fact that short-DNF Boolean functions of 20 variables are not at all
rare; there are many more than 232 of them.

On the other hand, when we do know that the hidden function f(x) has
a DNF with at most M terms (although we know nothing else about it), the
clauses ()–() give us a nice way to discover those terms, provided that we
also have a sufficiently large and unbiased “training set” of observed values.

For example, let’s assume that () actually is the function in the box. If
we examine f(x) at 32 random points x, we don’t have enough data to make
any deductions. But 100 random training points will almost always home in on
the correct solution (). This calculation typically involves 3942 clauses in 344
variables; yet it goes quickly, needing only about 100 million accesses to memory.

One of the author’s experiments with a 100-element training set yielded

f̂(x1, . . . , x20) = x̄2x̄3x̄10 ∨ x3x̄6x̄10x̄12 ∨ x8x̄13x̄15 ∨ x̄8x10x̄12, ()

which is close to the truth but not quite exact. (Exercise 59 proves that f̂(x)
is equal to f(x) more than 97% of the time.) Further study of this example
showed that another nine training points were enough to deduce f(x) uniquely,
thus obtaining 100% confidence (see exercise 61).

Bounded model checking. Some of the most important applications of SAT
solvers in practice are related to the verification of hardware or software, because
designers generally want some kind of assurance that particular implementations
correctly meet their specifications.

A typical design can usually be modeled as a transition relation between
Boolean vectors X = x1 . . . xn that represent the possible states of a system. We
write X → X ′ if state X at time t can be followed by state X ′ at time t + 1.
The task in general is to study sequences of state transitions

X0 → X1 → X2 → · · · → Xr, ()

and to decide whether or not there are sequences that have special properties.
For example, we hope that there’s no such sequence for which X0 is an “initial
state” and Xr is an “error state”; otherwise there’d be a bug in the design.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 17

auxiliary variables
Tseytin encodings
model
Conway
Life
bitmaps
cellular automaton
no-player game
universal
Berlekamp
Guy
BDD+

→ → →

Fig. 35. Conway’s rule () defines these three successive transitions.

Questions like this are readily expressed as satisfiability problems: Each
state Xt is a vector of Boolean variables xt1 . . . xtn, and each transition relation
can be represented by a set of m clauses T (Xt, Xt+1) that must be satisfied.
These clauses T (X,X ′) involve 2n variables {x1, . . . , xn, x′1, . . . , x′n}, together
with q auxiliary variables {y1, . . . , yq} that might be needed to express Boolean
formulas in clause form as we did with the Tseytin encodings in (). Then the
existence of sequence () is equivalent to the satisfiability of mr clauses

T (X0, X1) ∧ T (X1, X2) ∧ · · · ∧ T (Xr−1, Xr) ()

in the n(r+1)+qr variables {xtj | 0≤ t≤r, 1≤j≤n}∪{ytk | 0≤ t<r, 1≤k≤q}.
We’ve essentially “unrolled” the sequence () into r copies of the transition
relation, using variables xtj for state Xt and ytk for the auxiliary quantities
in T (Xt, Xt+1). Additional clauses can now be added to specify constraints on
the initial state X0 and/or the final state Xr, as well as any other conditions
that we want to impose on the sequence.

This general setup is called “bounded model checking,” because we’re using
it to check properties of a model (a transition relation), and because we’re
considering only sequences that have a bounded number of transitions, r.

John Conway’s fascinating Game of Life provides a particularly instructive
set of examples that illustrate basic principles of bounded model checking. The
states X of this game are two-dimensional bitmaps, corresponding to arrays of
square cells that are either alive (1) or dead (0). Every bitmap X has a unique
successor X ′, determined by the action of a simple 3 × 3 cellular automaton:
Suppose cell x has the eight neighbors {xNW, xN, xNE, xW, xE, xSW, xS, xSE}, and
let ν = xNW+xN+xNE+xW+xE+xSW+xS+xSE be the number of neighbors that
are alive at time t. Then x is alive at time t+ 1 if and only if either (a) ν = 3,
or (b) ν = 2 and x is alive at time t. Equivalently, the transition rule

x′ = [2<xNW + xN + xNE + xW + 1
2x+ xE + xSW + xS + xSE< 4] ()

holds at every cell x. (See, for example, Fig. 35, where the live cells are black.)
Conway called Life a “no-player game,” because it involves no strategy:

Once an initial state X0 has been set up, all subsequent states X1, X2, . . . are
completely determined. Yet, in spite of the simple rules, he also proved that Life
is inherently complicated and unpredictable, indeed beyond human comprehen-
sion, in the sense that it is universal: Every finite, discrete, deterministic system,
however complex, can be simulated faithfully by some finite initial state X0

of Life. [See Berlekamp, Conway, and Guy, Winning Ways (2004), Chapter 25.]
In exercises 7.1.4–160 through 162, we’ve already seen some of the amazing

Life histories that are possible, using BDD methods. And many further aspects
of Life can be explored with SAT methods, because SAT solvers can often deal

September 23, 2015

18 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

encoded
chessboard
grid
mobile

with many more variables. For example, Fig. 35 was discovered by using 7×15 =
105 variables for each state X0, X1, X2, X3. The values of X3 were obviously
predetermined; but the other 105× 3 = 315 variables had to be computed, and
BDDs can’t handle that many. Moreover, additional variables were introduced
to ensure that the initial state X0 would have as few live cells as possible.

Here’s the story behind Fig. 35, in more detail: Since Life is two-dimensional,
we use variables xij instead of xj to indicate the states of individual cells, and xtij
instead of xtj to indicate the states of cells at time t. We generally assume that
xtij = 0 for all cells outside of a given finite region, although the transition rule
() can allow cells that are arbitrarily far away to become alive as Life goes on.
In Fig. 35 the region was specified to be a 7× 15 rectangle at each unit of time.
Furthermore, configurations with three consecutive live cells on a boundary edge
were forbidden, so that cells “outside the box” wouldn’t be activated.

The transitions T (Xt, Xt+1) can be encoded without introducing additional
variables, but only if we introduce 190 rather long clauses for each cell not on the
boundary. There’s a better way, based on the binary tree approach underlying
() and () above, which requires only about 63 clauses of size ≤ 3, together
with about 14 auxiliary variables per cell. This approach (see exercise 65) takes
advantage of the fact that many intermediate calculations can be shared. For
example, cells x and xW have four neighbors {xNW, xN, xSW, xS} in common; so
we need to compute xNW + xN + xSW + xS only once, not twice.

The clauses that correspond to a four-step sequence X0 → X1 → X2 →
X3 → X4 leading to X4 = turn out to be unsatisfiable without going
outside of the 7 × 15 frame. (Only 10 gigamems of calculation were needed to
establish this fact, using Algorithm C below, even though roughly 34000 clauses
in 9000 variables needed to be examined!) So the next step in the preparation
of Fig. 35 was to try X3 = ; and this trial succeeded. Additional clauses,
which permitted X0 to have at most 39 live cells, led to the solution shown, at a
cost of about 17 gigamems; and that solution is optimum, because a further run
(costing 12 gigamems) proved that there’s no solution with at most 38.

Let’s look for a moment at some of the patterns that can occur on a
chessboard, an 8× 8 grid. Human beings will never be able to contemplate more
than a tiny fraction of the 264 states that are possible; so we can be fairly sure
that “Lifenthusiasts” haven’t already explored every tantalizing configuration
that exists, even on such a small playing field.

One nice way to look for a sequence of interesting Life transitions is to assert
that no cell stays alive more than four steps in a row. Let us therefore say that
a mobile Life path is a sequence of transitions X0 → X1 → · · · → Xr with the
additional property that we have

(x̄tij ∨ x̄(t+1)ij ∨ x̄(t+2)ij ∨ x̄(t+3)ij ∨ x̄(t+4)ij), for 0 ≤ t ≤ r − 4. ()

To avoid trivial solutions we also insist thatXr is not entirely dead. For example,
if we impose rule () on a chessboard, with xtij permitted to be alive only if
1 ≤ i, j ≤ 8, and with the further condition that at most five cells are alive in each

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 19

Guy
glider
population
Knuth
symmetry
oscillator
cyclic patterns
still life
Methuselahs
Gardner
stable

generation, a SAT solver can quickly discover interesting mobile paths such as

→ → → → → → → → → · · · , ()

which last quite awhile before leaving the board. And indeed, the five-celled
object that moves so gracefully in this path is R. K. Guy’s famous glider (1970),
which is surely the most interesting small creature in Life’s universe. The glider
moves diagonally, recreating a shifted copy of itself after every four steps.

Interesting mobile paths appear also if we restrict the population at each
time to {6, 7, 8, 9, 10} instead of {1, 2, 3, 4, 5}. For example, here are some of the
first such paths that the author’s solver came up with, having length r = 8:

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → .

These paths illustrate the fact that symmetry can be gained, but never lost, as
Life evolves deterministically. Marvelous designs are spawned in the process.
In each of these sequences the next bitmap, X9, would break our ground rules:
The population immediately after X8 grows to 12 in the first and last examples,
but shrinks to 5 in the second-from-last; and the path becomes immobile in the
other two. Indeed, we have X5 = X7 in the second example, hence X6 = X8

and X7 = X9, etc. Such a repeating pattern is called an oscillator of period 2.
The third example ends with an oscillator of period 1, known as a “still life.”

What are the ultimate destinations of these paths? The first one becomes
still, with X69 = X70; and the fourth becomes very still, with X12 = 0! The
fifth is the most fascinating of the group, because it continues to produce ever
more elaborate valentine shapes, then proceeds to dance and sparkle, until finally
beginning to twinkle with period 2 starting at time 177. Thus its members X2

through X7 qualify as “Methuselahs,” defined by Martin Gardner as “Life pat-
terns of population less than 10 that do not become stable within 50 generations.”
(A predictable pattern, like the glider or an oscillator, is called stable.)

SAT solvers are basically useless for the study of Methuselahs, because the
state space becomes too large. But they are quite helpful when we want to
illuminate many other aspects of Life, and exercises 66–85 discuss some notable
instances. We will consider one more instructive example before moving on,

September 23, 2015

20 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

eaters
Gosper
parallel processes
Alice–
Bob–
“maybe” state
nondeterministic

namely an application to “eaters.” Consider a Life path of the form

X0 = →
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

→
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

→
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

→ → = X5, ()

where the gray cells form a still life and the cells of X1, X2, X3 are unknown.
Thus X4 = X5 and X0 = X5 + glider. Furthermore we require that the still
life X5 does not interact with the glider’s parent, ; see exercise 77. The idea
is that a glider will be gobbled up if it happens to glide into this particular still
life, and the still life will rapidly reconstitute itself as if nothing had happened.

Algorithm C almost instantaneously (well, after about 100 megamems) finds

→ → → → → , ()

the four-step eater first observed in action by R. W. Gosper in 1971.

Applications to mutual exclusion. Let’s look now at how bounded model
checking can help us to prove that algorithms are correct. (Or incorrect.) Some
of the most challenging issues of verification arise when we consider parallel
processes that need to synchronize their concurrent behavior. To simplify our
discussion it will be convenient to tell a little story about Alice and Bob.

Alice and Bob are casual friends who share an apartment. One of their joint
rooms is special: When they’re in that critical room, which has two doors, they
don’t want the other person to be present. Furthermore, being busy people, they
don’t want to interrupt each other needlessly. So they agree to control access to
the room by using an indicator light, which can be switched on or off.

The first protocol they tried can be characterized by symmetrical algorithms:

A0. Maybe go to A1.
A1. If l go to A1, else to A2.
A2. Set l ← 1, go to A3.
A3. Critical, go to A4.
A4. Set l ← 0, go to A0.

B0. Maybe go to B1.
B1. If l go to B1, else to B2.
B2. Set l← 1, go to B3.
B3. Critical, go to B4.
B4. Set l← 0, go to B0.

()

At any instant of time, Alice is in one of five states, {A0,A1,A2,A3,A4}, and
the rules of her program show how that state might change. In state A0 she isn’t
interested in the critical room; but she goes to A1 when she does wish to use it.
She reaches that objective in state A3. Similar remarks apply to Bob. When
the indicator light is on (l = 1), they wait until the other person has exited the
room and switched the light back off (l = 0).

Alice and Bob don’t necessarily operate at the same speed. But they’re
allowed to dawdle only when in the “maybe” state A0 or B0. More precisely, we
model the situation by converting every relevant scenario into a discrete sequence
of state transitions. At every time t = 0, 1, 2, . . . , either Alice or Bob (but not
both) will perform the command associated with their current state, thereby per-
haps changing to a different state at time t+1. This choice is nondeterministic.

Only four kinds of primitive commands are permitted in the procedures we
shall study, all of which are illustrated in (): (1) “Maybe go to s”; (2) “Critical,

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 21

exclusion clauses
bumped
initial state
critical section

go to s”; (3) “Set v ← b, go to s”; and (4) “If v go to s1, else to s0”. Here s
denotes a state name, v denotes a shared Boolean variable, and b is 0 or 1.

Unfortunately, Alice and Bob soon learned that protocol () is unreliable:
One day she went from A1 to A2 and he went from B1 to B2, before either of
them had switched the indicator on. Embarrassment (A3 and B3) followed.

They could have discovered this problem in advance, if they’d converted the
state transitions of () into clauses for bounded model checking, as in (), then
applied a SAT solver. In this case the vector Xt that corresponds to time t con-
sists of Boolean variables that encode each of their current states, as well as the
current value of l. We can, for example, have eleven variables A0t, A1t, A2t, A3t,
A4t, B0t, B1t, B2t, B3t, B4t, lt, together with ten binary exclusion clauses (A0t∨
A1t), (A0t ∨ A2t), . . . , (A3t ∨ A4t) to ensure that Alice is in at most one state,
and with ten similar clauses for Bob. There’s also a variable @t, which is true or
false depending on whether Alice or Bob executes their program step at time t.
(We say that Alice was “bumped” if @t = 1, and Bob was bumped if @t = 0.)

If we start with the initial state X0 defined by unit clauses

A00 ∧ A10 ∧ A20 ∧ A30 ∧ A40 ∧ B00 ∧ B10 ∧ B20 ∧ B30 ∧ B40 ∧ l̄0, ()

the following clauses for 0 ≤ t < r (discussed in exercise 87) will emulate the
first r steps of every legitimate scenario defined by ():

(@t ∨ A0t ∨ A0t+1)
(@t ∨ A1t ∨ A1t+1)
(@t ∨ A2t ∨ A2t+1)
(@t ∨ A3t ∨ A3t+1)
(@t ∨ A4t ∨ A4t+1)
(@t ∨ B0t ∨ B0t+1)
(@t ∨ B1t ∨ B1t+1)
(@t ∨ B2t ∨ B2t+1)
(@t ∨ B3t ∨ B3t+1)
(@t ∨ B4t ∨ B4t+1)

(@t ∨ A0t ∨ A0t+1 ∨ A1t+1)
(@t ∨ A1t ∨ l̄t ∨ A1t+1)
(@t ∨ A1t ∨ lt ∨ A2t+1)
(@t ∨ A2t ∨ A3t+1)
(@t ∨ A2t ∨ lt+1)
(@t ∨ A3t ∨ A4t+1)
(@t ∨ A4t ∨ A0t+1)
(@t ∨ A4t ∨ l̄t+1)
(@t ∨ lt ∨ A2t ∨ A4t ∨ l̄t+1)
(@t ∨ l̄t ∨ A2t ∨ A4t ∨ lt+1)

(@t ∨ B0t ∨ B0t+1 ∨ B1t+1)
(@t ∨ B1t ∨ l̄t ∨ B1t+1)
(@t ∨ B1t ∨ lt ∨ B2t+1)
(@t ∨ B2t ∨ B3t+1)
(@t ∨ B2t ∨ lt+1)
(@t ∨ B3t ∨ B4t+1)
(@t ∨ B4t ∨ B0t+1)
(@t ∨ B4t ∨ l̄t+1)
(@t ∨ lt ∨ B2t ∨ B4t ∨ l̄t+1)
(@t ∨ l̄t ∨ B2t ∨ B4t ∨ lt+1)

()

If we now add the unit clauses (A3r) and (B3r), the resulting set of 13 + 50r
clauses in 11+12r variables is readily satisfiable when r = 6, thereby proving that
the critical room might indeed be jointly occupied. (Incidentally, standard termi-
nology for mutual exclusion protocols would say that “two threads concurrently
execute a critical section”; but we shall continue with our roommate metaphor.)

Back at the drawing board, one idea is to modify () by letting Alice use
the room only when l = 1, but letting Bob in when l = 0:

A0. Maybe go to A1.
A1. If l go to A2, else to A1.
A2. Critical, go to A3.
A3. Set l ← 0, go to A0.

B0. Maybe go to B1.
B1. If l go to B1, else to B2.
B2. Critical, go to B3.
B3. Set l← 1, go to B0.

()

Computer tests with r = 100 show that the corresponding clauses are unsatisfi-
able; thus mutual exclusion is apparently guaranteed by ().

September 23, 2015

22 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

deadlock
reboot
Dijkstra
starvation

But () is a nonstarter, because it imposes an intolerable cost: Alice can’t
use the room k times until Bob has already done so! Scrap that.

How about installing another light, so that each person controls one of them?

A0. Maybe go to A1.
A1. If b go to A1, else to A2.
A2. Set a← 1, go to A3.
A3. Critical, go to A4.
A4. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. If a go to B1, else to B2.
B2. Set b← 1, go to B3.
B3. Critical, go to B4.
B4. Set b← 0, go to B0.

()

No; this suffers from the same defect as (). But maybe we can cleverly switch
the order of steps 1 and 2:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A2, else to A3.
A3. Critical, go to A4.
A4. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B2, else to B3.
B3. Critical, go to B4.
B4. Set b← 0, go to B0.

()

Yes! Exercise 95 proves easily that this protocol does achieve mutual exclusion.
Alas, however, a new problem now arises, namely the problem known as

“deadlock” or “livelock.” Alice and Bob can get into states A2 and B2, after
which they’re stuck—each waiting for the other to go critical.

In such cases they could agree to “reboot” somehow. But that would be
a cop-out; they really seek a better solution. And they aren’t alone: Many
people have struggled with this surprisingly delicate problem over the years, and
several solutions (both good and bad) appear in the exercises below. Edsger
Dijkstra, in some pioneering lecture notes entitled Cooperating Sequential Pro-
cesses [Technological University Eindhoven (September 1965), §2.1], thought of
an instructive way to improve on ():

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A3, else to A4.
A3. Set a← 0, go to A1.
A4. Critical, go to A5.
A5. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B3, else to B4.
B3. Set b← 0, go to B1.
B4. Critical, go to B5.
B5. Set b← 0, go to B0.

()

But he realized that this too is unsatisfactory, because it permits scenarios in
which Alice, say, might wait forever while Bob repeatedly uses the critical room.
(Indeed, if Alice and Bob are in states A1 and B2, she might go to A2, A3,
then A1, thereby letting him run to B4, B5, B0, B1, and B2; they’re back where
they started, yet she’s made no progress.)

The existence of this problem, called starvation, can also be detected via
bounded model checking. The basic idea (see exercise 91) is that starvation
occurs if and only if there is a loop of transitions

X0 → X1 → · · · → Xp → Xp+1 → · · · → Xr = Xp ()

such that (i) Alice and Bob each are bumped at least once during the loop; and
(ii) at least one of them is never in a “maybe” or “critical” state during the loop.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 23

Peterson
simple path
longest simple path
invariants

And those conditions are easily encoded into clauses, because we can identify
the variables for time r with the variables for time p, and we can append the
clauses

(@p ∨@p+1 ∨ · · · ∨@r−1) ∧ (@p ∨@p+1 ∨ · · · ∨@r−1) ()

to guarantee (i). Condition (ii) is simply a matter of appending unit clauses; for
example, to test whether Alice can be starved by (), the relevant clauses are
A0p ∧ A0p+1 ∧ · · · ∧ A0r−1 ∧ A4p ∧ A4p+1 ∧ · · · ∧ A4r−1.

The deficiencies of (), (), and () can all be viewed as instances of
starvation, because () and () are satisfiable (see exercise 90). Thus we
can use bounded model checking to find counterexamples to any unsatisfactory
protocol for mutual exclusion, either by exhibiting a scenario in which Alice and
Bob are both in the critical room or by exhibiting a feasible starvation cycle ().

Of course we’d like to go the other way, too: If a protocol has no coun-
terexamples for, say, r = 100, we still might not know that it is really reliable;
a counterexample might exist only when r is extremely large. Fortunately there
are ways to obtain decent upper bounds on r, so that bounded model checking
can be used to prove correctness as well as to demonstrate incorrectness. For
example, we can verify the simplest known correct solution to Alice and Bob’s
problem, a protocol by G. L. Peterson [Information Proc. Letters 12 (1981), 115–
116], who noticed that a careful combination of () and () actually suffices:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. Set l← 0, go to A3.
A3. If b go to A4, else to A5.
A4. If l go to A5, else to A3.
A5. Critical, go to A6.
A6. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. Set l ← 1, go to B3.
B3. If a go to B4, else to B5.
B4. If l go to B3, else to B5.
B5. Critical, go to B6.
B6. Set b← 0, go to B0.

()

Now there are three signal lights, a, b, and l—one controlled by Alice, one
controlled by Bob, and one switchable by both.

To show that states A5 and B5 can’t be concurrent, we can observe that the
shortest counterexample will not repeat any state twice; in other words, it will be
a simple path of transitions (). Thus we can assume that r is at most the total
number of states. However, () has 7× 7× 2× 2× 2 = 392 states; that’s a finite
bound, not really out of reach for a good SAT solver on this particular problem,
but we can do much better. For example, it’s not hard to devise clauses that are
satisfiable if and only if there’s a simple path of length ≤ r (see exercise 92), and
in this particular case the longest simple path turns out to have only 54 steps.

We can in fact do better yet by using the important notion of invariants,
which we encountered in Section 1.2.1 and have seen repeatedly throughout this
series of books. Invariant assertions are the key to most proofs of correctness,
so it’s not surprising that they also give a significant boost to bounded model
checking. Formally speaking, if Φ(X) is a Boolean function of the state vectorX ,
we say that Φ is invariant if Φ(X) implies Φ(X ′) wheneverX → X ′. For example,

September 23, 2015

24 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

initial state
induction
cache memories
write buffers
parallel computation
Lamport
sequential consistency
tomcat
Cheshire cat
diagonal
Xray
pixel images

it’s not hard to see that the following clauses are invariant with respect to ():

Φ(X) = (A0∨A1∨A2∨A3∨A4∨A5∨A6) ∧ (B0∨B1∨B2∨B3∨B4∨B5∨B6)
∧ (A0∨ ā)∧(A1∨ ā)∧(A2∨a)∧(A3∨a)∧(A4∨a)∧(A5∨a)∧(A6∨a)
∧ (B0∨ b̄)∧(B1∨ b̄)∧(B2∨b)∧(B3∨b)∧(B4∨b)∧(B5∨b)∧(B6∨b). ()

(The clause A0 ∨ ā says that a = 0 when Alice is in state A0, etc.) And we can
use a SAT solver to prove that Φ is invariant, by showing that the clauses

Φ(X) ∧ (X → X ′) ∧ ¬Φ(X ′) ()

are unsatisfiable. Furthermore Φ(X0) holds for the initial state X0, because
¬Φ(X0) is unsatisfiable. (See exercise 93.) Therefore Φ(Xt) is true for all t ≥ 0,
by induction, and we may add these helpful clauses to all of our formulas.

The invariant () reduces the total number of states by a factor of 4. And
the real clincher is the fact that the clauses

(X0 → X1 → · · · → Xr) ∧ Φ(X0) ∧ Φ(X1) ∧ · · · ∧ Φ(Xr) ∧ A5r ∧ B5r, ()

where X0 is not required to be the initial state, turn out to be unsatisfiable
when r = 3. In other words, there’s no way to go back more than two steps
from a bad state, without violating the invariant. We can conclude that mutual
exclusion needs to be verified for () only by considering paths of length 2(!).
Furthermore, similar ideas (exercise 98) show that () is starvation-free.

Caveat: Although () is a correct protocol for mutual exclusion according to
Alice and Bob’s ground rules, it cannot be used safely on most modern computers
unless special care is taken to synchronize cache memories and write buffers. The
reason is that hardware designers use all sorts of trickery to gain speed, and those
tricks might allow one process to see a = 0 at time t + 1 even though another
process has set a ← 1 at time t. We have developed the algorithms above
by assuming a model of parallel computation that Leslie Lamport has called
sequential consistency [IEEE Trans. C-28 (1979), 690–691].

Digital tomography. Another set of appealing questions amenable to SAT

solving comes from the study of binary images for which partial information
is given. Consider, for example, Fig. 36, which shows the “Cheshire cat” of
Section 7.1.3 in a new light. This image is an m× n array of Boolean variables
(xi,j), with m = 25 rows and n = 30 columns: The upper left corner element,
x1,1, is 0, representing white; and x1,24 = 1 corresponds to the lone black pixel
in the top row. We are given the row sums ri =

∑n
j=1 xi,j for 1 ≤ i ≤ m and

the column sums cj =
∑m

i=1 xi,j for 1 ≤ j ≤ n, as well as both sets of sums in
the 45◦ diagonal directions, namely

ad =
∑

i+j=d+1

xi,j and bd =
∑

i−j=d−n

xi,j for 0 < d < m+ n. ()

To what extent can such an image be reconstructed from its sums ri, cj ,
ad, and bd? Small examples are often uniquely determined by these Xray-like
projections (see exercise 103). But the discrete nature of pixel images makes
the reconstruction problem considerably more difficult than the corresponding

September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 25

8 queens problem
queens
chessboard
lexicographic order

2 2 2 10 8 10 4 6 9 7 5 7 6 8 5 7 4 6 7 6 6 11 5 7 6 8 7 7 2 2

3

0

0

0

0

0

1

3

2

2

3

3

3

1

4

3

3

4

5

3

5

5

6

3

8

5

1

5

5

12

10

6

6

3

3

3

2

8

6

12

12

5

10

11

4

12

7

14

11

4

10

3 2 4 5 7 7 7 7 7 4 4 4 4 4 4 6 5 6 4 5 5 4 1 1 0 0 0 0 0

0

0

0

0

0

0

1

2

3

1

2

3

4

3

5

5

3

3

2

4

5

4

4

6

9834247767116645764645100000000

c1 = = c30

a1 =

a2 =

= r1
= r2

= b1
= b2

b54 =

= a54

Fig. 36. An array of black and white pixels together with its
row sums ri, column sums cj , and diagonal sums ad, bd.

continuous problem, in which projections from many different angles are avail-
able. Notice, for example, that the classical “8 queens problem”—to place eight
nonattacking queens on a chessboard— is equivalent to solving an 8 × 8 digital
tomography problem with the constraints ri = 1, cj = 1, ad ≤ 1, and bd ≤ 1.

The constraints of Fig. 36 appear to be quite strict, so we might expect that
most of the pixels xi,j are determined uniquely by the given sums. For instance,
the fact that a1 = · · · = a5 = 0 tells us that xi,j = 0 whenever i + j ≤ 6;
and similar deductions are possible at all four corners of the image. A crude
“ballpark estimate” suggests that we’re given a few more than 150 sums, most
of which occupy 5 bits each; hence we have roughly 150× 5 = 750 bits of data,
from which we wish to reconstruct 25× 30 = 750 pixels xi,j . Actually, however,
this problem turns out to have many billions of solutions (see Fig. 37), most of
which aren’t catlike! Exercise 106 provides a less crude estimate, which shows
that this abundance of solutions isn’t really surprising.

(a) lexicographically first; (b) maximally different; (c) lexicographically last.

Fig. 37. Extreme solutions to the constraints of Fig. 36.

September 23, 2015

26 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

cardinality constraints
linear equations
integer programming
Bailleux
Boufkhad
linear programming relaxation
CPLEX
IP: Integer programming
lexicographic order
runs of 1s

A digital tomography problem such as Fig. 36 is readily represented as a
sequence of clauses to be satisfied, because each of the individual requirements
is just a special case of the cardinality constraints that we’ve already considered
in the clauses of ()–(). This problem differs from the other instances of SAT
that we’ve been discussing, primarily because it consists entirely of cardinality
constraints: It is a question of solving 25 + 30 + 54 + 54 = 163 simultaneous
linear equations in 750 variables xi,j , where each variable must be either 0 or 1.
So it’s essentially an instance of integer programming (IP), not an instance of
satisfiability (SAT). On the other hand, Bailleux and Boufkhad devised clauses
() and () precisely because they wanted to apply SAT solvers, not IP solvers,
to digital tomography. In the case of Fig. 36, their method yields approximately
40,000 clauses in 9,000 variables, containing about 100,000 literals altogether.

Figure 37(b) illustrates a solution that differs as much as possible from
Fig. 36. Thus it minimizes the sum x1,24 + x2,5 + x2,6 + · · · + x25,21 of the
182 variables that correspond to black pixels, over all 0-or-1-valued solutions
to the linear equations. If we use linear programming to minimize that sum
over 0 ≤ xi,j ≤ 1, without requiring the variables to be integers, we find almost
instantly that the minimum value is ≈ 31.38 under these relaxed conditions;
hence every black-and-white image must have at least 32 black pixels in common
with Fig. 36. Furthermore, Fig. 37(b)—which can be computed in a few seconds
by widely available IP solvers such as CPLEX—actually achieves this minimum.
By contrast, state-of-the-art SAT solvers as of 2013 had great difficulty finding
such an image, even when told that a 32-in-common solution is possible.

Parts (a) and (c) of Fig. 37 are, similarly, quite relevant to the current state
of the SAT-solving art: They represent hundreds of individual SAT instances,
where the first k variables are set to particular known values and we try to
find a solution with the next variable either 0 or 1, respectively. Several of the
subproblems that arose while computing rows 6 and 7 of Fig. 37(c) turned out to
be quite challenging, although resolvable in a few hours; and similar problems,
which correspond to different kinds of lexicographic order, apparently still lie
beyond the reach of contemporary SAT-oriented methods. Yet IP solvers polish
these problems off with ease. (See exercises 109 and 111.)

If we provide more information about an image, our chances of being able
to reconstruct it uniquely are naturally enhanced. For example, suppose we also
compute the numbers r′i, c

′
j , a

′
d, and b

′
d, which count the runs of 1s that occur

in each row, column, and diagonal. (We have r′1 = 1, r′2 = 2, r′3 = 4, and
so on.) Given this additional data, we can show that Fig. 36 is the only solution,
because a suitable set of clauses turns out to be unsatisfiable. Exercise 117
explains one way by which () and () can be modified so that they provide
constraints based on the run counts. Furthermore, it isn’t difficult to express
even more detailed constraints, such as the assertion that “column 4 contains
runs of respective lengths (6, 1, 3),” as a sequence of clauses; see exercise 438.

SAT examples—summary. We’ve now seen convincing evidence that simple
Boolean clauses—ANDs of ORs of literals—are enormously versatile. Among

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 27

backtracking–

notation F | l
reduction of clauses
given literals
conditioning operation
commutative

notation F |L
recursive procedure

other things, we’ve used them to encode problems of graph coloring, integer
factorization, hardware fault testing, machine learning, model checking, and
tomography. And indeed, Section 7.9 will demonstrate that 3SAT is the “poster
child” for NP-complete problems in general: Any problem in NP—which is
a huge class, essentially comprising all yes-or-no questions of size N whose
affirmative answers are verifiable in NO(1) steps—can be formulated as an
equivalent instance of 3SAT, without greatly increasing the problem size.

Backtracking for SAT. We’ve now seen a dizzying variety of intriguing and im-
portant examples of SAT that are begging to be solved. How shall we solve them?

Any instance of SAT that involves at least one variable can be solved sys-
tematically by choosing a variable and setting it to 0 or 1. Either of those choices
gives us a smaller instance of SAT; so we can continue until reaching either an
empty instance—which is trivially satisfiable, because no clauses need to be
satisfied—or an instance that contains an empty clause. In the latter case we
must back up and reconsider one of our earlier choices, proceeding in the same
fashion until we either succeed or exhaust all the possibilities.

For example, consider again the formula F in (). If we set x1 = 0, F reduces
to x̄2 ∧ (x2∨x3), because the first clause (x1 ∨ x̄2) loses its x1, while the last two
clauses contain x̄1 and are satisfied. It will be convenient to have a notation for
this reduced problem; so let’s write

F | x̄1 = x̄2 ∧ (x2 ∨x3). ()

Similarly, if we set x1 = 1, we obtain the reduced problem

F |x1 = (x2 ∨x3) ∧ x̄3 ∧ (x̄2 ∨ x3). ()

F is satisfiable if and only if we can satisfy either () or ().
In general if F is any set of clauses and if l is any literal, then F | l (read

“F given l” or “F conditioned on l”) is the set of clauses obtained from F by

• removing every clause that contains l; and

• removing l̄ from every clause that contains l̄.

This conditioning operation is commutative, in the sense that F | l | l′ = F | l′ | l
when l′ 6= l̄. If L = {l1, . . . , lk} is any set of strictly distinct literals, we can also
write F |L = F | l1 | · · · | lk. In these terms, F is satisfiable if and only if F |L = ∅
for some such L, because the literals of L satisfy every clause of F when F |L = ∅.

The systematic strategy for SAT that was sketched above can therefore be
formulated as the following recursive procedure B(F), which returns the special
value ⊥ when F is unsatisfiable, otherwise it returns a set L that satisfies F :

B(F) =

If F = ∅, return ∅. (F is trivially satisfiable.)
Otherwise if ǫ ∈ F, return ⊥. (F is unsatisfiable.)
Otherwise let l be a literal in F and set L← B(F | l).
If L 6= ⊥, return L ∪ l. Otherwise set L← B(F | l̄).
If L 6= ⊥, return L ∪ l̄. Otherwise return ⊥.

()

Let’s try to flesh out this abstract algorithm by converting it to efficient
code at a lower level. From our previous experience with backtracking, we know

September 23, 2015

28 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

data structures–
exact cover
cells
doubly linked
head of the list

that it will be crucial to have data structures that allow us to go quickly from
F to F | l, then back again to F if necessary, when F is a set of clauses and
l is a literal. In particular, we’ll want a good way to find all of the clauses that
contain a given literal.

A combination of sequential and linked structures suggests itself for this
purpose, based on our experience with exact cover problems: We can represent
each clause as a set of cells, where each cell p contains a literal l = L(p) together
with pointers F(p) and B(p) to other cells that contain l, in a doubly linked list.
We’ll also need C(p), the number of the clause to which p belongs. The cells of
clause Ci will be in consecutive locations START(i)+ j, for 0 ≤ j < SIZE(i).

We will find it convenient to represent the literals xk and x̄k, which involve
variable xk, by using the integers 2k and 2k + 1. With this convention we have

l̄ = l ⊕ 1 and |l| = xl≫1. ()

Our implementation of () will assume that the variables are x1, x2, . . . , xn;
thus the 2n possible literals will be in the range 2 ≤ l ≤ 2n+ 1.

Cells 0 through 2n+1 are reserved for special purposes: Cell l is the head of
the list for the occurrences of l in other cells. Furthermore C(l) will be the length
of that list, namely the number of currently active clauses in which l appears.

For example, the m = 7 ternary clauses R′ of () might be represented
internally in 2n+ 2+ 3m = 31 cells as follows, using these conventions:

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L(p)= – – – – – – – – – – 9 7 3 8 7 5 6 5 3 8 4 3 8 6 2 9 6 4 7 4 2
F(p)= – – 30 21 29 17 26 28 22 25 9 7 3 8 11 5 6 15 12 13 4 18 19 16 2 10 23 20 14 27 24
B(p)= – – 24 12 20 15 16 11 13 10 25 14 18 19 28 17 23 5 21 22 27 3 8 26 30 9 6 29 7 4 2
C(p)= – – 2 3 3 2 3 3 3 2 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1

The literals of each clause appear in decreasing order here; for example, the
literals L(p) = (8, 4, 3) in cells 19 through 21 represent the clause x4 ∨ x2 ∨ x̄1,
which appears as the fourth clause, ‘41̄2’ in (). This ordering turns out to be
quite useful, because we’ll always choose the smallest unset variable as the l or l̄
in (); then l or l̄ will always appear at the right of its clauses, and we can
remove it or put it back by simply changing the relevant SIZE fields.

The clauses in this example have START(i) = 31 − 3i for 1 ≤ i ≤ 7, and
SIZE(i) = 3 when computation begins.

Algorithm A (Satisfiability by backtracking). Given nonempty clauses C1∧· · ·∧
Cm on n > 0 Boolean variables x1 . . . xn, represented as above, this algorithm
finds a solution if and only if the clauses are satisfiable. It records its current
progress in an arraym1 . . .mn of “moves,” whose significance is explained below.

A1. [Initialize.] Set a← m and d← 1. (Here a represents the number of active
clauses, and d represents the depth-plus-one in an implicit search tree.)

A2. [Choose.] Set l ← 2d. If C(l) ≤ C(l+ 1), set l ← l + 1. Then set md ←
(l & 1) + 4[C(l⊕ 1)=0]. (See below.) Terminate successfully if C(l) = a.

A3. [Remove l̄.] Delete l̄ from all active clauses; but go to A5 if that would make
a clause empty. (We want to ignore l̄, because we’re making l true.)

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 29

move codes
pure literals0 1

0 1 0 1

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

1

2 2

3 3 3 3

4 4 4 4 4 4123̄ 1̄2̄3

341 234̄ 341 4̄12̄ 2̄3̄4 4̄12̄ 41̄2 234̄ 41̄2 3̄4̄1̄ 2̄3̄4 3̄4̄1̄

Fig. 38. The search tree that is implicitly traversed by Algorithm A, when
that algorithm is applied to the eight unsatisfiable clauses R defined in ().
Branch nodes are labeled with the variable being tested; leaf nodes are labeled
with a clause that is found to be contradicted.

A4. [Deactivate l’s clauses.] Suppress all clauses that contain l. (Those clauses
are now satisfied.) Then set a← a− C(l), d← d+ 1, and return to A2.

A5. [Try again.] If md < 2, set md ← 3−md, l ← 2d+ (md &1), and go to A3.

A6. [Backtrack.] Terminate unsuccessfully if d = 1 (the clauses are unsatisfi-
able). Otherwise set d← d− 1 and l ← 2d+ (md & 1).

A7. [Reactivate l’s clauses.] Set a ← a + C(l), and unsuppress all clauses that
contain l. (Those clauses are now unsatisfied, because l is no longer true.)

A8. [Unremove l̄.] Reinstate l̄ in all the active clauses that contain it. Then go
back to A5.

(See exercise 121 for details of the low-level list processing operations that are
needed to update the data structures in steps A3 and A4, and to downdate them
in A7 and A8.)

The move codesmj of Algorithm A are integers between 0 and 5 that encode
the state of the algorithm’s progress as follows:

• mj = 0 means we’re trying xj = 1 and haven’t yet tried xj = 0.
• mj = 1 means we’re trying xj = 0 and haven’t yet tried xj = 1.
• mj = 2 means we’re trying xj = 1 after xj = 0 has failed.
• mj = 3 means we’re trying xj = 0 after xj = 1 has failed.
• mj = 4 means we’re trying xj = 1 when x̄j doesn’t appear.
• mj = 5 means we’re trying xj = 0 when xj doesn’t appear.

Codes 4 and 5 refer to so-called “pure literals”: If no clause contains the literal l̄,
we can’t go wrong by assuming that l is true.

For example, when Algorithm A is presented with the clauses (), it cruises
directly to a solution by setting m1m2m3m4 = 1014; the solution is x1x2x3x4 =
0101. But when the unsatisfiable clauses () are given, the successive code strings
m1 . . .md in step A2 are

1, 11, 110, 1131, 121, 1211, 1221, 21, 211, 2111, 2121, 221, 2221, ()

before the algorithm gives up. (See Fig. 38.)

September 23, 2015

30 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

lexicographically
lazy data structures–
Brown
Purdom
watched literals
partial assignment
consistent
unit
backtracking
eager

It’s helpful to display the current string m1 . . .md now and then, as a
convenient indication of progress; this string increases lexicographically. Indeed,
fascinating patterns appear as the 2s and 3s gradually move to the left. (Try it!)

When the algorithm terminates successfully in step A2, a satisfying assign-
ment can be read off from the move table by setting xj ← 1 ⊕ (mj & 1) for
1 ≤ j ≤ d. Algorithm A stops after finding a single solution; see exercise 122 if
you want them all.

Lazy data structures. Instead of using the elaborate doubly linked machinery
that underlies Algorithm A, we can actually get by with a much simpler scheme
discovered by Cynthia A. Brown and Paul W. Purdom, Jr. [IEEE Trans. PAMI-

4 (1982), 309–316], who introduced the notion of watched literals. They observed
that we don’t really need to know all of the clauses that contain a given literal,
because only one literal per clause is actually relevant at any particular time.

Here’s the idea: When we work on clauses F |L, the variables that occur in L
have known values, but the other variables do not. For example, in Algorithm A,
variable xj is implicitly known to be either true or false when j ≤ d, but its value
is unknown when j > d. Such a situation is called a partial assignment. A partial
assignment is consistent with a set of clauses if no clause consists entirely of
false literals. Algorithms for SAT usually deal exclusively with consistent partial
assignments; the goal is to convert them to consistent total assignments, by
gradually eliminating the unknown values.

Thus every clause in a consistent partial assignment has at least one nonfalse
literal; and we can assume that such a literal appears first, when the clause is
represented in memory. Many nonfalse literals might be present, but only one of
them is designated as the clause’s “watchee.” When a watched literal becomes
false, we can find another nonfalse literal to swap into its place—unless the
clause has been reduced to a unit, a clause of size 1.

With such a scheme we need only maintain a relatively short list for every
literal l, namely a list Wl of all clauses that currently watch l. This list can
be singly linked. Hence we need only one link per clause; and we have a total
of only 2n +m links altogether, instead of the two links for each cell that are
required by Algorithm A.

Furthermore—and this is the best part!— no updates need to be made
to the watch lists when backtracking. The backtrack operations never falsify
a nonfalse literal, because they only change values from known to unknown.
Perhaps for this reason, data structures based on watched literals are called lazy,
in contrast with the “eager” data structures of Algorithm A.

Let us therefore redesign Algorithm A and make it more laid-back. Our
new data structure for each cell p has only one field, L(p); the other fields F(p),
B(p), C(p) are no longer necessary, nor do we need 2n + 2 special cells. As
before we will represent clauses sequentially, with the literals of Cj beginning at
START(j) for 1 ≤ j ≤ m. The watched literal will be the one in START(j); and a
new field, LINK(j), will be the number of another clause with the same watched
literal (or 0, if Cj is the last such clause). Moreover, our new algorithm won’t

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 31

move codes
pure literals
false literals preferred
unit clauses
Davis
Logemann

need SIZE(j). Instead, we can assume that the final literal of Cj is in location
START(j − 1)− 1, provided that we define START(0) appropriately.

The resulting procedure is almost unbelievably short and sweet. It’s surely
the simplest SAT solver that can claim to be efficient on problems of modest size:

Algorithm B (Satisfiability by watching). Given nonempty clauses C1∧· · ·∧Cm

on n > 0 Boolean variables x1 . . . xn, represented as above, this algorithm finds
a solution if and only if the clauses are satisfiable. It records its current progress
in an array m1 . . .mn of “moves,” whose significance was explained above.

B1. [Initialize.] Set d← 1.

B2. [Rejoice or choose.] If d > n, terminate successfully. Otherwise set md ←
[W2d =0 or W2d+1 6=0] and l← 2d+md.

B3. [Remove l̄ if possible.] For all j such that l̄ is watched in Cj , watch another
literal of Cj . But go to B5 if that can’t be done. (See exercise 124.)

B4. [Advance.] Set Wl̄ ← 0, d← d+ 1, and return to B2.

B5. [Try again.] If md < 2, set md ← 3−md, l ← 2d+ (md & 1), and go to B3.

B6. [Backtrack.] Terminate unsuccessfully if d = 1 (the clauses are unsatisfi-
able). Otherwise set d← d− 1 and go back to B5.

Readers are strongly encouraged to work exercise 124, which spells out the
low-level operations that are needed in step B3. Those operations accomplish
essentially everything that Algorithm B needs to do.

This algorithm doesn’t use move codes 4 or 5, because lazy data structures
don’t have enough information to identify pure literals. Fortunately pure literals
are comparatively unimportant in practice; problems that are helped by the pure
literal shortcut can usually also be solved quickly without it.

Notice that steps A2 and B2 use different criteria for deciding whether to
try xd = 1 or xd = 0 first at each branch of the search tree. Algorithm A chooses
the alternative that satisfies the most clauses; Algorithm B chooses to make l
true instead of l̄ if the watch list for l̄ is empty but the watch list for l is not.
(All clauses in which l̄ is watched will have to change, but those containing l
are satisfied and in good shape.) In case of a tie, both algorithms set md ← 1,
which corresponds to xd = 0. The reason is that human-designed instances of
SAT tend to have solutions made up of mostly false literals.

Forced moves from unit clauses. The simple logic of Algorithm B works
well on many problems that aren’t too large. But its insistence on setting x1
first, then x2, etc., makes it quite inefficient on many other problems, because
it fails to take advantage of unit clauses. A unit clause (l) forces l to be true;
therefore two-way branching is unnecessary whenever a unit clause is present.
Furthermore, unit clauses aren’t rare: Far from it. Experience shows that they’re
almost ubiquitous in practice, so that the actual search trees often involve only
dozens of branch nodes instead of thousands or millions.

The importance of unit clauses was recognized already in the first computer
implementation of a SAT solver, designed by Martin Davis, George Logemann,

September 23, 2015

32 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Loveland
Davis
Putnam
pure literals
ready list
search tree
magnetic tape
backtracking
tape records
DPLL algorithm
Brown
Purdom
circular list
active ring
units
waerden

and Donald Loveland [CACM 5 (1962), 394–397] and based on ideas that Davis
had developed earlier with Hilary Putnam [JACM 7 (1960), 201–215]. They
extended Algorithm A by introducing mechanisms that recognize when the size
of a clause decreases to 1, or when the number of unsatisfied clauses containing
a literal drops to 0. In such cases, they put variables onto a “ready list,” and
assigned those variables to fixed values before doing any further two-way branch-
ing. The resulting program was fairly complex; indeed, computer memory was
so limited in those days, they implemented branching by writing all the data for
the current node of the search tree onto magnetic tape, then backtracking when
necessary by restoring the data from the most recently written tape records! The
names of these four authors are now enshrined in the term “DPLL algorithm,”
which refers generally to SAT solving via partial assignment and backtracking.

Brown and Purdom, in the paper cited earlier, showed that unit clauses
can be detected more simply by using watched literals as in Algorithm B. We
can supplement the data structures of that algorithm by introducing indices
h1 . . . hn so that the variable whose value is being set at depth d is xhd

instead
of xd. Furthermore we can arrange the not-yet-set variables whose watch lists
aren’t empty into a circular list called the “active ring”; the idea is to proceed
through the active ring, checking to see whether any of its variables are currently
in a unit clause. We resort to two-way branching only if we go all around the
ring without finding any such units.

For example, let’s consider the 32 unsatisfiable clauses of waerden (3, 3; 9)
in (). The active ring is initially (1 2 3 4 5 6 7), because 8, 8̄, 9, and 9̄ aren’t
being watched anywhere. There are no unit clauses yet. The algorithm below will
decide to try 1̄ first; then it will change the clauses 123, 135, 147, and 159 to 213,
315, 417, and 519, respectively, so that nobody watches the false literal 1. The
active ring becomes (2 3 4 5 6 7) and the next choice is 2̄; so 213, 234, 246, and 258
morph respectively into 312, 324, 426, 528. Now, with active ring (3 4 5 6 7), the
unit clause ‘3’ is detected (because 1 and 2 are false in ‘312’). This precipitates
further changes, and the first steps of the computation can be summarized thus:

Active ring x1x2x3x4x5x6x7x8x9 Units Choice Changed clauses

(1 2 3 4 5 6 7) - - - - - - - - - 1̄ 213, 315, 417, 519
(2 3 4 5 6 7) 0 - - - - - - - - 2̄ 312, 324, 426, 528
(3 4 5 6 7) 0 0 - - - - - - - 3 3 4̄3̄5̄, 5̄3̄4̄, 6̄3̄9̄
(4 5 6 7) 0 0 1 - - - - - - 4̄ 624, 714, 546, 648
(5 6 7) 0 0 1 0 - - - - - 6 6 9̄3̄6̄, 7̄6̄8̄
(9 7 5) 0 0 1 0 - 1 - - - 9̄ 9̄
(7 5) 0 0 1 0 - 1 - - 0 7 7 8̄6̄7̄, 8̄7̄9̄
(8 5) 0 0 1 0 - 1 1 - 0 8̄ 8̄
(5) 0 0 1 0 - 1 1 0 0 5, 5̄ Backtrack

(6 9 7 8 5) 0 0 1 - - - - - - 4 5̄3̄4̄, 5̄4̄6̄, 6̄4̄8̄
(6 9 7 8 5) 0 0 1 1 - - - - - 5̄ 5̄ 456, 825, 915, 657, 759

()

When 6 is found, 7 is also a unit clause; but the algorithm doesn’t see it yet,
because variable x6 is tested first. The active ring changes first to (7 5) after 6

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 33

empty list
cyclic DPLL
false literals preferred

0 1

0 1 1 0

0 1 0 1 1 0 1 0

0 1 0 1 0 1 0 1

1

2 2

3 4 3 4

4 3 4 3123̄ 4̄12̄ 1̄2̄3 41̄2

341 234̄ 341 2̄3̄4 2̄3̄4 3̄4̄1̄ 234̄ 3̄4̄1̄

Fig. 39. The search tree that is implicitly traversed by Algorithm D, when
that algorithm is applied to the eight unsatisfiable clauses R defined in ().
Branch nodes are labeled with the variable being tested; leaf nodes are labeled
with a clause that is found to be contradicted. When the right child of a
branch node is a leaf, the left branch was forced by a conditional unary clause.

is found, because 5 is cyclically after 6; we want to look at 7 before 5, instead of
revisiting more or less the same clauses. After 6 has been chosen, 9 is inserted at
the left, because the watch list for 9̄ becomes nonempty. After backtracking, vari-
ables 8, 7, 9, 6 are successively inserted at the left as they lose their forced values.

The following algorithm represents the active ring by giving a NEXT field to
each variable, with xNEXT(k) the successor of xk. The ring is accessed via “head”
and “tail” pointers h and t at the left and right, with h = NEXT(t). If the ring
is empty, however, t = 0, and h is undefined.

Algorithm D (Satisfiability by cyclic DPLL). Given nonempty clauses C1∧· · ·∧
Cm on n > 0 Boolean variables x1 . . . xn, represented with lazy data structures
and an active ring as explained above, this algorithm finds a solution if and only
if the clauses are satisfiable. It records its current progress in an array h1 . . . hn of
indices and an arraym0 . . .mn of “moves,” whose significance is explained below.

D1. [Initialize.] Set m0 ← d← h← t← 0, and do the following for k = n, n−1,
. . . , 1: Set xk ← −1 (denoting an unset value); if W2k 6= 0 or W2k+1 6= 0,
set NEXT(k) ← h, h ← k, and if t = 0 also set t ← k. Finally, if t 6= 0,
complete the active ring by setting NEXT(t)← h.

D2. [Success?] Terminate if t = 0 (all clauses are satisfied). Otherwise set k ← t.

D3. [Look for unit clauses.] Set h ← NEXT(k) and use the subroutine in exer-
cise 129 to compute f ← [2h is a unit] + 2[2h+ 1 is a unit]. If f = 3, go
to D7. If f = 1 or 2, set md+1 ← f + 3, t← k, and go to D5. Otherwise, if
h 6= t, set k ← h and repeat this step.

D4. [Two-way branch.] Set h← NEXT(t) and md+1 ← [W2h =0 or W2h+1 6=0].

D5. [Move on.] Set d← d+1, hd ← k ← h. If t = k, set t← 0; otherwise delete
variable k from the ring by setting NEXT(t)← h← NEXT(k).

D6. [Update watches.] Set b← (md+1) mod 2, xk ← b, and clear the watch list
for x̄k (see exercise 130). Return to D2.

September 23, 2015

34 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

move codes
nodes
search tree

langford (n)
Langford pairs
mems
pure literals

D7. [Backtrack.] Set t← k. While md ≥ 2, set k ← hd, xk ← −1; if W2k 6= 0 or
W2k+1 6= 0, set NEXT(k)← h, h← k, NEXT(t)← h; and set d← d− 1.

D8. [Failure?] If d > 0, set md ← 3−md, k ← hd, and return to D6. Otherwise
terminate the algorithm (because the clauses aren’t satisfiable).

The move codes of this algorithm are slightly different from the earlier ones:

• mj = 0 means we’re trying xhj
= 1 and haven’t yet tried xhj

= 0.

• mj = 1 means we’re trying xhj
= 0 and haven’t yet tried xhj

= 1.

• mj = 2 means we’re trying xhj
= 1 after xhj

= 0 has failed.

• mj = 3 means we’re trying xhj
= 0 after xhj

= 1 has failed.

• mj = 4 means we’re trying xhj
= 1 because it’s forced by a unit clause.

• mj = 5 means we’re trying xhj
= 0 because it’s forced by a unit clause.

As before, the number of two-way branch nodes in the implicit search tree is the
number of times that mj is set to 0 or 1.

Comparison of the algorithms. OK, we’ve just seen three rudimentary SAT

solvers. How well do they actually do? Detailed performance statistics will be
given later in this section, after we’ve studied several more algorithms. But a
brief quantitative study of Algorithms A, B, and D now will give us some concrete
facts with which we can calibrate our expectations before moving on.

Consider, for example, langford (n), the problem of Langford pairs. This
problem is typical of SAT instances where many unit clauses arise during the
computation. For example, when Algorithm D is applied to langford (5), it
reaches a stage where the move codes are

m1m2 . . .md = 1255555555555555114545545, ()

indicating only four two-way branches (the 1s and the 2) amongst a sea of forced
moves. We therefore expect Algorithm D to outperform Algorithms A and B,
which don’t capitalize on unit clauses.

Sure enough, Algorithm D wins (slightly), even on a small example such as
langford (5), which has 213 clauses, 480 cells, 28 variables. The detailed stats are

Algorithm A: 5379 + 108952 mems, 10552 bytes, 705 nodes.
Algorithm B: 1206 + 30789 mems, 4320 bytes, 771 nodes.
Algorithm D: 1417 + 28372 mems, 4589 bytes, 11 nodes.

(Here “5379+108952mems” means that 5379 memory accesses were made while
initializing the data structures before the algorithm began; then the algorithm
itself accessed octabytes of memory 108,952 times.) Notice that Algorithm B
is more than thrice as fast as Algorithm A in this example, although it makes
771 two-way branches instead of 705. Algorithm A needs fewer nodes, because
it recognizes pure literals; but Algorithm B does much less work per node.
Algorithm D, on the other hand, works very hard at each node, yet comes out
ahead because its decision-making choices reduce the search to only a few nodes.

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 35

benchmark test
variations in performance
waerden

These differences become more dramatic when we consider larger problems.
For instance, langford (9) has 1722 clauses, 3702 cells, 104 variables, and we find

Algorithm A: 332.0 megamems, 77216 bytes, 1,405,230 nodes.
Algorithm B: 53.4 megamems, 31104 bytes, 1,654,352 nodes.
Algorithm D: 23.4 megamems, 32057 bytes, 6093 nodes.

And with langford (13)’s 5875 clauses, 12356 cells, 228 variables, the results are

Algorithm A: 2699.1 gigamems, 253.9 kilobytes, 8.7 giganodes.
Algorithm B: 305.2 gigamems, 101.9 kilobytes, 10.6 giganodes.
Algorithm D: 71.7 gigamems, 104.0 kilobytes, 14.0 meganodes.

Mathematicians will recall that, at the beginning of Chapter 7, we used
elementary reasoning to prove the unsatisfiability of langford (4k + 1) for all k.
Evidently SAT solvers have great difficulty discovering this fact, even when k is
fairly small. We are using that problem here as a benchmark test, not because we
recommend replacing mathematics by brute force! Its unsatisfiability actually
enhances its utility as a benchmark, because algorithms for satisfiability are more
easily compared with respect to unsatisfiable instances: Extreme variations in
performance occur when clauses are satisfiable, because solutions can be found
purely by luck. Still, we might as well see what happens when our three algo-
rithms are set loose on the satisfiable problem langford (16), which turns out to be
“no sweat.” Its 11494 clauses, 23948 cells, and 352 variables lead to the statistics

Algorithm A: 11262.6 megamems, 489.2 kilobytes, 28.8 meganodes.
Algorithm B: 932.1 megamems, 196.2 kilobytes, 40.9 meganodes.
Algorithm D: 4.9 megamems, 199.4 kilobytes, 167 nodes.

Algorithm D is certainly our favorite so far, based on the langford data. But
it is far from a panacea, because it loses badly to the lightweight Algorithm B
on other problems. For example, the 2779 unsatisfiable clauses, 11662 cells, and
97 variables of waerden (3, 10; 97) yield

Algorithm A: 150.9 gigamems, 212.8 kilobytes, 106.7114 meganodes.
Algorithm B: 6.2 gigamems, 71.2 kilobytes, 106.7116 meganodes.
Algorithm D: 1430.4 gigamems, 72.1 kilobytes, 102.7 meganodes.

And waerden (3, 10; 96)’s 2721 satisfiable clauses, 11418 cells, 96 variables give us

Algorithm A: 96.9 megamems, 208.3 kilobytes, 72.9 kilonodes.
Algorithm B: 12.4 megamems, 69.8 kilobytes, 207.7 kilonodes.
Algorithm D: 57962.8 megamems, 70.6 kilobytes, 4447.7 kilonodes.

In such cases unit clauses don’t reduce the search tree size by very much, so we
aren’t justified in spending so much time per node.

*Speeding up by working harder. Algorithms A, B, and D are OK on smallish
problems, but they cannot really cope with the larger instances of SAT that have
arisen in our examples. Significant enhancements are possible if we are willing
to do more work and to develop more elaborate algorithms.

Mathematicians generally strive for nice, short, elegant proofs of theorems;
and computer scientists generally aim for nice, short, elegant sequences of steps

September 23, 2015

36 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

unit propagation
lazy data structure
eager
unit clause
binary clauses
bimp table
sequential list
buddy system
ternary clauses
timp tables

with which a problem can quickly be solved. But some theorems have no short
proofs, and some problems cannot be solved efficiently with short programs.

Let us therefore adopt a new attitude, at least temporarily, by fearlessly
deciding to throw lots of code at SAT: Let’s look at the bottlenecks that hinder
Algorithm D on large problems, and let’s try to devise new methods that will
streamline the calculations even though the resulting programmight be ten times
larger. In this subsection we shall examine an advanced SAT solver, Algorithm L,
which is able to outperform Algorithm D by many orders of magnitude on many
important problems. This algorithm cannot be described in just a few lines;
but it does consist of cooperating procedures that are individually nice, short,
elegant, and understandable by themselves.

The first important ingredient of Algorithm L is an improved mechanism
for unit propagation. Algorithm D needs only a few lines of code in step D3 to
discover whether or not the value of an unknown variable has been forced by
previous assignments; but that mechanism isn’t particularly fast, because it is
based on indirect inferences from a lazy data structure. We can do better by
using “eager” data structures that are specifically designed to recognize forced
values quickly, because high-speed propagation of the consequences of a newly
asserted value turns out to be extremely important in practice.

A literal l is forced true when it appears in a clause C whose other literals
have become false, namely when the set of currently assigned literals L has re-
duced C to the unit clause C |L = (l). Such unit clauses arise from the reduction
of binary clauses. Algorithm L therefore keeps track of the binary clauses (u∨v)
that are relevant to the current subproblem F | L. This information is kept
in a so-called “bimp table” BIMP(l) for every literal l, which is a list of other
literals l′ whose truth is implied by the truth of l. Indeed, instead of simply
including binary clauses within the whole list of given clauses, as Algorithms A,
B, and D do, Algorithm L stores the relevant facts about (u ∨ v) directly, in a
ready-to-use way, by listing u in BIMP(v̄) and v in BIMP(ū). Each of the 2n
tables BIMP(l) is represented internally as a sequential list of length BSIZE(l),
with memory allocated dynamically via the buddy system (see exercise 134).

Binary clauses, in turn, are spawned by ternary clauses. For simplicity,
Algorithm L assumes that all clauses have length 3 or less, because every instance
of general SAT can readily be converted to 3SAT form (see exercise 28). And for
speed, Algorithm L represents the ternary clauses by means of “timp tables,”
which are analogous to the bimp tables: Every literal l has a sequential list
TIMP(l) of length TSIZE(l), consisting of pairs p1 = (u1, v1), p2 = (u2, v2), . . . ,
such that the truth of l implies that each (ui ∨ vi) becomes a relevant binary
clause. If (u ∨ v ∨ w) is a ternary clause, there will be three pairs p = (v, w),
p′ = (w, u), and p′′ = (u, v), appearing in the respective lists TIMP(ū), TIMP(v̄),
and TIMP(w̄). Moreover, these three pairs are linked together cyclically, with

LINK(p) = p′, LINK(p′) = p′′, LINK(p′′) = p. ()

Memory is allocated for the timp tables once and for all, as the clauses are input,
because Algorithm L does not generate new ternaries during its computations.

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 37

waerden
degrees of truth
Heule
Dufour
van Zwieten
van Maaren
RT
real truth
NT
near truth
proto truth
PT
fixed literals
sequential
stack
breadth-first search
undo
ISTAMP

Individual pairs p are, however, swapped around within these sequential tables,
so that the currently active ternary clauses containing u always appear in the
first TSIZE(ū) positions that have been allocated to TIMP(ū).

For example, let’s consider again the ternary clauses () of waerden (3, 3; 9).
Initially there are no binary clauses, so all BIMP tables are empty. Each of the
ternary clauses appears in three of the TIMP tables. At level 0 of the search
tree we might decide that x5 = 0; then TIMP(5̄) tells us that we gain eight
binary clauses, namely {13, 19, 28, 34, 37, 46, 67, 79}. These new binary clauses
are represented by sixteen entries in BIMP tables; BIMP(3̄), for instance, will now
be {1, 4, 7}. Furthermore, we’ll want all of the TIMP pairs that involve either
5 or 5̄ to become inactive, because the ternary clauses that contain 5 are weaker
than the new binary clauses, and the ternary clauses that contain 5̄ are now
satisfied. (See exercise 136.)

As in () above, we shall assume that the variables of a given formula are
numbered from 1 to n, and we represent the literals k and k̄ internally by the
numbers 2k and 2k+1. Algorithm L introduces a new twist, however, by allowing
variables to have many different degrees of truth [see M. Heule, M. Dufour, J. van
Zwieten, and H. van Maaren, LNCS 3542 (2005), 345–359]: We say that xk is
true with degree D if VAL[k] = D, and false with degree D if VAL[k] = D + 1,
where D is any even number.

The highest possible degree, typically 232 − 2 inside a computer, is called
RT for “real truth.” The next highest degree, typically 232 − 4, is called NT for
“near truth”; and then comes PT = 232−6, “proto truth.” Lower degrees PT−2,
PT− 4, . . . , 2 also turn out to be useful. A literal l is said to be fixed in context

T if and only if VAL[|l|] ≥ T ; it is fixed true if we also have VAL[|l|]&1 = l&1,
and it is fixed false if its complement l̄ is fixed true.

Suppose, for example, that VAL[2] = RT + 1 and VAL[7] = PT; hence x2 is
“really false” while x7 is “proto true.” Then the literal ‘7’, represented internally
by l = 14, is fixed true in context PT, but l is not fixed in contexts NT or RT. The
literal ‘2̄’, represented internally by l = 5, is fixed true in every context.

Algorithm L uses a sequential stack R0, R1, . . . , to record the names of
literals that have received values. The current stack size, E, satisfies 0 ≤ E ≤ n.
With those data structures we can use a simple breadth-first search procedure
to propagate the binary consequences of a literal l in context T at high speed:

Set H ← E; take account of l;
while H < E, set l ← RH , H ← H + 1, and

take account of l′ for all l′ in BIMP(l).

()

Here “take account of l” means “if l is fixed true in context T , do nothing; if l is
fixed false in context T , go to step CONFLICT; otherwise set VAL[|l|]← T+(l&1),
RE ← l, and E ← E + 1.” The step called CONFLICT is changeable.

A literal’s BIMP table might grow repeatedly as computation proceeds. But
we can undo the consequences of bad decisions by simply resetting BSIZE(l)
to the value that it had before those decisions were made. A special variable
ISTAMP is increased whenever we begin a new round of decision-making, and each

September 23, 2015

38 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

stamp
stamping
ISTAMP
ISTACK
IST
VAR
INX
free variable
DPLL with lookahead
really true
nearly true

literal l has its private stamp IST(l). Whenever BSIZE(l) is about to increase,
we check if IST(l) = ISTAMP. If not, we set

IST(l)← ISTAMP, ISTACK[I]←
(
l, BSIZE(l)

)
, I ← I + 1. ()

Then the entries on ISTACK make it easy to downdate the BIMP tables when we
backtrack. (See step L13 in the algorithm below.)

We’re ready now to look at the detailed steps of Algorithm L, except that one
more member of its arsenal of data structures needs to be introduced: There’s
an array VAR, which contains a permutation of {1, . . . , n}, with VAR[k] = x if
and only if INX[x] = k. Furthermore VAR[k] is a “free variable”—not fixed
in context RT—if and only if 0 ≤ k < N . This setup makes it convenient to
keep track of the variables that are currently free: A variable becomes fixed by
swapping it to the end of the free list and decreasing N (see exercise 137); then
we can free it later by simply increasing N , without swapping.

Algorithm L (Satisfiability by DPLL with lookahead). Given nonempty clauses
C1 ∧ · · · ∧ Cm of size ≤ 3, on n > 0 Boolean variables x1 . . . xn, this algorithm
finds a solution if and only if the clauses are satisfiable. Its family of cooperating
data structures is discussed in the text.

L1. [Initialize.] Record all binary clauses in the BIMP array and all ternary
clauses in the TIMP array. Let U be the number of distinct variables in unit
clauses; terminate unsuccessfully if two unit clauses contradict each other,
otherwise record all distinct unit literals in FORCE[k] for 0 ≤ k < U . Set
VAR[k] ← k + 1 and INX[k + 1] ← k for 0 ≤ k < n; and d ← F ← I ←
ISTAMP← 0. (Think d = depth, F = fixed variables, I = ISTACK size.)

L2. [New node.] Set BRANCH[d] ← −1. If U = 0, invoke Algorithm X below
(which looks ahead for simplifications and also gathers data about how to
make the next branch). Terminate happily if Algorithm X finds all clauses
satisfied; go to L15 if Algorithm X discovers a conflict; go to L5 if U > 0.

L3. [Choose l.] Select a literal l that’s desirable for branching (see exercise
168). If l = 0, set d← d+ 1 and return to L2. Otherwise set DEC[d]← l,
BACKF[d]← F, BACKI[d]← I, and BRANCH[d]← 0.

L4. [Try l.] Set U ← 1, FORCE[0]← l.

L5. [Accept near truths.] Set T ← NT, G ← E ← F, ISTAMP ← ISTAMP + 1,
and CONFLICT ← L11. Perform the binary propagation routine () for
l ← FORCE[0], . . . , l← FORCE[U − 1]; then set U ← 0.

L6. [Choose a nearly true L.] (At this point the stacked literals Rk are “really
true” for 0 ≤ k < G, and “nearly true” for G ≤ k < E. We want them all
to be really true.) If G = E, go to L10. Otherwise set L← RG, G← G+1.

L7. [Promote L to real truth.] Set X ← |L| and VAL[X]← RT+L&1. Remove
variable X from the free list and from all TIMP pairs (see exercise 137). Do
step L8 for all pairs (u, v) in TIMP(L), then return to L6.

L8. [Consider u ∨ v.] (We have deduced that u or v must be true; five cases
arise.) If either u or v is fixed true (in context T , which equals NT), do

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 39

compensation resolvents
langford
waerden

rand+
Algorithm L

0

nothing. If both u and v are fixed false, go to CONFLICT. If u is fixed false
but v isn’t fixed, perform () with l ← v. If v is fixed false but u isn’t
fixed, perform () with l ← u. If neither u nor v is fixed, do step L9.

L9. [Exploit u ∨ v.] If v̄ ∈ BIMP(ū), perform () with l ← u (because ū
implies both v and v̄). Otherwise if v ∈ BIMP(ū), do nothing (because we
already have the clause u∨v). Otherwise if ū ∈ BIMP(v̄), perform () with
l ← v. Otherwise append v to BIMP(ū) and u to BIMP(v̄). (Each change
to BIMP means that () might be invoked. Exercise 139 explains how to
improve this step by deducing further implications called “compensation
resolvents.”)

L10. [Accept real truths.] Set F ← E. If BRANCH[d] ≥ 0, set d← d+ 1 and go
to L2. Otherwise go to L3 if d > 0, to L2 if d = 0.

L11. [Unfix near truths.] While E > G, set E ← E − 1 and VAL[|RE|]← 0.

L12. [Unfix real truths.] While E > F, do the following: Set E ← E − 1 and
X ← |RE |; reactivate the TIMP pairs that involve X and restore X to the
free list (see exercise 137); set VAL[X]← 0.

L13. [Downdate BIMPs.] If BRANCH[d] ≥ 0, do the following while I > BACKI[d]:
Set I ← I − 1 and BSIZE(l)← s, where ISTACK[I] = (l, s).

L14. [Try again?] (We’ve discovered that DEC[d] doesn’t work.) If BRANCH[d] =
0, set l ← DEC[d], DEC[d]← l← l̄, BRANCH[d]← 1, and go back to L4.

L15. [Backtrack.] Terminate unsuccessfully if d = 0. Otherwise set d ← d − 1,
E ← F, F ← BACKF[d], and return to L12.

Exercise 143 extends this algorithm so that it will handle clauses of arbitrary size.

*Speeding up by looking ahead. Algorithm L as it stands is incomplete,
because step L2 relies on an as-yet-unspecified “Algorithm X” before choosing a
literal for branching. If we use the simplest possible Algorithm X, by branching
on whatever literal happens to be first in the current list of free variables, the
streamlined methods for propagating forced moves in () and () will tend to
make Algorithm L run roughly three times as fast as Algorithm D, and that isn’t
a negligible improvement. But with a sophisticated Algorithm X we can often
gain another factor of 10 or more in speed, on significant problems.

For example, here are some typical empirical statistics:

Problem Algorithm D Algorithm L0 Algorithm L+

waerden (3, 10; 97) 1430 gigamems, 391 gigamems, 772 megamems,
103 meganodes 31 meganodes 4672 nodes

langford (13) 71.7 gigamems, 21.5 gigamems, 45.7 gigamems,
14.0 meganodes 10.9 meganodes 944 kilonodes

rand (3, 420, 100, 0) 184 megamems, 34 megamems, 626 kilomems,
34 kilonodes 7489 nodes 19 nodes

Here Algorithm L0 stands for Algorithm L with the simplest Algorithm X, while
Algorithm L+ uses all of the lookahead heuristics that we are about to discuss.
The first two problems involve rather large clauses, so they use the extended

September 23, 2015

40 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

random ternary clauses
Heule
march
heuristic score

Algorithm L of exercise 143. The third problem consists of 420 random ternary
clauses on 100 variables. (Algorithm B, incidentally, needs 80.1 teramems, and
a search tree of 4.50 teranodes, to show that those clauses are unsatisfiable.)

The moral of this story is that it’s wise to do 100 times as much computation
at every node of a large search tree, if we can thereby decrease the size of the
tree by a factor of 1000.

How then can we distinguish a variable that’s good for branching from a
variable that isn’t? We shall consider a three-step approach:

• Preselecting, to identify free variables that appear to be good candidates;

• Nesting, to allow candidate literals to share implied computations;

• Exploring, to examine the immediate consequences of hypothetical decisions.

While carrying out these steps, Algorithm X might discover a contradiction (in
which case Algorithm L will take charge again at step L15); or the lookahead
process might discover that several of the free literals are forced to be true
(in which case it places them in the first U positions of the FORCE array). The
explorations might even discover a way to satisfy all of the clauses (in which case
Algorithm L will terminate and everybody will be happy). Thus, Algorithm X
might do much more than simply choose a good variable on which to branch.

The following recommendations for Algorithm X are based on Marijn Heule’s
lookahead solver called march, one of the world’s best, as it existed in 2013.

The first stage, preselection, is conceptually simplest, although it also in-
volves some “handwaving” because it depends on necessarily shaky assumptions.
Suppose there are N free variables. Experience has shown that we tend to get
a good heuristic score h(l) for each literal l, representing the relative amount by
which asserting l will reduce the current problem, if these scores approximately
satisfy the simultaneous nonlinear equations

h(l) = 0.1 + α
∑

u∈BIMP(l)
unot fixed

ĥ(u) +
∑

(u,v)∈TIMP(l)
ĥ(u)ĥ(v). ()

Here α is a magic constant, typically 3.5; and ĥ(l) is a multiple of h(l) chosen
so that

∑
l ĥ(l) = 2N is the total number of free literals. (In other words, the h

scores on the right are “normalized” so that their average is 1.)
Any given set of scores h(l) can be used to derive a refined set h′(l) by letting

h′(l) = 0.1 + α
∑

u∈BIMP(l)
u not fixed

h(u)

have
+

∑

(u,v)∈TIMP(l)

h(u)

have

h(v)

have
, have =

1

2N

∑

l

h(l). ()

Near the root of the search tree, when d ≤ 1, we start with h(l) = 1 for all l
and then refine it five times (say). At deeper levels we start with the h(l) values
from the parent node and refine them once. Exercise 145 contains an example.

We’ve computed h(l) for all of the free literals l, but we won’t have time to
explore them all. The next step is to select free variables CAND[j] for 0 ≤ j < C,
where C isn’t too large; we will insist that the number of candidates does not
exceed

Cmax = max(C0, C1/d), ()

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 41

cutoff parameters
participants
newbies
focus
heuristic score
dependency digraph
binary implication graph, see dependency digraph
Tarjan
strong components

using cutoff parameters that are typically C0 = 30, C1 = 600. (See exercise 148.)
We start by dividing the free variables into “participants” and “newbies”:

A participant is a variable such that either x or x̄ has played the role of u or v in
step L8, at some node above us in the search tree; a newbie is a nonparticipant.
When d = 0 every variable is a newbie, because we’re at the root of the tree.
But usually there is at least one participant, and we want to branch only on
participants whenever possible, in order to maintain focus while backtracking.

If we’ve got too many potential candidates, even after restricting consider-
ation to participants, we can winnow the list down by preferring the variables x
that have the largest combined score h(x)h(x̄). Step X3 below describes a fairly
fast way to come up with the desired selection of C ≤ Cmax candidates.

A simple lookahead algorithm can now proceed to compute a more accurate
heuristic score H(l), for each of the 2C literals l = CAND[j] or l = ¬CAND[j]
that we’ve selected for further scrutiny. The idea is to simulate what would
happen if l were used for branching, by mimicking steps L4–L9 (at least to a
first approximation): Unit literals are propagated as in the exact algorithm, but
whenever we get to the part of step L9 that changes the BIMP tables, we don’t
actually make such a change; we simply note that a branch on l would imply
u ∨ v, and we consider the value of that potential new clause to be h(u)h(v).
The heuristic score H(l) is then defined to be the sum of all such clause weights:

H(l) =
∑{

h(u)h(v)
∣∣ asserting l in L4 leads to asserting u ∨ v in L9

}
. ()

For example, the problem waerden (3, 3; 9) of () has nine candidate variables
{1, 2, . . . , 9} at the root of the search tree, and exercise 145 finds their rough
heuristic scores h(l). The more discriminating scores H(l) turn out to be

H(1) = h(2)h(3) + h(3)h(5) + h(4)h(7) + h(5)h(9) = 168.6;
H(2) = h(1)h(3) + h(3)h(4) + h(4)h(6) + h(5)h(8) = 157.3;
H(3) = h(1)h(2) + h(2)h(4) + h(4)h(5) + · · ·+ h(6)h(9) = 233.4;
H(4) = h(2)h(3) + h(3)h(5) + h(5)h(6) + · · ·+ h(1)h(7) = 231.8;
H(5) = h(3)h(4) + h(3)h(6) + h(6)h(7) + · · ·+ h(1)h(9) = 284.0.

This problem is symmetrical, so we also have H(6) = H(6̄) = H(4) = H(4̄), etc.
The best literal for branching, according to this estimate, is 5 or 5̄.

Suppose we set x5 false and proceed to look ahead at the reduced problem,
with d = 1. At this point there are eight candidates, {1, 2, 3, 4, 6, 7, 8, 9}; and
they’re now related also by binary implications, because the original clause ‘357’
has, for instance, been reduced to ‘37’. In fact, the BIMP tables now define the
dependency digraph

12 34 67 89

4̄3̄ 2̄1̄9̄8̄ 7̄6̄

()

because 3̄ −−→ 7, etc.; and in general the 2C candidate literals will define a
dependency digraph whose structure yields important clues about the current
subproblem. We can, for example, use Tarjan’s algorithm to find the strong

September 23, 2015

42 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

subforest
Tarjan
preorder
postorder
lookahead forest
tree-based lookahead, see lookahead forest
proto true
PT

components of that digraph, as mentioned after Theorem 7.1.1K. If some strong
component includes both l and l̄, the current subproblem is unsatisfiable. Other-
wise two literals of the same component are constrained to have the same value;
so we shall choose one literal from each of the S ≤ 2C strong components, and
use those choices as the actual candidates for lookahead.

Continuing our example, at this point we can use a nice trick to save
redundant computation, by extracting a subforest of the dependency digraph:

1 2 3 4 6 7 8 9

4̄ 3̄ 2̄ 1̄9̄8̄ 7̄6̄

()

The relation 8̄ −−→ 2 means that whatever happens after asserting the literal
‘2’ will also happen after asserting ‘8̄’; hence we need not repeat the steps for
‘2’ while studying ‘8̄’. And similarly, each of the other subordinate literals ‘1̄’,
. . . , ‘9̄’ inherits the assertions of its parent in this hierarchy. Tarjan’s algorithm
actually produces such a subforest with comparatively little extra work.

The nested structure of a forest also fits beautifully with “degrees of truth”
in our data structure, if we visit the S candidate literals in preorder of the
subforest, and if we successively assert each literal l at the truth degree that
corresponds to twice its position in postorder . For instance, () becomes the
following arrangement, which we shall call the “lookahead forest”:

preorder 1 2 8̄ 3 4 6 4̄ 7 3̄ 6̄ 9̄ 8 2̄ 9 1̄ 7̄

2·postorder 2 6 4 8 10 14 12 22 16 18 20 26 24 32 28 30
()

A simulation of steps L4–L9 with l← 1 and T ← 2 makes x1 true at degree 2 (we
say that it’s “2fixed” or “2true”); it also computes the score H(1)← h(2̄)h(3̄)+
h(4̄)h(7̄), but it spawns no other activity if Algorithm Y below isn’t active.
Simulation with l ← 2 and T ← 6 then 6fixes 2 and computesH(2)← h(1̄)h(3̄)+
h(4̄)h(6̄); during this process the value of x1 isn’t seen, because it is less than T .
But things get more interesting when l← 8̄ and T ← 4: Now we 4fix 8̄, and we’re
still able to see that x2 is true because 6 > T . So we save a little computation
by inheriting H(2) and setting H(8̄)← H(2) + h(4)h(6) + h(6)h(7) + h(7)h(9).

The real action begins to break through a few steps later, when we set l ← 4̄
and T ← 12. Then () will 12fix not only 4̄ but also 3, since 4̄−−→ 3; and the
12truth of 3 will soon take us to the simulated step L8 with u = 6̄ and v = 9̄.
Aha: We 12fix 9̄, because 6 is 14true. Then we also 12fix the literals 7, 1, . . . , and
reach a contradiction. This contradiction shows that branching on 4̄ will lead to
a conflict; hence the literal 4 must be true, if the current clauses are satisfiable.

Whenever the lookahead simulation of Algorithm X learns that some literal l
must be true, as in this example, it places l on the FORCE list and makes l proto
true (that is, true in context PT). A proto true literal will remain fixed true
throughout this round of lookahead, because all relevant values of T will be
less than PT. Later, Algorithm L will promote proto truth to near truth, and
ultimately to real truth—unless a contradiction arises. (And in the case of
waerden (3, 3; 9), such a contradiction does in fact arise; see exercise 150.)

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 43

forests
ancestor
invariant relation
nesting
lookahead forest
exploration
breadth-first search
windfall

Why does the combination of preorder and postorder work so magically
in ()? It’s because of a basic property of forests in general, which we noted
for example in exercise 2.3.2–20: If u and v are nodes of a forest, u is a proper
ancestor of v if and only if u precedes v in preorder and u follows v in postorder.
Moreover, when we look ahead at candidate literals in this way, an important
invariant relation is maintained on the R stack, namely that truth degrees never
increase as we move from the bottom to the top:

VAL[|Rj−1|] | 1 ≥ VAL[|Rj|], for 1 < j < E. ()

Real truths appear at the bottom, then near truths, then proto truth, etc. For
example, the stack at one point in the problem above contains seven literals,

j = 0 1 2 3 4 5 6

Rj = 5̄ 6 4̄ 3 9̄ 7 1
VAL[|Rj|] = RT+1 14 13 12 13 12 12

.

One consequence is that the current visibility of truth values matches the recur-
sive structure by which false literals are purged from ternary clauses.

The second phase of Algorithm X, after preselection of candidates, is called
“nesting,” because it constructs a lookahead forest analogous to (). More
precisely, it constructs a sequence of literals LL[j] and corresponding truth
offsets LO[j], for 0 ≤ j < S. It also sets up PARENT pointers to indicate the forest
structure more directly; for example, with () we would have PARENT(8̄) = 2
and PARENT(2) = Λ.

The third phase, “exploration,” now does the real work. It uses the looka-
head forest to evaluate heuristics H(l) for the candidate literals—and also (if
it’s lucky) to discover literals whose values are forced.

The heart of the exploration phase is a breadth-first search based on steps L5,
L6, and L8. This routine propagates truth values of degree T and also computes
w, the weight of new binary clauses that would be spawned by branching on l:

Set l0 ← l, i← w ← 0, and G← E ← F ; perform ();
while G < E, set L← RG, G← G+ 1, and

take account of (u, v) for all (u, v) in TIMP(L);
generate new binary clauses (l̄0 ∨Wk) for 0 ≤ k < i.

()

Here “take account of (u, v)” means “if either u or v is fixed true (in context T),
do nothing; if both u and v are fixed false, go to CONFLICT; if u is fixed false but
v isn’t fixed, set Wi ← v, i ← i + 1, and perform () with l ← v; if v is fixed
false but u isn’t fixed, set Wi ← u, i ← i + 1, and perform () with l ← u; if
neither u nor v is fixed, set w ← w + h(u)h(v).”

Explanation: A ternary clause of the form L̄ ∨ u ∨ v, where L is fixed true
and u is fixed false as a consequence of l0 being fixed true, is called a “windfall.”
Such clauses are good news, because they imply that the binary clause l̄0 ∨ v
must be satisfied in the current subproblem. Windfalls are recorded on a stack
called W, and appended to the BIMP database at the end of ().

September 23, 2015

44 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

autarky principle
pure literal
touches
participants

The exploration phase also exploits an important fact called the autarky

principle, which generalizes the notion of “pure literal” that we discussed above
in connection with Algorithm A. An “autarky” for a SAT problem F is a set
of strictly distinct literals A = {a1, . . . , at} with the property that every clause
of F either contains at least one literal of A or contains none of the literals of
A = {ā1, . . . , āt}. In other words, A satisfies every clause that A or A “touches.”

An autarky is a self-sufficient system. Whenever A is an autarky, we can
assume without loss of generality that all of its literals are actually true; for if F
is satisfiable, the untouched clauses are satisfiable, and A tells us how to satisfy
the touched ones. Step X9 of the following algorithm shows that we can detect
certain autarkies easily while we’re looking ahead.

Algorithm X (Lookahead for Algorithm L). This algorithm, which is invoked
in step L2 of Algorithm L, uses the data structures of that algorithm together
with additional arrays of its own to explore properties of the current subproblem.
It discovers U ≥ 0 literals whose values are forced, and puts them in the FORCE

array. It terminates either by (i) satisfying all clauses; (ii) finding a contradiction;
or (iii) computing heuristic scores H(l) that will allow step L3 to choose a good
literal for branching. In case (iii) it might also discover new binary clauses.

X1. [Satisfied?] If F = n, terminate happily (no variables are free).

X2. [Compile rough heuristics.] Set N = n − F and use () to compute a
rough score h(l) for each free literal l.

X3. [Preselect candidates.] Let C be the current number of free variables that
are “participants,” and put them into the CAND array. If C = 0, set
C ← N and put all free variables into CAND; terminate happily, however,
if all clauses are satisfied (see exercise 152). Give each variable x in CAND

the rating r(x) = h(x)h(x̄). Then while C > 2Cmax (see ()), delete all
elements of CAND whose rating exceeds the mean rating; but terminate this
loop if no elements are actually deleted. Finally, if C > Cmax, reduce C to
Cmax by retaining only top-ranked candidates. (See exercise 153.)

X4. [Nest the candidates.] Construct a lookahead forest, represented in LL[j]
and LO[j] for 0 ≤ j < S and by PARENT pointers (see exercise 155).

X5. [Prepare to explore.] Set U ′ ← j′ ← BASE← j ← 0 and CONFLICT← X13.

X6. [Choose l for lookahead.] Set l ← LL[j] and T ← BASE + LO[j]. Set
H(l)← H(PARENT(l)), whereH(Λ) = 0. If l is not fixed in context T , go to
X8. Otherwise, if l is fixed false but not proto false, do step X12 with l ← l̄.

X7. [Move to next.] If U > U ′, set U ′ ← U and j′ ← j. Then set j ← j +1. If
j = S, set j ← 0 and BASE← BASE+ 2S. Terminate normally if j = j′, or
if j = 0 and BASE+ 2S ≥ PT. Otherwise return to X6.

X8. [Compute sharper heuristic.] Perform (). Then if w > 0, set H(l0) ←
H(l0) + w and go to X10.

X9. [Exploit an autarky.] IfH(l0) = 0, do step X12 with l ← l0. Otherwise gen-
erate the new binary clause l0∨¬PARENT(l0). (Exercise 166 explains why.)

September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 45

necessary assignments
forced literals
double truth
DT
Dtrue
Dfalse

X10. [Optionally look deeper.] Perform Algorithm Y below.

X11. [Exploit necessary assignments.] Do step X12 for all literals l ∈ BIMP(l̄0)
that are fixed true but not proto true. Then go to X7. (See exercise 167.)

X12. [Force l.] Set FORCE[U]← l, U ← U + 1, T ′ ← T , and perform () with
T ← PT. Then set T ← T ′. (This step is a subroutine, used by other steps.)

X13. [Recover from conflict.] If T < PT, do step X12 with l← l̄0 and go to X7.
Otherwise terminate with a contradiction.

Notice that, in steps X5–X7, this algorithm proceeds cyclically through the
forest, continuing to look ahead until completing a pass in which no new forced
literals are found. The BASE address of truth values continues to grow, if
necessary, but it isn’t allowed to become too close to PT.

*Looking even further ahead. If it’s a good idea to look one step ahead,
maybe it’s a better idea to look two steps ahead. Of course that’s a somewhat
scary proposition, because our data structures are already pretty stretched; and
besides, double lookahead might take way too much time. Nevertheless, there’s
a way to pull it off, and to make Algorithm L run even faster on many problems.

Algorithm X looks at the immediate consequences of assuming that some
literal l0 is true. Algorithm Y, which is launched in step X10, goes further out
on that limb, and investigates what would happen if another literal, l̂0, were also
true. The goal is to detect branches that die off early, allowing us to discover
new implications of l0 or even to conclude that l0 must be false.

For this purpose Algorithm Y stakes out an area of truth space between the
current context T and a degree of truth called “double truth” or DT, which is
defined in step Y2. The size of this area is determined by a parameter Y, which
is typically less than 10. The same lookahead forest is used to give relative truth
degrees below DT. Double truth is less trustworthy than proto truth, PT; but
literals that are fixed at level DT are known to be conditionally true (“Dtrue”)
or conditionally false (“Dfalse”) under the hypothesis that l0 is true.

Going back to our example of waerden (3, 3; 9), the scenario described above
was based on the assumption that double lookahead was not done. Actually,
however, further activity by Algorithm Y will usually take place after H(1) has
been set to h(2̄)h(3̄) + h(4̄)h(7̄). The value of DT will be set to 130, assuming
that Y = 8, because S = 8. Literal 1 will become Dtrue. Looking then at 2 will
6fix 2; and that will 6fix 3̄ because of the clause 1̄2̄3̄. Then 3̄ will 6fix 4 and 7,
contradicting 1̄4̄7̄ and causing 2 to become Dfalse. Other literals also will soon
become Dtrue or Dfalse, leading to a contradiction; and that contradiction will
allow Algorithm Y to make literal 1 proto false before Algorithm X has even
begun to look ahead at literal 2.

The main loop of double lookahead is analogous to (), but it’s simpler,
because we’re further removed from reality:

Set l̂0 ← l and G← E ← F ; perform ();
while G < E, set L← RG, G← G+ 1, and

take account of (u, v) for all (u, v) in TIMP(L).

()

September 23, 2015

46 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Heule
van Maaren
feedback mechanism
adaptive control
trigger
damping factor
DFAIL
pi
random ternary clauses

Now “take account of (u, v)” means “if either u or v is fixed true (in context T),
or if neither u nor v is fixed, do nothing; if both u and v are fixed false, go to
CONFLICT; if u is fixed false but v isn’t fixed, perform () with l ← v; if v is
fixed false but u isn’t fixed, perform () with l ← u.”

Since double-looking is costly, we want to try it only when there’s a fairly
good chance that it will be helpful, namely when H(l0) is large. But how large is
large enough? The proper threshold depends on the problem being solved: Some
sets of clauses are handled more quickly by double-looking, while others are im-
mune to such insights. Marijn Heule and Hans van Maaren [LNCS 4501 (2007),
258–271] have developed an elegant feedback mechanism that automatically
tunes itself to the characteristics of the problem at hand: Let τ be a “trigger,”
initially 0. Step Y1 allows double-look only if H(l0) > τ ; otherwise τ is decreased
to βτ , where β is a damping factor (typically 0.999), so that double-looking
will become more attractive. On the other hand if double-look doesn’t find a
contradiction that makes l0 proto false, the trigger is raised to H(l0) in step Y6.

Algorithm Y (Double lookahead for Algorithm X). This algorithm, invoked in
step X10, uses the same data structures (and a few more) to look ahead more
deeply. Parameters β and Y are explained above. Initially DFAIL(l) = 0 for all l.

Y1. [Filter.] Terminate if DFAIL(l0) = ISTAMP, or if T + 2S(Y + 1) > PT.
Otherwise, if H(l0) ≤ τ , set τ ← βτ and terminate.

Y2. [Initialize.] Set BASE← T − 2, LBASE← BASE+2S ·Y , DT← LBASE+ LO[j],
i ← ̂′ ← ̂ ← 0, E ← F, and CONFLICT ← Y8. Perform () with l ← l0
and T ← DT.

Y3. [Choose l for double look.] Set l ← LL[j] and T ← BASE+LO[j]. If l is not
fixed in context T , go to Y5. Otherwise, if l is fixed false but not Dfalse, do
step Y7 with l← l̄.

Y4. [Move to next.] Set ̂ ← ̂ + 1. If ̂ = S, set ̂ ← 0 and BASE← BASE+ 2S.
Go to Y6 if ̂′ = ̂, or if ̂ = 0 and BASE = LBASE. Otherwise return to Y3.

Y5. [Look ahead.] Perform (), and return to Y4 (if no conflict arises).

Y6. [Finish.] Generate new binary clauses (l̄0 ∨Wk) for 0 ≤ k < i. Then set
BASE ← LBASE, T ← DT, τ ← H(l0), DFAIL(l0) ← ISTAMP, CONFLICT ←
X13, and terminate.

Y7. [Make l̂0 false.] Set ̂′ ← ̂, T ′ ← T , and perform () with l ← l̂0 and

T ← DT. Then set T ← T ′, Wi ← l̂0, i← i+1. (This step is a subroutine.)

Y8. [Recover from conflict.] If T < DT, do step Y7 with l ← ¬LL[̂] and go
to Y4. Otherwise set CONFLICT← X13 and exit to X13.

Some quantitative statistics will help to ground these algorithms in reality:
When Algorithm L was let loose on rand (3, 2062, 500, 314), a problem with 500
variables and 2062 random ternary clauses, it proved unsatisfiability after making
684,433,234,661 memory accesses and constructing a search tree of 9,530,489
nodes. Exercise 173 explains what would have happened if various parts of the
algorithm had been disabled. None of the other SAT solvers we shall discuss are
able to handle such random problems in a reasonable amount of time.

September 23, 2015

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 47

random satisfiability–
3SAT–
probability of satisfiability–

Random satisfiability. There seems to be no easy way to analyze the satisfia-
bility problem under random conditions. In fact, the basic question “How many
random clauses of 3SAT on n variables do we need to consider, on the average,
before they can’t all be satisfied?” is a famous unsolved research problem.

From a practical standpoint this question isn’t as relevant as the analogous
questions were when we studied algorithms for sorting or searching, because real-
world instances of 3SAT tend to have highly nonrandom clauses. Deviations from
randomness in combinatorial algorithms often have a dramatic effect on running
time, while methods of sorting and searching generally stay reasonably close to
their expected behavior. Thus a focus on randomness can be misleading. On the
other hand, random SAT clauses do serve as a nice, clean model, so they give us
insights into what goes on in Boolean territory. Furthermore the mathematical
issues are of great interest in their own right. And fortunately, much of the basic
theory is in fact elementary and easy to understand. So let’s take a look at it.

Exercise 180 shows that random satisfiability can be analyzed exactly, when
there are at most five variables. We might as well start there, because the “tiny”
5-variable case is still large enough to shed some light on the bigger picture.
When there are n variables and k literals per clause, the number N of possible
clauses that involve k different variables is clearly 2k

(
n
k

)
: There are

(
n
k

)
ways to

choose the variables, and 2k ways to either complement or not. So we have, for
example, N = 23

(
5
3

)
= 80 possible clauses in a 3SAT problem on 5 variables.

Let qm be the probability that m of those clauses, distinct but otherwise
selected at random, are satisfiable. Thus qm = Qm/

(
N
m

)
, whereQm is the number

of ways to choose m of the N clauses so that at least one Boolean vector x =
x1 . . . xn satisfies them all. Figure 40 illustrates these probabilities when k = 3
and n = 5. Suppose we’re being given distinct random clauses one by one.
According to Fig. 40, the chances are better than 77% that we’ll still be able
to satisfy them after 20 different clauses have been received, because q20 ≈
0.776. But by the time we’ve accumulated 30 of the 80 clauses, the chance of
satisfiability has dropped to q30 ≈ 0.179; and after ten more we reach q40 ≈ 0.016.

1

0
0 10 20 30 40 50 60 70 80

Fig. 40. The probability qm that m distinct clauses of 3SAT

on 5 variables are simultaneously satisfiable, for 0 ≤ m ≤ 80.

The illustration makes it appear as if qm = 1 for m < 15, say, and as if
qm = 0 for m > 55. But q8 is actually less than 1, because of (); exercise 179
gives the exact value. And q70 is greater than 0, because Q70 = 32; indeed, every
Boolean vector x satisfies exactly (2k − 1)

(
n
k

)
= (1 − 2−k)N of the N possible

k-clauses, so it’s no surprise that 70 noncontradictory 3-clauses on 5 variables
can be found. Of course those clauses will hardly ever be the first 70 received, in
a random situation. The actual value of q70 is 32/1646492110120≈ 2× 10−11.

September 23, 2015

48 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

solutions, number of+
standard deviation
uniquely satisfiable
stopping time
summation by parts

0

8

16

24

32

0 10 20 30 40 50 60 70 80

Fig. 41. The total number Tm of different Boolean vectors x = x1 . . . x5 that
simultaneously satisfy m distinct clauses of 3SAT on 5 variables, for 0 ≤ m ≤ 80.

Figure 41 portrays the same process from another standpoint: It shows in

how many ways a random set of m clauses can be satisfied. This value, Tm, is a
random variable whose mean is indicated in black, surrounded by a gray region
that shows the mean plus-or-minus the standard deviation. For example, T0 is
always 32, and T1 is always 28; but T2 is either 24, 25, or 26, and it takes these
values with the respective probabilities (2200, 480, 480)/3160. Thus the mean
for m = 2 is ≈ 24.5, and the standard deviation is ≈ 0.743.

When m = 20, we know from Fig. 40 that T20 is nonzero more than 77%
of the time; yet Fig. 41 shows that T20 ≈ 1.47± 1.17. (Here the notation µ± σ
stands for the mean value µ with standard deviation σ.) It turns out, in fact,
that 20 random clauses are uniquely satisfiable, with T20 = 1, more than 33% of
the time; and the probability that T20 > 4 is only 0.013. With 30 clauses, satis-
fiability gets dicier and dicier: T30 ≈ 0.20± 0.45; indeed, T30 is less than 2, more
than 98% of the time—although it can be as high as 11 if the clause-provider is
being nice to us. By the time 40 clauses are reached, the odds that T40 exceeds 1
are less than 1 in 4700. Figure 42 shows the probability that Tm = 1 as m varies.

.5

0
0 10 20 30 40 50 60 70 80

Fig. 42. Pr(Tm = 1), the probability that m distinct clauses
of 3SAT on 5 variables are uniquely satisfiable, for 0 ≤ m ≤ 80.

Let P be the number of clauses that have been received when we’re first
unable to satisfy them all. Thus we have P = m with probability pm, where
pm = qm−1− qm is the probability that m− 1 random clauses are satisfiable but
m are not. These probabilities are illustrated in Fig. 43. Is it surprising that
Figs. 42 and 43 look roughly the same? (See exercise 183.)

The expected “stopping time,” EP , is by definition equal to
∑

mmpm; and
it’s not difficult to see, for example by using the technique of summation by
parts (exercise 1.2.7–10), that we can compute it by summing the probabilities
in Fig. 40:

EP =
∑

m

qm. ()

September 23, 2015

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 49

variance
kSAT
4SAT
2SAT
1SAT
sampling with and without replacement
repeated clauses
birthday paradox

.1

0
0 10 20 30 40 50 60 70 80

Fig. 43. The stopping time probabilities, pm, that m distinct clauses
of 3SAT on 5 variables have just become unsatisfiable, for 0 ≤ m ≤ 80.

The variance of P , namely E(P − EP)2 = (EP 2) − (EP)2, also has a simple
expression in terms of the q’s, because

EP 2 =
∑

m

(2m+ 1)qm. ()

In Figs. 40 and 43 we have EP ≈ 25.22, with variance ≈ 35.73.
So far we’ve been focusing our attention on 3SAT problems, but the same

ideas apply also to kSAT for other clause sizes k. Figure 44 shows exact results
for the probabilities when n = 5 and 1 ≤ k ≤ 4. Larger values of k give clauses
that are easier to satisfy, so they increase the stopping time. With five variables
the typical stopping times for random 1SAT, 2SAT, 3SAT, and 4SAT turn out
to be respectively 4.06 ± 1.19, 11.60 ± 3.04, 25.22 ± 5.98, and 43.39 ± 7.62. In
general if Pk,n is the stopping time for kSAT on n variables, we let

Sk,n = EPk,n ()

be its expected value.

1

0
0 10 20 30 40 50 60 70 80

1SAT 2SAT 3SAT 4SAT

Fig. 44. Extension of Fig. 40 to clauses of other sizes.

Our discussions so far have been limited in another way too: We’ve been
assuming thatm distinct clauses are being presented to a SAT solver for solution.
In practice, however, it’s much easier to generate clauses by allowing repetitions,
so that every clause is chosen without any dependence on the past history. In
other words, there’s a more natural way to approach random satisfiability, by
assuming that Nm possible ordered sequences of clauses are equally likely after
m steps, not that we have

(
N
m

)
equally likely sets of clauses.

Let q̂m be the probability thatm random clauses C1∧· · ·∧Cm are satisfiable,
where each Cj is randomly chosen from among the N = 2k

(
n
k

)
possibilities in a

kSAT problem on n variables. Figure 45 illustrates these probabilities in the case
k = 3, n = 5; notice that we always have q̂m ≥ qm. If N is large while m is small,
it’s clear that q̂m will be very close to qm, because repeated clauses are unlikely
in such a case. Still, we must keep in mind that qN is always zero, while q̂m is
never zero. Furthermore, the “birthday paradox” discussed in Section 6.4 warns

September 23, 2015

50 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

kSAT
sampled with replacement

rand
Selman
Mitchell
Levesque
phase transition
density of clauses: the number of clauses per
crossover point, see threshold
satisfiability thresholds

1

0
0 10 20 30 40 50 60 70 80

Fig. 45. Random 3SAT on 5 variables when the clauses are sampled
with replacement. The probabilities q̂m are shown with a black line;
the smaller probabilities qm of Fig. 40 are shown in gray.

us that repetitions aren’t as rare as we might expect. The deviations of q̂m from
qm are particularly noticeable in small cases such as the scenario of Fig. 45.

In any event, there’s a direct way to compute q̂m from the probabilities qt
and the value of N (see exercise 184):

q̂m =
N∑

t=0

{
m
t

}
t! qt

(
N
t

)/
Nm. ()

And there are surprisingly simple formulas analogous to () and () for the

stopping time P̂ , where p̂m = q̂m−1 − q̂m, as shown in exercise 186:

E P̂ =
N−1∑

m=0

N

N −m qm ; ()

E P̂ 2 =

N−1∑

m=0

N

N −m qm

(
1 + 2

(
N

N − 1
+ · · ·+ N

N −m
))

. ()

These formulas prove that the expected behavior of P̂ is very much like that
of P , if qm is small whenever m/N isn’t small. In the case k = 3 and n = 5, the

typical stopping times P̂ = 30.58± 9.56 are significantly larger than those of P ;
but we are mostly interested in cases where n is large and where q̂m is essentially
indistinguishable from qm. In order to indicate plainly that the probability q̂m
depends on k and n as well as on m, we shall denote it henceforth by Sk(m,n):

Sk(m,n) = Pr(m random clauses of kSAT are satisfiable), ()

where the m clauses are “sampled with replacement” (they needn’t be distinct).
Suitable pseudorandom clauses rand (k,m, n, seed) can easily be generated.

Exact formulas appear to be out of reach when n > 5, but we can make
empirical tests. For example, extensive experiments on random 3SAT problems
by B. Selman, D. G. Mitchell, and H. J. Levesque [Artificial Intelligence 81

(1996), 17–29] showed a dramatic drop in the chances of satisfiability when the
number of clauses exceeds about 4.27n. This “phase transition” becomes much
sharper as n grows (see Fig. 46).

Similar behavior occurs for random kSAT, and this phenomenon has spawned
an enormous amount of research aimed at evaluating the so-called satisfiability

thresholds

αk = lim
n→∞

Sk,n/n. ()

September 23, 2015

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 51

Kaporis
Kirousis
Lalas
Dı́az
Mitsche
Pérez-Giménez
sharp threshold
Friedgut
wobble function
survey propagation
Mertens
Mézard
Zecchina
4SAT
5SAT
6SAT
7SAT
kSAT
Ding
Sly
Sun
2SAT–

4.27n

n=500

n=50

n=5

1

0
0 2n 4n 6n 8n 10n

Fig. 46. Empirical probability data shows that random 3SAT problems rapidly
become unsatisfiable when there are more than α3n clauses, if n is large enough.

Indeed, we can obtain quite difficult kSAT problems by generating approximately
αkn random k-clauses, using empirically observed estimates of αk. If n is large,
the running time for random 3SAT with 4.3n clauses is typically orders of mag-
nitude larger than it is when the number of clauses is 4n or 4.6n. (And still
tougher problems arise in rare instances when we have, say, 3.9n clauses that
happen to be unsatisfiable.)

Strictly speaking, however, nobody has been able to prove that the so-called
constants αk actually exist, for all k! The empirical evidence is overwhelming;
but rigorous proofs for k = 3 have so far only established the bounds

lim inf
n→∞

S3,n/n ≥ 3.52; lim sup
n→∞

S3,n/n ≤ 4.49. ()

[See A. C. Kaporis, L. M. Kirousis, and E. G. Lalas, Random Structures &
Algorithms 28 (2006), 444–480; J. Dı́az, L. Kirousis, D. Mitsche, and X. Pérez-
Giménez, Theoretical Comp. Sci. 410 (2009), 2920–2934.] A “sharp threshold”
result has been established by E. Friedgut [J. Amer. Math. Soc. 12 (1999), 1017–
1045, 1053–1054], who proved the existence for k ≥ 2 of functions αk(n) with

lim
n→∞

Sk

(
⌊(αk(n)− ǫ)n⌋, n

)
= 1, lim

n→∞
Sk

(
⌊(αk(n) + ǫ)n⌋, n

)
= 0, ()

when ǫ is any positive number. But those functions might not approach a limit.
They might, for example, fluctuate periodically, like the “wobble function” that
we encountered in Eq. 5.2.2–().

The current best guess for α3, based on heuristics of the “survey propaga-
tion” technique to be discussed below, is that α3 = 4.26675±0.00015 [S. Mertens,
M. Mézard, and R. Zecchina, Random Structures & Algorithms 28 (2006), 340–
373]. Similarly, it appears reasonable to believe that α4 ≈ 9.931, α5 ≈ 21.12,
α6 ≈ 43.37, α7 ≈ 87.79. The α’s grow as Θ(2k) (see exercise 195); and they
are known to be constant when k is sufficiently large [see J. Ding, A. Sly, and
N. Sun, STOC 47 (2015), to appear].

Analysis of random 2SAT. Although nobody knows how to prove that random
3SAT problems almost always become unsatisfiable when the number of clauses
reaches ≈ 4.27n, the corresponding question for 2SAT does have a nice answer:
The satisfiability threshold α2 equals 1. For example, when the author first tried
1000 random 2SAT problems with a million variables, 999 of them turned out to
be satisfiable when there were 960,000 clauses, while all were unsatisfiable when
the number of clauses rose to 1,040,000. Figure 47 shows how this transition
becomes sharper as n increases.

September 23, 2015

52 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Chvátal
Reed
Goerdt
Fernandez de la Vega
implication digraph
Karp
giant strong component
strong components
Chvátal
Reed
s-chain
strictly distinct literals

Fig. 47. Empirical satisfaction
probabilities for 2SAT with ap-
proximately n random clauses.
(When n = 100, the probability
doesn’t become negligible until
more than roughly 180 clauses
have been generated.)

0.8n 0.9n 1.0n 1.1n 1.2n

n=1000000 n=10000 n=100

· · · · · ·

The fact that S2,n ≈ n was discovered in 1991 by V. Chvátal and B. Reed
[FOCS 33 (1992), 620–627], and the same result was obtained independently
at about the same time by A. Goerdt and by W. Fernandez de la Vega [see J.
Comp. Syst. Sci. 53 (1996), 469–486; Theor. Comp. Sci. 265 (2001), 131–146].

The study of this phenomenon is instructive, because it relies on properties
of the digraph that characterizes all instances of 2SAT. Furthermore, the proof
below provides an excellent illustration of the “first and second moment princi-
ples,” equations MPR–() and MPR–(). Armed with those principles, we’re
ready to derive the 2SAT threshold:

Theorem C. Let c be a fixed constant. Then

lim
n→∞

S2

(
⌊cn⌋, n

)
=

{
1, if c < 1;
0, if c > 1.

()

Proof. Every 2SAT problem corresponds to an implication digraph on the literals,
with arcs l̄−−→ l′ and l̄ ′−−→ l for each clause l∨ l′. We know from Theorem 7.1.1K
that a set of 2SAT clauses is satisfiable if and only if no strong component of its
implication digraph contains both x and x̄ for some variable x. That digraph
has 2m = 2⌊cn⌋ arcs and 2n vertices. If it were a random digraph, well-known
theorems of Karp (which we shall study in Section 7.4.1) would imply that only
O(log n) vertices are reachable from any given vertex when c < 1, but that there
is a unique “giant strong component” of size Ω(n) when c > 1.

The digraph that arises from random 2SAT isn’t truly random, because its
arcs come in pairs, u−−→v and v̄−−→ ū. But intuitively we can expect that similar
behavior will apply to digraphs that are just halfway random. For example, when
the author generated a random 2SAT problem with n = 1000000 and m = .99n,
the resulting digraph had only two complementary pairs of strong components
with more than one vertex, and their sizes were only 2, 2 and 7, 7; so the clauses
were easily satisfiable. Adding another .01n clauses didn’t increase the number of
nontrivial strong components, and the problem remained satisfiable. But another
experiment with m = n = 1000000 yielded a strong component of size 420,
containing 210 variables and their complements; that problem was unsatisfiable.

Based on a similar intuition into the underlying structure, Chvátal and
Reed introduced the following “snares and snakes” approach to the proof of
Theorem C: Let’s say that an s-chain is any sequence of s strictly distinct literals;
thus there are 2sns possible s-chains. Every s-chain C corresponds to clauses

(l̄1 ∨ l2), (l̄2 ∨ l3), . . . , (l̄s−1 ∨ ls), ()

September 23, 2015

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 53

s-snare
first moment principle
t-snake

which in turn correspond to two paths

l1−−→ l2−−→ l3−−→ · · · −−→ ls and l̄s−−→ · · · −−→ l̄3−−→ l̄2−−→ l̄1 ()

in the digraph. An s-snare (C; t, u) consists of an s-chain C and two indices t
and u, where 1 < t ≤ s and 1 ≤ |u| < s; it specifies the clauses () together with

(lt ∨ l1) and (l̄s ∨ lu) if u > 0, (l̄s ∨ l̄−u) if u < 0, ()

representing l̄t −−→ l1 and either ls −−→ l|u| or ls −−→ l̄|u|. The number of possible
s-snares is 2s+1(s− 1)2ns . Their clauses are rarely all present when m is small.

Exercise 200 explains how to use these definitions to prove Theorem C in
the case c < 1. First we show that every unsatisfiable 2SAT formula contains all
the clauses of at least one snare. Then, if we define the binary random variable

X(C; t, u) = [all clauses of (C; t, u) are present], ()

it isn’t difficult to prove that the snares of every s-chain C are unlikely:

EX(C; t, u) ≤ ms+1
/(

2n(n− 1)
)s+1

. ()

Finally, letting X be the sum of X(C; t, u) over all snares, we obtain

EX =
∑

EX(C; t, u) ≤
∑

s≥0

2s+1s(s−1)ns
(

m

2n(n− 1)

)s+1

=
2

n

(
m

n− 1−m
)3

by Eq. 1.2.9–(). This formula actually establishes a stronger form of (),
because it shows that EX is only O(n−1/4) when m = n− n3/4 > cn. Thus

S2

(
⌊n− n3/4⌋, n

)
≥ Pr(X = 0) = 1− Pr(X > 0) ≥ 1−O(n−1/4) ()

by the first moment principle.

The other half of Theorem C can be proved by using the concept of a t-
snake, which is the special case (C; t,−t) of a (2t − 1)-snare. In other words,
given any chain (l1, . . . , lt, . . . , l2t−1), with s = 2t − 1 and lt
in the middle, a t-snake generates the clauses () together
with (lt ∨ l1) and (l̄s ∨ l̄t). When t = 5, for example, and
(l1, . . . , l2t−1) = (x1, . . . , x9), the 2t = 10 clauses are

51, 1̄2, 2̄3, 3̄4, 4̄5, 5̄6, 6̄7, 7̄8, 8̄9, 9̄5̄,

and they correspond to 20 arcs that loop around to form a
strong component as shown here. We will prove that, when c > 1
in (), the digraph almost always contains such impediments to satisfiability.

5̄

1

2 3

4

5

6

78

9

5̄

4̄ 3̄ 2̄ 1̄

5

9̄8̄7̄6̄

5̄

Given a (2t− 1)-chain C, where the parameter t will be chosen later, let

XC = [each clause of (C; t,−t) occurs exactly once]. ()

The expected value EXC is clearly f(2t), where

f(r) = mr
(
2n(n− 1)− r

)m−r/(
2n(n− 1)

)m
()

September 23, 2015

54 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

second moment principle
Bollobás
Borgs
Chayes
Kim
Wilson
resolution–
axioms

Notation C′ ⋄C ′′
directed acyclic graph
dag
refutation

is the probability that r specific clauses occur once each. Notice that

f(r) =
(

m

2n(n− 1)

)r(
1 +O

(
r2

m

)
+O

(
rm

n2

))
; ()

thus the relative error will be O(t2/n) if m = Θ(n) as n→∞.

Now let X =
∑
XC , summed over all R = 22t−1n2t−1 possible t-snakes C;

thus EX = Rf(2t). We want to show that Pr(X > 0) is very nearly 1, using
the second moment principle; so we want to show that the expectation EX2 =
E
(∑

C XC

)(∑
DXD

)
=
∑

C

∑
D EXCXD is small. The key observation is that

EXCXD = f(4t− r) if C and D have exactly r clauses in common. ()

Let pr be the probability that a randomly chosen t-snake has exactly r clauses
in common with the fixed snake (x1, . . . , x2t−1). Then

EX2

(EX)2
=
R2
∑2t

r=0 prf(4t− r)
R2f(2t)2

=

2t∑

r=0

pr
f(4t− r)
f(2t)2

=

2t∑

r=0

pr

(
2n(n− 1)

m

)r(
1 +O

(
t2

n

))
. ()

By studying the interaction of snakes (see exercise 201) one can prove that

(2n)rpr = O(t4/n) +O(t)[r≥ t] +O(n)[r=2t], for 1 ≤ r ≤ 2t. ()

Finally then, as explained in exercise 202, we can choose t = ⌊n1/5⌋ and m =
⌊n+ n5/6⌋, to deduce a sharper form of () when c > 1:

S2

(
⌊n+ n5/6⌋, n

)
= O(n−1/30). ()

(Deep breath.) Theorem C is proved.

Much more precise results have been derived by B. Bollobás, C. Borgs, J. T.
Chayes, J. H. Kim, and D. B. Wilson, in Random Structures & Algorithms 18
(2001), 201–256. For example, they showed that

S2

(
⌊n−n3/4⌋, n

)
= exp

(
−Θ(n−1/4)

)
; S2

(
⌊n+n3/4⌋, n

)
= exp

(
−Θ(n1/4)

)
. ()

Resolution. The backtracking process of Algorithms A, B, D, and L is closely
connected to a logical proof procedure called resolution. Starting with a family of
clauses called “axioms,” there’s a simple rule by which new clauses can be derived
from this given set: Whenever both x ∨A′ and x̄ ∨A′′ are in our repertoire of
clauses, we’re allowed to derive the “resolvent” clause A = A′ ∨A′′, denoted by
(x ∨A′) ⋄ (x̄ ∨A′′). (See exercises 218 and 219.)

A proof by resolution consists of a directed acyclic graph (dag) whose vertices
are labeled with clauses in the following way: (i) Every source vertex is labeled
with an axiom. (ii) Every other vertex has in-degree 2. (iii) If the predecessors
of vertex v are v′ and v′′, the label of v is C(v) = C(v′) ⋄C(v′′).

When such a dag has a sink vertex labeled A, we call it a “resolution proof
ofA”; and if A is the empty clause, the dag is also called a “resolution refutation.”

September 23, 2015

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 55

regular resolution
treelike resolution
Rivest
unnecessary branch
lookahead
Impagliazzo
Pudlák
Prover–Delayer game

The dag of a proof by resolution can be expanded to a binary tree, by
replicating any vertex that has out-degree greater than 1. Such a tree is said
to be regular if no path from the root to a leaf uses the same variable twice to
form a resolvent. For example, Fig. 48 is a regular resolution tree that refutes
Rivest’s unsatisfiable axioms (). All arcs in this tree are directed upwards.

1 1̄

2 2̄ 2̄ 2

3 3̄ 4 4̄ 3̄ 3 4̄ 4

4 4̄ 3 3̄ 4 4̄ 3 3̄

ǫ

1 1̄

12 12̄ 1̄2̄ 1̄2

123 12̄4 1̄2̄3̄ 1̄24̄123̄ 4̄12̄ 1̄2̄3 41̄2

341 234̄ 341 2̄3̄4 2̄3̄4 3̄4̄1̄ 234̄ 3̄4̄1̄

Fig. 48. One way to derive ǫ by resolving the inconsistent clauses ().

Notice that Fig. 48 is essentially identical to Fig. 39 on page 33, the backtrack
tree by which Algorithm D discovers that the clauses of () are unsatisfiable.
In fact this similarity is no coincidence: Every backtrack tree that records
the behavior of Algorithm D on a set of unsatisfiable clauses corresponds to a
regular resolution tree that refutes those axioms, unless Algorithm D makes an
unnecessary branch. (An unnecessary branch occurs if the algorithm tries x← 0
and x ← 1 without using their consequences to discover an unsatisfiable subset
of axioms.) Conversely, every regular refutation tree corresponds to a sequence
of choices by which a backtrack-based SAT solver could prove unsatisfiability.

The reason behind this correspondence isn’t hard to see. Suppose both
values of x need to be tried in order to prove unsatisfiability. When we set
x ← 0 in one branch of the backtrack tree, we replace the original clauses F
by F | x̄, as in (). The key point is that we can prove the empty clause by
resolution from F | x̄ if and only if we can prove x by resolution from F without
resolving on x. (See exercise 224.) Similarly, setting x ← 1 corresponds to
changing the clauses from F to F |x.

Consequently, if F is an inconsistent set of clauses that has no short refuta-
tion tree, Algorithm D cannot conclude that those clauses are unsatisfiable unless
it runs for a long time. Neither can Algorithm L, in spite of enhanced lookahead.

R. Impagliazzo and P. Pudlák [SODA 11 (2000), 128–136] have introduced
an appealing Prover–Delayer game, with which it’s relatively easy to demon-
strate that certain sets of unsatisfiable clauses require large refutation trees.
The Prover names a variable x, and the Delayer responds by saying either x← 0
or x← 1 or x← ∗. In the latter case the Prover gets to decide the value of x; but
the Delayer scores one point. The game ends when the current assignments have
falsified at least one clause. If the Delayer has a strategy that guarantees a score
of at least m points, exercise 226 shows that every refutation tree has at least 2m

September 23, 2015

56 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

anti-maximal-element clauses
binary relation
irreflexive
transitive
partial ordering
maximal
Lauria
St̊almarck
hyperresolution

leaves; hence at least 2m−1 resolutions must be done, and every backtrack-based
solver needs Ω(2m) operations to declare the clauses unsatisfiable.

We can apply their game, for example, to the following interesting clauses:

(x̄jj), for 1 ≤ j ≤ m; ()

(x̄ij ∨ x̄jk ∨ xik), for 1 ≤ i, j, k ≤ m; ()

(xj1 ∨ xj2 ∨ · · · ∨ xjm), for 1 ≤ j ≤ m. ()

There are m2 variables xjk, for 1 ≤ j, k ≤ m, which we can regard as the inci-
dence matrix for a binary relation ‘j ≺ k’. With this formulation, () says that
the relation is irreflexive, and () says that it’s transitive; thus, () and ()
amount to saying that j ≺ k is a partial ordering. Finally, () says that, for ev-
ery j, there’s a k with j ≺ k. So these clauses state that there’s a partial ordering
on {1, . . . ,m} in which no element is maximal; and they can’t all be satisfied.

We can, however, always score m− 1 points if we’re playing Delayer in that
game, by using the following strategy suggested by Massimo Lauria: At every
step we know an ordered set S of elements, regarded as “small”; initially S = ∅,
and we’ll have S = {j1, . . . , js} when our score is s. Suppose the Prover queries
xjk, and s < m−2. If j = k, we naturally reply that xjk ← 0. Otherwise, if j /∈ S
and k /∈ S, we respond xjk ← ∗; then s← s+1, and js ← j or k according as the
Prover specifies xjk ← 1 or xjk ← 0. Otherwise, if j ∈ S and k /∈ S, we respond
xjk ← 1; if j /∈ S and k ∈ S, we respond xjk ← 0. Finally, if j = ja ∈ S and k =
jb ∈ S, we respond xjk ← [a< b]. These responses always satisfy () and ().
And no clause of () becomes false before the Delayer is asked a question with
s = m− 2. Then the response xjk ← ∗ gains another point. We’ve proved

Theorem R. Every refutation tree for the clauses (), (), () represents
at least 2m−1 − 1 resolution steps.

On the other hand, those clauses do have a refutation dag of size O(m3).
Let Ij and Tijk stand for the irreflexivity and transitivity axioms () and ();
and let Mjk = xj1 ∨ · · · ∨ xjk, so that () is Mjm. Then we have

Mim ⋄ Timk = Mi(m−1) ∨ x̄mk, for 1 ≤ i, k < m. ()

Calling this new clause M ′
imk, we can now derive

Mj(m−1) =
((
· · ·
(
(Mmm ⋄M ′

jm1) ⋄M ′
jm2

)
⋄ · · ·

)
⋄M ′

jm(m−1)

)
⋄ Im,

for 1 ≤ j < m. Hence (m− 1)2 + (m− 1)m resolutions have essentially reduced
m to m − 1. Eventually we can therefore derive M11; then M11 ⋄ I1 = ǫ. [This
elegant refutation is due to G. St̊almarck, Acta Informatica 33 (1996), 277–280.]

The method we’ve just used to obtain Mj(m−1) from Mmm is, incidentally,
a special case of a useful general formula called hyperresolution that is easily
proved by induction on r:

(
· · ·
(
(C0 ∨ x1 ∨ · · · ∨ xr) ⋄ (C1 ∨ x̄1)

)
⋄ · · ·

)
⋄ (Cr ∨ x̄r)
= C0 ∨ C1 ∨ · · · ∨ Cr. ()

September 23, 2015

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 57

resolution chain
refutation chain
pigeonhole principle
Haken
APPIER HANZELET
Ben-Sasson
Wigderson
width

notation w(α)
notation w(α ⊢ ǫ)
notation ‖α ⊢ C‖

*Lower bounds for general resolution. Let’s change our perspective slightly:
Instead of visualizing a proof by resolution as a directed graph, we can think of it
as a “straight line” resolution chain, analogous to the addition chains of Section
4.6.3 and the Boolean chains of Section 7.1.2. A resolution chain based on m
axioms C1, . . . , Cm appends additional clauses Cm+1, . . . , Cm+r, each of which
is obtained by resolving two previous clauses of the chain. Formally, we have

Ci = Cj(i) ⋄Ck(i), for m+ 1 ≤ i ≤ m+ r, ()

where 1 ≤ j(i) < i and 1 ≤ k(i) < i. It’s a refutation chain for C1, . . . , Cm if
Cm+r = ǫ. The tree in Fig. 48, for example, yields the refutation chain

123̄, 234̄, 341, 41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄, 4̄12̄, 123, 12̄4, 1̄2̄3̄, 1̄24̄, 12, 12̄, 1̄2̄, 1̄2, 1, 1̄, ǫ

for the axioms (); and there are many other ways to refute those axioms, such as

123̄,234̄,341,41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄, 4̄12̄,12̄3̄,13̄,14, 3̄4̄,24,24̄,2, 1̄3, 3̄4,14̄, 3̄,1, 1̄, ǫ. ()

This chain is quite different from Fig. 48, and perhaps nicer: It has three more
steps, but after forming ‘12̄3̄’ it constructs only very short clauses.

We’ll see in a moment that short clauses are crucial if we want short chains.
That fact turns out to be important when we try to prove that certain easily
understood families of axioms are inherently more difficult than (), (),
and (), in the sense that they can’t be refuted with a chain of polynomial size.

Consider, for example, the well known “pigeonhole principle,” which states
thatm+1 pigeons don’t fit inm pigeon-sized holes. If xjk means that pigeon j oc-
cupies hole k, for 0 ≤ j ≤ m and 1 ≤ k ≤ m, the relevant unsatisfiable clauses are

(xj1 ∨ xj2 ∨ · · · ∨ xjm), for 0 ≤ j ≤ m; ()

(x̄ik ∨ x̄jk), for 0 ≤ i < j ≤ m and 1 ≤ k ≤ m. ()

(“Every pigeon has a hole, but no hole hosts more than one pigeon.”) These
clauses increased the pigeonhole principle’s fame during the 1980s, when Armin
Haken [Theoretical Computer Science 39 (1985), 297–308] proved that they have
no short refutation chain. His result marked the first time that any set of clauses
had been shown to be intractable for resolution in general.

It is absolutely necessary that two people have equally many hairs.

— JEAN APPIER HANZELET, Recreation Mathematicque (1624)

Haken’s original proof was rather complicated. But simpler approaches were
eventually found, culminating in a method by E. Ben-Sasson and A. Wigderson
[JACM 48 (2001), 149–169], which is based on clause length and applies to
many other sets of axioms. If α is any sequence of clauses, let us say that its
width, written w(α), is the length of its longest clause or clauses. Furthermore,
if α0 = (C1, . . . , Cm), we write w(α0 ⊢ ǫ) for the minimum of w(α) over all
refutation chains α = (C1, . . . , Cm+r) for α0, and ‖α0 ⊢ ǫ‖ for the minimum
length r of all such chains. The following lemma is the key to proving lower
bounds with Ben-Sasson and Wigderson’s strategy:

September 23, 2015

58 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

fat
tautological
Ben-Sasson
Wigderson
5SAT
bipartite graph
expansion
boundary
restricted pigeonhole principle
Haken

Lemma B. ‖α0 ⊢ ǫ‖ ≥ e(w(α0⊢ǫ)−1)2/(8n)−2, for clauses in n ≥ w(α0)
2variables.

Thus there’s exponential growth if we have w(α0) = O(1) and w(α0 ⊢ ǫ) = Ω(n).

Proof. Let α = (C1, . . . , Cm+r) be a refutation of α0 with r = ‖α0 ⊢ ǫ‖. We
will say that a clause is “fat” if its length is W or more, where W ≥ w(α0) is a
parameter to be set later. If α \ α0 contains f fat clauses, those clauses contain
at least Wf literals; hence some literal l appears in at least Wf/(2n) of them.

Now α | l, the chain obtained by replacing each clause Cj by Cj | l, is a
refutation of α0 | l that contains at most ⌊ρf⌋ fat clauses, where ρ = 1−W/(2n).
(The clause Cj | l will be ℘ if l ∈ Cj , thus tautological and effectively absent.)

Suppose f < ρ−b for some integer b. We will prove, by induction on b and
secondarily on the total length of all clauses, that there’s a refutation β of α0

such that w(β) ≤W + b. This assertion holds when b = 0, since W ≥ w(α0). If
b > 0, there’s a refutation β0 of α0 | l with w(β0) ≤W+b−1, when we choose l as
above, because ρf < ρ1−b and α | l refutes α0 | l. Then we can form a resolution
chain β1 that derives l̄ from α0, by inserting l̄ appropriately into clauses of β0.
And there’s a simple chain β2 that derives the clauses of α0 | l̄ from α0 and l̄.
There’s also a refutation β3 of α0 | l̄ with w(β3) ≤ W + b, by induction, because
α | l̄ refutes α0 | l̄. Thus the combination β = {β1, β2, β3} refutes α0, with

w(β) = max(w(β0)+1, w(β2), w(β3)) ≤ max(W+b, w(α0),W+b) =W+b.

Finally, exercise 238 chooses W so that we get the claimed bound.

The pigeon axioms are too wide to be inserted directly into Lemma B. But
Ben-Sasson and Wigderson observed that a simplified version of those axioms,
involving only clauses of 5SAT, is already intractable.

Notice that we can regard the variable xjk as indicating the presence of an
edge between aj and bk in a bipartite graph on the vertices A = {a0, . . . , am}
and B = {b1, . . . , bm}. Condition () says that each aj has degree ≥ 1, while
condition () says that each bk has degree ≤ 1. There is, however, a bipartite
graph G0 on those vertices for which each aj has degree ≤ 5 and such that the
following strong “expansion” condition is satisfied:

Every subset A′ ⊆ A with |A′| ≤ m/3000 has |∂A′| ≥ |A′| in G0. ()

Here ∂A′ denotes the bipartite boundary of A′, namely the set of all bk that have
exactly one neighbor in A′.

Given such a graph G0, whose existence is proved (nonconstructively) in
exercise 240, we can formulate a restricted pigeonhole principle, by which the pi-
geonhole clauses are unsatisfiable if we also require x̄jk whenever aj /−−−bk in G0.

Let α(G0) denote the resulting clauses, which are obtained when axioms
() and () are conditioned on all such literals x̄jk. Then w(α(G0)) ≤ 5,
and at most 5m + 5 unspecified variables xjk remain. Lemma B tells us that
all refutation chains for α(G0) have length expΩ(m) if we can prove that they
all have width Ω(m). Haken’s theorem, which asserts that all refutation chains
for () and () also have length expΩ(m), will follow, because any short
refutation would yield a short refutation of α(G0) after conditioning on the x̄jk.

September 23, 2015

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 59

notation F ⊢ C
notation µ(C)
subadditive law
3SAT
random 3SAT
Chvátal
Szemerédi
first order logic
Robinson
Gentzen
cut rule
sequents
Robinson
Tseytin
graph-based axioms
Slisenko

Thus the following result gives our story a happy ending:

Theorem B. The restricted pigeonhole axioms α(G0) have refutation width

w(α(G0) ⊢ ǫ) ≥ m/6000. ()

Proof. We can assign a complexity measure to every clause C by defining

µ(C) = min
{
|A′|

∣∣ A′ ⊆ A and α(A′) ⊢ C
}
. ()

Here α(A′) is the set of “pigeon axioms” () for aj ∈ A′, together with all
of the “hole axioms” (); and α(A′) ⊢ C means that clause C can be proved
by resolution when starting with only those axioms. If C is one of the pigeon
axioms, this definition makes µ(C) = 1, because we can let A′ = {aj}. And if C
is a hole axiom, clearly µ(C) = 0. The subadditive law

µ(C′ ⋄C ′′) ≤ µ(C′) + µ(C′′) ()

also holds, because a proof of C′⋄C ′′ needs at most the axioms of α(A′) ∪ α(A′′)
if C′ follows from α(A′) and C′′ follows from α(A′′).

We can assume that m ≥ 6000. And we must have µ(ǫ) > m/3000, because
of the strong expansion condition (). (See exercise 241.) Therefore every refu-
tation of α(G0) must contain a clause C withm/6000 ≤ µ(C) < m/3000; indeed,
the first clause Cj with µ(Cj) ≥ m/6000 will satisfy this condition, by ().

Let A′ be a set of vertices with |A′| = µ(C) and α(A′) ⊢ C. Also let bk be
any element of ∂A′, with aj its unique neighbor in A′. Since |A′ \ aj | < µ(C),
there must be an assignment of variables that satisfies all axioms of α(A′ \ aj),
but falsifies C and the pigeon axiom for j. That assignment puts no two pigeons
into the same hole, and it places every pigeon of A′ \ aj .

Now suppose C contains no literal of the form xj′k or x̄j′k, for any aj′ ∈ A.
Then we could set xj′k ← 0 for all j′, without falsifying any axiom of α(A′ \ aj);
and we could then make the axioms of α({aj}) true by setting xjk ← 1. But
that change to the assignment would leave C false, contradicting our assumption
that α(A′) ⊢ C. Thus C contains some ±xj′k for each bk ∈ ∂A′; and we must
have w(C) ≥ |∂A′| ≥ m/6000.

A similar proof establishes a linear lower bound on the refutation width,
hence an exponential lower bound on the refutation length, of almost all random
3SAT instances with n variables and ⌊αn⌋ clauses, for fixed α as n→∞ (see exer-
cise 243), a theorem of V. Chvátal and E. Szemerédi [JACM 35 (1988), 759–768].

Historical notes: Proofs by resolution, in the more general setting of first
order logic, were introduced by J. A. Robinson in JACM 12 (1965), 23–41.
[They’re also equivalent to G. Gentzen’s “cut rule for sequents,” Mathematische
Zeitschrift 39 (1935), 176–210, III.1.2 1.] Inspired by Robinson’s paper, Greg-
ory Tseytin developed the first nontrivial techniques to prove lower bounds on
the length of resolution proofs, based on unsatisfiable graph axioms that are
considered in exercise 245. His lectures of 1966 were published in Volume 8
of the Steklov Mathematical Institute Seminars in Mathematics (1968); see
A. O. Slisenko’s English translation, Studies in Constructive Mathematics and
Mathematical Logic, part 2 (1970), 115–125.

September 23, 2015

60 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Tseytin
NAND
variables, introducing new
auxiliary variables
memo cache
extended resolution
random 3SAT
3SAT
tautology
Samson
Mueller
existential quantifier
quantifiers
pure literal

Tseytin pointed out that there’s a simple way to get around the lower bounds
he had proved for his graph-oriented problems, by allowing new kinds of proof
steps: Given any set of axioms F , we can introduce a new variable z that doesn’t
appear anywhere in F , and add three new clauses G = {xz, yz, x̄ȳz̄}; here x
and y are arbitrary literals of F . It’s clear that F is satisfiable if and only if
F ∪ G is satisfiable, because G essentially says that z = NAND(x, y). Adding
new variables in this way is somewhat analogous to using lemmas when proving
a theorem, or to introducing a memo cache in a computer program.

His method, which is called extended resolution, can be much faster than
pure resolution. For example, it allows the pigeonhole clauses () and () to
be refuted in only O(m4) steps (see exercise 237). It doesn’t appear to help much
with certain other classes of problems such as random 3SAT; but who knows?

SAT solving via resolution. The concept of resolution also suggests alternative
ways to solve satisfiability problems. In the first place we can use it to eliminate
variables: If F is any set of clauses on n variables, and if x is one of those
variables, we can construct a set F ′ of clauses on the other n − 1 variables in
such a way that F is satisfiable if and only if F ′ is satisfiable. The idea is simply
to resolve every clause of the form x ∨A′ with every clause of the form x̄ ∨A′′,
and then to discard those clauses.

For example, consider the following six clauses in four variables:

1234, 12̄, 1̄2̄3̄, 1̄3, 23̄, 34̄. ()

We can eliminate the variable x4 by forming 1234 ⋄ 34̄ = 123. Then we can
eliminate x3 by resolving 123 and 1̄3 with 1̄2̄3̄ and 23̄:

123 ⋄ 1̄2̄3̄ = ℘, 123 ⋄ 23̄ = 12, 1̄3 ⋄ 1̄2̄3̄ = 1̄2̄, 1̄3 ⋄ 23̄ = 1̄2.

Now we’re left with {12, 12̄, 1̄2, 1̄2̄}, because the tautology ℘ goes away. Elimi-
nating x2 gives {1, 1̄}, and eliminating x1 gives {ǫ}; hence () is unsatisfiable.

This method, which was originally proposed for hand calculation by E. W.
Samson and R. K. Mueller in 1955, works beautifully on small problems. But
why is it valid? There are (at least) two good ways to understand the reason.
First, it’s easy to see that F ′ is satisfiable whenever F is satisfiable, because
C′ ⋄C ′′ is true whenever C′ and C′′ are both true. Conversely, if F ′ is satisfied
by some setting of the other n− 1 variables, that setting must either satisfy A′

for all clauses of the form x ∨A′, or else it must satisfy A′′ for all clauses of the
form x̄ ∨A′′. (Otherwise neither A′ nor A′′ would be satisfied, for some A′ and
some A′′, and the clause A′ ∨A′′ in F ′ would be false.) Thus at least one of the
settings x← 0 or x← 1 will satisfy F .

Another good way to understand variable elimination is to notice that it
corresponds to the elimination of an existential quantifier (see exercise 248).

Suppose p clauses of F contain x and q clauses contain x̄. Then the elimina-
tion of x will give us at most pq new clauses, in the worst case; so F ′ will have no
more clauses than F did, whenever pq ≤ p+ q, namely when (p− 1)(q− 1) ≤ 1.
This condition clearly holds whenever p = 0 or q = 0; indeed, we called x a
“pure literal” when such cases arose in Algorithm A. The condition also holds
whenever p = 1 or q = 1, and even when p = q = 2.

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 61

subsumed
Cook
Method I
subsumed
heuristics
Method IA
Reckhow

Furthermore we don’t always get pq new clauses. Some of the resolvents
might turn out to be tautologous, as above; others might be subsumed by existing
clauses. (The clause C is said to subsume another clause C′ if C ⊆ C′, in the
sense that every literal of C appears also in C′. In such cases we can safely
discard C′.) And some of the resolvents might also subsume existing clauses.

Therefore repeated elimination of variables doesn’t always cause the set of
clauses to explode. In the worst case, however, it can be quite inefficient.

In January of 1972, Stephen Cook showed his students at the University of
Toronto a rather different way to employ resolution in SAT-solving. His elegant
procedure, which he called “Method I,” essentially learns new clauses by doing
resolution on demand:

Algorithm I (Satisfiability by clause learning). Given m nonempty clauses
C1∧· · ·∧Cm on n Boolean variables x1 . . . xn, this algorithm either proves them
unsatisfiable or finds strictly distinct literals l1 . . . ln that satisfy them all. In the
process, new clauses may be generated by resolution (and m will then increase).

I1. [Initialize.] Set d← 0.

I2. [Advance.] If d = n, terminate successfully (the literals {l1, . . . , ld} satisfy
{C1, . . . , Cm}). Otherwise set d← d+1, and let ld be a literal strictly distinct
from l1, . . . , ld−1.

I3. [Find falsified Ci.] If none of C1, . . . , Cm are falsified by {l1, . . . , ld}, go back
to I2. Otherwise let Ci be a falsified clause.

I4. [Find falsified Cj .] (At this point we have l̄d ∈ Ci ⊆ {l̄1, . . . , l̄d}, but no
clause is contained in {l̄1, . . . , l̄d−1}.) Set ld ← l̄d. If none of C1, . . . , Cm are
falsified by {l1, . . . , ld}, go back to I2. Otherwise let l̄d ∈ Cj ⊆ {l̄1, . . . , l̄d}.

I5. [Resolve.] Set m← m+1, Cm ← Ci ⋄Cj . Terminate unsuccessfully if Cm is
empty. Otherwise set d← max{t | l̄t ∈ Cm}, i← m, and return to I4.

In step I5 the new clause Cm cannot be subsumed by any previous clause Ck for
k < m, because Ci ⋄ Cj ⊆ {l̄1, . . . , l̄d−1}. Therefore, in particular, no clause is
generated twice, and the algorithm must terminate.

This description is intentionally vague when it uses the word “let” in steps
I2, I3, and I4: Any available literal ld can be selected in step I2, and any falsified
clauses Ci and Cj can be selected in steps I3 and I4, without making the method
fail. Thus Algorithm I really represents a family of algorithms, depending on
what heuristics are used to make those selections.

For example, Cook proposed the following way (“Method IA”) to select ld
in step I2: Choose a literal that occurs most frequently in the set of currently
unsatisfied clauses that have the fewest unspecified literals. When applied to the
six clauses (), this rule would set l1 ← 3 and l2 ← 2 and l3 ← 1; then step I3
would find Ci = 1̄2̄3̄ false. So step I4 would set l3 ← 1̄ and find Cj = 12̄ false,
and step I5 would learn C7 = 2̄3̄. (See exercise 249 for the sequel.)

Cook’s main interest when introducing Algorithm I was to minimize the
number of resolution steps; he wasn’t particularly concerned with minimizing
the running time. Subsequent experiments by R. A. Reckhow [Ph.D. thesis

September 23, 2015

62 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

anti-maximal-element clauses
Cook
Conflict driven clause learning
CDCL solver
DPLL
trail
reason
unit propagation
conflict
forcing clause
asserting clause, see forcing clause
decisions
Level 0

(Univ. Toronto, 1976), 81–84] showed that, indeed, relatively short resolution
refutations are found with this approach. Furthermore, exercise 251 demon-
strates that Algorithm I can handle the anti-maximal-element clauses ()–()
in polynomial time; thus it trounces the exponential behavior exhibited by all
backtrack-based algorithms for this problem (see Theorem R).

On the other hand, Algorithm I does tend to fill memory with a great many
new clauses when it is applied to large problems, and there’s no obvious way to
deal with those clauses efficiently. Therefore Cook’s method did not appear to be
of practical importance, and it remained unpublished for more than forty years.

Conflict driven clause learning. Algorithm I demonstrates the fact that
unsuccessful choices of literals can lead us to discover valuable new clauses,
thereby increasing our knowledge about the characteristics of a problem. When
that idea was rediscovered from another point of view in the 1990s, it proved to
be revolutionary: Significant industrial instances of SAT with many thousands
or even millions of variables suddenly became feasible for the first time.

The name CDCL solver is often given to these new methods, because they are
based on “conflict driven clause learning” rather than on classical backtracking.
A CDCL solver shares many concepts with the DPLL algorithms that we’ve
already seen; yet it is sufficiently different that we can understand it best by
developing the ideas from scratch. Instead of implicitly exploring a search tree
such as Fig. 39, a CDCL solver is built on the notion of a trail, which is a
sequence L0L1 . . . LF−1 of strictly distinct literals that do not falsify any clause.
We can start with F = 0 (the empty trail). As computation proceeds, our task
is to extend the current trail until F = n, thus solving the problem, or to prove
that no solution exists, by essentially learning that the empty clause is true.

Suppose there’s a clause c of the form l ∨ ā1 ∨ · · · ∨ āk, where a1 through ak
are in the trail but l isn’t. Literals in the trail are tentatively assumed to
be true, and c must be satisfied; so we’re forced to make l true. In such
cases we therefore append l to the current trail and say that c is its “reason.”
(This operation is equivalent to what we called “unit propagation” in previous
algorithms; those algorithms effectively removed the literals ā1, . . . , āk when they
became false, thereby leaving l as a “unit” all by itself. But our new viewpoint
keeps each clause c intact, and knows all of its literals.) A conflict occurs if the
complementary literal l̄ is already in the trail, because l can’t be both true and
false; but let’s assume for now that no conflicts arise, so that l can legally be
appended by setting LF ← l and F ← F + 1.

If no such forcing clause exists, and if F < n, we choose a new distinct literal
in some heuristic way, and we append it to the current trail with a “reason”
of Λ. Such literals are called decisions. They partition the trail into a sequence
of decision levels, whose boundaries can be indicated by a sequence of indices
with 0 = i0 ≤ i1 < i2 < i3 < · · · ; literal Lt belongs to level d if and only if
id ≤ t < id+1. Level 0, at the beginning of the trail, is special: It contains literals
that are forced by clauses of length 1, if such clauses exist. Any such literals are
unconditionally true. Every other level begins with exactly one decision.

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 63

dependence of literals
learning
conflict clause
Resolving

Consider, for example, the problem waerden (3, 3; 9) of (). The first items
placed on the trail might be

t Lt level reason

0 6̄ 1 Λ (a decision)
1 9̄ 2 Λ (a decision)
2 3 2 396 (rearrangement of the clause 369)
3 4̄ 3 Λ (a decision)
4 5 3 546 (rearrangement of the clause 456)
5 8 3 846 (rearrangement of the clause 468)
6 2 3 246
7 7̄ 3 7̄5̄3̄ (rearrangement of the clause 3̄5̄7̄)
8 2̄ 3 2̄5̄8̄ (a conflict!)

()

Three decisions were made, and they started levels at i1 = 0, i2 = 1, i3 = 3.
Several clauses have been rearranged; we’ll soon see why. And propagations have
led to a conflict, because both 2 and 2̄ have been forced. (We don’t actually
consider the final entry L8 to be part of the trail, because it contradicts L6.)

If the reason for l includes the literal l̄ ′, we say “l depends directly on l′.”
And if there’s a chain of one or more direct dependencies, from l to l1 to · · · to
lk = l′, we say simply that “l depends on l′.” For example, 5 depends directly
on 4̄ and 6̄ in (), and 2̄ depends directly on 5 and 8; hence 2̄ depends on 6̄.

Notice that a literal can depend only on literals that precede it in the trail.
Furthermore, every literal l that’s forced at level d > 0 depends directly on some
other literal on that same level d; otherwise l would already have been forced at
a previous level. Consequently l must necessarily depend on the dth decision.

The reason for reasons is that we need to deal with conflicts. We will see that
every conflict allows us to construct a new clause c that must be true whenever
the existing clauses are satisfiable, although c itself does not contain any existing
clause. Therefore we can “learn” c by adding it to the existing clauses, and we
can try again. This learning process can’t go on forever, because only finitely
many clauses are possible. Sooner or later we will therefore either find a solution
or learn the empty clause. That will be nice, especially if it happens sooner.

A conflict clause c on decision level d has the form l̄ ∨ ā1 ∨ · · · ∨ āk, where
l and all the a’s belong to the trail; furthermore l and at least one ai belong to
level d. We can assume that l is rightmost in the trail, of all the literals in c.
Hence l cannot be the dth decision; and it has a reason, say l ∨ ā′1 ∨ · · · ∨ ā′k′ .
Resolving c with this reason gives the clause c′ = ā1 ∨ · · · ∨ āk ∨ ā′1 ∨ · · · ∨ ā′k′ ,
which includes at least one literal belonging to level d. If more than one such
literal is present, then c′ is itself a conflict clause; we can set c ← c′ and repeat
the process. Eventually we are bound to obtain a new clause c′ of the form
l̄ ′∨ b̄1∨· · ·∨ b̄r, where l′ is on level d and where b1 through br are on lower levels.

Such a c′ is learnable, as desired, because it can’t contain any existing
clauses. (Every subclause of c′, including c′ itself, would otherwise have given us
something to force at a lower level.) We can now discard levels > d′ of the trail,
where d′ is the maximum level of b1 through br; and—this is the punch line—

September 23, 2015

64 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

backtrack
backjumping
look-back, see backjumping
stamp
waerden

we can append l̄ ′ to the end of level d′, with c′ as its reason. The forcing process
now resumes at level d′, as if the learned clause had been present all along.

For example, after the conflict in (), the initial conflict clause is c = 2̄5̄8̄,
our shorthand notation for x̄2∨x̄5∨x̄8; and its rightmost complemented literal in
the trail is 2, because 5 and 8 came earlier. So we resolve c with 246, the reason
for 2, and get c′ = 45̄68̄. This new clause contains complements of three literals
from level 3, namely 4̄, 5, and 8; so it’s still a conflict clause. We resolve it with
the reason for 8 and get c′ = 45̄6. Again c′ is a conflict clause. But the result
of resolving this conflict with the reason for 5 is c′ = 46, a clause that is falsified
by the literals currently on the trail but has only 4̄ at level 3. Good—we have
learned ‘46’: In every solution to waerden (3, 3; 9), either x4 or x6 must be true.

Thus the sequel to () is

t Lt level reason

0 6̄ 1 Λ (a decision)
1 4 1 46 (the newly learned clause)

()

and the next step will be to begin a new level 2, because nothing more is forced.
Notice that the former level 2 has gone away. We’ve learned that there was

no need to branch on the decision variable x9, because 6̄ already forces 4. This
improvement to the usual backtrack regimen is sometimes called “backjumping,”
because we’ve jumped back to a level that can be regarded as the root cause of
the conflict that was just discovered.

Exercise 253 explores a possible continuation of (); dear reader, please
jump to it now. Incidentally, the clause ‘46’ that we learned in this example
involves the complements of former decisions 4̄ and 6̄; but exercise 255 shows
that newly learned clauses might not contain any decision variables whatsoever.

The process of constructing the learned clause from a conflict is not as
difficult as it may seem, because there’s an efficient way to perform all of the
necessary resolution steps. Suppose, as above, that the initial conflict clause is
l̄∨ ā1∨· · ·∨ āk. Then we “stamp” each of the literals ai with a unique number s;
and we also insert āi into an auxiliary array, which will eventually hold the
literals b̄1, . . . , b̄r, whenever ai is a literal that received its value on a level d′

with 0 < d′ < d. We stamp l too; and we count how many literals of level d
have thereby been stamped. Then we repeatedly go back through the trail until
coming to a literal Lt whose stamp equals s. If the counter is bigger than 1
at this point, and if the reason of Lt is Lt ∨ ā′1 ∨ · · · ∨ ā′k′ , we look at each a′i,
stamping it and possibly putting it into the b array if it had not already been
stamped with s. Eventually the count of unresolved literals will decrease to 1;
the learned clause is then L̄t ∨ b̄1 ∨ · · · ∨ b̄r.

These new clauses might turn out to be quite large, even when we’re solving a
problem whose clauses were rather small to start with. For example, Table 3 gives
a glimpse of typical behavior in a medium-size problem. It shows the beginning
of the trail generated when a CDCL solver was applied to the 2779 clauses of
waerden (3, 10; 97), after about 10,000 clauses had been learned. (Recall that
this problem tries to find a binary vector x1x2 . . . x97 that has no three equally

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 65

redundant
unit propagation
lazy data structures

Table 3

THE FIRST LEVELS OF A MODERATE-SIZE TRAIL

t Lt level reason

0 53 1 Λ
1 55 2 Λ
2 44 3 Λ
3 54 4 Λ
4 43 5 Λ
5 30 6 Λ
6 34 7 Λ
7 45 8 Λ
8 40 9 Λ
9 27 10 Λ
10 79 10 79 53 27
11 01 10 01 27 53
12 36 11 Λ
13 18 11 18 36 27
14 19 11 19 36 53

t Lt level reason

15 70 11 70 36 53
16 35 12 Λ
17 39 13 Λ
18 37 14 Λ
19 38 14 38 37 36
20 47 14 47 37 27
21 17 14 17 37 27
22 32 14 32 37 27
23 69 14 69 37 53
24 21 14 21 37 53
25 46 15 Λ
26 28 15 28 46 37
27 41 15 41 46 36
28 26 15 26 46 36
29 56 15 56 46 36

t Lt level reason

30 08 15 08 46 27
31 65 15 65 46 27
32 60 15 60 46 53
33 50 15 ∗∗
34 64 15 64 50 36
35 22 15 22 50 36
36 24 15 24 50 37
37 42 15 42 50 46
38 48 15 48 50 46
39 73 15 73 50 27
40 04 15 04 50 27
41 63 15 63 50 37
42 33 16 Λ
43 51 17 Λ
44 57 18 Λ

(Here ∗∗ stands for the previously learned clause 50 26 47 35 41 32 38 44 27 45 55 65 60 7030.)

spaced 0s and no ten equally spaced 1s.) Level 18 in the table has just been
launched with the decision L44 = 57; and that decision will trigger the setting
of many more literals 15, 49, 61, 68, 77, 78, 87, 96, . . . , eventually leading to a
conflict when trying to set L67. The conflict clause turns out to have length 22:

53 27 36 70 35 37 69 21 46 28 56 65 60 50 64 24 42 73 63 33 51 57 . ()

(Its literals are shown here in order of the appearance of their complements in
the trail.) When we see such a monster clause, we might well question whether
we really want to “learn” such an obscure fact!

A closer look, however, reveals that many of the literals in () are redun-
dant. For example, 70 can safely be deleted, because its reason is ‘70 36 53’; both
36 and 53 already appear in (), hence ()⋄ (70 36 53) gets rid of 70. Indeed,
more than half of the literals in this example are redundant, and () can be
simplified to the much shorter and more memorable clause

53 27 36 35 37 46 50 33 51 57 . ()

Exercise 257 explains how to discover such simplifications, which turn out to
be quite important in practice. For example, the clauses learned while proving
waerden (3, 10; 97) unsatisfiable had an average length of 19.9 before simplifica-
tion, but only 11.2 after; simplification made the algorithm run about 33% faster.

Most of the computation time of a CDCL solver is devoted to unit propa-
gation. Thus we need to know when the value of a literal has been forced by
previous assignments, and we hope to know it quickly. The idea of “lazy data
structures,” used above in Algorithm D, works nicely for this purpose, in the pres-
ence of long clauses, provided that we extend it so that every clause now has two

September 23, 2015

66 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

MEM
Unit clauses
level 0
recycling
watch list
Biere
stamp
free literals and free variables
true literals
false literals
watched literal

watched literals instead of one. If we know that the first two literals of a clause are
not false, then we needn’t look at this clause until one of them becomes false, even
though other literals in the clause might be repeatedly veering between transient
states of true, false, and undefined. And when a watchee does become false, we’ll
try to swap it with a nonfalse partner that can be watched instead. Propagations
or conflicts will arise only when all of the remaining literals are false.

Algorithm C below therefore represents clauses with the following data
structures: A monolithic array called MEM is assumed to be large enough to
hold all of the literals in all of the clauses, interspersed with control information.
Each clause c = l0 ∨ l1 ∨ · · · ∨ lk−1 with k > 1 is represented by its starting
position in MEM, with MEM[c+ j] = lj for 0 ≤ j < k. Its two watched literals are
l0 and l1, and its size k is stored in MEM[c− 1]. Unit clauses, for which k = 1,
are treated differently; they appear in level 0 of the trail, not in MEM.

A learned clause c can be distinguished from an initial clause because it has
a relatively high number, with MINL ≤ c < MAXL. Initially MAXL is set equal to
MINL, the smallest cell in MEM that is available for learned clauses; then MAXL

grows as new clauses are added to the repertoire. The set of learned clauses is
periodically culled, so that the less desirable ones don’t clutter up memory and
slow things down. Additional information about a learned clause c is kept in
MEM[c− 4] and MEM[c− 5], to help with this recycling process (see below).

Individual literals xk and x̄k, for 1 ≤ k ≤ n, are represented internally by
the numbers 2k and 2k + 1 as in () above. And each of these 2n literals l has
a list pointer Wl, which begins a linked list of the clauses in which l is watched.
We have Wl = 0 if there is no such clause; but if Wl = c > 0, the next link in
this “watch list” is in MEM[c− 2] if l = l0, in MEM[c− 3] if l = l1. [See Armin
Biere, Journal on Satisfiability, Boolean Modeling and Comp. 4 (2008), 75–97.]

For example, the first few cells of MEM might contain the following data when
we are representing the clauses () of waerden (3, 3; 9):

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .

MEM[i] = 9 45 3 2 4 6 15 51 3 4 6 8 21 45 3 6 8 10 . . .

(Clause 3 is ‘123’, clause 9 is ‘234’, clause 15 is ‘345’, . . . , clause 45 is ‘135’,
clause 51 is ‘246’, . . . ; the watch lists for literals x1, x2, x3, x4 begin respectively
at W2 = 3, W4 = 3, W6 = 9, W8 = 15.)

The other major data structures of Algorithm C are focused on variables, not
clauses. Each variable xk for 1 ≤ k ≤ n has six current attributes S(k), VAL(k),
OVAL(k), TLOC(k), HLOC(k), and ACT(k), which interact as follows: S(k) is the
“stamp” that’s used during clause formation. If neither xk nor x̄k appears in
the current trail, then VAL(k) = −1, and we say that xk and its two literals are
“free.” But if Lt = l is a literal of the trail, belonging to level d, we have

VAL(|l|) = 2d+ (l & 1) and TLOC(|l|) = t, where |l| = l≫ 1, ()

and we say that l is “true” and l̄ is “false.” Thus a given literal l is false if and
only if VAL(|l|) is nonnegative and VAL(|l|)+ l is odd. In most cases a watched
literal is not false; but there are exceptions to this rule (see exercise 261).

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 67

activity

ACT(k)
heuristic
heap
focus
Mathews, Edwin Lee (41)
damping factor
Eén
floating point overflow
rescaling
Frost
Dechter
AAAI: American Association for Artificial In
Pipatsrisawat
Darwiche
polarities
sticking values
progress saving
phase saving
Chaff
MiniSAT
Eén
Sörensson

The attributes ACT(k) and HLOC(k) tell the algorithm how to select the
next decision variable. Each variable xk has an activity score ACT(k), which
heuristically estimates its desirability for branching. All of the free variables,
and possibly others, are kept in an array called HEAP, which is arranged so that

ACT(HEAP[j]) ≤ ACT(HEAP[(j − 1)≫ 1]) for 0 < j < h ()

when it contains h elements (see Section 5.2.3). Thus HEAP[0] will always be a
free variable of maximum activity, if it is free; so it’s the variable that will be
chosen to govern the decision when the trail starts to acquire a new level.

Activity scores help the algorithm to focus on recent conflicts. Suppose,
for example, that 100 conflicts have been resolved, hence 100 clauses have been
learned. Suppose further that xj or x̄j was stamped while resolving the conflicts
numbered 3, 47, 95, 99, and 100; but xk or x̄k was stamped during conflicts 41,
87, 94, 95, 96, and 97. We could express their recent activity by computing

ACT(j) = ρ0 + ρ1 + ρ5 + ρ53 + ρ97, ACT(k) = ρ3 + ρ4 + ρ5 + ρ6 + ρ13 + ρ59,

where ρ is a damping factor (say ρ = .95), because 100− 100 = 0, 100− 99 = 1,
100− 95 = 5, . . . , 100− 41 = 59. In this particular case j would be considered
to be less active than k unless ρ is less than about .8744.

In order to update the activity scores according to this measure, we would
have to do quite a bit of recomputation whenever a new conflict occurs: The new
scores would require us to multiply all n of the old scores by ρ, then to increase
the activity of every newly stamped variable by 1. But there’s a much better
way, namely to compute ρ−100 times the scores shown above:

ACT(j) = ρ−3+ ρ−47+ ρ−95+ ρ−99+ ρ−100, ACT(k) = ρ−41+ · · ·+ ρ−96+ ρ−97.

These newly scaled scores, suggested by Niklas Eén, give us the same information
about the relative activity of each variable; and they’re updated easily, because
we need to do only one addition per stamped variable when resolving conflicts.

The only problem is that the new scores can become really huge, because
ρ−M can cause floating point overflow after the number M of conflicts becomes
large. The remedy is to divide them all by 10100, say, whenever any variable gets
a score that exceeds 10100. The HEAP needn’t change, since () still holds.

During the algorithm the variable DEL holds the current scaling factor ρ−M ,
divided by 10100 each time all of the activities have been rescaled.

Finally, the parity of OVAL(k) is used to control the polarity of each new
decision in step C6. Algorithm C starts by simply making each OVAL(k) odd,
although other initialization schemes are possible. Afterwards it sets OVAL(k)←
VAL(k) whenever xk leaves the trail and becomes free, as recommended by
D. Frost and R. Dechter [AAAI Conf. 12 (1994), 301–306] and independently
by K. Pipatsrisawat and A. Darwiche [LNCS 4501 (2007), 294–299], because
experience has shown that the recently forced polarities tend to remain good.
This technique is called “sticking” or “progress saving” or “phase saving.”

Algorithm C is based on the framework of a pioneering CDCL solver called
Chaff, and on an early descendant of Chaff called MiniSAT that was developed
by N. Eén and N. Sörensson [LNCS 2919 (2004), 502–518].

September 23, 2015

68 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

purging
flushing
breadth-first search
unit propagation
Backjump

Algorithm C (Satisfiability by CDCL). Given a set of clauses on n Boolean
variables, this algorithm finds a solution L0L1 . . . Ln−1 if and only if the clauses
are satisfiable, meanwhile discovering M new ones that are consequences of the
originals. After discovering Mp new clauses, it will purge some of them from its
memory and resetMp; after discoveringMf of them, it will flush part of its trail,
resetMf , and start over. (Details of purging and flushing will be discussed later.)

C1. [Initialize.] Set VAL(k)← OVAL(k)← TLOC(k)←−1, ACT(k)← S(k)← 0,
R2k←R2k+1←Λ, HLOC(k)← pk − 1, and HEAP[pk − 1]← k, for 1≤ k≤n,
where p1 . . . pn is a random permutation of {1, . . . , n}. Then input the
clauses into MEM and the watch lists, as described above. Put the distinct unit
clauses into L0L1 . . . LF−1; but terminate unsuccessfully if there are contra-
dictory clauses (l) and (l̄). Set MINL and MAXL to the first available position
in MEM. (See exercise 260.) Set i0← d← s←M←G← 0, h←n, DEL← 1.

C2. [Level complete?] (The trail L0 . . . LF−1 now contains all of the literals that
are forced by L0 . . . LG−1.) Go to C5 if G = F .

C3. [Advance G.] Set l← LG and G← G+ 1. Then do step C4 for all c in the
watch list of l̄, unless that step detects a conflict and jumps to C7. If there
is no conflict, return to C2. (See exercise 261.)

C4. [Does c force a unit?] Let l0l1 . . . lk−1 be the literals of clause c, where l1 = l̄.
(Swap l0 ↔ l1 if necessary.) If l0 is true, do nothing. Otherwise look for a
literal lj with 1 < j < k that is not false. If such a literal is found, move c
to the watch list of lj . But if l2, . . . , lk−1 are all false, jump to C7 if l0 is
also false. On the other hand if l0 is free, make it true by setting LF ← l0,
TLOC(|l0|)← F , VAL(|l0|)← 2d+ (l0 & 1), Rl0 ← c, and F ← F + 1.

C5. [New level?] If F = n, terminate successfully. Otherwise if M ≥ Mp, pre-
pare to purge excess clauses (see below). Otherwise ifM ≥Mf , flush literals
as explained below and return to C2. Otherwise set d← d+ 1 and id ← F .

C6. [Make a decision.] Set k ← HEAP[0] and delete k from the heap (see exercises
262 and 266). If VAL(k) ≥ 0, repeat this step. Otherwise set l ← 2k +
(OVAL(k) & 1), VAL(k) ← 2d + (OVAL(k) & 1), LF ← l, TLOC(|l|) ← F ,
Rl ← Λ, and F ← F + 1. (At this point F = G+ 1.) Go to C3.

C7. [Resolve a conflict.] Terminate unsuccessfully if d = 0. Otherwise use the
conflict clause c to construct a new clause l̄ ′∨ b̄1∨· · ·∨ b̄r as described above.
Set ACT(|l|)← ACT(|l|)+ DEL for all literals l stamped during this process;
also set d′ to the maximum level occupied by {b1, . . . , br} in the trail. (See
exercise 263. Increasing ACT(|l|) may also change HEAP.)

C8. [Backjump.] While F > id′+1, do the following: Set F ← F − 1, l ← LF ,
k ← |l|, OVAL(k) ← VAL(k), VAL(k) ← −1, Rl ← Λ; and if HLOC(|l|) < 0
insert k into HEAP (see exercise 262). Then set G← F and d← d′.

C9. [Learn.] If d > 0, set c ← MAXL, store the new clause in MEM at position c,
and advance MAXL to the next available position in MEM. (Exercise 263 gives
full details.) SetM ←M+1, LF ← l′, TLOC(|l′|)← F , Rl′ ← c, F ← F+1,
DEL← DEL/ρ, and return to C3.

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 69

decisions
nodes
three-coloring problems
flower snarks
snark graphs

fsnark
Certificates of unsatisfiability

The high-level operations on data structures in this algorithm are spelled out
in terms of elementary low-level steps in exercises 260–263. Exercises 266–271
discuss simple enhancements that were made in the experiments reported below.

Reality check: Although detailed statistics about the performance of Algo-
rithm C on a wide variety of problems will be presented later, a few examples of
typical behavior will help now to clarify how the method actually works in prac-
tice. Random choices make the running time of this algorithm more variable than
it was in Algorithms A, B, D, or L; sometimes we’re lucky, sometimes we’re not.

In the case of waerden (3, 10; 97), the modest 97-variable-and-2779-clause
problem that was considered in Table 3, nine test runs of Algorithm C established
unsatisfiability after making between 250 and 300 million memory accesses; the
median was 272 Mµ. (This is more than twice as fast as our best previous time,
which was obtained with Algorithm L.) The average number of decisions made—
namely the number of times LF ← l was done in step C6—was about 63 thou-
sand; this compares to 1701 “nodes” in Algorithm L, step L3, and 100 million
nodes in Algorithms A, B, D. About 53 thousand clauses were learned, having
an average size of 11.5 literals (after averaging about 19.9 before simplification).

Fig. 49. It is not
possible to color the
edges of the flower
snark graph Jq with
three colors, when q
is odd. Algorithm C
is able to prove this
with amazing speed:
Computation times
(in megamems) are
shown for nine trials
at each value of q. 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

0 Mµ

100 Mµ

200 Mµ

300 Mµ

400 Mµ

500 Mµ

Algorithm C often speeds things up much more dramatically, in fact. For
example, Fig. 49 shows how it whips through a sequence of three-coloring prob-
lems that are based on “flower snarks.” Exercise 176 defines fsnark (q), an
interesting set of 42q + 3 unsatisfiable clauses on 18q variables. The running
time of Algorithms A, B, D, and L on fsnark (q) is proportional to 2q, so it’s
way off the chart—well over a gigamem already when q = 19. But Algorithm C
polishes off the case q = 99 in that same amount of time (thus winning by 24
orders of magnitude)! On the other hand, no satisfactory theoretical explanation
for the apparently linear behavior in Fig. 49 is presently known.

Certificates of unsatisfiability. When a SAT solver reports that a given
instance is satisfiable, it also produces a set of distinct literals from which we can
easily check that every clause is satisfied. But if its report is negative —UNSAT—
how confident can we be that such a claim is true? Maybe the implementation
contains a subtle error; after all, large and complicated programs are notoriously
buggy, and computer hardware isn’t perfect either. A negative answer can there-
fore leave both programmers and users unsatisfied, as well as the problem.

September 23, 2015

70 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

resolution refutation
clausal proofs, see certificates of unsat

notation F ⊢1 ǫ
unit propagation
unit clauses
Rivest
Goldberg
Novikov
learned clauses, sequence of
resolution
conflict clause

We’ve seen that unsatisfiability can be proved rigorously by constructing
a resolution refutation, namely a chain of resolution steps that ends with the
empty clause ǫ, as in Fig. 48. But such refutations amount to the construction
of a huge directed acyclic graph.

A much more compact characterization of unsatisfiability is possible. Let’s
say that the sequence of clauses (C1, C2, . . . , Ct) is a certificate of unsatisfiability

for a family of clauses F if Ct = ǫ, and if we have

F ∧ C1 ∧ · · · ∧ Ci−1 ∧ Ci ⊢1 ǫ for 1 ≤ i ≤ t. ()

Here the subscript 1 in ‘G ⊢1 ǫ’ means that the clauses G lead to a contradiction
by unit propagation; and if Ci is the clause (a1 ∨ · · · ∨ ak), then Ci is an
abbreviation for the conjunction of unit clauses (ā1) ∧ · · · ∧ (āk).

For example, let F = R be Rivest’s clauses (), which were proved unsatis-
fiable in Fig. 48. Then (12, 1, 2, ǫ) is a certificate of unsatisfiability, because

R ∧ 1̄ ∧ 2̄ ⊢1 3̄ ⊢1 4̄ ⊢1 ǫ (using 123̄, 234̄, and 341);

R ∧ 12 ∧ 1̄ ⊢1 2 ⊢1 4̄ ⊢1 3̄ ⊢1 ǫ (using 12, 4̄12̄, 2̄3̄4, and 341);

R ∧ 12 ∧ 1 ∧ 2̄ ⊢1 4 ⊢1 3 ⊢1 ǫ (using 41̄2, 234̄, and 3̄4̄1̄);

R ∧ 12 ∧ 1 ∧ 2 ⊢1 3 ⊢1 4 ⊢1 ǫ (using 1̄2̄3, 2̄3̄4, and 3̄4̄1̄).

A certificate of unsatisfiability gives a convincing proof, since () implies
that each Ci must be true whenever F , C1, . . . , Ci−1 are true. And it’s easy to
check whether or not G ⊢1 ǫ, for any given set of clauses G, because everything is
forced and no choices are involved. Unit propagation is analogous to water flow-
ing downhill; we can be pretty sure that it has been implemented correctly, even
if we don’t trust the CDCL solver that generated the certificate being checked.

E. Goldberg and Y. Novikov [Proceedings of DATE: Design, Automation
and Test in Europe 6,1 (2003), 886–891] have pointed out that CDCL solvers
actually produce such certificates as a natural byproduct of their operation:

Theorem G. If Algorithm C terminates unsuccessfully, the sequence (C1, C2,
. . . , Ct) of clauses that it has learned is a certificate of unsatisfiability.

Proof. It suffices to show that, whenever Algorithm C has learned the clause
C′ = l̄ ′∨ b̄1∨· · ·∨ b̄r , unit propagation will deduce ǫ if we append the unit clauses
(l′) ∧ (b1) ∧ · · · ∧ (br) to the clauses that the algorithm already knows. The key
point is that C′ has essentially been obtained by repeated resolution steps,

C′ =
(
. . . ((C ⋄Rl1) ⋄Rl2) ⋄ · · ·

)
⋄Rls , ()

where C is the original conflict clause and Rl1 , Rl2 , . . . , Rls are the reasons
for each literal that was removed while C′ was constructed in step C7. More
precisely, we have C = A0 and Rli = li∨Ai, where all literals of A0∪A1∪· · ·∪As

are false (their complements appear in the trail); and

l̄i ∈ A0 ∪ · · · ∪Ai−1, for 1 ≤ i ≤ s;
A0 ∪A1 ∪ · · · ∪As = {l̄′, l̄1, . . . , l̄s, b̄1, . . . , b̄r}.

()

Thus the known clauses, plus b1, . . . , br, and l′, will force ls using clause Rls .
And ls−1 will then be forced, using Rls−1

. And so on.

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 71

reverse unit propagation
Van Gelder
purges
Tseytin
extended resolution
autarkies
Wetzler
Heule
Hunt
Purging unhelpful clauses

Since the unit literals in this proof are propagated in reverse order ls, ls−1,
. . . , l1 from the resolution steps in (), this certificate-checking procedure has
become known as “reverse unit propagation” [see A. Van Gelder, Proc. Int. Symp.
on Artificial Intelligence and Math. 10 (2008), 9 pages, online as ISAIM2008].

Notice that the proof of Theorem G doesn’t claim that reverse unit prop-
agation will reconstruct the precise reasoning by which Algorithm C learned a
clause. Many different downhill paths to ǫ, built from ⊢1 steps, usually exist in
a typical situation. We merely have shown that every clause learnable from a
single conflict does imply the existence of at least one such downhill path.

Many of the clauses learned during a typical run of Algorithm C will be
“shots in the dark,” which turn out to have been aimed in unfruitful directions.
Thus the certificates in Theorem G will usually be longer than actually nec-
essary to demonstrate unsatisfiability. For example, Algorithm C learns about
53,000 clauses when refuting waerden (3, 10; 97), and about 135,000 when refuting
fsnark (99); but fewer than 50,000 of the former, and fewer than 47,000 of the
latter, were actually used in subsequent steps. Exercise 284 explains how to
shorten a certificate of unsatisfiability while checking its validity.

An unexpected difficulty arises, however: We might spend more time veri-
fying a certificate than we needed to generate it! For example, a certificate for
waerden (3, 10; 97) was found in 272 megamems, but the time needed to check it
with straightforward unit-propagations was actually 2.2 gigamems. Indeed, this
discrepancy becomes significantly worse in larger problems, because a simple
program for checking must keep all of the clauses active in its memory. If there
are a million active clauses, there are two million literals being watched; hence
every change to a literal will require many updates to the data structures.

The solution to this problem is to provide extra hints to the certificate
checker. As we are about to see, Algorithm C does not keep all of the learned
clauses in its memory; it systematically purges its collection, so that the total
number stays reasonable. At such times it can also inform the certificate checker
that the purged clauses will no longer be relevant to the proof.

Further improvements also allow annotated certificates to accommodate
stronger proof rules, such as Tseytin’s extended resolution and techniques based
on generalized autarkies; see N. Wetzler, M. J. H. Heule, and W. A. Hunt, Jr.,
LNCS 8561 (2014), 422–429.

Whenever a family of clauses has a certificate of unsatisfiability, a variant of
Algorithm C will actually find one that isn’t too much longer. (See exercise 386.)

*Purging unhelpful clauses. After thousands of conflicts have occurred, Algo-
rithm C has learned thousands of new clauses. New clauses guide the search
by steering us away from unproductive paths; but they also slow down the
propagation process, because we have to watch them.

We’ve seen that certificates can usually be shortened; therefore we know
that many of the learned clauses will probably never be needed again. For this
reason Algorithm C periodically attempts to weed out the ones that appear to
be more harmful than helpful, by ranking the clauses that have accumulated.

September 23, 2015

72 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

HOLMES
Doyle

waerden (3, 10; 97)
author
discarding
reason
trail
heuristics
Audemard
Simon
literal block distance
signature
literal block distance
glucose, see literal block distance

I consider that a man’s brain originally is like a little empty attic, and

you have to stock it with such furniture as you choose. . . . the skilled workman

is very careful indeed as to what he takes into his brain-attic.

. . . It is a mistake to think that that little room has elastic walls

and can distend to any extent. . . . It is of the highest importance, therefore,

not to have useless facts elbowing out the useful ones.

— SHERLOCK HOLMES, in A Study in Scarlet (1887)

Algorithm C initiates a special clause-refinement process as soon as it has
learned M ≥ Mp clauses and arrived at a reasonably stable state (step C5).
Let’s continue our running example, waerden (3, 10; 97), in order to make the
issues concrete. If Mp is so huge that no clauses are ever thrown away, a typical
run will learn roughly 48 thousand clauses, and do roughly 800 megamems of
computation, before proving unsatisfiability. But if Mp = 10000, it will learn
roughly 50 thousand clauses, and the computation time will go down to about
500 megamems. In the latter case the total number of learned clauses in memory
will rarely exceed 10 thousand.

Indeed, let’s setMp = 10000 and take a close look at exactly what happened
during the author’s first experiments. Algorithm C paused to reconnoiter the
situation after having learned 10002 clauses. At that point only 6252 of those
10002 clauses were actually present in memory, however, because of the clause-
discarding mechanism discussed in exercise 271. Some clauses had length 2, while
the maximum size was 24 and the median was 11; here’s a complete histogram:

2 9 49 126 216 371 542 719 882 1094 661 540 414 269 176 111 35 20 10 3 1 1 1.

Short clauses tend to be more useful, because they reduce more quickly to units.
A learned clause cannot be purged if it is the reason for one of the literals

on the trail. In our example, 12 of the 6252 fell into this category; for instance,
30 appeared on level 10 of the trail because ‘30 33 39 41 42 45 46 48 54 57’ had
been learned, and we may need to know that clause in a future resolution step.

The purging process will try to remove at least half of the existing learned
clauses, so that at most 3126 remain. We aren’t allowed to touch the 12 reason-
bound ones; hence we want to forget 3114 of the other 6240. Which of them
should we expel?

Among many heuristics that have been tried, the most successful in practice
are based on what Gilles Audemard and Laurent Simon have called “literal block
distance” [see Proc. Int. Joint Conference on Artificial Intelligence 21 (2009),
399–404]. They observed that each level of the trail can be considered to be a
block of more-or-less related variables; hence a long clause might turn out to be
more useful than a short clause, if the literals of the long one all lie on just one
or two levels while the literals of the short one belong to three or more.

Suppose all the literals of a clause C = l1∨· · ·∨ lr appear in the trail, either
positively as lj or negatively as l̄j. We can group them by level so that exactly
p+ q levels are represented, where p of the levels contain at least one positive lj
and the other q contain nothing but l̄j ’s. Then (p, q) is the signature of C with
respect to the trail, and p+ q is the literal block distance. For example, the very

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 73

VAL
Goultiaeva
Bacchus
full run

first clause learned from waerden (3, 10; 97) in the author’s test run was

11 16 21 26 36 46 51 61 66 91; ()

later, when it was time to rank clauses for purging, the values and trail levels of
those literals were specified by VAL(11), VAL(16), . . . , VAL(91), which were

20 21 21 21 20 15 16 8 14 20.

Thus 61 was true on level 8≫ 1 = 4; 46 and 66 were true on level 15≫ 1 =
14≫ 1 = 7; 51 was false on level 8; the others were a mixture of true and false
on level 10; hence () had p = 3 and q = 1 with respect to the current trail.

If C has signature (p, q) and C′ has signature (p′, q′), where p ≤ p′ and q ≤ q′
and (p, q) 6= (p′, q′), we can expect that C is more likely than C′ to be useful in
future propagations. The same conclusion is plausible also when p+ q = p′ + q′

and p < p′, because C′ won’t force anything until literals from at least p + 1
different levels change sign. These intuitive expectations are borne out by the
following detailed data obtained from waerden (3, 10; 97):

0 4 17 22 30 54 67 99 17
17 81 191 395 360 404 438 66 6
63 232 463 536 521 386 117 6 0
52 243 291 298 308 112 22 0 0
18 59 86 77 53 7 0 0 0
0 8 3 10 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 1 9 15 21 16 15 3 0
7 26 74 107 82 57 16 1 0
20 74 104 86 61 21 9 0 0
13 40 37 16 14 4 0 0 0
6 10 9 4 1 1 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

The matrix on the left shows how many of the 6240 eligible clauses had a given
signature (p, q), for 1 ≤ p ≤ 7 and 0 ≤ q ≤ 8; the matrix on the right shows how
many would have been used to resolve future conflicts, if none of them had been
removed. There were, for example, 536 learned clauses with p = q = 3, of which
only 86 actually turned out to be useful. This data is illustrated graphically in
Fig. 50, which shows gray rectangles whose areas correspond to the left matrix,
overlaid by black rectangles whose areas correspond to the right matrix. We can’t
predict the future, but small (p, q) tends to increase the ratio of black to gray.

0 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7

p

︷ ︸︸ ︷

q

Fig. 50. Learned clauses that have
p positive and q all-negative levels.
The gray ones will never be used
again. Unfortunately, there’s no easy
way to distinguish gray from black
without being clairvoyant.

An alert reader will be wondering, however, how such signatures were found,
because we can’t compute them for all clauses until all variables appear in the
trail—and that doesn’t happen until all clauses are satisfied! The answer [see
A. Goultiaeva and F. Bacchus, LNCS 7317 (2012), 30–43] is that it’s quite
possible to carry out a “full run” in which every variable is assigned a value,
by making only a slight change to the normal behavior of Algorithm C: Instead

September 23, 2015

74 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

backjumping
VAL
OVAL
author
tie-breakers
literal block distance

ACT(c)
clause activity
activity score

of resolving conflicts immediately and backjumping, we can carry on after each
conflict until all propagations cease, and we can continue to build the trail in
the same way until every variable is present on some level. Conflicts may have
occurred on several different levels; but we can safely resolve them later, learning
new clauses at that time. Meanwhile, a full trail allows us to compute signatures
based on VAL fields. And those VAL fields go into the OVAL fields after backjump-
ing, so the variables in each block will tend to maintain their relationships.

The author’s implementation of Algorithm C assigns an eight-bit value

RANGE(c) ← min
(
⌊16(p+ αq)⌋, 255

)
()

to each clause c; here α is a parameter, 0 ≤ α ≤ 1. We also set RANGE(c) ← 0
if c is the reason for some literal in the trail; RANGE(c) ← 256 if c is satisfied
at level 0. If there are mj clauses of range j, and if we want to keep at most T
clauses in memory, we find the largest j ≤ 256 such that

mj > 0 and sj = m0 +m1 + · · ·+mj−1 ≤ T. ()

Then we retain all clauses for which RANGE(c) < j, together with T − sj “tie-
breakers” that have RANGE(c) = j (unless j = 256). When α has the relatively
high value 15

16 = .9375, this rule essentially preserves as many clauses of small
literal block distance as it can; and for constant p+q it favors those with small p.

For example, with α = 15
16 and the data from Fig. 50, we save clauses that

have p = (1, 2, 3, 4, 5) when q ≤ (5, 4, 3, 2, 0), respectively. This gives us s95 =
12 + 3069 clauses, just 45 shy of our target T = 3126. So we also choose 45
tie-breakers from among the 59 clauses that have RANGE(c) = 95, (p, q) = (5, 1).

Tie-breaking can be done by using a secondary heuristic ACT(c), “clause
activity,” which is analogous to the activity score of a variable but it is more
easily maintained. If clause c has been used to resolve the conflicts numbered 3,
47, 95, 99, and 100, say, then

ACT(c) = ̺−3 + ̺−47 + ̺−95 + ̺−99 + ̺−100. ()

This damping factor ̺ (normally .999) is independent of the factor ρ that is used
for variable activities. In the case of Fig. 50, if the 59 clauses with (p, q) = (5, 1)
are arranged in order of increasing ACT scores, the gray-and-black pattern is

.

So if we retain the 45 with highest activity, we pick up 8 of the 10 that turn out
to be useful. (Clause activities are imperfect predictors, but they are usually
somewhat better than this example implies.)

Exercises 287 and 288 present full details of clause purging in accordance
with these ideas. One question remains: After we’ve completed a purge, when
should we schedule the next one? Successful results are obtained by having two
parameters, ∆p and δp. Initially Mp = ∆p; then after each purge, we set ∆p ←
∆p+δp andMp ←Mp+∆p. For example, if ∆p = 10000 and δp = 100, purging

will occur after approximately 10000, 20100, 30300, 40600, . . . , k∆p +
(
k
2

)
δp,

September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 75

Flushing literals and restarting
van der Tak
Ramos
Heule
activity scores

ACT(k)
phase-saving
reusing the trail

. . . clauses have been learned; and the number of clauses at the beginning of the
kth round will be approximately 20000+200k = 2∆p+2kδp. (See exercise 289.)

We’ve based this discussion on waerden (3, 10; 97), which is quite a simple
problem. Algorithm C’s gain from clause-purging on larger problems is naturally
much more substantial. For example, waerden (3, 13; 160) is only a bit larger than
waerden (3, 10; 97). With ∆p = 10000 and δp = 100, it finishes in 132 gigamems,
after learning 9.5 million clauses and occupying only 503 thousand MEM cells.
Without purging, it proves unsatisfiability after learning only 7.1 million clauses,
yet at well over ten times the cost: 4307 gigamems, and 102 million cells of MEM.

*Flushing literals and restarting. Algorithm C interrupts itself in step C5 not
only to purge clauses but also to “flush literals” that may not have been the best
choices for decisions in the trail. The task of solving a tough satisfiability problem
is a delicate balancing act: We don’t want to get bogged down in the wrong part
of the search space; but we also don’t want to lose the fruits of hard work by
“throwing out the baby with the bath water.” A nice compromise has been found
by Peter van der Tak, Antonio Ramos, and Marijn Heule [J. Satisfiability, Bool.
Modeling and Comp. 7 (2011), 133–138], who devised a useful way to rejuvenate
the trail periodically by following trends in the activity scores ACT(k).

Let’s go back to Table 3, to illustrate their method. After learning the
clause (), Algorithm C will update the trail by setting L44 ← 57 on level
17; that will force L45 ← 66, because 39, 42, . . . , 63 have all become true; and
further positive literals 6, 58, 82, 86, 95, 96 will also join the trail in some order.
Step C5 might then intervene to suggest that we should contemplate flushing
some or all of the F = 52 literals whose values are currently assigned.

The decision literals 53, 55, 44, . . . , 51 on levels 1, 2, 3, . . . , 17 each were
selected because they had the greatest current activity scores when their level be-
gan. But activity scores are continually being updated, so the old ones might be
considerably out of touch with present realities. For example, we’ve just boosted
ACT(53), ACT(27), ACT(36), ACT(70), . . . , in the process of learning ()— see
(). Thus it’s quite possible that several of the first 17 decisions no longer
seem wise, because those literals haven’t participated in any recent conflicts.

Let xk be a variable with maximum ACT(k), among all of the variables not
in the current trail. It’s easy to find such a k (see exercise 290). Now consider,
as a thought experiment, what would happen if we were to jump back all the
way to level 0 at this point and start over. Recall that our phase-saving strategy
dictates that we would set OVAL(j)← VAL(j) just before setting VAL(j)← −1,
as the variables become unassigned.

If we now restart at step C6 with d← 1, all variables whose activity exceeds
ACT(k) will receive their former values (although not necessarily in the same
order), because the corresponding literals will enter the trail either as decisions
or as forced propagations. History will more or less repeat itself, because the old
assignments did not cause any conflicts, and because phases were saved.

We might as well therefore avoid most of this back-and-forth unsetting and
resetting, by reusing the trail and jumping back only partway, to the first level

September 23, 2015

76 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

literal flushing
activity score
clichés
Biere
agility
damping factor
polarity

where the current activity scores significantly change the picture:

Set d′ ← 0. While ACT(|Lid′+1
|) ≥ ACT(k), set d′ ← d′ + 1.

Then if d′ < d, jump back to level d′.
()

This is the technique called “literal flushing,” because it removes the literals on
levels d′ +1 through d and leaves the others assigned. It effectively redirects the
search into new territory, without being as drastic as a full restart.

In Table 3, for example, ACT(49) might exceed the activity score of every
other unassigned variable; and it might also exceed ACT(46), the activity of
the decision literal 46 on level 15. If the previous 14 decision-oriented activities
ACT(53), ACT(55), . . . , ACT(37) are all ≥ ACT(49), we would flush all the literals
L25, L26, . . . above level d′ = 14, and commence a new level 15.

Notice that some of the flushed literals other than 46 might actually have
the largest activities of all. In such cases they will re-insert themselves, before
49 ever enters the scene. Eventually, though, the literal 49 will inaugurate a new
level before a new conflict arises. (See exercise 291.)

Experience shows that flushing can indeed be extremely helpful. On the
other hand, it can be harmful if it causes us to abandon a fruitful line of attack.
When the solver is perking along and learning useful clauses by the dozen, we
don’t want to upset the applecart by rocking the boat. Armin Biere has therefore
introduced a useful statistic called agility, which tends to be correlated with the
desirability of flushing at any given moment. His idea [LNCS 4996 (2008), 28–
33] is beautifully simple: We maintain a 32-bit integer variable called AGILITY,
initially zero. Whenever a literal l is placed on the trail in steps C4, C6, or C9,
we update the agility by setting

AGILITY← AGILITY−(AGILITY≫13)+
(
((OVAL(|l|)−VAL(|l|))&1)≪19

)
. ()

In other words, the fraction AGILITY/232 is essentially multiplied by 1− δ, then
increased by δ if the new polarity of l differs from its previous polarity, where
δ = 2−13 ≈ .0001. High agility means that lots of the recent propagations are
flipping the values of variables and trying new possibilities; low agility means
that the algorithm is basically in a rut, spinning its wheels and getting nowhere.

Table 4

TO FLUSH OR NOT TO FLUSH?

Let a = AGILITY/232 when setting Mf ←M + ∆f , and let ψ = 1/6, θ = 17/16.

If ∆f is then flush if If ∆f is then flush if If ∆f is then flush if

1 a ≤ ψ ≈ .17 32 a ≤ θ5ψ ≈ .23 1024 a ≤ θ10ψ ≈ .31
2 a ≤ θψ ≈ .18 64 a ≤ θ6ψ ≈ .24 2048 a ≤ θ11ψ ≈ .32
4 a ≤ θ2ψ ≈ .19 128 a ≤ θ7ψ ≈ .25 4096 a ≤ θ12ψ ≈ .34
8 a ≤ θ3ψ ≈ .20 256 a ≤ θ8ψ ≈ .27 8192 a ≤ θ13ψ ≈ .37
16 a ≤ θ4ψ ≈ .21 512 a ≤ θ9ψ ≈ .29 16384 a ≤ θ14ψ ≈ .39

Armed with the notion of agility, we can finally state what Algorithm C
does when step C5 finds M ≥ Mf : First Mf is reset to M + ∆f , where ∆f is

September 23, 2015

7.2.2.2 SATISFIABILITY: MONTE CARLO ALGORITHMS 77

reluctant doubling
heuristic
randomized methods
stochastic local search
SLS: Stochastic local search
Gu
Papadimitriou
debug
random walks–
Papadimitriou

a power of two determined by the “reluctant doubling” sequence 〈1, 1, 2, 1, 1,
2, 4, 1, . . . 〉; that sequence is discussed below and in exercise 293. Then the
agility is compared to a threshold, depending on ∆f , according to the schedule
in Table 4. (The parameter ψ in that table can be raised or lowered, if you want
to increase or decrease the amount of flushing.) If the agility is sufficiently small,
xk is found and () is performed. Nothing changes if the agility is large or if
d′ = d; otherwise () has flushed some literals, using the operations of step C8.

Monte Carlo methods. Let’s turn now to a completely different way to
approach satisfiability problems, based on finding solutions by totally heuristic
and randomized methods, often called stochastic local search. We often use such
methods in our daily lives, even though there’s no guarantee of success. The
simplest satisfiability-oriented technique of this kind was introduced by Jun Gu
[see SIGART Bulletin 3, 1 (January 1992), 8–12] and by Christos Papadimitriou
[FOCS 32 (1991), 163–169] as a byproduct of more general studies:

“Start with any truth assignment. While there are unsatisfied
clauses, pick any one, and flip a random literal in it.”

Some programmers are known to debug their code in a haphazard manner,
somewhat like this approach; and we know that such “blind” changes are foolish
because they usually introduce new bugs. Yet this idea does have merit when it
is applied to satisfiability, so we shall formulate it as an algorithm:

Algorithm P (Satisfiability by random walk). Given m nonempty clauses
C1 ∧ · · · ∧ Cm on n Boolean variables x1 . . . xn, this algorithm either finds a
solution or terminates unsuccessfully after making N trials.

P1. [Initialize.] Assign random Boolean values to x1 . . . xn. Set j ← 0, s ← 0,
and t← 0. (We know that s clauses are satisfied after having made t flips.)

P2. [Success?] If s = m, terminate successfully with solution x1 . . . xn. Other-
wise set j ← (j modm)+1. If clause Cj is satisfied by x1 . . . xn, set s← s+1
and repeat this step.

P3. [Done?] If t = N , terminate unsuccessfully.

P4. [Flip one bit.] Let clause Cj be (l1 ∨ · · · ∨ lk). Choose a random index
i ∈ {1, . . . , k}, and change variable |li| so that literal li becomes true. Set
s← 1, t← t+ 1, and return to P2.

Suppose, for example, that we’re given the seven clauses R′ of (). Thus
m = 7, n = 4; and there are two solutions, 01∗1. In this case every nonsolution
violates a unique clause; for example, 1100 violates the clause 1̄2̄3, so step P4 is
equally likely to change 1100 to 0100, 1000, or 1110, only one of which is closer
to a solution. An exact analysis (see exercise 294) shows that Algorithm P will
find a solution after making 8.25 flips, on the average. That’s no improvement
over a brute-force search through all 2n = 16 possibilities; but a small example
like this doesn’t tell us much about what happens when n is large.

Papadimitriou observed that Algorithm P is reasonably effective when it’s
applied to 2SAT problems, because each flip has roughly a 50-50 chance of making

September 23, 2015

78 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Schöning
ballot number

progress in that case. Several years later, Uwe Schöning [Algorithmica 32 (2002),
615–623] discovered that the algorithm also does surprisingly well on instances of
3SAT, even though the flips when k > 2 in step P4 tend to go “the wrong way”:

Theorem U. If the given clauses are satisfiable, and if each clause has at
most three literals, Algorithm P will succeed with probability Ω

(
(3/4)n/n

)
after

making at most n flips.

Proof. By complementing variables, if necessary, we can assume that 0 . . . 0 is
a solution; under this assumption, every clause has at least one negative literal.
Let Xt = x1 + · · ·+ xn be the number of 1s after t flips have been made. Each
flip changes Xt by ±1, and we want to show that there’s a nontrivial chance that
Xt will become 0. After step P1, the random variable X0 will be equal to q with
probability

(
n
q

)
/2n.

A clause that contains three negative literals is good news for Algorithm P,
because it is violated only when all three variables are 1; a flip will always

decrease Xt in such a case. Similarly, a violated clause with two negatives
and one positive will invoke a flip that makes progress 2/3 of the time. The
worst case occurs only when a problematic clause has only one negative literal.
Unfortunately, every clause might belong to this worst case, for all we know.

Instead of studying Xt, which depends on the pattern of clauses, it’s much
easier to study another random variable Yt defined as follows: Initially Y0 = X0;
but Yt+1 = Yt − 1 only when step P4 flips the negative literal that has the
smallest subscript; otherwise Yt+1 = Yt + 1. For example, after taking care of a
violated clause such as x3∨x̄5∨x̄8, we haveXt+1 = Xt+(+1,−1,−1) but Yt+1 =
Yt+(+1,−1,+1) in the three possible cases. Furthermore, if the clause contains
fewer than three literals, we penalize Yt+1 even more, by allowing it to be Yt− 1
only with probability 1/3. (After a clause such as x4 ∨ x̄6, for instance, we put
Yt+1 = Yt−1 in only 2/3 of the cases when x6 is flipped; otherwise Yt+1 = Yt+1.)

We clearly have Xt ≤ Yt for all t. Therefore Pr(Xt = 0) ≥ Pr(Yt = 0),
after t flips have been made; and we’ve defined things so that it’s quite easy to
calculate Pr(Yt = 0), because Yt doesn’t depend on the current clause j:

Pr(Yt+1 = Yt − 1) = 1/3 and Pr(Yt+1 = Yt + 1) = 2/3 when Yt > 0.

Indeed, the theory of random walks developed in Section 7.2.1.6 tells us how to
count the number of scenarios that begin with Y0 = q and end with Yt = 0, after
Yt has increased p times and decreased p+ q times while remaining positive for
0 ≤ t < 2p+ q. It is the “ballot number” of Eq. 7.2.1.6–(),

Cp,p+q−1 =
q

2p+ q

(
2p+ q

p

)
. ()

The probability that Y0 = q and that Yt = 0 for the first time when t = 2p+ q
is therefore exactly

f(p, q) =
1

2n

(
n

q

)
q

2p+ q

(
2p+ q

p

)(
1

3

)p+q(2
3

)p
. ()

September 23, 2015

7.2.2.2 SATISFIABILITY: MONTE CARLO ALGORITHMS 79

n-cube
WalkSAT–
Selman
Kautz
Cohen
break count

Every value of p and q gives a lower bound for the probability that Algorithm P
succeeds; and exercise 296 shows that we get the result claimed in Theorem U
by choosing p = q ≈ n/3.

Theorem U might seem pointless, because it predicts success only with
exponentially small probability when N = n. But if at first we don’t succeed, we
can try and try again, by repeating Algorithm P with different random choices.
And if we repeat it Kn(4/3)n times, for large enough K, we’re almost certain to
find a solution unless the clauses can’t all be satisfied.

In fact, even more is true, because the proof of Theorem U doesn’t exploit the
full power of Eq. (). Exercise 297 carries the analysis further, in a particularly
instructive way, and proves a much sharper result:

Corollary W. When Algorithm P is applied K(4/3)n times with N = 2n to a
set of satisfiable ternary clauses, its success probability exceeds 1− e−K/2.

If the clauses C1∧· · ·∧Cm are unsatisfiable, Algorithm P will never demon-
strate that fact conclusively. But if we repeat it 100(4/3)n times and get no
solution, Corollary W tells us that the chances of satisfiability are incredibly
small (less than 10−21). So it’s a safe bet that no solution exists in such a case.

Thus Algorithm P has a surprisingly good chance of finding solutions “with
its eyes closed,” while walking at random in the gigantic space of all 2n binary
vectors; and we can well imagine that even better results are possible if we devise
randomized walking methods that proceed with eyes wide open. Therefore many
people have experimented with strategies that try to make intelligent choices
about which direction to take at each flip-step. One of the simplest and best of
these improvements, popularly known as WalkSAT, was devised by B. Selman,
H. A. Kautz, and B. Cohen [Nat. Conf. Artificial Intelligence 12 (1994), 337–343]:

Algorithm W (WalkSAT). Given m nonempty clauses C1 ∧ · · · ∧ Cm on n
Boolean variables x1 . . . xn, and a “greed-avoidance” parameter p, this algorithm
either finds a solution or terminates unsuccessfully after making N trials. It uses
auxiliary arrays c1 . . . cn, f0 . . . fm−1, k1 . . . km, and w1 . . . wm.

W1. [Initialize.] Assign random Boolean values to x1 . . . xn. Also set r← t← 0
and c1 . . . cn ← 0 . . . 0. Then, for 1 ≤ j ≤ m, set kj to the number of true
literals in Cj ; and if kj = 0, set fr ← j, wj ← r, and r ← r + 1; or if
kj = 1 and the only true literal of Cj is xi or x̄i, set ci ← ci +1. (Now r is
the number of unsatisfied clauses, and the f array lists them. The number
ci is the “cost” or “break count” for variable xi, namely the number of
additional clauses that will become false if xi is flipped.)

W2. [Done?] If r = 0, terminate successfully with solution x1 . . . xn. Otherwise,
if t = N , terminate unsuccessfully.

W3. [Choose j.] Set j ← fq, where q is uniformly random in {0, 1, . . . , r − 1}.
(In other words, choose an unsatisfied clause Cj at random, considering
every such clause to be equally likely; exercise 3.4.1–3 discusses the best
way to compute q.) Let clause Cj be (l1 ∨ · · · ∨ lk).

September 23, 2015

80 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Seitz
Alava
Orponen
3SAT
2SAT
reluctant doubling
Luby
Sinclair
Zuckerman

W4. [Choose l.] Let c be the smallest cost among the literals {l1, . . . , lk}. If
c = 0, or if c ≥ 1 and U ≥ p where U is uniform in [0 . . 1), choose l randomly
from among the literals of cost c. (We call this a “greedy” choice, because
flipping l will minimize the number of newly false clauses.) Otherwise
choose l randomly in {l1, . . . , lk}.

W5. [Flip l.] Change the value of variable |l|, and update r, c1 . . . cn, f0 . . . fr−1,
k1 . . . km, w1 . . . wm to agree with this new value. (Exercise 302 explains
how to implement steps W4 and W5 efficiently, with computer-friendly
changes to the data structures.) Set t← t+ 1 and return to W2.

If, for example, we try to satisfy the seven clauses of () with Algorithm W,
as we did earlier with Algorithm P, the choice x1x2x3x4 = 0110 violates 2̄3̄4;
and c1c2c3c4 turns out to be 0110 in this situation. So step W4 will choose to
flip x4, and we’ll have the solution 0111. (See exercise 303.)

Notice that step W3 focuses attention on variables that need to change.
Furthermore, a literal that appears in the most unsatisfied clauses is most likely
to appear in the chosen clause Cj .

If no cost-free flip is available, step W4 makes nongreedy choices with prob-
ability p. This policy keeps the algorithm from getting stuck in an unsatisfiable
region from which there’s no greedy exit. Extensive experiments by S. Seitz,
M. Alava, and P. Orponen [J. Statistical Mechanics (June 2005), P06006:1–27]
indicate that the best choice of p is .57 when large random 3SAT problems are
being tackled. For example, with this setting of p, and with m = 4.2n random
3-literal clauses, Algorithm W works fantastically well: It tends to find solutions
after making fewer than 10,000n flips when n = 104, and fewer than 2500n flips
when 105 ≤ n ≤ 106.

What about the parameter N? Should we set it equal to 2n (as recom-
mended for 3SAT problems with respect to Algorithm P), or perhaps to n2 (as
recommended for 2SAT in exercise 299), or to 2500n (as just mentioned for 3SAT
in AlgorithmW), or to something else? When we use an algorithm like WalkSAT,
whose behavior can vary wildly depending on random choices and on unknown
characteristics of the data, it’s often wise to “cut our losses” and to start afresh
with a brand new pattern of random numbers.

Exercise 306 proves that such an algorithm always has an optimum cutoff
value N = N∗, which minimizes the expected time to success when the algorithm
is restarted after each failure. Sometimes N∗ = ∞ is the best choice, meaning
that we should always keep plowing ahead; in other cases N∗ is quite small.

But N∗ exists only in theory, and the theory requires perfect knowledge of
the algorithm’s behavior. In practice we usually have little or no information
about how N should best be specified. Fortunately there’s still an effective way
to proceed, by using the notion of reluctant doubling introduced by M. Luby,
A. Sinclair, and D. Zuckerman [Information Proc. Letters 47 (1993), 173–180],
who defined the interesting sequence

S1, S2, . . . = 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, ()

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 81

restart schedule
Local Lemma–
probabilistic method
Erdős
clique
random graph
Ramsey’s theorem
Lovász
Erdős
Lovász
Spencer

The elements of this sequence are all powers of 2. Furthermore we have Sn+1 =
2Sn if the number Sn has already occurred an even number of times, otherwise
Sn+1 = 1. A convenient way to generate this sequence is to work with two
integers (u, v), and to start with (u1, v1) = (1, 1); then

(un+1, vn+1) =
(
un &−un = vn? (un + 1, 1): (un, 2vn)

)
. ()

The successive pairs are (1, 1), (2, 1), (2, 2), (3, 1), (4, 1), (4, 2), (4, 4), (5, 1), . . . ,
and we have Sn = vn for all n ≥ 1.

The reluctant doubling strategy is to run Algorithm W repeatedly with
N = cS1, cS2, cS3, . . . , until success is achieved, where c is some constant.
Exercise 308 proves that the expected running time X obtained in this way
exceeds the optimum by at most a factor of O(logX). Other sequences besides
〈Sn〉 also have this property, and they’re sometimes better (see exercise 311).
The best policy is probably to use 〈cSn〉, where c represents our best guess
about the value of N∗; in this way we hedge our bets in case c is too small.

The Local Lemma. The existence of particular combinatorial patterns is often
established by using a nonconstructive proof technique called the “probabilistic
method,” pioneered by Paul Erdős. If we can show that Pr(X) > 0, in some
probability space, then X must be true in at least one case. For example [Bull.
Amer. Math. Soc. 53 (1947), 292–294], Erdős famously observed that there is a
graph G on n vertices such that neither G nor G contains a k-clique, whenever

(
n

k

)
< 2k(k−1)/2−1. ()

For if we consider a random graph G, each of whose
(
n
2

)
edges is present with

probability 1/2, and if U is any particular subset of k vertices in G, the proba-
bility that either G |U or G |U is a complete graph is clearly 2/2k(k−1)/2. Hence
the probability that this doesn’t happen for any of the

(
n
k

)
subsets U is at least

1−
(
n
k

)
21−k(k−1)/2. This probability is positive; so such a graph must exist.

The proof just given does not provide any explicit construction. But it does
show that we can find such a graph by making at most 1

/(
1 −

(
n
k

)
21−k(k−1)/2

)

random trials, on the average, provided that n and k are small enough that we
are able to test all

(
n
k

)
subgraphs in a reasonable amount of time.

Probability calculations of this kind are often complicated by dependencies
between the random events being considered. For example, the presence of a
clique in one part of a graph affects the likelihood of many other cliques that
share some of the same vertices. But the interdependencies are often highly
localized, so that “remote” events are essentially independent of each other.
László Lovász introduced an important way to deal with such situations early in
the 1970s, and his approach has become known as the “Local Lemma” because it
has been used to establish many theorems. First published as a lemma on pages
616–617 of a longer paper [Erdős and Lovász, Infinite and Finite Sets, Colloquia
Math. Soc. János Bolyai 10 (1975), 609–627], and subsequently extended to a
“lopsided” form [P. Erdős and J. Spencer, Discrete Applied Math. 30 (1991),
151–154], it can be stated as follows:

September 23, 2015

82 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

R(G)
lopsidependency graph
dependency graph
Lovász
Spencer
Shearer
Moser
Tardos

Lemma L. Let A1, . . . , Am be events in some probability space. Let G be a
graph on vertices {1, . . . ,m}, and let (p1, . . . , pm) be numbers such that

Pr(Ai | Aj1 ∩ · · · ∩ Ajk) ≤ pi whenever k ≥ 0 and i /−−−j1, . . . , i /−−−jk. ()

Then Pr(A1∩· · ·∩Am) > 0 whenever (p1, . . . , pm) lies in a certain set R(G).
In applications we think of the Aj as “bad” events, which are undesirable

conditions that interfere with whatever we’re trying to find. The graph G is
called a “lopsidependency graph” for our application; this name was coined as
an extension of Lovász’s original term “dependency graph,” for which the strict
condition ‘= pi’ was assumed in place of ‘≤ pi’ in ().

The set R(G) of probability bounds for which we can guarantee that all bad
events can simultaneously be avoided, given (), will be discussed further be-
low. If G is the complete graphKm, so that () simply states that Pr(Ai) ≤ pi,
R(G) is clearly {(p1, . . . , pm) | (p1, . . . , pm) ≥ (0, . . . , 0) and p1 + · · ·+ pm < 1};
this is the smallest possible R(G). At the other extreme, if G is the empty
graphKm, we get {(p1, . . . , pm) | 0 ≤ pj < 1 for 1 ≤ j ≤ m}, the largest possible
R(G). Adding an edge to G makes R(G) smaller. Notice that, if (p1, . . . , pm) is
in R(G) and 0 ≤ p′j ≤ pj for 1 ≤ j ≤ m, then also (p′1, . . . , p

′
m) ∈ R(G).

Lovász discovered an elegant local condition that suffices to make Lemma L
widely applicable [see J. Spencer, Discrete Math. 20 (1977), 69–76]:

Theorem L. The probability vector (p1, . . . , pm) is in R(G) when there are
numbers 0 ≤ θ1, . . . , θm < 1 such that

pi = θi
∏

i−−j inG

(1 − θj). ()

Proof. Exercise 344(e) proves that Pr(A1 ∩ · · · ∩Am) ≥ (1− θ1) . . . (1− θm).

James B. Shearer [Combinatorica 5 (1985), 241–245] went on to determine
the exact maximum extent of R(G) for all graphs G, as we’ll see later; and he
also established the following important special case:

Theorem J. Suppose every vertex of G has degree ≤ d, where d > 1. Then
(p, . . . , p) ∈ R(G) when p ≤ (d− 1)d−1/dd.

Proof. See the interesting inductive argument in exercise 317.

This condition on p holds whenever p ≤ 1/(ed) (see exercise 319).

Further study led to a big surprise: The Local Lemma proves only that
desirable combinatorial patterns exist, although they might be rare. But Robin
Moser and Gábor Tardos discovered [JACM 57 (2010), 11:1–11:15] that we can
efficiently compute a pattern that avoids all of the bad Aj , using an almost
unbelievably simple algorithm analogous to WalkSAT!

Algorithm M (Local resampling). Given m events {A1, . . . , Am} that depend
on n Boolean variables {x1, . . . , xn}, this algorithm either finds a vector x1 . . . xn
for which none of the events is true, or loops forever. We assume that Aj is a
function of the variables {xk | k ∈ Ξj} for some given subset Ξj ⊆ {1, . . . , n}.

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 83

reliability polynomial
lopsidependency
traces–
Cartier
Foata
Keller
Mazurkiewicz
Viennot
heaps of pieces
commutativity, partial
strings

Whenever the algorithm assigns a value to xk, it sets xk ← 1 with probability
ξk and xk ← 0 with probability 1− ξk, where ξk is another given parameter.

M1. [Initialize.] For 1 ≤ k ≤ n, set xk ← [U <ξk], where U is uniform in [0 . . 1).

M2. [Choose j.] Set j to the index of any event such that Aj is true. If no such j
exists, terminate successfully, having found a solution x1 . . . xn.

M3. [Resample for Aj .] For each k ∈ Ξj , set xk ← [U <ξk], where U is uniform
in [0 . .1). Return to M2.

(We have stated Algorithm M in terms of binary variables xk purely for conve-
nience. The same ideas apply when each xk has a discrete probability distribution
on any set of values, possibly different for each k.)

To tie this algorithm to the Local Lemma, we assume that event Ai holds
with probability ≤ pi whenever the variables it depends on have the given
distribution. For example, if Ai is the event “x3 6= x5” then pi must be at
least ξ3(1− ξ5) + (1 − ξ3)ξ5.

We also assume that there’s a graph G on vertices {1, . . . ,m} such that
condition () is true, and that i−−− j whenever i 6= j and Ξi ∩ Ξj 6= ∅. Then
G is a suitable dependency graph for {A1, . . . , Am}, because the events Aj1 ,
. . . , Ajk can’t possibly influence Ai when i /−−− j1, . . . , i /−−− jk. (Those events
share no common variables with Ai.) We can also sometimes get by with fewer
edges by making G a lopsidependency graph; see exercise 351.

Algorithm M might succeed with any given events, purely by chance. But
if the conditions of the Local Lemma are satisfied, success can be guaranteed:

Theorem M. If () holds with probabilities that satisfy condition () of
Theorem L, step M3 is performed for Aj at most θj/(1− θj) times, on average.

Proof. Exercise 352 shows that this result is a corollary of the more general
analysis that is carried out below. The stated upper bound is good news, because
θj is usually quite small.

Traces and pieces. The best way to understand why AlgorithmM is so efficient
is to view it algebraically in terms of “traces.” The theory of traces is a beautiful
area of mathematics in which amazingly simple proofs of profound results have
been discovered. Its basic ideas were first formulated by P. Cartier and D. Foata
[Lecture Notes in Math. 85 (1969)], then independently developed from another
point of view by R. M. Keller [JACM 20 (1973), 514–537, 696–710] and A.
Mazurkiewicz [“Concurrent program schemes and their interpretations,” DAIMI
Report PB 78 (Aarhus University, July 1977)]. Significant advances were made
by G. X. Viennot [Lecture Notes in Math. 1234 (1985), 321–350], who presented
many wide-ranging applications and explained how the theory could readily be
visualized in terms of what he called “heaps of pieces.”

Trace theory is the study of algebraic products whose variables are not
necessarily commutative. Thus it forms a bridge between the study of strings
(in which, for example, acbbaca is quite distinct from baccaab) and the study
of ordinary commutative algebra (in which both of those examples are equal to

September 23, 2015

84 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

clashing pairs of letters
equivalence class
path graph
lexicographic order
Viennot
territory
pieces–
territories
stacking the pieces
empilement
intersection graph
diagram of a trace
Tetris

aaabbcc = a3b2c2). Each adjacent pair of letters {a, b} either commutes, meaning
that ab = ba, or clashes, meaning that ab is different from ba. If, for instance,
we specify that a commutes with c but that b clashes with both a and c, then
acbbaca is equal to cabbaac, and it has six variants altogether; similarly, there
are ten equally good ways to write baccaab.

Formally speaking, a trace is an equivalence class of strings that can be
converted to each other by repeatedly interchanging pairs of adjacent letters that
don’t clash. But we don’t need to fuss about the fact that equivalence classes
are present; we can simply represent a trace by any one of its equivalent strings,
just as we don’t distinguish between equivalent fractions such as 1/2 and 3/6.

Every graph whose vertices represent distinct letters defines a family of
traces on those letters, when we stipulate that two letters clash if and only
if they are adjacent in the graph. For example, the path graph a −−− b −−− c
corresponds to the rules stated above. The distinct traces for this graph are

ǫ, a, b, c, aa, ab, ac, ba, bb, bc, cb, cc, aaa, aab, . . . , ccb, ccc, aaaa, . . . ()

if we list them first by size and then in lexicographic order. (Notice that ca
is absent, because ac has already appeared.) The complete graph Kn defines
traces that are the same as strings, when nothing commutes; the empty graph
Kn defines traces that are the same as monomials, when everything commutes. If
we use the path a−−−b−−−c−−−d−−−e−−−f to define clashes, the traces bcebafdc
and efbcdbca turn out to be the same.

Viennot observed that partial commutativity is actually a familiar concept,
if we regard the letters as “pieces” that occupy “territory.” Pieces clash if and
only if their territories overlap; pieces commute if and only if their territories are
disjoint. A trace corresponds to stacking the pieces on top of one another, from
left to right, letting each new piece “fall” until it either rests on the ground or on
another piece. In the latter case, it must rest on the most recent piece with which
it clashes. He called this configuration an empilement —a nice French word.

More precisely, each piece a is assigned a nonempty subset T (a) of some
universe, and we say that a clashes with b if and only if T (a) ∩ T (b) 6= ∅. For
example, the constraints of the graph a−−−b−−−c−−−d−−−e−−−f arise when we let

T (a) = {1, 2}, T (b) = {2, 3}, T (c) = {3, 4}, . . . , T (f) = {6, 7};
then the traces bcebafdc and efbcdbca both have

b

c

e

b

a

f

d

c

()

as their empilement. (Readers who have played the game of Tetris©R will imme-
diately understand how such diagrams are formed, although the pieces in trace
theory differ from those of Tetris because they occupy only a single horizontal
level. Furthermore, each type of piece always falls in exactly the same place; and
a piece’s territory T (a) might have “holes”— it needn’t be connected.)

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 85

topological sorting
length of a trace
height of a trace
multiplication of traces
division of traces
right division of traces
polynomials
generating function
empty string

Two traces are the same if and only if they have the same empilement. In
fact, the diagram implicitly defines a partial ordering on the pieces that appear;
and the number of different strings that represent any given trace is the number
of ways to sort that ordering topologically (see exercise 324).

Every trace α has a length, denoted by |α|, which is the number of letters in
any of its equivalent strings. It also has a height, written h(α), which is the num-
ber of levels in its empilement. For example, |bcebafdc| = 8 and h(bcebafdc) = 4.

Arithmetic on traces. To multiply traces, we simply concatenate them. If,
for example, α = bcebafdc is the trace corresponding to (), then ααR =
bcebafdccdfabecb has the following empilement:

c

d

fa

b

ec

b

×

b

c

e

b

a

f

d

c

=

b

c

e

b

a

f

d

c

c

d

f

a

b

ec

b

()

The algorithm in exercise 327 formulates this procedure precisely. A moment’s
thought shows that |αβ| = |α|+ |β|, h(αβ) ≤ h(α)+h(β), and h(ααR) = 2h(α).

Traces can also be divided, in the sense that α = (αβ)/β can be determined
uniquely when αβ and β are given. All we have to do is remove the pieces of β
from the pieces of αβ, one by one, working our way down from the top of the
empilements. Similarly, the value of β = α \ (αβ) can be computed from the
traces α and αβ. (See exercises 328 and 329.)

Notice that we could rotate diagrams like () and () by 90 degrees,
thereby letting the pieces “fall” to the left instead of downwards. (We’ve used a
left-to-right approach for similar purposes in Section 5.3.4, Fig. 50.) Or we could
let them fall upwards, or to the right. Different orientations are sometimes more
natural, depending on what we’re trying to do.

We can also add and subtract traces, thereby obtaining polynomials in vari-
ables that are only partially commutative. Such polynomials can be multiplied
in the normal way; for example, (α + β)(γ − δ) = αγ − αδ + βγ − βδ. Indeed,
we can even work with infinite sums, at least formally: The generating function
for all traces that belong to the graph a−−−b−−−c is
1+a+b+c+aa+ab+ac+ba+bb+bc+cb+cc+aaa+· · ·+ccc+aaaa+· · · . ()

(Compare with (); we now use 1, not ǫ, to stand for the empty string.)
The infinite sum () can actually be expressed in closed form: It equals

1

1− a− b− c+ ac
= 1 + (a+b+c−ac) + (a+b+c−ac)2 + · · · , ()

September 23, 2015

86 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Cartier
Foata
Möbius function of a trace
Möbius function
Möbius series
Möbius polynomial
multilinear

an identity that is correct not only when the variables are commutative, but also
in the algebra of traces, when variables commute only when they don’t clash.

In their original monograph of 1969, Cartier and Foata showed that the sum
of all traces with respect to any graph can be expressed in a remarkably simple
way that generalizes (). Let’s define the Möbius function of a trace α with
respect to a graph G by the rule

µG(α) =

{
0, if hG(α) > 1;

(−1)|α|, otherwise.
()

(The classical Möbius function µ(n) for integers, defined in exercise 4.5.2–10, is
analogous.) Then the Möbius series for G is defined to be

MG =
∑

α

µG(α)α, ()

where the sum is over all traces. This sum is a polynomial, when G is finite,
because it contains exactly one nonzero term for every independent set of vertices
in G; therefore we might call it the Möbius polynomial. For example, when G is
the path a−−−b−−−c, we haveMG = 1−a− b− c+ac, the denominator in ().
Cartier and Foata’s generalization of () has a remarkably simple proof:

Theorem F. The generating function TG for the sum of all traces, with respect
to any graph G, is 1/MG.

Proof. We want to show thatMGTG = 1, in the (partially commutative) algebra

of traces. This infinite product is
∑

α,β µG(α) =
∑

γ

∑
α,β µG(α)[γ=αβ]. Hence

we want to show that the sum of µG(α), over all ways to factorize γ = αβ as the
product of two traces α and β, is zero whenever γ is nonempty.

But that’s easy. We can assume that the letters are ordered in some arbitrary
fashion. Let a be the smallest letter in the bottom level of γ’s empilement. We
can restrict attention to cases where α consists of independent (commuting) let-
ters (pieces), because µG(α) = 0 otherwise. Now if α = aα′ for some trace α′, let
β′ = aβ; otherwise we must have β = aβ′ for some trace β′, and we let α′ = aα.
In both cases αβ = α′β′, (α′)′ = α, (β′)′ = β, and µG(α)+µG(α

′) = 0. So we’ve
grouped all possible factorizations of γ into pairs that cancel out in the sum.

The Möbius series for any graph can be computed recursively via the formula

MG = MG\a − aMG\a∗ , a∗ = {a} ∪ {b | a−−−b}, ()

where a is any letter (vertex) of G, because we have a /∈ I or a ∈ I whenever I
is independent. For example, if G is the path a−−− b−−− c−−−d−−− e−−− f , then
G \ a∗ = G | {c, d, e, f} is the path c−−−d−−−e−−−f ; repeated use of () yields

MG = 1− a− b− c− d− e− f + ac+ ad+ ae+ af
+ bd+ be+ bf + ce+ cf + df − ace− acf − adf − bdf ()

in this case. Since MG is a polynomial, we can indicate its dependence on the
variables by writing MG(a, b, c, d, e, f). Notice that MG is always multilinear
(this is, linear in each variable); and MG\a(b, c, d, e, f) =MG(0, b, c, d, e, f).

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 87

maximum independent set
NP-hard
interval graphs
forests
sources
sinks
cone
pyramid
Viennot

R(G)
Shearer

In applications we often want to replace each letter in the polynomial by
a single variable, such as z, and write MG(z). The polynomial in () then
becomesMG(z) = 1−6z+10z2−4z3; and we can conclude from Theorem F that
the number of traces of length n with respect to G is [zn] 1/(1−6z+10z2−4z3) =
1
4 (2 +

√
2)n+2 + 1

4 (2−
√
2)n+2 − 2n+1.

Although () is a simple recurrence for MG, we can’t conclude that MG

is easy to compute when G is a large and complicated graph. Indeed, the degree
of MG is the size of a maximum independent set in G; and it’s NP-hard to
determine that number! On the other hand, there are many classes of graphs,
such as interval graphs and forests, for whichMG can be computed in linear time.

If α is any trace, the letters that can occur first in a string that represents
it are called the sources of α; these are the pieces on the bottom level of α’s
empilement, also called its minimal pieces. Dually, the letters that can occur
last are the sinks of α, its maximal pieces. A trace that has only one source is
called a cone; in this case all pieces are ultimately supported by a single piece
at the bottom. A trace that has only one sink is, similarly, called a pyramid.
Viennot proved a nice generalization of Theorem F in his lecture notes:

MG\A/MG is the sum of all traces whose sources are contained in A. ()

(See exercise 338; Theorem F is the special case where A is the set of all vertices.)
In particular, the cones for which a is the only source are generated by

MG\a/MG − 1 = aMG\a∗/MG. ()

*Traces and the Local Lemma. Now we’re ready to see why the theory of
traces is intimately connected with the Local Lemma. If G is any graph on
the vertices {1, . . . ,m}, we say that R(G) is the set of all nonnegative vectors
(p1, . . . , pm) such that MG(p

′
1, . . . , p

′
m) > 0 whenever 0 ≤ p′j ≤ pj for 1 ≤ j ≤ m.

This definition of R(G) is consistent with the implicit definition already given
in Lemma L, because of the following characterization found by J. B. Shearer:

Theorem S. Under condition () of Lemma L, (p1, . . . , pm) ∈ R(G) implies

Pr(A1 ∩ · · · ∩ Am) ≥MG(p1, . . . , pm) > 0. ()

Conversely, if (p1, . . . , pm) /∈ R(G), there are events B1, . . . , Bm such that

Pr(Bi | Bj1 ∩ · · · ∩Bjk) = pi whenever k ≥ 0 and i /−−−j1, . . . , i /−−−jk, ()

and Pr(B1 ∩ · · · ∩Bm) = 0.

Proof. When (p1, . . . , pm) ∈ R(G), exercise 344 proves that there’s a unique
distribution for events B1, . . . , Bm such that they satisfy () and also

Pr
(⋂

j∈J

Aj

)
≥ Pr

(⋂

j∈J

Bj

)
= MG

(
p1[1∈J], . . . , pm[m∈J]

)
()

for every subset J ⊆ {1, . . . ,m}. In this “extreme” worst-possible distribution,
Pr(Bi ∩Bj) = 0 whenever i−−−j in G. Exercise 345 proves the converse.

September 23, 2015

88 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Pringsheim
slack
consecutive 1s

Given a probability vector (p1, . . . , pm), let

M∗
G(z) =MG(p1z, . . . , pmz). ()

Theorem F tells us that the coefficient of zn in the power series 1/M∗
G(z) is the

sum of all traces of length n for G. Since this coefficient is nonnegative, we know
by Pringsheim’s theorem (see exercise 348) that the power series converges for
all z < 1 + δ, where 1 + δ is the smallest real root of the polynomial equation
M∗

G(z) = 0; this number δ is called the slack of (p1, . . . , pm) with respect to G.
It’s easy to see that (p1, . . . , pm) ∈ R(G) if and only if the slack is positive.

For if δ ≤ 0, the probabilities (p′1, . . . , p
′
m) with p′j = (1 + δ)pj make MG = 0.

But if δ > 0, the power series converges when z = 1. And (since it represents
the sum of all traces) it also converges to the positive number 1/MG if any pj is
decreased; hence (p1, . . . , pm) lies in R(G) by definition. Indeed, this argument
shows that, when (p1, . . . , pm) ∈ R(G), we can actually increase the probabilities
to ((1 + ǫ)p1, . . . , (1 + ǫ)pm), and they will still lie in R(G) whenever ǫ < δ.

Let’s return now to Algorithm M. Suppose the successive bad events Aj

that step M3 tries to quench are X1, X2, . . . , XN , where N is the total number
of times step M3 is performed (possibly N =∞). To prove that Algorithm M is
efficient, we shall show that this random variable N has a small expected value,
in the probability space of the independent uniform deviates U that appear in
steps M1 and M3. The main idea is that X1X2 . . . XN is essentially a trace for
the underlying graph; hence we can consider it as an empilement of pieces.

Some simple and concrete examples will help to develop our intuition; we
shall consider two case studies. In both cases there are m = 6 events A, B, C,
D, E, F , and there are n = 7 variables x1 . . . x7. Each variable is a random bit;
thus ξ1 = · · · = ξ7 = 1/2 in the algorithm. Event A depends on x1x2, while B
depends on x2x3, . . . , and F depends on x6x7. Furthermore, each event occurs
with probability 1/4. In Case 1, each event is true when its substring is ‘10’; thus
all events are false if and only if x1 . . . x7 is sorted—that is, x1 ≤ x2 ≤ · · · ≤ x7.
In Case 2, each event is true when its substring is ‘11’; thus all events are false
if and only if x1 . . . x7 has no two consecutive 1s.

What happens when we apply Algorithm M to those two cases? One
possible scenario is that step M3 is applied N = 8 times, with X1X2 . . .X8 =
BCEBAFDC . The actual changes to the bits x1 . . . x7 might then be

Case 1

1
1
0
0
1
0
0

1
1
1
0
0
1
0

1
1
0
1
0
1
1

1
0
1
0
0
1
1

0
0
0
0
0
1
1

;

Case 2

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
0

1
1
1
1
0
1
0

1
0
0
1
0
1
0

. ()

(Read x1 . . . x7 from top to bottom in these diagrams, and scan from left to right.
Each module ‘ ’ means “replace the two bad bits at the left by two random bits

September 23, 2015

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 89

handwaving
FKG inequality
Bernoulli-distributed
extreme distribution
generating function

at the right.” In examples such as this, any valid solution x1 . . . x7 can be placed
at the far right; all values to the left of the modules are then forced.)

Notice that these diagrams are like the empilement (), except that they’ve
been rotated 90◦. We know from () that the same diagram applies to the
scenario EFBCDBCA as well as to BCEBAFDC , because they’re the same, as
traces. Well . . . , not quite! In truth, EFBCDBCA doesn’t give exactly the same
result as BCEBAFDC in Algorithm M, if we execute that algorithm as presently
written. But the results would be identical if we used separate streams of
independent random numbers Uk for each variable xk. Thus we can legitimately
equate equivalent traces, in the probability space of our random events.

The algorithm runs much faster in practice when it’s applied to Case 1 than
when it’s applied to Case 2. How can that be? Both of the diagrams in ()
occur with the same probability, namely (1/2)7(1/4)8, as far as the random num-
bers are concerned. And every diagram for Case 1 has a corresponding diagram
for Case 2; so we can’t distinguish the cases by the number of different diagrams.
The real difference comes from the fact that, in Case 1, we never have two events
to choose from in step M2, unless they are disjoint and can be handled in either
order. In Case 2, by contrast, we are deluged at almost every step with events
that need to be snuffed out. Therefore the scenario at the right of () is actually
quite unlikely; why should the algorithm pick B as the first event to correct, and
then C, rather than A? Whatever method is used in step M2, we’ll find that
the diagrams for Case 2 will occur less frequently than dictated by the strict
probabilities, because of the decreasing likelihood that any particular event will
be worked on next, in the presence of competing choices. (See also exercise 353.)

Worst-case upper bounds on the running time of Algorithm M therefore
come from situations like Case 1. In general, the empilement BCEBAFDC

in () will occur in a run of Algorithm M with probability at most bcebafdc,
if we write ‘a’ for the probabilistic upper bound for event A that is denoted by
‘pi’ in () when A is Ai, and if ‘b’, . . . , ‘f ’ are similar for B, . . . , F . The
reason is that bcebafdc is clearly the probability that those events are produced
by the independent random variables xk set by the algorithm, if the layers of
the corresponding empilement are defined by dependencies between the variable
sets Ξj . And even if events in the same layer are dependent (by shared variables)
yet not lopsidependent (in the sense of exercise 351), such events are positively
correlated; so the FKG inequality of exercise MPR–61, which holds for the
Bernoulli-distributed variables of Algorithm M, shows that bcebafdc is an upper
bound. Furthermore the probability that step M2 actually chooses B, C, E, B,
A, F , D, and C to work on is at most 1.

Therefore, when (p1, . . . , pm) ∈ R(G), Algorithm M’s running time is max-
imized when it is applied to events B1, . . . , Bm that have the extreme distri-
bution () of exercise 344. And we can actually write down the generating

function for the running time with respect to those extreme events: We have

∑

N≥0

Pr(Algorithm M on B1, . . . , Bm does N resamplings)zN =
M∗

G(1)

M∗
G(z)

, ()

September 23, 2015

90 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Kolipaka
Szegedy
message passing–
statistical mechanics
bipartite structure
survey propagation–
Braunstein
Mézard
Zecchina

where M∗
G(z) is defined in (), because the coefficient of zN in 1/M∗

G(z) is the
sum of the probabilities of all the traces of length N . Theorem F describes the
meaning of 1/M∗

G(1) as a “formal” power series in the variables pi; we proved
it without considering whether or not the infinite sum converges when those
variables receive numerical values. But when (p1, . . . , pm) ∈ R(G), this series is
indeed convergent (it even has a positive “slack”).

This reasoning leads to the following theorem of K. Kolipaka and M. Szegedy
[STOC 43 (2011), 235–243]:

Theorem K. If (p1, . . . , pm) ∈ R(G), Algorithm M resamples Ξj at most

Ej = pjMG\A∗
j
(p1, . . . , pm)/MG(p1, . . . , pm) ()

times, on the average. In particular, the expected number of iterations of step M3
is at most E1 + · · ·+ Em ≤ m/δ, where δ is the slack of (p1, . . . , pm).

Proof. The extreme distribution B1, . . . , Bm maximizes the number of times Ξj

is resampled, and the generating function for that number in the extreme case is

MG(p1, . . . , pj−1, pj, pj+1, . . . , pm)

MG(p1, . . . , pj−1, pjz, pj+1, . . . , pm)
. ()

Differentiating with respect to z, then setting z ← 1, gives (), because the
derivative of the denominator is −pjMG\A∗

j
(p1, . . . , pm) by ().

The stated upper bound on E1 + · · ·+ Em is proved in exercise 355.

*Message passing. Physicists who study statistical mechanics have developed
a significantly different way to apply randomization to satisfiability problems,
based on their experience with the behavior of large systems of interacting
particles. From their perspective, a set of Boolean variables whose values are
0 or 1 is best viewed as an ensemble of particles that have positive or negative
“spin”; these particles affect each other and change their spins according to local
attractions and repulsions, analogous to laws of magnetism. A satisfiability
problem can be formulated as a joint probability distribution on spins for which
the states of minimum “energy” are achieved precisely when the spins satisfy as
many clauses as possible.

In essence, their approach amounts to considering a bipartite structure in
which each variable is connected to one or more clauses, and each clause is
connected to one or more variables. We can regard both variables and clauses
as active agents, who continually tweet to their neighbors in this social network.
A variable might inform its clauses that “I think I should probably be true”;
but several of those clauses might reply, “I really wish you were false.” By
carefully balancing these messages against each other, such local interactions
can propagate and build up more and more knowledge of distant connections,
often converging to a state where the whole network is reasonably happy.

A particular message-passing strategy called survey propagation [A. Braun-
stein, M. Mézard, and R. Zecchina, Random Structures & Algorithms 27 (2005),

September 23, 2015

7.2.2.2 SATISFIABILITY: MESSAGE-PASSING ALGORITHMS 91

random satisfiability problems
threshold of unsatisfiability
Chavas
Furtlehner
Mézard
Zecchina
Braunstein
focus
flexibility coefficients
field

201–226] has proved to be astonishingly good at solving random satisfiability
problems in the “hard” region just before the threshold of unsatisfiability.

Let C be a clause and let l be one of its literals. A “survey message” ηC→l is
a fraction between 0 and 1 that represents how urgently C wants l to be true. If
ηC→l = 1, the truth of l is desperately needed, lest C be false; but if ηC→l = 0,
clause C isn’t the least bit worried about the value of variable |l|. Initially we
set each ηC→l to a completely random fraction.

We shall consider an extension of the original survey propagation method
[see J. Chavas, C. Furtlehner, M. Mézard, and R. Zecchina, J. Statistical Me-
chanics (November 2005), P11016:1–25; A. Braunstein and R. Zecchina, Physical
Review Letters 96 (27 January 2006), 030201:1–4], which introduces additional
“reinforcement messages” ηl for each literal l. These new messages, which are
initially all zero, represent an external force that acts on l. They help to focus
the network activity by reinforcing decisions that have turned out to be fruitful.

Suppose v is a variable that appears in just three clauses: positively in A
and B, negatively in C. This variable will respond to its incoming messages
ηA→v, ηB→v, ηC→v̄, ηv, and ηv̄ by computing two “flexibility coefficients,” πv
and πv̄, using the following formulas:

πv = (1− ηv)(1 − ηA→v)(1 − ηB→v), πv̄ = (1− ηv̄)(1− ηC→v̄).

If, for instance, ηv = ηv̄ = 0 while ηA→v = ηB→v = ηC→v̄ = 2/3, then πv =
1/9, πv̄ = 1/3. The π’s are essentially dual to the η’s, because high urgency
corresponds to low flexibility and vice versa. The general formula for each literal l
is

πl = (1− ηl)
∏

l∈C

(1 − ηC→l). ()

Survey propagation uses these coefficients to estimate variable v’s tendency
to be either 1 (true), 0 (false), or ∗ (wild), by computing three numbers

p =
(1− πv)πv̄

πv + πv̄ − πvπv̄
, q =

(1− πv̄)πv
πv + πv̄ − πvπv̄

, r =
πvπv̄

πv + πv̄ − πvπv̄
; ()

then p + q + r = 1, and (p, q, r) is called the “field” of v, representing re-
spectively (truth, falsity, wildness). The
field turns out to be (8/11, 2/11, 1/11)
in our example above, indicating that v
should probably be assigned the value 1.
But if ηA→v and ηB→v had been only
1/3 instead of 2/3, the field would have
been (5/17, 8/17, 4/17), and we would
probably want v = 0 in order to sat-
isfy clause C. Figure 51 shows lines of
constant p − q as a function of πv and
πv̄; the most decisive cases (|p− q| ≈ 1)
occur at the lower right and upper left.

p−q = .8

p−q = .5

p−q = .2

q−p = .2

q−p = .5q−p = .8

πv̄

πv

0

1

1

Fig. 51. Lines of constant
bias in a variable’s “field.”

September 23, 2015

92 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

bias message
monus

If πv = πv̄ = 0, there’s no flexibility at all: Variable v is being asked to
be both true and false. The field is undefined in such cases, and the survey
propagation method hopes that this doesn’t happen.

After each literal l has computed its flexibility, the clauses that involve l or l̄
can use πl and πl̄ to refine their survey messages. Suppose, for example, that C
is the clause u ∨ v̄ ∨ w. It will replace the former messages ηC→u, ηC→v̄, ηC→w

by

η′C→u = γv̄→Cγw→C , η′C→v̄ = γu→Cγw→C , η′C→w = γu→Cγv̄→C ,

where each γl→C is a “bias message” received from literal l,

γl→C =
(1− π

l̄
)πl/(1− ηC→l)

π
l̄
+ (1− π

l̄
)πl/(1− ηC→l)

, ()

reflecting l’s propensity to be false in clauses other than C. In general we have

η′C→l =
(∏

l′∈C

γl′→C

)/
γl→C . ()

(Appropriate conventions must be used to avoid division by zero in formulas
() and (); see exercise 359.)

New reinforcement messages η′l can also be computed periodically, using the
formula

η′l =
κ(πl̄

.− πl)
πl + πl̄ − πlπl̄

()

for each literal l; here x .− y denotes max(x − y, 0), and κ is a reinforcement
parameter specified by the algorithm. Notice that η′l > 0 only if η′

l̄
= 0.

For example, here are messages that might be passed when we want to satisfy
the seven clauses of ():

l1 l2 l3 ηC→l1 ηC→l2 ηC→l3 γl1→C γl2→C γl3→C

1 2 3̄ 0 0 0 3/5 0 0
1̄ 2̄ 3 1/5 0 0 0 3/5 1/3
2 3 4̄ 1/5 0 0 0 1/3 3/5
2̄ 3̄ 4 0 0 0 3/5 0 0
1 3 4 0 0 1/5 3/5 1/3 0
1̄ 3̄ 4̄ 0 0 0 0 0 3/5
1̄ 2 4 0 0 0 0 0 0

l πl ηl
1 1 0
1̄ 2/5 1/2
2 2/5 1/2
2̄ 1 0
3 1 0
3̄ 2/3 1/3
4 2/5 1/2
4̄ 1 0

()

(Recall that the only solutions to these clauses are 1̄ 2 3 4 and 1̄ 2 3̄ 4.) In this
case the reader may verify that the messages of () constitute a “fixed point”:
The η messages determine the π’s; conversely, we also have η′C→l = ηC→l for all
clauses C and all literals l, if the reinforcement messages ηl remain constant.

Exercise 361 proves that every solution to a satisfiable set of clauses yields a
fixed point of the simultaneous equations (), (), (), with the property
that ηl = [l is true in the solution].

September 23, 2015

7.2.2.2 SATISFIABILITY: MESSAGE-PASSING ALGORITHMS 93

WalkSAT+
Baldassi
damping factor
parameter
defaults
author
3SAT
unit propagation

Experiments with this message-passing strategy have shown, however, that
the best results are obtained by using it only for preliminary screening, with the
goal of discovering variables whose settings are most critical; we needn’t continue
to transmit messages until every clause is fully satisfied. Once we’ve assigned
suitable values to the most delicate variables, we’re usually left with a residual
problem that can readily be solved by other algorithms such as WalkSAT.

The survey, reinforcement, and bias messages can be exchanged using a wide
variety of different protocols. The following procedure incorporates two ideas
from an implementation prepared by C. Baldassi in 2012: (1) The reinforcement
strength κ begins at zero, but approaches 1 exponentially. (2) Variables are rated
1, 0, or ∗ after each reinforcement, according as max(p, q, r) in their current field
is p, q, or r. If every clause then has at least one literal that is true or ∗, message
passing will cease even though some surveys might still be fluctuating.

Algorithm S (Survey propagation). Given m nonempty clauses on n variables,
this algorithm tries to assign values to most of the variables in such a way that
the still-unsatisfied clauses will be relatively easy to satisfy. It maintains arrays
πl and ηl of floating-point numbers for each literal l, as well as ηC→l for each
clause C and each l ∈ C. It has a variety of parameters: ρ (the damping factor
for reinforcement), N0 and N (the minimum and maximum iteration limits),
ǫ (the tolerance for convergence), and ψ (the confidence level).

S1. [Initialize.] Set ηl ← πl ← 0 for all literals l, and ηC→l ← U for all clauses C
and l ∈ C, where U is uniformly random in [0 . . 1). Also set i← 0, φ← 1.

S2. [Done?] Terminate unsuccessfully if i ≥ N . If i is even or i < N0, go to S5.

S3. [Reinforce.] Set φ ← ρφ and κ ← 1 − φ. Replace ηl by η
′
l for all literals l,

using (); but terminate unsuccessfully if πl = πl̄ = 0.

S4. [Test pseudo-satisfiability.] Go to S5 if there is at least one clause whose
literals l all appear to be false, in the sense that πl̄ < πl and πl̄ <

1
2 (see

exercise 358). Otherwise go happily to S8.

S5. [Compute the π’s.] Compute each πl, using (); see also exercise 359.

S6. [Update the surveys.] Set δ ← 0. For all clauses C and literals l ∈ C, com-
pute η′C→l using (), and set δ ← max

(
δ, |η′C→l − ηC→l|

)
, ηC→l ← η′C→l.

S7. [Loop on i.] If δ ≥ ǫ, set i← i+ 1 and return to S2.

S8. [Reduce the problem.] Assign a value to each variable whose field satisfies
|p− q | ≥ ψ. (Exercise 362 has further details.)

Computational experience—otherwise known as trial and error— suggests
suitable parameter values. The defaults ρ = .995, N0 = 5, N = 1000, ǫ = .01,
and ψ = .50 seem to provide a decent starting point for problems of modest
size. They worked well, for instance, when the author first tried a random 3SAT

problem with 42,000 clauses and 10,000 variables: These clauses were pseudo-
satisfiable when i = 143 (although δ ≈ .43 was still rather large); then step S8
fixed the values of 8,282 variables with highly biased fields, and unit propagation
gave values to 57 variables more. This process needed only about 218 megamems
of calculation. The reduced problem had 1526 2-clauses and 196 3-clauses on

September 23, 2015

94 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

author1464 variables (because many other variables were no longer needed); 626 steps
of WalkSAT polished it off after an additional 42 kilomems. By contrast, when
WalkSAT was presented with the original problem (using p = .57), it needed
more than 31 million steps to find a solution after 3.4 gigamems of computation.

Similarly, the author’s first experience applying survey propagation to a
random 3SAT problem on n = 106 variables with m = 4.2n clauses was a
smashing success: More than 800,000 variables were eliminated after only 32.8
gigamems of computation, and WalkSAT solved the residual clauses after 8.5
megamems more. By contrast, pure WalkSAT needed 237 gigamems to perform
2.1 billion steps.

A million-variable problem with 4,250,000 clauses proved to be more chal-
lenging. These additional 50,000 clauses put the problem well beyond WalkSAT’s
capability; and Algorithm S failed too, with its default parameters. However,
the settings ρ = .9999 and N0 = 9 slowed the reinforcement down satisfactorily,
and produced some instructive behavior. Consider the matrix

3988 3651 3071 2339 1741 1338 946 702 508 329
5649 5408 4304 3349 2541 2052 1448 1050 666 510
8497 7965 6386 4918 3897 3012 2248 1508 1075 718
11807 11005 8812 7019 5328 4135 3117 2171 1475 1063
15814 14789 11726 9134 7188 5425 4121 3024 2039 1372
20437 19342 15604 12183 9397 7263 5165 3791 2603 1781
26455 24545 19917 15807 12043 9161 6820 5019 3381 2263
33203 31153 25052 19644 15587 11802 8865 6309 4417 2919
39962 38097 31060 24826 18943 14707 10993 7924 5225 3637
40731 40426 32716 26561 20557 15739 11634 8327 5591 4035

,

which shows the distribution of πv̄ versus πv (see Fig. 51); for example, ‘3988’ at
the upper left means that 3988 of the million variables had πv̄ between 0.0 and 0.1
and πv between 0.9 and 1.0. This distribution, which appeared after δ had been
reduced to ≈ 0.0098 by 110 iterations, is terrible—very few variables are biased
in a meaningful way. Therefore another run was made with ǫ reduced to .001;
but that failed to converge after 1000 iterations. Finally, with ǫ = .001 and
N = 2000, pseudo-satisfaction occurred at i = 1373, with the nice distribution

406678 1946 1045 979 842 714 687 803 1298 167649
338 2 2 3 0 3 1 4 2 1289
156 1 0 0 0 1 0 2 1 875
118 4 0 0 0 0 0 0 1 743
99 0 0 0 0 0 0 1 0 663
62 0 0 0 0 0 1 0 3 810
41 0 0 0 0 0 0 0 0 1015
55 0 0 0 1 0 1 1 0 1139
63 0 0 1 0 0 0 1 2 1949
116 61 72 41 61 103 120 162 327 406839

(although δ was now ≈ 1!). The biases were now pronounced, yet not entirely
reliable; the ψ parameter had to be raised, in order to avoid a contradiction when
propagating unit literals in the reduced problem. Finally, with ψ = .99, more
than 800,000 variables could be set successfully. A solution was obtained after
210 gigamems (including 21 megamems for WalkSAT to finish the job, but not
including the time spent learning how to set the parameters for so many clauses).

September 23, 2015

7.2.2.2 SATISFIABILITY: PREPROCESSING OF CLAUSES 95

belief propagation
Bayesian networks
Pearl
Bethe
Peierls
Gallager
Mézard
Montanari
Preprocessing–
simplifications
data structures
restarting
inprocessing
downhill transformations
erp rule

Success with Algorithm S isn’t guaranteed. But hey, when it works, it’s
sometimes the only known way to solve a particularly tough problem.

Survey propagation may be viewed as an extension of the “belief propaga-
tion” messages used in the study of Bayesian networks [see J. Pearl, Probabilistic
Reasoning in Intelligent Systems (1988), Chapter 4]; it essentially goes beyond
Boolean logic on {0, 1} to a three-valued logic on {0, 1, ∗}. Analogous message-
passing heuristics had actually been considered much earlier by H. A. Bethe
and R. E. Peierls [Proc. Royal Society of London A150 (1935), 552–575], and
independently by R. G. Gallager [IRE Transactions IT-8 (1962), 21–28]. For
further information see M. Mézard and A. Montanari, Information, Physics, and
Computation (2009), Chapters 14–22.

*Preprocessing of clauses. A SAT-solving algorithm will often run consid-
erably faster if its input has been transformed into an equivalent but simpler
set of clauses. Such transformations and simplifications typically require data
structures that would be inappropriate for the main work of a solver, so they are
best considered separately.

Of course we can combine a preprocessor and a solver into a single program;
and “preprocessing” techniques can be applied again after new clauses have
been learned, if we reach a stage where we want to clean up and start afresh.
In the latter case the simplifications are called inprocessing. But the basic ideas
are most easily explained by assuming that we just want to preprocess a given
family of clauses F . Our goal is to produce nicer clauses F ′, which are satisfiable
if and only if F is satisfiable.

We shall view preprocessing as a sequence of elementary transformations

F = F0 → F1 → · · · → Fr = F ′, ()

where each step Fj → Fj+1 “flows downhill” in the sense that it either (i) elim-
inates a variable without increasing the number of clauses, or (ii) retains all the
variables but decreases the number of literals in clauses. Many different downhill
transformations are known; and we can try to apply each of the gimmicks in our
repertoire, in some order, until none of them lead to any further progress.

Sometimes we’ll actually solve the given problem, by reaching an F ′ that
is either trivially satisfiable (∅) or trivially unsatisfiable (contains ǫ). But we
probably won’t be so lucky unless F was pretty easy to start with, because we’re
going to consider only downhill transformations that are quite simple.

Before discussing particular transformations, however, let’s think about the
endgame: Suppose F has n variables but F ′ has n′ < n. After we’ve fed the
clauses F ′ into a SAT solver and received back a solution, x′1 . . . x

′
n′ , how can

we convert it to a full solution x1 . . . xn of the original problem F? Here’s how:
For every transformation Fj → Fj+1 that eliminates a variable xk, we shall
specify an erp rule (so-called because it reverses the effect of preprocessing). An
erp rule for elimination is simply an assignment ‘l ← E’, where l is xk or x̄k,
and E is a Boolean expression that involves only variables that have not been
eliminated. We undo the effect of elimination by assigning to xk the value that
makes l true if and only if E is true.

September 23, 2015

96 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

postprocessor
Unit conditioning
BCP (Boolean constraint propagation), see

F | l
Subsumption
Self-subsumption
strengthening a clause
replacement principle
Robinson
data structures
Downhill resolution
variable elimination
elimination of variables
Eén
Biere

For example, suppose two transformations remove x and y with the erp rules

x̄← ȳ ∨ z, y ← 1.

To reverse these eliminations, right to left, we would set y true, then x← z̄.
As the preprocessor discovers how to eliminate variables, it can immediately

write the corresponding erp rules to a file, so that those rules don’t consume
memory space. Afterwards, given a reduced solution x′1 . . . x

′
n′ , a postprocessor

can read that file in reverse order and provide the unreduced solution x1 . . . xn.

Transformation 1. Unit conditioning. If a unit clause ‘(l)’ is present, we can
replace F by F | l and use the erp rule l← 1. This elementary simplification will
be carried out naturally by most solvers; but it is perhaps even more important
in a preprocessor, since it often enables further transformations that the solver
would not readily see. Conversely, other transformations in the preprocessor
might enable unit conditionings that will continue to ripple down.

One consequence of unit conditioning is that all clauses of F ′ will have length
two or more, unless F ′ is trivially unsatisfiable.

Transformation 2. Subsumption. If every literal in clause C appears also
in another clause C′, we can remove C′. In particular, duplicate clauses will be
discarded. No erp rule is needed, because no variable goes away.

Transformation 3. Self-subsumption. If every literal in C except x̄ appears
also in another clause C′, where C′ contains x, we can delete x from C′ because
C′ \x = C ⋄C ′. In other words, the fact that C almost subsumes C′ allows us at
least to strengthen C′, without actually removing it. Again there’s no erp rule.
[Self-subsumption was called “the replacement principle” by J. A. Robinson in
JACM 12 (1965), 39.]

Exercise 374 discusses data structures and algorithms by which subsump-
tions and self-subsumptions can be discovered with reasonable efficiency.

Transformation 4. Downhill resolution. Suppose x appears only in clauses
C1, . . . , Cp and x̄ appears only in C′

1, . . . , C
′
q. We’ve observed (see ()) that

variable x can be eliminated if we replace those p + q clauses by the pq clauses
{Ci ⋄C ′

j | 1 ≤ i ≤ p, 1 ≤ j ≤ q}. The corresponding erp rule (see exercise 367) is

either x̄←
p∧

i=1

(Ci \ x) or x←
q∧

j=1

(C′
j \ x̄). ()

Every variable can be eliminated in this way, but we might be flooded with
too many clauses. We can prevent this by limiting ourselves to “downhill” cases,
in which the new clauses don’t outnumber the old ones. The condition pq ≤ p+q
is equivalent to (p− 1)(q− 1) ≤ 1, as noted above following (); the variable is
always removed in such cases. But the number of new clauses might be small even
when pq is large, because of tautologies or subsumption. Furthermore, N. Eén
and A. Biere wrote a fundamental paper on preprocessing [LNCS 3569 (2005),
61–75] that introduced important special cases in which many of the pq potential
clauses can be omitted; see exercise 369. Therefore a preprocessor typically tries

September 23, 2015

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 97

failed literals
unit propagation
lookahead
anti-maximal-element clauses

waerden
langford
Encoding–
at-most-one
Heule
auxiliary variables

to eliminate via resolution whenever min(p, q) ≤ 10, say, and abandons the
attempt only when more than p+ q resolvents have been generated.

Many other transformations are possible, although the four listed above have
proved to be the most effective in practice. We could, for instance, look for failed
literals : If unit propagation leads to a contradiction when we assume that some
literal l is true (namely when F ∧ (l) ⊢1 ǫ), then we’re allowed to assume that
l is false (because the unit clause (l̄) is certifiable). This observation and several
others related to it were exploited in the lookahead mechanisms of Algorithm Y
above. But Algorithm C generally has no trouble finding failed literals all by
itself, as a natural byproduct of its mechanism for resolving conflicts. Exercises
378–384 discuss other techniques that have been proposed for preprocessing.

Sometimes preprocessing turns out to be dramatically successful. For exam-
ple, the anti-maximal-element clauses of exercise 228 can be proved unsatisfiable
via transformations 1–4 after only about 400 megamems of work when m = 50.
Yet Algorithm C spends 3 gigamems on that untransformed problem when m is
only 14; and it needs 11 Gµ when m = 15, . . . , failing utterly before m = 20.

A more typical example arises in connection with Fig. 35 above: The problem
of showing that there’s no 4-step path to involves 8725 variables, 33769
clauses, and 84041 literals, and Algorithm C requires about 6 gigamems to
demonstrate that those clauses are unsatisfiable. Preprocessing needs less than
10 megamems to reduce that problem to just 3263 variables, 19778 clauses, and
56552 literals; then Algorithm C can handle those with 5 Gµ of further work.

On the other hand, preprocessing might take too long, or it might produce
clauses that are more difficult to deal with than the originals. It’s totally useless
on the waerden or langford problems. (Further examples are discussed below.)

Encoding constraints into clauses. Some problems, like waerden (j, k;n), are
inherently Boolean, and they’re essentially given to us as native-born ANDs of
ORs. But in most cases we can represent a combinatorial problem via clauses in
many different ways, not immediately obvious, and the particular encoding that
we choose can have an enormous effect on the speed with which a SAT solver is
able to crank out an answer. Thus the art of problem encoding turns out to be
just as important as the art of devising algorithms for satisfiability.

Our study of SAT instances has already introduced us to dozens of interesting
encodings; and new applications often lead to further ideas, because Boolean
algebra is so versatile. Each problem may seem at first to need its own special
tricks. But we’ll see that several general principles are available for guidance.

In the first place, different solvers tend to like different encodings: An
encoding that’s good for one algorithm might be bad for another.

Consider, for example, the at-most-one constraint, y1 + · · ·+ yp ≤ 1, which
arises in a great many applications. The obvious way to enforce this condition
is to assert

(
p
2

)
binary clauses (ȳi∨ ȳj), for 1 ≤ i < j ≤ p, so that yi = yj = 1 is

forbidden; but those clauses become unwieldy when p is large. The alternative
encoding in exercise 12, due to Marijn Heule, does the same job with only
3p − 6 binary constraints when p ≥ 3, by introducing a few auxiliary variables

September 23, 2015

98 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Langford’s problem

langford ′′(n)
unit propagations
binary representation
log encoding
direct encoding
sparse encoding, see direct encoding
order encoding
Crawford
Baker

a1, . . . , a⌊(p−3)/2⌋. When we formulated Langford’s problem in terms of clauses,
via (), (), and () above, we therefore considered two variants called
langford (n) and langford ′(n), where the former uses the obvious encoding of at-
most-one constraints and the latter uses Heule’s method. Furthermore, exercise
7.1.1–55(b) encoded at-most-one constraints in yet another way, having the same
number of binary clauses but about twice as many auxiliary variables; let’s give
the name langford ′′(n) to the clauses that we get from that scheme.

We weren’t ready to discuss which of the encodings works better in practice,
when we introduced langford (n) and langford ′(n) above, because we hadn’t yet
examined any SAT-solving algorithms. But now we’re ready to reveal the answer;
and the answer is: “It depends.” Sometimes langford ′(n) wins over langford (n);
sometimes it loses. It always seems to beat langford ′′(n). Here, for example, are
typical statistics, with runtimes rounded to megamems (Mµ) or kilomems (Kµ):

variables clauses Algorithm D Algorithm L Algorithm C

langford (9) 104 1722 23Mµ 16Mµ 15Mµ (UNSAT)

langford ′(9) 213 801 82Mµ 16Mµ 21Mµ (UNSAT)

langford ′′(9) 335 801 139Mµ 20Mµ 24Mµ (UNSAT)

langford (13) 228 5875 71685Mµ 45744Mµ 295571Mµ (UNSAT)

langford ′(13) 502 1857 492992Mµ 38589Mµ 677815Mµ (UNSAT)

langford ′′(13) 795 1857 950719Mµ 46398Mµ 792757Mµ (UNSAT)

langford (16) 352 11494 5Mµ 52Mµ 301Kµ (SAT)

langford ′(16) 796 2928 12Mµ 31Mµ 418Kµ (SAT)

langford ′′(16) 1264 2928 20Mµ 38Mµ 510Kµ (SAT)

langford (64) 6016 869650 (huge) (bigger) 35Mµ (SAT)

langford ′(64) 14704 53184 (huger) (big) 73Mµ (SAT)

langford ′′(64) 23488 53184 (hugest) (biggest) 304Mµ (SAT)

Algorithm D prefers langford to langford ′, because it doesn’t perform unit prop-
agations very efficiently. Algorithm L, which excels at unit propagation, likes
langford ′ better. Algorithm C also excels at unit propagation, but it exhibits
peculiar behavior: It prefers langford , and on satisfiable instances it zooms in
quickly to find a solution; but for some reason it runs very slowly on unsatisfiable
instances when n ≥ 10.

Another general principle is that short encodings—encodings with few vari-
ables and/or few clauses—are not necessarily better than longer encodings.
For example, we often need to use Boolean variables to encode the value of a
variable x that actually ranges over d > 2 different values, say 0 ≤ x < d. In
such cases it’s natural to use the binary representation x = (xl−1 . . . x0)2, where
l = ⌈lg d⌉, and to construct clauses based on the independent bits xj ; but that
representation, known as the log encoding, surprisingly turns out to be a bad idea
in many cases unless d is large. A direct encoding with d binary variables x0, x1,
. . . , xd−1, where xj = [x= j], is often much better. And the order encoding

with d − 1 binary variables x1, . . . , xd−1, where xj = [x≥ j], is often better
yet; this encoding was introduced in 1994 by J. M. Crawford and A. B. Baker
[AAAI Conf. 12 (1994), 1092–1097]. In fact, exercise 408 presents an important

September 23, 2015

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 99

unit propagation
Graph coloring problems
at-most-one
exclusion clauses
multivalued
kernel
“preclusion” clauses
“support” clauses
colored queens
chessboard
queens
median

application where the order encoding is the method of choice even when d is 1000
or more! The order encoding is exponentially larger than the log encoding, yet it
wins in this application because it allows the SAT solver to deduce consequences
rapidly via unit propagation.

Graph coloring problems illustrate this principle nicely. When we tried early
in this section to color a graph with d colors, we encoded the color of each vertex
with a direct representation, (); but we could have used binary notation for
those colors. And we could also have used the order encoding, even though
the numerical ordering of colors is irrelevant in the problem itself. With a log
encoding, exercise 391 exhibits three distinct ways to enforce the constraint that
adjacent vertices have different colors. With the order encoding, exercise 395
explains that it’s easy to handle graph coloring. And there also are four ways
to work with the direct encoding, namely (a) to insist on one color per vertex
by including the at-most-one exclusion clauses (); or (b) to allow multivalued
(multicolored) vertices by omitting those clauses; or (c) to actually welcome

multicolored vertices, by omitting () and forcing each color class to be a kernel,
as suggested in answer 14; or (d) to include () but to replace the “preclusion”
clauses () by so-called “support” clauses as explained in exercise 399.

These eight options can be compared empirically by trying to arrange 64
colored queens on a chessboard so that no queens of the same color appear in
the same row, column, or diagonal. That task is possible with 9 colors, but not
with 8. By symmetry we can prespecify the colors of all queens in the top row.

encoding colors variables clauses Algorithm L Algorithm C

univalued 8 512 7688 3333Mµ 9813Mµ (UNSAT)

multivalued 8 512 5896 1330Mµ 11997Mµ (UNSAT)

kernel 8 512 6408 4196Mµ 12601Mµ (UNSAT)

support 8 512 13512 16796Mµ 20990Mµ (UNSAT)

log(a) 8 2376 5120 (immense) 20577Mµ (UNSAT)

log(b) 8 192 5848 (enormous) 15033Mµ (UNSAT)

log(c) 8 192 5848 (enormous) 15033Mµ (UNSAT)

order 8 448 6215 43615Mµ 5122Mµ (UNSAT)

univalued 9 576 8928 2907Mµ 464Mµ (SAT)

multivalued 9 576 6624 104Mµ 401Mµ (SAT)

kernel 9 576 7200 93Mµ 87Mµ (SAT)

support 9 576 15480 2103Mµ 613Mµ (SAT)

log(a) 9 3168 6776 (gigantic) 1761Mµ (SAT)

log(b) 9 256 6776 (colossal) 1107Mµ (SAT)

log(c) 9 256 6584 (mammoth) 555Mµ (SAT)

order 9 512 7008 (monstrous) 213Mµ (SAT)

(Each running time shown here is the median of nine runs, made with different
random seeds.) It’s clear from this data that the log encodings are completely
unsuitable for Algorithm L; and even the order encoding confuses that algo-
rithm’s heuristics. But Algorithm L shines over Algorithm C with respect to
most of the direct encodings. On the other hand, Algorithm C loves the order
encoding, especially in the difficult unsatisfiable case.

September 23, 2015

100 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Tajima
Tamura
clique
hint clauses
unary representation
axiom clauses
ternary numbers
complementation of unary representation

And that’s not the end of the story. H. Tajima [M.S. thesis, Kobe University
(2008)] and N. Tamura noticed that order encoding has another property, which
trumps all other encodings with respect to graph coloring: Every k-clique of
vertices {v1, . . . , vk} in a graph allows us to append two additional “hint clauses”

(v̄d−k+1
1 ∨ · · · ∨ v̄d−k+1

k) ∧ (vk−1
1 ∨ · · · ∨ vk−1

k) ()

to the clauses for d-coloring—because some vertex of the clique must have a
color ≤ d−k, and some vertex must have a color ≥ k− 1. With these additional
clauses, the running time to prove unsatisfiability of the 8-coloring problem drops
drastically to just 60Mµ with Algorithm L, and to only 13Mµ with Algorithm C.
We can even reduce it to just 2Mµ(!) by using that idea twice (see exercise 396).

The order encoding has several other nice properties, so it deserves a closer
look. When we represent a value x in the range 0 ≤ x < d by the binary variables
xj = [x≥ j] for 1 ≤ j < d, we always have

x = x1 + x2 + · · ·+ xd−1; ()

hence order encoding is often known as unary representation. The axiom clauses

(x̄j+1 ∨ xj) for 1 ≤ j < d− 1 ()

are always included, representing the fact that x ≥ j+1 implies x ≥ j for each j;
these clauses force all the 1s to the left and all the 0s to the right. When d = 2
the unary representation reduces to a one-bit encoding equal to x itself; when
d = 3 it’s a two-bit encoding with 00, 10, and 11 representing 0, 1, and 2.

We might not know all of the bits xj of x’s unary encoding while a problem
is in the course of being solved. But if we do know that, say, x3 = 1 and x7 = 0,
then we know that x belongs to the interval [3 . . 7).

Suppose we know the unary representation of x. Then no calculation is
necessary if we want to know the unary representation of y = x+ a, when a is a
constant, because yj = xj−a. Similarly, z = a− x is equivalent to zj = x̄a+1−j ;
and w = ⌊x/a⌋ is equivalent to wj = xaj . Out-of-bounds superscripts are easy to
handle in formulas such as this, because xi = 1 when i ≤ 0 and xi = 0 when i ≥ d.
The special case x̄ = d− 1− x is obtained by left-right reflection of x̄1 . . . x̄j−1:

(d− 1− x)j = (x̄)j = xd−j . ()

If we are using the order encoding for two independent variables x and y,
with 0 ≤ x, y < d, it’s similarly easy to encode the additional relation x ≤ y+ a:

x− y ≤ a ⇐⇒ x ≤ y + a ⇐⇒
min(d−1,d+a)∧

j=max(0,a+1)

(
x̄j ∨ yj−a

)
. ()

And there are analogous ways to place bounds on the sum, x+ y:

x+ y ≤ a ⇐⇒ x ≤ ȳ + a+ 1− d ⇐⇒
min(d−1,a+1)∧

j=max(0,a+2−d)

(
x̄j ∨ ȳa+1−j

)
; ()

September 23, 2015

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 101

2SAT
lexicographic order
comparison
carries
CNF
eliminated
circuit
Tseytin encoding
gate

x+ y ≥ a ⇐⇒ x̄ ≤ y − a− 1 + d ⇐⇒
min(d,a)∧

j=max(1,a+1−d)

(
xj ∨ ya+1−j

)
. ()

In fact, exercise 405 shows that the general condition ax+by ≤ c can be enforced
with at most d binary clauses, when a, b, and c are constant. Any set of such rela-
tions, involving at most two variables per constraint, is therefore a 2SAT problem.

Relations between three or more order-encoded variables can also be handled
without difficulty, as long as d isn’t too large. For example, conditions such as
x + y ≤ z and x + y ≥ z can be expressed with O(d log d) clauses of length
≤ 3 (see exercise 407). Arbitrary linear inequalities can also be represented,
in principle. But of course we shouldn’t expect SAT solvers to compete with
algebraic methods on problems that are inherently numerical.

Another constraint of great importance in the encoding of combinatorial
problems is the relation of lexicographic order : Given two bit vectors x1 . . . xn
and y1 . . . yn, we want to encode the condition (x1 . . . xn)2 ≤ (y1 . . . yn)2 as a
conjunction of clauses. Fortunately there’s a nice way to do this with just 3n−2
ternary clauses involving n− 1 auxiliary variables a1, . . . , an−1, namely

n−1∧

k=1

(
(x̄k∨yk∨āk−1) ∧ (x̄k∨ak∨āk−1) ∧ (yk∨ak∨āk−1)

)
∧ (x̄n∨yn∨ān−1), ()

where ‘ā0’ is omitted. For example, the clauses

(x̄1∨y1)∧(x̄1∨a1)∧(y1∨a1)∧(x̄2∨y2∨ā1)∧(x̄2∨a2∨ā1)∧(y2∨a2∨ā1)∧(x̄3∨y3∨ā2)
assert that x1x2x3 ≤ y1y2y3. And the same formula, but with the final term
(x̄n ∨ yn ∨ ān−1) replaced by (x̄n ∨ ān−1) ∧ (yn ∨ ān−1), works for the strict

comparison x1 . . . xn < y1 . . . yn. These formulas arise by considering the carries
that occur when (x̄1 . . . x̄n)2+(1 or 0) is added to (y1 . . . yn)2. (See exercise 414.)

The general problem of encoding a constraint on the Boolean variables
x1, . . . , xn is the question of finding a family of clauses F that are satisfiable
if and only if f(x1, . . . , xn) is true, where f is a given Boolean function. We
usually introduce auxiliary variables a1, . . . , am into the clauses of F , unless f
can be expressed directly with a short CNF formula; thus the encoding problem
is to find a “good” family F such that we have

f(x1, . . . , xn) = 1 ⇐⇒ ∃a1 . . .∃am
∧

C∈F

C, ()

where each C is a clause on the variables {a1, . . . , am, x1, . . . , xn}. The variables
a1, . . . , am can be eliminated by resolution as in (), at least in principle, leav-
ing us with a CNF for f—although that CNF might be huge. (See exercise 248.)

If there’s a simple circuit that computes f , we know from () and exercise 42
that there’s an equally simple “Tseytin encoding” F , with one auxiliary variable
for each gate in the circuit. For example, suppose we want to encode the
condition x1 . . . xn 6= y1 . . . yn. The shortest CNF expression for this function
f(x1, . . . , xn, y1, . . . , yn) has 2n clauses (see exercise 415); but there’s a simple

September 23, 2015

102 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Boolean chain
Plaisted
Greenbaum
blocked
Tseytin encoding
BDD
branching program
Pi function
eliminate

circuit (Boolean chain) with just n+ 1 gates:

a1 ← x1 ⊕ y1, . . . , an ← xn ⊕ yn, f ← a1 ∨ · · · ∨ an.
Using () we get the 4n clauses

n∧

j=1

(
(x̄j ∨ yj ∨ aj) ∧ (xj ∨ ȳj ∨ aj) ∧ (xj ∨ yj ∨ āj) ∧ (x̄j ∨ ȳj ∨ āj)

)
, ()

together with (a1 ∨ · · · ∨ an), as a representation of ‘x1 . . . xn 6= y1 . . . yn’.
But this is overkill; D. A. Plaisted and S. Greenbaum have pointed out

[Journal of Symbolic Computation 2 (1986), 293–304] that we can often avoid
about half of the clauses in such situations. Indeed, only 2n of the clauses ()
are necessary (and sufficient), namely the ones involving āj:

n∧

j=1

(
(xj ∨ yj ∨ āj) ∧ (x̄j ∨ ȳj ∨ āj)

)
. ()

The other clauses are “blocked” (see exercise 378) and unhelpful. Thus it’s a
good idea to examine whether all of the clauses in a Tseytin encoding are really
needed. Exercise 416 illustrates another interesting case.

An efficient encoding is possible also when f has a small BDD, and in general
whenever f can be computed by a short branching program. Recall the example
“Pi function” introduced in 7.1.1–(); we observed in 7.1.2–() that it can be
written

(
((x2 ∧ x̄4)⊕ x̄3) ∧ x̄1

)
⊕ x2. Thus it has a 12-clause Tseytin encoding

(x2∨ ā1)∧ (x̄4∨ ā1)∧ (x̄2∨x4∨a1)∧ (x3∨a1∨a2)∧ (x̄3∨ ā1∨a2)∧ (x̄3∨a1∨ ā2)
∧ (x3∨ ā1∨ ā2)∧ (x̄1∨ ā3)∧ (a2∨ ā3)∧ (x1∨ ā2∨a3)∧ (x2∨a3)∧ (x̄2∨ ā3).

The Pi function also has a short branching program, 7.1.4–(), namely

I8 = (1̄? 7: 6), I7 = (2̄? 5: 4), I6 = (2̄? 0: 1), I5 = (3̄? 1: 0),

I4 = (3̄? 3: 2), I3 = (4̄? 1: 0), I2 = (4̄? 0: 1),

where the instruction ‘(v̄? l:h)’ means “If xv = 0, go to Il, otherwise go to Ih,”
except that I0 and I1 unconditionally produce the values 0 and 1. We can
convert any such branching program into a sequence of clauses, by translating
‘Ij = (v̄? l:h)’ into

(āj ∨ xv ∨ al) ∧ (āj ∨ x̄v ∨ ah), ()

where a0 is omitted, and where any clauses containing a1 are dropped. We
also omit āt, where It is the first instruction; in this example t = 8. (These
simplifications correspond to asserting the unit clauses (ā0) ∧ (a1) ∧ (at).) The
branching program above therefore yields ten clauses,

(x1∨ a7) ∧ (x̄1∨ a6) ∧ (ā7∨x2∨ a5) ∧ (ā7∨ x̄2∨ a4) ∧ (ā6∨x2)
∧ (ā5∨ x̄3) ∧ (ā4∨x3∨ a3) ∧ (ā4∨ x̄3∨ a2) ∧ (ā3∨ x̄4) ∧ (ā2∨x4).

We can readily eliminate a6, a5, a3, a2, thereby getting a six-clause equivalent

(x1∨a7) ∧ (x̄1∨x2) ∧ (ā7∨x2∨ x̄3) ∧ (ā7∨ x̄2∨a4) ∧ (ā4∨x3∨ x̄4) ∧ (ā4∨ x̄3∨x4);

September 23, 2015

7.2.2.2 SATISFIABILITY: UNIT PROPAGATION AND FORCING 103

preprocessor
Unit propagation
forcing–
CDCL solver

notation ‘F ⊢1 l’
at-most-one constraint
circuit
BDD

and a preprocessor will simplify this to the four-clause CNF

(x̄1∨x2) ∧ (x2∨ x̄3) ∧ (x1∨ x̄2∨x3∨ x̄4) ∧ (x1∨ x̄3∨x4), ()

which appeared in exercise 7.1.1–19.
Exercise 417 explains why this translation scheme is valid. The method

applies to any branching program whatsoever: The x variables can be tested in
any order—that is, the v’s need not be decreasing as in a BDD; moreover, a
variable may be tested more than once.

Unit propagation and forcing. The effectiveness of an encoding depends
largely on how well that encoding avoids bad partial assignments to the vari-
ables. If we’re trying to encode a Boolean condition f(x1, x2, . . . , xn), and if the
tentative assignments x1 ← 1 and x2 ← 0 cause f to be false regardless of the
values of x3 through xn, we’d like the solver to deduce this fact without further
ado, ideally by unit propagation once x1 and x̄2 have been asserted. With a
CDCL solver like Algorithm C, a quickly recognized conflict means a relatively
short learned clause—and that’s a hallmark of progress. Even better would be
a situation in which unit propagation, after asserting x1, would already force x2
to be true; and furthermore if unit propagation after x̄2 would also force x̄1.

Such scenarios aren’t equivalent to each other. For example, consider the
clauses F = (x̄1∨x3)∧ (x̄1∨x2∨ x̄3). Then, using the notation ‘F ⊢1 l’ to signify
that F leads to l via unit propagation, we have F | x1 ⊢1 x2, but F | x̄2 6⊢1 x̄1.
And with the clauses G = (x̄1∨ x2∨ x3) ∧ (x̄1∨ x2∨ x̄3) we have G |x1 | x̄2 ⊢1 ǫ
(see Eq. ()), but G |x1 6⊢1 x2 and G | x̄2 6⊢1 x̄1.

Consider now the simple at-most-one constraint on just three variables,
f(x1, x2, x3) = [x1 + x2 + x3≤ 1]. We can try to represent f by proceeding
methodically using the methods suggested above, either by constructing a circuit
for f or by constructing f ’s BDD. The first alternative (see exercise 420) yields

F = (x1∨ x̄2∨ a1)∧ (x̄1∨x2∨ a1)∧ (x1∨x2∨ ā1)∧ (x̄1∨ x̄2)∧ (x̄3∨ ā1); ()

the second approach (see exercise 421) leads to a somewhat different solution,

G = (x1∨a4)∧ (x̄1∨a3)∧ (ā4∨ x̄2∨a2)∧ (ā3∨x2∨a2)∧ (ā3∨ x̄2)∧ (ā2∨ x̄3). ()
But neither of these encodings is actually very good, because F | x3 6⊢1 x̄1 and
G |x3 6⊢1 x̄1. Much better is the encoding that we get from the general scheme
of () and () in the case n = 3, r = 1, namely

S = (ā1∨ a2)∧ (x̄1∨ a1)∧ (x̄2∨ a2)∧ (x̄2∨ ā1)∧ (x̄3∨ ā2), ()

where a1 and a2 stand for s11 and s12; or the one obtained from () and (),

B = (x̄3∨ a1)∧ (x̄2∨ a1)∧ (x̄2∨ x̄3)∧ (ā1∨ x̄1), ()

where a1 stands for b21. With either () or () we have S | xi ⊢1 x̄j and
B | xi ⊢1 x̄j by unit propagation whenever i 6= j. And of course the obvious
encoding for this particular f is best of all, because n is so small:

O = (x̄1∨ x̄2)∧ (x̄1∨ x̄3)∧ (x̄2∨ x̄3). ()

September 23, 2015

104 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

auxiliary variables

forcing representation
primary variables
cardinality constraint
at-most-one constraint
Heule
feedback

representation F
conjunctive prime form
prime clauses

Suppose f(x1, . . . , xn) is a Boolean function that’s represented by a family
of clauses F , possibly involving auxiliary variables {a1, . . . , am}, as in (). We
say that F is a forcing representation if we have

F |L ⊢ l implies F |L ⊢1 l ()

whenever L ∪ l is a set of strictly distinct literals contained in {x1, . . . , xn,
x̄1, . . . , x̄n}. In other words, if the partial assignment represented by L logically
implies the truth of some other literal l, we insist that unit propagation alone
should be able to deduce l from F | L. The auxiliary variables {a1, . . . , am}
are exempt from this requirement; only the potential forcings between primary

variables {x1, . . . , xn} are supposed to be recognized easily when they occur.
(Technical point: If F | L ⊢ ǫ, meaning that F | L is unsatisfiable, we

implicitly have F | L ⊢ l for all literals l. In such a case () tells us that
F |L ⊢1 l and F |L ⊢1 l̄ both hold; hence F |L can then be proved unsatisfiable
by unit propagation alone.)

We’ve seen that the clauses S and B in () and () are forcing for the
constraint [x1 + x2 + x3≤ 1], but the clauses F and G in () and () are not.
In fact, the clauses of () and () that led to () are always forcing, for the
general cardinality constraint [x1 + · · ·+ xn≤ r]; and so are the clauses of ()
and () that led to (). (See exercises 429 and 430.) Moreover, the general
at-most-one constraint [x1 + · · ·+ xn≤ 1] can be represented more efficiently by
Heule’s 3(n−2) binary clauses and ⌊(n−3)/2⌋ auxiliary variables (exercise 12), or
with about n lgn binary clauses and only ⌈lgn⌉ auxiliary variables (exercise 394);
both of these representations are forcing.

In general, we’re glad to know as soon as possible when a variable’s value has
been forced by other values, because the variables of a large problem typically
participate in many constraints simultaneously. If we know that x can’t be 0 in
constraint f , then we can often conclude that some other variable y can’t be 1 in
some other constraint g, if x appears in both f and g. There’s lots of feedback.

On the other hand it might be worse to use a large representation F that
is forcing than to use a small representation G that isn’t, because additional
clauses can make a SAT solver work harder. The tradeoffs are delicate, and
they’re difficult to predict in advance.

Every Boolean constraint f(x1, . . . , xn) has at least one forcing represen-
tation that involves no auxiliary variables. Indeed, it’s easy to see that the
conjunctive prime form F of f—the AND of all f ’s prime clauses— is forcing.

Smaller representations are also often forcing, even without auxiliaries. For
example, the simple constraint [x1≥ x2≥ · · ·≥ xn] has

(
n
2

)
prime clauses, namely

(xj ∨ x̄k) for 1 ≤ j < k ≤ n; but only n − 1 of those clauses, the cases when
k = j + 1 as in (), are necessary and sufficient for forcing. Exercise 424
presents another, more-or-less random example.

In the worst case, all forcing representations of certain constraints are known
to be huge, even when auxiliary variables are introduced (see exercise 428).
But exercises 431–441 discuss many examples of useful and instructive forcing
representations that require relatively few clauses.

September 23, 2015

7.2.2.2 SATISFIABILITY: SYMMETRY BREAKING 105

Gwynne
Kullmann

honest representation
SLUR algorithm
backtrack
negated auxiliary variable
branch
primary variables
auxiliary variables
Järvisalo
Niemelä
Symmetry breaking–
symmetries
pigeons
permutation
lexicographically ordered

We’ve glossed over an interesting technicality in definition (), however:
A sneaky person might actually construct a representation F that is absolutely
useless in practice, even though it meets all of those criteria for forcing. For exam-
ple, let G(a1, . . . , am) be a family of clauses that are satisfiable—but only when
the auxiliary variables aj are set to extremely hard-to-find values. Then we might
have f(x1) = x1 and F = (x1)∧G(a1, . . . , am)(!). This defect in definition ()
was first pointed out by M. Gwynne and O. Kullmann [arXiv:1406.7398 [cs.CC]

(2014), 67 pages], who have also traced the history of the subject.
To avoid such a glitch, we implicitly assume that F is an honest represen-

tation of f , in the following sense: Whenever L is a set of n literals that fully
characterizes a solution x1 . . . xn to the constraint f(x1, . . . , xn) = 1, the clauses
F |L must be easy to satisfy, using the SLUR algorithm of exercise 444. That
algorithm is efficient because it does not backtrack. All of the examples in exer-
cises 439–444 meet this test of honesty; indeed, the test is automatically passed
whenever every clause of F contains at most one negated auxiliary variable.

Some authors have suggested that a SAT solver should branch only on
primary variables xi, rather than on auxiliary variables aj , whenever possible.
But an extensive study by M. Järvisalo and I. Niemelä [LNCS 4741 (2007),
348–363; J. Algorithms 63 (2008), 90–113] has shown that such a restriction is
not advisable with Algorithm C, and it might lead to a severe slowdown.

Symmetry breaking. Sometimes we can achieve enormous speedup by exploit-
ing symmetries. Consider, for example, the clauses for placingm+1 pigeons into
m holes, ()–(). We’ve seen in Lemma B and Theorem B that Algorithm C
and other resolution-related methods cannot demonstrate the unsatisfiability of
those clauses without performing exponentially many steps asm grows. However,
the clauses are symmetrical with respect to pigeons; independently, they’re also
symmetrical with respect to holes: If π is any permutation of {0, 1, . . . ,m} and
if ρ is any permutation of {1, 2, . . . ,m}, the transformation xjk 7→ x(jπ)(kρ) for
0 ≤ j ≤ m and 1 ≤ k ≤ m leaves the set of clauses ()–() unchanged.
Thus the pigeonhole problem has (m+ 1)!m! symmetries.

We’ll prove below that the symmetries on the holes allow us to assume safely
that the hole-occupancy vectors are lexicographically ordered, namely that

x0kx1k . . . xmk ≤ x0(k+1)x1(k+1) . . . xm(k+1), for 1 ≤ k < m. ()

These constraints preserve satisfiability; and we know from () that they are
readily expressed as clauses. Without the help of such additional clauses the
running time of Algorithm C rises from 19 megamems for m = 7 to 177Mµ for
m = 8, and then to 3.5 gigamems and 86Gµ for m = 9 and 10. But with (),
the same algorithm shows unsatisfiability for m = 10 after only 1 megamem; and
for m = 20 and m = 30 after only 284 Mµ and 3.6 Gµ, respectively.

Even better results occur when we order the pigeon-occupancy vectors:

xj1xj2 . . . xjm ≤ x(j+1)1x(j+1)2 . . . x(j+1)m, for 0 ≤ j < m. ()

With these constraints added to () and (), Algorithm C polishes off the
case m = 10 in just 69 kilomems. It can even handle m = 100 in 133 Mµ. This

September 23, 2015

106 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

points
lines
quad-free
binary matrix
0–1 matrix
submatrix
Zarankiewicz
avoiding submatrices

Z(m,n)
Steiner triple system
block designs
chessboard
cardinality constraints

remarkable improvement was achieved by adding only m2−m new variables and
3m2−2m new clauses to the originalm2+m variables and (m+1)+(m3+m2)/2
clauses of () and (). (Moreover, the reasoning that justifies () doesn’t
“cheat” by invoking the mathematical pigeonhole principle behind the scenes.)

Actually that’s not all. The theory of columnwise symmetry (see exer-
cise 498) also tells us that we’re allowed to add the

(
m
2

)
simple binary clauses

(x(j−1)j ∨ x̄(j−1)k) for 1 ≤ j < k ≤ m ()

to () and (), instead of (). This principle is rather weak in general; but
it turns out to be ideally suited to pigeons: It reduces the running time for m =
100 to just 21 megamems, although it needs no auxiliary variables whatsoever!

Of course the status of ()–() has never been in doubt. Those clauses
serve merely as training wheels because of their simplicity; they illustrate the
fact that many symmetry-breaking strategies exist. Let’s turn now to a more
interesting problem, which has essentially the same symmetries, but with the
roles of pigeons and holes played by “points” and “lines” instead. Consider a set
of m points and n lines, where each line is a subset of points; we will require that
no two points appear together in more than one line. (Equivalently, no two lines
may intersect in more than one point.) Such a configuration may be called quad-

free, because it is equivalent to an m × n binary matrix (xij) that contains no
“quad,” namely no 2×2 submatrix of 1s; element xij means that point i belongs
to line j. Quad-free matrices are obviously characterized by

(
m
2

)(
n
2

)
clauses,

(x̄ij ∨ x̄ij′ ∨ x̄i′j ∨ x̄i′j′), for 1 ≤ i < i′ ≤ m and 1 ≤ j < j′ ≤ n. ()

What is the maximum number of 1s in an m × n quad-free matrix? [This
question, whenm = n, was posed by K. Zarankiewicz, Colloquium Mathematicæ
2 (1951), 301, who also considered how to avoid more general submatrices of 1s.]
Let’s call that value Z(m,n)− 1; then Z(m,n) is the smallest r such that every
m× n matrix with r nonzero entries contains a quad.

We’ve actually encountered examples of this problem before, but in a dis-
guised form. For example (see exercise 448), a Steiner triple system on v objects
exists if and only if v is odd and there is a quad-free matrix with m = v,
n = v(v − 1)/6, and r = v(v − 1)/2. Other combinatorial block designs have
similar characterizations.

Table 5 shows the values of Z(m,n) for small cases. These values were dis-
covered by delicate combinatorial reasoning, without computer assistance; so it’s
instructive to see how well a SAT solver can compete against real intelligence.

The first interesting case occurs when m = n = 8: One can place 24
markers on a chessboard without forming a quad, but Z(8, 8) = 25 markers is too
many. If we simply add the cardinality constraints

∑m
i=1

∑n
j=1 xij ≥ r to (),

Algorithm C will quickly find a solution when m = n = 8 and r = 24. But it
bogs down when r = 25, requiring about 10 teramems to show unsatisfiability.

Fortunately we can take advantage ofm!n! symmetries, which permute rows
and columns without affecting quads. Exercise 495 shows that those symmetries

September 23, 2015

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 107

Guy
Erdos
Katona
Nowakowski
Satisfiability-preserving transformations–
Symmetry
conditional symmetry, see endomorphism
endomorphism

Table 5

Z(m,n), THE MINIMUM NUMBER OF 1S WITH () UNSATISFIABLE

n = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

m = 2: 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
m = 3: 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
m = 4: 6 8 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
m = 5: 7 9 11 13 15 16 18 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
m = 6: 8 10 13 15 17 19 20 22 23 25 26 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43
m = 7: 9 11 14 16 19 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 45 46 47 48 49
m = 8: 10 12 15 18 20 23 25 27 29 31 33 34 36 37 39 40 42 43 45 46 48 49 51 52 54 55
m = 9: 11 13 16 19 22 25 27 30 32 34 37 38 40 41 43 44 46 47 49 50 52 53 55 56 58 59
m = 10: 12 14 17 21 23 26 29 32 35 37 40 41 43 45 47 48 50 52 53 55 56 58 59 61 62 64
m = 11: 13 15 18 22 25 28 31 34 37 40 43 45 46 48 51 52 54 56 58 60 61 63 64 66 67 69
m = 12: 14 16 19 23 26 29 33 37 40 43 46 49 50 52 54 56 58 61 62 64 66 67 69 71 73 74
m = 13: 15 17 20 24 28 31 34 38 41 45 49 53 54 56 58 60 62 65 67 68 80 72 74 76 79 80
m = 14: 16 18 21 25 29 32 36 40 43 46 50 54 57 59 61 64 66 69 71 73 74 76 79 81 83 85
m = 15: 17 19 22 26 31 34 37 41 45 48 52 56 59 62 65 68 70 73 76 78 79 81 83 86 87 89
m = 16: 18 20 23 27 32 35 39 43 47 51 54 58 61 65 68 71 74 77 81 82 84 86 88 91 92 94

[References: R. K. Guy, in Theory of Graphs, Tihany 1966, edited by Erdős and Katona (Aca-
demic Press, 1968), 119–150; R. J. Nowakowski, Ph.D. thesis (Univ. of Calgary, 1978), 202.]

allow us to add the lexicographic constraints

xi1xi2 . . . xin ≥ x(i+1)1x(i+1)2 . . . x(i+1)n, for 1 ≤ i < m; ()

x1jx2j . . . xmj ≥ x1(j+1)x2(j+1) . . . xm(j+1), for 1 ≤ j < n. ()

(Increasing order, with ‘≤’ in place of ‘≥’, could also have been used, but
decreasing order turns out to be better; see exercise 497.) The running time to
prove unsatisfiability when r = 25 now decreases dramatically, to only about 50
megamems. And it falls to 48 Mµ if the lexicographic constraints are shortened
to consider only the leading 4 elements of a row or column, instead of testing all 8.

The constraints of () and () are useful in satisfiable problems too—
not in the easy case m = n = 8, when they aren’t necessary, but for example in
the case m = n = 13 when r = 52: Then they lead Algorithm C to a solution
after about 200 gigamems, while it needs more than 18 teramems to find a
solution without such help. (See exercise 449.)

Satisfiability-preserving maps. Let’s proceed now to the promised theory of
symmetry breaking. In fact, we will do more: Symmetry is about permutations

that preserve structural properties, but we will consider arbitrary mappings

instead. Mappings are more general than permutations, because they needn’t be
invertible. If x = x1 . . . xn is any potential solution to a satisfiability problem,
our theory is based on transformations τ that map x 7→ xτ = x′1 . . . x

′
n, where

xτ is required to be a solution whenever x is a solution.
In other words, if F is a family of clauses on n variables and if f(x) =

[x satisfies F], then we are interested in all mappings τ for which f(x) ≤ f(xτ).
Such a mapping is conventionally called an endomorphism of the solutions.* If an

* This word is a bit of a mouthful. But it’s easier to say “endomorphism” than to say
“satisfiability-preserving transformation,” and you can use it to impress your friends. The
term “conditional symmetry” has also been used by several authors in special cases.

September 23, 2015

108 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

automorphism
pi as source of “random”
cycles
oriented tree
digraph
sink components
strongly connected components
orbits
sweep
trace
submatrix

endomorphism τ is actually a permutation, it’s called an automorphism. Thus,
if there are K solutions to the problem, out of N = 2n possibilities, the total
number of mappings is NN ; the total number of endomorphisms is KKNN−K ;
and the total number of automorphisms is K! (N −K)!.

Notice that we don’t require f(x) to be exactly equal to f(xτ). An endomor-
phism is allowed to map a nonsolution into a solution, and only KK(N−K)N−K

mappings satisfy that stronger property. On the other hand, automorphisms
always do satisfy f(x) = f(xτ); see exercise 454.

Here, for instance, is a more-or-less random mapping when n = 4:

00000001 0010

0011

0100

0101 0110
0111

1000

1001

10101011
1100

1101 11101111
()

Exercises 455 and 456 discuss potential endomorphisms of this mapping.
In general there will be one or more cycles, and every element of a cycle is

the root of an oriented tree that leads to it. For example, the cycles of () are
(0011), (1010 0101 0110), and (1000).

Several different endomorphisms τ1, τ2, . . . , τp are often known. In such
cases it’s helpful to imagine the digraph with 2n vertices that has arcs from each
vertex x to its successors xτ1, xτ2, . . . , xτp. This digraph will have one or more
sink components, which are strongly connected components Y from which there
is no escape: If x ∈ Y then xτk ∈ Y for 1 ≤ k ≤ p. (In the special case where each
τk is an automorphism, the sink components are traditionally called orbits of the
automorphism group.) When p = 1, a sink component is the same as a cycle.

The clauses F are satisfiable if and only if f(x) = 1 for at least one x. Such
an x will lead to at least one sink component Y, all of whose elements will satisfy
f(y) = 1. Thus it suffices to test satisfiability by checking just one element y in
every sink component Y, to see if f(y) = 1.

Let’s consider a simple problem based on the “sweep” of anm×nmatrixX =
(xij), which is the largest diagonal sum of any t× t submatrix:

sweep(X) = max
1≤i1<i2<···<it≤m
1≤j1<j2<···<jt≤n

(xi1j1 + xi2j2 + · · ·+ xitjt). ()

WhenX is binary, sweep(X) is the length of the longest downward-and-rightward
path that passes through its 1s. We can use satisfiability to decide whether such
a matrix exists having sweep(X) ≤ k and

∑m
i=1

∑n
j=1 xij ≥ r, given

m, n, k, and r; suitable clauses are exhibited in exercise 460. A
solution with m = n = 10, k = 3, and r = 51 appears at the right: It
has 51 1s, but no four of them lie in a monotonic southeasterly path.

0000111111
0000100011
0000100111
0001101101
0111111001
1111100001
1010000011
1010000010
1110111110
1111100000

This problem has 2mn candidate matrices X , and experiments
with small m and n suggest several endomorphisms that can be
applied to such candidates without increasing the sweep.

• τ1: If xij = 1 and xi(j+1) = 0, and if xi′j = 0 for 1 ≤ i′ < i, we can set
xij ← 0 and xi(j+1) ← 1.
• τ2: If xij = 1 and x(i+1)j = 0, and if xij′ = 0 for 1 ≤ j′ < j, we can set
xij ← 0 and x(i+1)j ← 1.

September 23, 2015

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 109

auxiliary variables
lexicographically
swoop
Theory and practice
perfect matching
exact cover by pairs+
4-cycle

• τ3: If the 2× 2 submatrix in rows {i, i+ 1} and columns {j, j + 1} is 11
10, we

can change it to 01
11.

These transformations are justified in exercise 462. They’re sometimes applicable
for several different i and j; for instance, τ3 could be used to change any of eight
different 2×2 submatrices in the example solution. In such cases we make an ar-
bitrary decision, by choosing (say) the lexicographically smallest possible i and j.

The clauses that encode this problem have auxiliary variables besides xij ;
but we can ignore the auxiliary variables when reasoning about endomorphisms.

Each of these endomorphisms either leaves X unchanged or replaces it by a
lexicographically smaller matrix. Therefore the sink components of {τ1, τ2, τ3}
consist of the matricesX that are fixed points of all three transformations. Hence
we’re allowed to append additional clauses, stating that neither τ1 nor τ2 nor τ3
is applicable. For instance, transformation τ3 is ruled out by the clauses

m−1∧

i=1

n−1∧

j=1

(x̄ij ∨ x̄i(j+1) ∨ x̄(i+1)j ∨ x(i+1)(j+1)), ()

which state that the submatrix 11
10 doesn’t appear. The clauses for τ1 and τ2 are

only a bit more complicated (see exercise 461).
These additional clauses give interesting answers in satisfiable instances,

although they aren’t really helpful running-time-wise. On the other hand, they’re
spectacularly successful when the problem is unsatisfiable.

For example, we can show, without endomorphisms, that the case m = n =
10, k = 3, r = 52 is impossible, and hence that any solution for r = 51 is
optimum; Algorithm C proves this after about 16 gigamems of work. Adding
the clauses for τ1 and τ2, but not τ3, increases the running time to 23Gµ; on
the other hand the clauses for τ3 without τ1 or τ2 reduce it to 6Gµ. When we
use all three endomorphisms simultaneously, however, the running time to prove
unsatisfiability goes down to just 3.5 megamems, a speedup of more than 4500.

Even better is the fact that the fixed points of {τ1, τ2, τ3} actually have an
extremely simple form—see exercise 463— from which we can readily determine
the answer by hand, without running the machine at all! Computer experiments
have helped us to guess this result; but once we’ve proved it, we’ve solved
infinitely many cases in one fell swoop. Theory and practice are synergistic.

Another interesting example arises when we want to test whether or not
a given graph has a perfect matching, which is a set of nonoverlapping edges
that exactly touch each vertex. We’ll discuss beautiful, efficient algorithms for
this problem in Sections 7.5.1 and 7.5.5; but it’s interesting to see how well a
simple-minded SAT solver can compete with those methods.

Perfect matching is readily expressible as a SAT problem whose variables are
called ‘uv’, one for each edge u−−−v. Variables ‘uv’ and ‘vu’ are identical. When-
ever the graph contains a 4-cycle v0−−− v1−−− v2−−− v3−−− v0, we might include
two of its edges {v0v1, v2v3} in the matching; but we could equally well have in-
cluded {v1v2, v3v0} instead. Thus there’s an endomorphism that says, “If v0v1 =
v2v3 = 1 (hence v1v2 = v3v0 = 0), set v0v1 ← v2v3 ← 0 and v1v2 ← v3v0 ← 1.”

September 23, 2015

110 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

dominoes
grid graph
mutilated chessboard
Dantchev
Riis
resolution refutation

And we can carry this idea further: Let the edges be totally ordered in some
arbitrary fashion, and for each edge uv consider all 4-cycles in which uv is the
largest edge. In other words, we consider all cycles of the form u−−−v−−−u′−−−
v′−−−u in which vu′, u′v′, v′u all precede uv in the ordering. If any such cycles
exist, choose one of them arbitrarily, and let τuv be one of two endomorphisms:

τ−uv: “If uv = u′v′ = 1, set uv ← u′v′ ← 0 and vu′ ← v′u← 1.”

τ+uv: “If vu
′ = v′u = 1, set uv ← u′v′ ← 1 and vu′ ← v′u← 0.”

Either τ−uv or τ+uv is stipulated, for each uv. Exercise 465 proves that a perfect
matching is in the sink component of any such family of endomorphisms if and
only if it is fixed by all of them. Therefore we need only search for fixed points.

For example, consider the problem of covering anm×n board with dominoes.
This is the problem of finding a perfect matching on the grid graph Pm Pn. The
graph has mn vertices (i, j), with m(n− 1) “horizontal” edges hij from (i, j) to
(i, j+1) and (m− 1)n “vertical” edges vij from (i, j) to (i+1, j). It has exactly
(m − 1)(n − 1) 4-cycles; and if we number the edges from left to right, no two
4-cycles have the same largest edge. Therefore we can construct (m− 1)(n− 1)
endomorphisms, in each of which we’re free to decide whether to allow a partic-
ular cycle to be filled by two horizontal dominoes or by two vertical ones.

Let’s stipulate that hij and h(i+1)j are allowed together only when i + j
is odd; vij and vi(j+1) are allowed together only when i + j is even. The nine
endomorphisms when m = n = 4 are then

7→ 7→ 7→ 7→ 7→ 7→ 7→ 7→ 7→

. ()

And it’s not difficult to see that only one 4 × 4 domino covering is fixed by all
nine. Indeed (exercise 466), the solution turns out to be unique for all m and n.

The famous problem of the “mutilated chessboard” asks for a domino cov-
ering when two opposite corner cells have been removed. This problem is
unsatisfiable when m and n are both even, by exercise 7.1.4–213. But a SAT

solver can’t discover this fact quickly from the clauses alone, because there are
many ways to get quite close to a solution; see the discussion following 7.1.4–
(). [S. Dantchev and S. Riis, in FOCS 42 (2001), 220–229, have proved in fact
that every resolution refutation of these clauses requires 2Ω(n) steps.]

When Algorithm C is presented with mutilated boards of sizes 6× 6, 8× 8,
10× 10, . . . , 16× 16, it needs respectively about 55Kµ, 1.4Mµ, 31Mµ, 668Mµ,
16.5Gµ, and .91Tµ (that’s teramems) to prove unsatisfiability. The even-odd
endomorphisms typified by () come to our rescue, however: They narrow the
search space spectacularly, reducing the respective running times to only 15Kµ,
60Kµ, 135Kµ, 250Kµ, 470Kµ, 690Kµ (that’s kilomems). They even can verify
the unsatisfiability of a mutilated 256×256 domino cover after fewer than 4.2Gµ
of calculation, exhibiting a growth rate of roughly O(n3).

September 23, 2015

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 111

lexicographically
lex-leader
signed permutations
permuting variables and/or complementing
literals
order r

Endomorphisms can also speed up SAT solving in another important way:

Theorem E. Let p1p2 . . . pn be any permutation of {1, 2, . . . , n}. If the Bool-
ean function f(x1, x2, . . . , xn) is satisfiable, then it has a solution such that
xp1

xp2
. . . xpn

is lexicographically less than or equal to x′p1
x′p2

. . . x′pn
for every

endomorphism of f that takes x1x2 . . . xn 7→ x′1x
′
2 . . . x

′
n.

Proof. The lexicographically smallest solution of f has this property.

Maybe we shouldn’t call this a “theorem”; it’s an obvious consequence of the
fact that endomorphisms always map solutions into solutions. But it deserves to
be remembered and placed on some sort of pedestal, because we will see that it
has many useful applications.

Theorem E is extremely good news, at least potentially, because every
Boolean function has a huge number of endomorphisms. (See exercise 457.)
On the other hand, there’s a catch: We almost never know any of those endo-
morphisms until after we’ve solved the problem! Still, whenever we do happen
to know one of the zillions of nontrivial endomorphisms that exist, we’re allowed
to add clauses that narrow the search. There’s always a “lex-leader” solution
that satisfies x1x2 . . . xn ≤ x′1x′2 . . . x′n, if there’s any solution at all.

A second difficulty that takes some of the shine away from Theorem E is
the fact that most endomorphisms are too complicated to express neatly as
clauses. What we really want is an endomorphism that’s nice and simple, so
that lexicographic ordering is equally simple.

Fortunately, such endomorphisms are often available; in fact, they’re usually
automorphisms —symmetries of the problem—defined by signed permutations

of the variables. A signed permutation represents the operation of permuting
variables and/or complementing them; for example, the signed permutation
‘4̄132̄’ stands for the mapping (x1, x2, x3, x4) 7→ (x4̄, x1, x3, x2̄) = (x̄4, x1, x3, x̄2).
This operation transforms the states in a much more regular way than ():

0000 0001 0010 0011 0100

0101

0110

0111

10001001 10101011
1100

1101

1110

1111

()

If σ takes the literal u into v, we write uσ = v; and in such cases σ also takes ū
into v̄. Thus we always have ūσ = uσ. We also write xσ for the result of applying
σ to a sequence x of literals; for example, (x1, x2, x3, x4)σ = (x̄4, x1, x3, x̄2). This
mapping is a symmetry or automorphism of f(x) if and only if f(x) = f(xσ)
for all x. Exercises 474 and 475 discuss basic properties of such symmetries; see
also exercise 7.2.1.2–20.

Notice that a signed permutation can be regarded as an unsigned permuta-
tion of the 2n literals {x1, . . . , xn, x̄1, . . . , x̄n}, and as such it can be written as
a product of cycles. For instance, the symmetry 4̄132̄ corresponds to the cycles
(14̄2)(1̄42̄)(3)(3̄). We can multiply signed permutations by multiplying these
cycles in the normal way, just as in Section 1.3.3.

The product στ of two symmetries σ and τ is always a symmetry. Thus in
particular, if σ is any symmetry, so are its powers σ2, σ3, etc. We say that σ has
order r if σ, σ2, . . . , σr are distinct and σr is the identity. A signed permutation

September 23, 2015

112 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

signed involution
inverse

waerden
reflection
lexicographic
Aloul
Ramani
Markov
Sakallah

of order 1 or 2 is called a signed involution; this important special case arises if
and only if σ is its own inverse (σ2 = 1).

It’s clearly easier to work with permutations of 2n literals than to work
with permutations of 2n states x1 . . . xn. The main advantage of a signed
permutation σ is that we can test whether or not σ preserves the family F
of clauses in a satisfiability problem. If it does, we can be sure that σ also is an
automorphism when it acts on all 2n states. (See exercise 492.)

Let’s go back to the example waerden (3, 10; 97) that we’ve often discussed
above. These clauses have an obvious symmetry, which takes x1x2 . . . x97 7→
x97x96 . . . x1. If we don’t break this symmetry, Algorithm C typically verifies
unsatisfiability after about 530 Mµ of computation. Now Theorem E tells us
that we can also assert that x1x2x3 ≤ x97x96x95, say; but that symmetry-breaker
doesn’t really help at all, because x1 has very little influence on x97. Fortunately,
however, Theorem E allows us to choose any permutation p1p2 . . . pn on which to
base lexicographic comparisons. For example, we can assert that x48x47x46 . . . ≤
x50x51x52 . . . —provided that we don’t also require x1x2x3 . . . ≤ x97x96x95
(One fixed global ordering must be used, but the endomorphs can be arbitrary.)

Even the simple assertion that x48 ≤ x50, which is the clause ‘48 50’, cuts
the running time down to about 410Mµ, because this new clause combines nicely
with the existing clauses 46 48 50, 48 49 50, 48 50 52 to yield the helpful binary
clauses 46 50, 49 50, 50 52. If we go further and assert that x48x47 ≤ x50x51, the
running time improves to 345Mµ. And the next steps x48x47x46 ≤ x50x51x52,
. . . , x48x47x46x45x44x43 ≤ x50x51x52x53x54x55 take us down to 290Mµ, then
260Mµ, 235Mµ, 220Mµ; we’ve saved more than half of the running time by ex-
ploiting a single reflection symmetry! Only 16 simple additional clauses, namely

48 50, 48a1, 50 a1, 47 51 ā1, 47 a2 ā1, 51 a2 ā1, 46 52 ā2, . . . , 43 55 ā5

are needed to get this speedup, using the efficient encoding of lex order in ().

Of course all good things come to an end, and we’ve now reached the point of
diminishing returns: Further clauses to assert that x48x47 . . . x42 ≤ x50x51 . . . x56
in the waerden (3, 10; 97) problem turn out to be counterproductive.

A wonderful simplification occurs when a symmetry σ is a signed involu-
tion that has comparatively few 2-cycles. Suppose, for example, that σ =
53̄2̄416̄9̄8̄7̄; in cycle form this is (15)(1̄5̄)(23̄)(2̄3)(4)(4̄)(66̄)(79̄)(7̄9)(88̄). Then the
lexicographic relation x = x1 . . . x9 ≤ x′1 . . . x′9 = xσ holds if and only if x1x2x6 ≤
x5x̄3x̄6. The reason is clear, once we look closer (see F. A. Aloul, A. Ramani, I. L.
Markov, and K. A. Sakallah, IEEE Trans. CAD-22 (2003), 1117–1137, §III.C):
The relation x1 . . . x9 ≤ x′1 . . . x

′
9 means, in this case, “x1 ≤ x5; if x1 = x5 then

x2 ≤ x̄3; if x1 = x5 and x2 = x̄3 then x3 ≤ x̄2; if x1 = x5, x2 = x̄3, and x3 = x̄2
then x4 ≤ x4; if x1 = x5, x2 = x̄3, x3 = x̄2, and x4 = x4 then x5 ≤ x1; if
x1 = x5, x2 = x̄3, x3 = x̄2, x4 = x4, and x5 = x1 then x6 ≤ x̄6; if x1 = x5,
x2 = x̄3, x3 = x̄2, x4 = x4, x5 = x1, and x6 = x̄6 then we’re done for.” With
this expanded description the simplifications are obvious.

In general this reasoning allows us to improve Theorem E as follows:

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 113

Puget
Crawford
Ginsberg
Luks
Roy
Zarankiewicz problem
quad-free
cardinality clauses
monkey wrench principle
pigeonhole clauses
test cases–

Corollary E. Let p1p2 . . . pn be any permutation of {1, 2, . . . , n}. For every
signed involution σ that is a symmetry of clauses F , we can write σ in cycle
form

(pi1 ±pj1)(p̄i1 ∓pj1)(pi2 ±pj2)(p̄i2 ∓pj2) . . . (pit ±pjt)(p̄it ∓pjt) ()

with i1 < j1, i2 < j2, . . . , it < jt, i1 < i2 < · · · < it, and with (p̄ik ∓pjk)
omitted when ik = jk; and we’re allowed to append clauses to F that assert the
lexicographic relation xpi1

xpi2
. . . xpiq

≤ x±pj1
x±pj2

. . . x±pjq
, where q = t or q is

the smallest k with ik = jk.

In the common case when σ is an ordinary signless involution, all of the signs
can be eliminated here; we simply assert that xpi1

. . . xpit
≤ xpj1

. . . xpjt
.

This involution principle justifies all of the symmetry-breaking techniques
that we used above in the pigeonhole and quad-free matrix problems. See, for
example, the details discussed in exercise 495.

The idea of breaking symmetry by appending clauses was pioneered by J.-F.
Puget [LNCS 689 (1993), 350–361], then by J. Crawford, M. Ginsberg, E. Luks,
and A. Roy [Int. Conf. Knowledge Representation and Reasoning 5 (1998), 148–
159], who considered unsigned permutations only. They also attempted to dis-
cover symmetries algorithmically from the clauses that were given as input. Ex-
perience has shown, however, that useful symmetries can almost always be better
supplied by a person who understands the structure of the underlying problem.

Indeed, symmetries are often “semantic” rather than “syntactic.” That is,
they are symmetries of the underlying Boolean function, but not of the clauses
themselves. In the Zarankiewicz problem about quad-free matrices, for example,
we appended efficient cardinality clauses to ensure that

∑
xij ≥ r; that condition

is symmetric under row and column swaps, but the clauses are not.
In this connection it may also be helpful to mention the monkey wrench prin-

ciple: All of the techniques by which we’ve proved quickly that the pigeonhole
clauses are unsatisfiable would have been useless if there had been one more
clause such as (x01 ∨x11 ∨ x̄22); that clause would have destroyed the symmetry!

We conclude that we’re allowed to remove clauses from F until reaching a
subset of clauses F0 for which symmetry-breakers S can be added. If F = F0∪F1,
and if F0 is satisfiable ⇐⇒ F0 ∪ S is satisfiable, then F0 ∪ S ⊢ ǫ =⇒ F ⊢ ǫ.
One hundred test cases. And now—ta da!— let’s get to the climax of this
long story, by looking at how our SAT solvers perform when presented with 100
moderately challenging instances of the satisfiability problem. The 100 sets of
clauses summarized on the next two pages come from a wide variety of different
applications, many of which were discussed near the beginning of this section,
while others appear in the exercises below.

Every test case has a code name, consisting of a letter and a digit. Table 6
characterizes each problem and also shows exactly how many variables, clauses,
and total literals are involved. For example, the description of problem A1
ends with ‘2043|24772|55195|U’; this means that A1 consists of 24772 clauses on 2043
variables, having 55195 literals altogether, and those clauses are unsatisfiable.
Furthermore, since ‘24772’ is underlined, all of A1’s clauses have length 3 or less.

September 23, 2015

114 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

test cases, capsule summaries+
many items are indexed here
but they don’t show in margin!

Table 6

CAPSULE SUMMARIES OF THE HUNDRED TEST CASES

A1. Find x = x1x2 . . . x99 with νx = 27 and
no three equally spaced 1s. (See exercise 31.)

2043|24772|55195|U

A2. Like A1, but x1x2 . . . x100.
2071|25197|56147|S

B1. Cover a mutilated 10 × 10 board with
49 dominoes, without using extra clauses
to break symmetry. 176|572|1300|U

B2. Like B1, but a 12 × 12 board with
71 dominoes. 260|856|1948|U

C1. Find an 8-step Boolean chain that
computes (z2z1z0)2 = x1 + x2 + x3 + x4.
(See exercise 479(a).) 384|16944|66336|U

C2. Find a 7-step Boolean chain that
computes the modified full adder functions
z1, z2, z3 in exercise 481(b). 469|26637|100063|U

C3. Like C2, but with 8 steps.
572|33675|134868|S

C4. Find a 9-step Boolean chain that
computes zl and zr in the mod-3 addition
problem of exercise 480(b). 678|45098|183834|S

C5. Connect A to A, . . . , J to J in Dudeney’s
puzzle of exercise 392, (iv). 1980|22518|70356|S

C6. Like C5, but move the J in row 8 from
column 4 to column 5. 1980|22518|70356|U

C7. Given binary strings s1, . . . , s50 of
length 200, randomly generated at distances
≤ rj from some string x, find x (see
exercise 502). 65719|577368|1659623|S

C8. Given binary strings s1, . . . , s40 of
length 500, inspired by biological data, find
a string at distance ≤ 42 from each of them.

123540|909120|2569360|U

C9. Like C8, but at distance ≤ 43.
124100|926200|2620160|S

D1. Satisfy factor fifo (18, 19, 111111111111).
(See exercise 41.) 1940|6374|16498|U

D2. Like D1, but factor lifo . 1940|6374|16498|U

D3. Like D1, but (19, 19, 111111111111).
2052|6745|17461|S

D4. Like D2, but (19, 19, 111111111111).
2052|6745|17461|S

D5. Solve (x1 . . . x9)2 × (y1 . . . y9)2 6=
(x1 . . . x9)2 ×′ (y1 . . . y9)2, with two copies
of the same Dadda multiplication circuit.

864|2791|7236|U

E0. Find an Erdős discrepancy pattern
x1 . . . x500 (see exercise 482). 1603|9157|27469|S

E1. Like E0, but x1 . . . x750.
2556|14949|44845|S

E2. Like E0, but x1 . . . x1000.
3546|21035|63103|S

F1. Satisfy fsnark (99). (See exercise 176.)
1782|4161|8913|U

F2. Like F1, but without the clauses
(ē1,3∨ f̄99,3) ∧ (f̄1,1∨ ē2,1). 1782|4159|8909|S

G1. Win Late Binding Solitaire with the
“most difficult winnable deal” in answer 486.

1242|22617|65593|S

G2. Like G1, but with the most difficult
unwinnable deal. 1242|22612|65588|U

G3. Find a test pattern for the fault “B43
43

stuck at 0” in prod (16, 32). 3498|11337|29097|S

G4. Like G3, but for the fault “D13,9
34 stuck

at 0.” 3502|11349|29127|S

G5. Find a 7 × 15 array X0 leading to
X3 = as in Fig. 35, having at most 38
live cells. 7150|28508|71873|U

G6. Like G5, but at most 39 live cells.
7152|28536|71956|S

G7. Like G5, but X4 = and X0 can
be arbitrary. 8725|33769|84041|U

G8. Find a configuration in the Game
of Life that proves f∗(7, 7) = 28 (see
exercise 83). 97909|401836|1020174|S

K0. Color the 8 × 8 queen graph with 8
colors, using the direct encoding () and
(), also forcing the colors of all vertices
in the top row. 512|5896|12168|U

K1. Like K0, but with the exclusion clauses
() also. 512|7688|15752|U

K2. Like K1, but with kernel clauses instead
of () (see answer 14). 512|6408|24328|U

K3. Like K1, but with support clauses
instead of () (see exercise 399).

512|13512|97288|U

K4. Like K1, but using the order encoding
for colors. 448|6215|21159|U

K5. Like K4, but with the hint clauses
() appended. 448|6299|21663|U

K6. Like K5, but with double clique hints
(exercise 396). 896|8559|27927|U

K7. Like K1, but with the log encoding
of exercise 391(a). 2376|5120|15312|U

K8. Like K1, but with the log encoding
of exercise 391(b). 192|5848|34968|U

L1. Satisfy langford (10). 130|2437|5204|U

L2. Satisfy langford ′(10). 273|1020|2370|U

L3. Satisfy langford (13). 228|5875|12356|U

L4. Satisfy langford ′(13). 502|1857|4320|U

L5. Satisfy langford (32). 1472|102922|210068|S

L6. Satisfy langford ′(32). 3512|12768|29760|S

L7. Satisfy langford (64). 6016|869650|1756964|S

L8. Satisfy langford ′(64). 14704|53184|124032|S

M1. Color the McGregor graph of order
10 (Fig. 33) with 4 colors, using one color at
most 6 times, via the cardinality constraints
() and (). 1064|2752|6244|U

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 115

M2. Like M1, but via () and ().
814|2502|5744|U

M3. Like M1, but at most 7 times.
1161|2944|6726|S

M4. Like M2, but at most 7 times.
864|2647|6226|S

M5. Like M4, but order 16 and at most
11 times. 2256|7801|18756|U

M6. Like M5, but at most 12 times.
2288|8080|19564|S

M7. Color the McGregor graph of order 9
with 4 colors, and with at least 18 regions
doubly colored (see exercise 19).

952|4539|13875|S

M8. Like M7, but with at least 19 regions.
952|4540|13877|U

N1. Place 100 nonattacking queens on
a 100 × 100 board. 10000|1151800|2313400|S

O1. Solve a random open shop scheduling
problem with 8 machines and 8 jobs, in
1058 units of time. 50846|557823|1621693|U

O2. Like O1, but in 1059 units.
50901|558534|1623771|S

P0. Satisfy (), (), and () for
m = 20, thereby exhibiting a poset of size
20 with no maximal element. 400|7260|22080|U

P1. Like P0, but with m = 14 and using
only the clauses of exercise 228. 196|847|2667|U

P2. Like P0, but with m = 12 and using
only the clauses of exercise 229. 144|530|1674|U

P3. Like P2, but omitting the clause
(x̄31∨ x̄16∨ x36). 144|529|1671|S

P4. Like P3, but with m = 20. 400|2509|7827|S

Q0. Like K0, but with 9 colors.
576|6624|13688|S

Q1. Like K1, but with 9 colors.
576|8928|18296|S

Q2. Like K2, but with 9 colors.
576|7200|27368|S

Q3. Like K3, but with 9 colors.
576|15480|123128|S

Q4. Like K4, but with 9 colors.
512|7008|24200|S

Q5. Like K5, but with 9 colors.
512|7092|24704|S

Q6. Like K6, but with 9 colors.
1024|9672|31864|S

Q7. Like K7, but with 9 colors.
3168|6776|20800|S

Q8. Like K8, but with 9 colors.
256|6776|52832|S

Q9. Like Q8, but with the log encoding
of exercise 391(c). 256|6584|42256|S

R1. Satisfy rand (3, 1061, 250, 314159).
250|1061|3183|S

R2. Satisfy rand (3, 1062, 250, 314159).
250|1062|3186|U

S1. Find a 4-term disjunctive normal form
on {x1, . . . , x20} that differs from () but
agrees with it at 108 random training points.

356|4229|16596|S

S2. Like S1, but at 109 points.
360|4310|16760|U

S3. Find a sorting network on nine
elements that begins with the comparators
[1:6][2:7][3:8][4:9] and finishes in five more
parallel rounds. (See exercise 64.)

5175|85768|255421|U

S4. Like S3, but in six more rounds.
6444|107800|326164|S

T1. Find a 24× 100 tatami tiling that spells
‘TATAMI’ as in exercise 118. 2874|10527|26112|S

T2. Like T1, but 24× 106 and the ‘I’ should
have serifs. 3048|11177|27724|U

T3. Solve the TAOCP problem of exercise
389 with only 4 knight moves.

3752|12069|27548|U

T4. Like T3, but with 5 knight moves.
3756|12086|27598|S

T5. Find the pixel in row 5, column
18 of Fig. 37(c), the lexicographically last
solution to the Cheshire Tom problem.

8837|39954|100314|S

T6. Like T5, but column 19.
8837|39955|100315|U

T7. Solve the run-count extension of the
Cheshire Tom problem (see exercise 117).

25734|65670|167263|S

T8. Like T7, but find a solution that differs
from Fig. 36. 25734|65671|167749|U

W1. Satisfy waerden (3, 10; 97).
97|2779|11662|U

W2. Satisfy waerden (3, 13; 159).
159|7216|31398|S

W3. Satisfy waerden (5, 5; 177).
177|7656|38280|S

W4. Satisfy waerden (5, 5; 178).
178|7744|38720|U

X1. Prove that the “taking turns”
protocol () gives mutual exclusion for
at least 100 steps. 1010|3612|10614|U

X2. Prove that assertions Φ for the four-bit
protocol of exercise 101, analogous to (),
are invariant. 129|354|926|U

X3. Prove that Bob won’t starve in 36 steps,
assuming the Φ of X2. 1652|10552|28971|U

X4. Prove that there’s a simple 36-step
path with the four-bit protocol, assuming
the Φ of X2. 22199|50264|130404|S

X5. Like X4, but 37 steps. 23388|52822|137034|U

X6. Like X1, but with Peterson’s proto-
col () instead of (). 2218|8020|23222|U

X7. Prove that there’s a simple 54-step
path with protocol (). 26450|56312|147572|S

X8. Like X7, but 55 steps.
27407|58317|152807|U

September 23, 2015

116 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

menagerie+
graph layout++
geek art+
visualizations++
3D visualizations++
variable interaction graphs++

A1

G4

B2

K6

C5

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 117

Sinz

M1

M2

S3

T3

X3

Fig. 52. The clauses of
these test cases bind
the variables together
in significantly different
ways. (Illustrations by
Carsten Sinz.)

September 23, 2015

118 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Sinz
SATexamples.tgz
Knuth
website
Knuth
lookahead algorithm
clause-learning algorithm

Of course we can’t distinguish hard problems from easy ones by simply
counting variables, clauses, and literals. The great versatility with which clauses
can capture logical relationships means that different sets of clauses can lead to
wildly different phenomena. Some of this immense variety is indicated in Fig. 52,
which depicts ten instructive “variable interaction graphs.” Each variable is
represented by a ball, and two variables are linked when they appear together
in at least one clause. (Some edges are darker than others; see exercise 506. For
further examples of such 3D visualizations, presented also in color, see Carsten
Sinz, Journal of Automated Reasoning 39 (2007), 219–243.)

A single SAT solver cannot be expected to excel on all of the many species of
problems. Furthermore, nearly all of the 100 instances in Table 6 are well beyond
the capabilities of the simple algorithms that we began with: Algorithms A, B,
and D are unable to crack any of those test cases without needing more than
fifty gigamems of computation, except for the simplest examples—L1, L2, L5,
P3, P4, and X2. Algorithm L, the souped-up refinement of Algorithm D, also
has a lot of difficulty with most of them. On the other hand, Algorithm C does
remarkably well. It polishes off 79 of the given problems in fewer than ten Gµ.

Thus the test cases of Table 6 are tough, yet they’re within reach. Almost all
of them can be solved in say two minutes, at most, with methods known today.

Complete details can be found in the file SATexamples.tgz on the author’s
website, together with many related problems both large and small.

Exactly 50 of these 100 cases are satisfiable. So we’re naturally led to wonder
whether Algorithm W (“WalkSAT”) will handle such cases well. The answer is
that Algorithm W sometimes succeeds brilliantly—especially on problems C7,
C9, L5, L7, M3, M4, M6, P3, P4, Q0, Q1, R1, S1, where it typically outperforms
all the other methods we’ve discussed. In particular it solved S1 in just 1Mµ, in
the author’s tests, compared to 25Mµ by the next best method, Algorithm C; it
won by 15Mµ versus Algorithm C’s 83Mµ on M3, by 83Mµ versus Algorithm L’s
104Mµ on Q0, by 95Mµ versus Algorithm C’s 464Mµ on Q1, and by a whopping
104Mµ versus Algorithm C’s 7036Mµ on C7. That was a surprise. WalkSAT
also was reasonably competitive on problem N1. But in all other cases it was
nowhere near the method of choice. Therefore we’ll consider only Algorithms L
and C in the remainder of this discussion.*

When does a lookahead algorithm like Algorithm L outperform a clause-
learning algorithm like Algorithm C? Figure 53 shows how they compare to
each other on our 100 test cases: Each problem is plotted with Algorithm C’s
running time on the vertical axis and Algorithm L’s on the horizontal axis.
Thus Algorithm L is the winner for problems that appear above the dotted line.
(This dotted line is “wavy” because times aren’t drawn to scale: The kth fastest
running time is shown as k units from the left of the page or from the bottom.)

* There actually are two variants of Algorithm L, because the alternative heuristics of
exercise 143 must be used for looking ahead when clauses of length 4 or more are present. We
could use exercise 143 even when given all-ternary clauses; but experience shows that we’d tend
to lose a factor of 2 or more by doing so. Our references to Algorithm L therefore implicitly
assume that exercise 143 is being applied only when necessary.

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 119

A1

A2

B1

B2

C1

C2

C3

C4

C5

C6

C7

C8

C9

D1

D2

D3

D4

D5

E0

E1

E2

F1

F2

G1

G2

G3

G4

G5

G6

G7

G8

K0

K1

K2

K3

K4

K5

K6

K7

K8

L1

L2

L3L4

L5

L6

L7

L8

M1

M2

M3

M4

M5

M6

M7

M8

N1

O1

O2

P0

P1

P2

P3

P4

Q0
Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

R1

R2

S1

S2
S3

S4

T1
T2

T3

T4

T5

T6

T7

T8

W1

W2

W3

W4

X1

X2

X3

X4
X5

X6

X7

X8

5
0

G
µ

2
0

G
µ

1
0

G
µ

5
G
µ

2
G
µ

1
G
µ

.5
G
µ

.2
G
µ

.1
G
µ

5
0

M
µ

2
0

M
µ

1
0

M
µ

0
M
µ

50 Gµ

20 Gµ

10 Gµ

5 Gµ

2 Gµ

1 Gµ

.5 Gµ

.2 Gµ

.1 Gµ

50 Mµ

20 Mµ

10 Mµ

0 Mµ

←
R

u
n
n
in

g
ti

m
e

fo
r

A
lg

o
ri

th
m

C
→

← Running time for Algorithm L →

Fig. 53. Comparison of
Algorithms C and L on
100 moderately difficult
satisfiability problems.

September 23, 2015

120 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

deterministic
median
mean running time
average
timeouts
input/output
encodings
queen graph
order encoding
at-most-one

All of these experiments were aborted after 50Gµ, if necessary, since many
of these problems could potentially take centuries before running to completion.
Thus the test cases for which Algorithm L timed out appear at the right edge of
Fig. 53, and the tough cases for Algorithm C appear at the top. Only E2 and X8
were too hard for both algorithms to handle within the specified cutoff time.

Algorithm L is deterministic: It uses no random variables. However, a slight
change (see exercise 505) will randomize it, because the inputs can be shuffled
as they are in Algorithm C; and we might as well assume that this change has
been made. Then both Algorithms L and C have variable running times. They
will find solutions or prove unsatisfiability more quickly on some runs than on
others, as we’ve already seen for Algorithm C in Fig. 49.

To compensate for this variability, each of the runtimes reported in Fig. 53 is
themedian of nine independent trials. Figure 54 shows all 9×100 of the empirical
running times obtained with Algorithm C, sorted by their median values. We
can see that many of the problems have near-constant behavior; indeed, the ratio
max/min was less than 2 in 38 of the cases. But 10 cases turned out to be highly
erratic in these experiments, with max/min > 100; problem P4 was actually
solved once after only 323 kilomems, while another run lasted 339 gigamems!

One might expect satisfiable problems, such as P4, to benefit more from
lucky guesses than unsatisfiable problems do; and these experiments strongly
support that hypothesis: Of the 21 problems with max/min > 30, all but P0
are satisfiable, and all 32 of the problems with max/min < 1.7 are unsatisfiable.
One might also expect the mean running time (the arithmetic average) to exceed
the median running time, in problems like this—because bad luck can be signifi-
cantly bad, though hopefully rare. Yet the mean is actually smaller than the me-
dian in 30 cases, about equally distributed between satisfiable and unsatisfiable.

The median is a nice measure because it is meaningful even in the presence
of occasional timeouts. It’s also fair, because we are able to achieve the median
time, or better, more often than not.

We should point out that input/output has been excluded from these time
comparisons. Each satisfiability problem is supposed to appear within a com-
puter’s memory as a simple list of clauses, after which the counting of mems
actually begins. We include the cost of initializing the data structures and solving
the problem, but then we stop counting before actually outputting a solution.

Some of the test cases in Table 6 and Fig. 53 represent different encodings
of the same problem. For example, problems K0–K8 all demonstrate that the
8× 8 queen graph can’t be colored with 8 colors. Similarly, problems Q0–Q9 all
show that 9 colors will suffice. We’ve already discussed these examples above
when considering alternative encodings; and we noted that the best solutions,
K6 and Q5, are obtained with an extended order encoding and with Algorithm C.
Therefore the fact that Algorithm L beats Algorithm C on problems K0, K1,
K2, and K3 is somewhat irrelevant; those problems won’t occur in practice.

Problems L5 and L6 compare different ways to handle the at-most-one
constraint. L6 is slightly better for Algorithm L, but Algorithm C prefers L5.
Similarly, M1 and M2 compare different ways to deal with a more general

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 121

cardinality constraint

waerden
Langford
CDCL solver
Treengeling
dancing links
parallel computation
CPU: Central Processing Unit (one computer
miter
gates

X2
K6
L5
P3
T1
T2
L6
P0
K5
X1
M4
S1
G4
N1
B1
M2
L7
E0
S4
L8
M3
Q2
X6
F2
X4
X5
M1
Q5
L1
S2
S3
Q4
L2
X3
G3
Q0
Q1
T4
Q9
Q3
W1
Q6
M6
B2
T6
D4
M5
R1
F1
O2
Q8
C5
D2
C3
D1
T5
Q7
D3
R2
O1
W3
P2
C6
E1
P1
G6
C9
C2
K4
C1
G7
C8
T7
C7
T8
W2
G5
G1
K1
X7
K0
K2
A2
K8
P4
A1
T3
K7
K3
W4
M8
G2
D5
M7
C4
G8
E2
X8
L3
L4

1 Tµ

.5 Tµ

.2 Tµ

.1 Tµ

50 Gµ

20 Gµ
10 Gµ

5 Gµ

2 Gµ
1 Gµ

.5 Gµ

.2 Gµ

.1 Gµ

50 Mµ

20 Mµ
10 Mµ

5 Mµ

2 Mµ
1 Mµ

Fig. 54. Nine random running times of Algorithm C, sorted by their medians.
(Unsatisfiable cases have solid dots or squares; satisfiable cases are hollow.)

cardinality constraint. Here M2 turns out to be better, although both are quite
easy for Algorithm C and difficult for Algorithm L.

We’ve already noted that Algorithm L shines with respect to random prob-
lems such as R1 and R2, and it dominates all competitors even more when
unsatisfiable random 3SAT problems get even bigger. Lookahead methods are
also successful in waerden problems like W1–W4.

Unsatisfiable Langford problems such as L3 and L4 are definitely bêtes noires

for Algorithm C, although not so bad for Algorithm L. Even the world’s fastest
CDCL solver, “Treengeling,” was unable to refute the clauses of langford (17)
in 2013 until it had learned 26.7 billion clauses; this process took more than a
week, using a cluster of 24 computers working together. By contrast, the dancing
links method of Section 7.2.2.1 was able to prove unsatisfiability after fewer than
7.2Tµ of computation—that’s about 90 minutes on a single vintage-2013 CPU.

We’ve now discussed every case where Algorithm L trumps Algorithm C,
except for D5; and D5 is actually somewhat scandalous! It’s an inherently simple
problem that hardware designers call a “miter”: Imagine two identical circuits
that compute some function f(x1, . . . , xn), one with gates g1, . . . , gm and another
with corresponding gates g′1, . . . , g

′
m, all represented as in (). The problem is

to find x1 . . . xn for which the final results gm and g′m aren’t equal. It’s obviously
unsatisfiable. Furthermore, there’s an obvious way to refute it, by successively
learning the clauses (ḡ1∨g′1), (ḡ′1∨g1), (ḡ2∨g′2), (ḡ′2∨g2), etc. In theory, therefore,
Algorithm C will almost surely finish in polynomial time (see exercise 386).
But in practice, the algorithm won’t discover those clauses without quite a lot
of flailing around, unless special-purpose techniques are introduced to help it
discover isomorphic gates.

September 23, 2015

122 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

empirical performance measurements++Thus Algorithm C does have an Achilles heel or two. On the other hand, it
is the clear method of choice in the vast majority of our test cases, and we can
expect it to be the major workhorse for most of the satisfiability problems that
we encounter in daily work. Therefore it behooves us to understand its behavior
in some detail, not just to look at its total cost as measured in mems.

Table 7

ALGORITHM C’S EMPIRICAL BEHAVIOR ON THE HUNDRED TEST CASES

name runtime bytes cells nodes learned of size triv disc sub flushes sat?

X2 0+2 Mµ 57 K 9 K 2 K 1 K 32.0→ 12.0 50% 6% 1% 30 U

K6 0+2 Mµ 314 K 46 K 1 K 0 K 15.8→ 11.8 22% 4% 3% 6 U

L5 1+1 Mµ 1841 K 210 K 0 K 0 K 146.1→ 38.4 51% 23% 0% 0 S

P3 0+2 Mµ 96 K 19 K 2 K 1 K 18.4→ 12.6 4% 11% 1% 45 S

T1 0+6 Mµ 541 K 35 K 3 K 1 K 7.4→ 6.8 3% 2% 6% 9 S

T2 0+7 Mµ 574 K 37 K 4 K 1 K 7.2→ 6.8 1% 2% 4% 6 U

L6 0+8 Mµ 672 K 39 K 1 K 0 K 195.9→ 67.8 86% 0% 0% 0 S

P0 0+11 Mµ 376 K 81 K 8 K 4 K 17.8→ 14.7 3% 10% 10% 28 U

K5 0+13 Mµ 294 K 55 K 3 K 2 K 18.6→ 12.4 33% 1% 1% 14 U

X1 0+13 Mµ 284 K 38 K 29 K 4 K 6.3→ 5.8 0% 3% 8% 53 U

M4 0+24 Mµ 308 K 47 K 6 K 4 K 20.5→ 16.3 14% 2% 1% 3 S

S1 0+25 Mµ 366 K 72 K 9 K 4 K 34.0→ 26.7 22% 4% 1% 14 S

G4 0+29 Mµ 759 K 76 K 3 K 2 K 37.1→ 24.2 26% 0% 0% 1 S

N1 16+14 Mµ 19644 K 2314 K 41 K 0 K 629.3→ 291.7 44% 6% 0% 15 S

B1 0+31 Mµ 251 K 55 K 10 K 7 K 13.5→ 11.3 3% 5% 4% 14 U

M2 0+32 Mµ 326 K 53 K 7 K 5 K 18.2→ 12.8 20% 1% 1% 6 U

L7 12+23 Mµ 14695 K 1758 K 2 K 1 K 411.2→ 107.6 66% 4% 0% 0 S

E0 0+40 Mµ 571 K 95 K 5 K 3 K 30.2→ 19.3 14% 11% 0% 6 S

S4 1+69 Mµ 3291 K 600 K 6 K 2 K 17.2→ 12.6 19% 1% 1% 8 S

L8 1+72 Mµ 3047 K 224 K 3 K 2 K 547.9→ 169.1 87% 0% 0% 0 S

M3 0+83 Mµ 493 K 84 K 13 K 9 K 28.4→ 19.2 31% 0% 1% 1 S

Q2 0+87 Mµ 885 K 190 K 11 K 8 K 61.7→ 45.8 36% 0% 0% 11 S

X6 0+93 Mµ 775 K 122 K 86 K 17 K 13.5→ 11.4 0% 3% 3% 32 U

F2 0+95 Mµ 714 K 118 K 42 K 22 K 14.3→ 13.1 0% 2% 4% 5 S

X4 1+98 Mµ 3560 K 158 K 24 K 3 K 16.2→ 11.4 9% 2% 3% 623 S

X5 1+106 Mµ 3747 K 166 K 23 K 3 K 16.5→ 11.0 11% 3% 3% 726 U

M1 0+131 Mµ 483 K 84 K 16 K 12 K 23.2→ 13.4 33% 1% 0% 1 U

Q5 0+143 Mµ 708 K 157 K 13 K 11 K 28.8→ 23.6 21% 2% 2% 6 S

L1 0+157 Mµ 597 K 139 K 21 K 18 K 36.7→ 19.0 60% 3% 0% 30 U

S2 0+176 Mµ 722 K 161 K 29 K 17 K 37.5→ 27.5 33% 3% 1% 8 U

S3 1+201 Mµ 2624 K 471 K 12 K 6 K 14.5→ 9.8 21% 1% 2% 1 U

Q4 0+213 Mµ 781 K 175 K 19 K 16 K 29.2→ 23.3 25% 3% 1% 6 S

L2 0+216 Mµ 588 K 136 K 23 K 20 K 36.2→ 17.4 75% 1% 0% 6 U

X3 0+235 Mµ 1000 K 191 K 61 K 25 K 37.7→ 19.3 34% 1% 2% 14 U

G3 0+251 Mµ 1035 K 145 K 12 K 9 K 57.9→ 28.1 42% 1% 0% 0 S

Q0 0+401 Mµ 1493 K 342 K 37 K 28 K 63.3→ 40.0 50% 0% 0% 14 S

Q1 0+464 Mµ 1516 K 343 K 41 K 33 K 63.0→ 41.0 45% 0% 0% 14 S

T4 0+546 Mµ 2716 K 544 K 202 K 18 K 218.3→ 61.5 83% 1% 0% 3018 S

Q9 0+555 Mµ 1409 K 343 K 152 K 71 K 26.7→ 20.6 3% 5% 2% 99 S

Q3 0+613 Mµ 1883 K 448 K 27 K 22 K 60.1→ 40.3 41% 1% 1% 7 S

W1 0+626 Mµ 848 K 208 K 71 K 63 K 20.8→ 13.4 5% 14% 1% 28 U

Q6 0+646 Mµ 1211 K 266 K 40 K 35 K 30.4→ 23.2 30% 1% 1% 2 S

M6 0+660 Mµ 1378 K 266 K 80 K 52 K 34.0→ 22.2 33% 1% 1% 59 S

B2 0+668 Mµ 906 K 216 K 96 K 75 K 17.1→ 13.2 4% 5% 2% 16 U

T6 1+668 Mµ 2355 K 291 K 34 K 25 K 41.4→ 19.1 57% 0% 1% 11 U

D4 0+669 Mµ 1009 K 186 K 35 K 28 K 55.7→ 15.9 70% 0% 0% 2 S

M5 0+677 Mµ 1183 K 219 K 73 K 48 K 32.6→ 20.2 37% 1% 1% 139 U

R1 0+756 Mµ 913 K 220 K 87 K 74 K 17.3→ 12.4 3% 8% 0% 9 S

F1 0+859 Mµ 1485 K 311 K 218 K 135 K 17.6→ 15.1 1% 3% 3% 6 U

O2 7+1069 Mµ 18951 K 3144 K 3 K 2 K 17.0→ 9.5 35% 0% 0% 1 S

Q8 0+1107 Mµ 1786 K 437 K 184 K 109 K 29.4→ 20.2 6% 6% 1% 109 S

September 23, 2015

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 123

C5 0+1127 Mµ 1987 K 419 K 159 K 104 K 24.4→ 16.5 12% 2% 1% 776 S

D2 0+1159 Mµ 962 K 177 K 54 K 45 K 51.8→ 11.5 73% 0% 0% 2 U

C3 0+1578 Mµ 2375 K 571 K 190 K 96 K 49.7→ 23.4 39% 3% 2% 11 S

D1 0+1707 Mµ 1172 K 230 K 76 K 62 K 45.1→ 11.6 73% 0% 0% 2 U

T5 1+1735 Mµ 3658 K 617 K 80 K 59 K 72.5→ 40.9 50% 0% 0% 43 S

Q7 0+1761 Mµ 2055 K 419 K 515 K 118 K 33.9→ 20.3 9% 7% 0% 12 S

D3 0+1807 Mµ 1283 K 254 K 77 K 64 K 57.3→ 14.0 80% 0% 0% 1 S

R2 0+1886 Mµ 1220 K 296 K 173 K 149 K 17.0→ 11.8 3% 9% 0% 14 U

O1 7+2212 Mµ 18928 K 3140 K 5 K 3 K 17.3→ 8.9 39% 0% 0% 4 U

W3 0+2422 Mµ 1819 K 448 K 191 K 174 K 19.3→ 15.5 2% 12% 1% 18 S

P2 0+2435 Mµ 2039 K 504 K 378 K 301 K 20.9→ 13.7 3% 11% 1% 45 U

C6 0+2792 Mµ 2551 K 560 K 305 K 217 K 27.0→ 17.0 20% 2% 1% 492 U

E1 0+2902 Mµ 2116 K 453 K 180 K 144 K 38.0→ 20.5 21% 18% 0% 2 S

P1 0+3280 Mµ 2726 K 674 K 819 K 549 K 18.2→ 14.4 0% 9% 3% 45 U

G6 1+3941 Mµ 3523 K 647 K 380 K 253 K 31.0→ 17.8 31% 0% 0% 0 S

C9 13+4220 Mµ 35486 K 4923 K 116 K 32 K 11.8→ 9.9 5% 1% 1% 4986 S

C2 0+4625 Mµ 2942 K 712 K 442 K 255 K 46.1→ 18.8 42% 4% 1% 15 U

K4 0+5122 Mµ 1858 K 446 K 267 K 241 K 19.6→ 13.7 19% 2% 1% 5 U

C1 0+5178 Mµ 2532 K 613 K 510 K 311 K 48.9→ 17.0 48% 6% 1% 20 U

G7 1+6070 Mµ 4227 K 771 K 546 K 369 K 32.5→ 17.6 35% 0% 0% 0 U

C8 13+6081 Mµ 35014 K 4823 K 151 K 58 K 15.3→ 10.7 15% 1% 1% 8067 U

T7 1+6467 Mµ 5428 K 544 K 333 K 108 K 26.8→ 15.3 32% 1% 1% 14565 S

C7 8+7029 Mµ 20971 K 3174 K 908 K 32 K 9.5→ 8.4 0% 3% 0% 4965 S

T8 1+7046 Mµ 5322 K 517 K 356 K 117 K 26.9→ 15.0 33% 0% 1% 15026 U

W2 0+7785 Mµ 3561 K 884 K 501 K 432 K 34.7→ 21.3 13% 17% 1% 28 S

G5 1+7799 Mµ 4312 K 844 K 642 K 446 K 33.4→ 17.4 39% 0% 0% 0 U

G1 0+8681 Mµ 5052 K 1221 K 631 K 350 K 61.1→ 34.1 38% 1% 2% 55 S

K1 0+9813 Mµ 2864 K 685 K 405 K 360 K 36.2→ 18.4 53% 2% 0% 13 U

X7 1+11857 Mµ 6235 K 697 K 1955 K 224 K 40.6→ 23.7 35% 0% 1% 31174 S

K0 0+11997 Mµ 3034 K 731 K 493 K 421 K 35.6→ 19.4 45% 2% 0% 14 U

K2 0+12601 Mµ 3028 K 729 K 500 K 427 K 34.8→ 18.0 46% 2% 0% 12 U

A2 0+13947 Mµ 3766 K 843 K 645 K 585 K 34.4→ 15.9 32% 1% 0% 0 S

K8 0+15033 Mµ 2748 K 680 K 821 K 699 K 21.2→ 13.1 8% 15% 1% 93 U

P4 0+16907 Mµ 6936 K 1721 K 1676 K 1314 K 36.5→ 24.0 5% 11% 1% 33 S

A1 0+17073 Mµ 3647 K 815 K 763 K 701 K 30.7→ 14.7 29% 2% 0% 0 U

T3 0+19266 Mµ 10034 K 2373 K 2663 K 323 K 291.8→ 72.9 86% 1% 0% 34265 U

K7 0+20577 Mµ 3168 K 721 K 1286 K 828 K 23.3→ 13.5 9% 15% 0% 9 U

K3 0+20990 Mµ 3593 K 878 K 453 K 407 K 36.7→ 19.0 55% 2% 0% 6 U

W4 0+21295 Mµ 3362 K 834 K 977 K 899 K 19.0→ 14.1 4% 15% 0% 21 U

M8 0+22281 Mµ 4105 K 994 K 992 K 785 K 37.3→ 20.5 43% 1% 1% 6 U

G2 0+23424 Mµ 6910 K 1685 K 1198 K 701 K 68.8→ 34.3 47% 1% 1% 120 U

D5 0+24141 Mµ 3232 K 779 K 787 K 654 K 63.5→ 13.4 78% 0% 0% 2 U

M7 0+24435 Mµ 4438 K 1077 K 1047 K 819 K 40.6→ 23.3 42% 1% 1% 6 S

C4 1+31898 Mµ 8541 K 2108 K 1883 K 1148 K 60.6→ 25.7 42% 4% 1% 12 S

G8 7+35174 Mµ 24854 K 2992 K 4350 K 1101 K 48.0→ 34.7 9% 0% 0% 1523 S

E2 0+53739 Mµ 5454 K 1258 K 2020 K 1658 K 41.5→ 20.8 25% 21% 0% 3 S

X8 2+248789 Mµ 12814 K 2311 K 17005 K 3145 K 56.4→ 22.5 63% 0% 0% 330557 U

L3 0+295571 Mµ 19653 K 4894 K 7402 K 6886 K 70.7→ 31.0 63% 8% 0% 30 U

L4 0+677815 Mµ 22733 K 5664 K 8545 K 7931 K 78.6→ 35.4 86% 0% 0% 5 U

name runtime bytes cells nodes learned of size triv disc sub flushes sat?

Table 7 summarizes the salient statistics, again listing all cases in order of
their median running time (exclusive of input and output). Each running time
is actually broken into two parts, ‘x+y’, where x is the time to initialize the
data structures in step C1 and y is the time for the other steps, both rounded
to megamems. For example, the exact median processing time for case L5
was 1,484,489µ to initialize, then 655,728µ to find a solution; this is shown
as ‘1+1Mµ’ in the third line of the table. The time for initialization is usually
negligible except when there are many clauses, as in problem N1.

September 23, 2015

124 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

MEM
binary clauses
BIMP
search tree
decision tree, see search tree
nodes
decisions
learned clauses
conflicts
levels
trivial
subsumed on the fly
on-the-fly subsumption
restart
flushing
trail
agility level
purges
recycling phases
tuning of parameters–
parameters, tuning of–

The median run of problem L5 also allocated 1,841,372 bytes of memory for
data; this total includes the space needed for 210,361 cells in the MEM array, at
4 bytes per cell, together with other arrays such as VAL, OVAL, HEAP, etc. The
implementation considered here keeps unlearned binary clauses in a separate
BIMP table, as explained in the answer to exercise 267.

This run of L5 found a solution after implicitly traversing a search tree with
138 “nodes.” The number of nodes, or “decisions,” is the number of times step C6
of the algorithm goes to step C3. It is shown as ‘0K’ in Table 7, because the
node counts, byte counts, and cell counts are rounded to the nearest thousand.

The number of nodes always exceeds or equals the number of learned clauses,
which is the number of conflicts detected at levels d > 0. (See step C7.) In the
case of problem L5, only 84 clauses were learned; so again the table reports ‘0K’.
These 84 clauses had average length r+1 = 146.1; then the simplification process
of exercise 257 reduced this average to just 38.4. Nevertheless, the resulting
simplified clauses were still sufficiently long that the “trivial” clauses discussed
in exercise 269 were sometimes used instead; this substitution happened 43
times (51%). Furthermore 19 of the learned clauses (23%) were immediately
discarded, using the method of exercise 271. These percentages show up in the
‘triv’ and ‘disc’ columns of the table.

Sometimes, as in problems D1–D5, a large majority of the learned clauses
were replaced by trivial ones; on the other hand, 27 of the 100 cases turned out
to be less than 10% trivial in this sense. Table 7 also shows that the discard
rate was 5% or more in 26 cases. The ‘sub’ column refers to learned clauses that
were “subsumed on the fly” by the technique of exercise 270; this optimization
is less common, yet it occurs often enough to be worthwhile.

The great variety in our examples is reflected in the variety of behaviors ex-
hibited in Table 7, although several interesting trends can also be perceived. For
example, the number of nodes is naturally correlated with the number of learned
clauses, and both statistics tend to grow as the total running time increases. But
there are significant exceptions: Two outliers, O1 and O2, have a remarkably
high ratio of mems per learned clause, because of their voluminous data.

The penultimate column of Table 7 counts how often Algorithm C decided
to restart itself after flushing unproductive literals from its current trail. This
quantity does not simply represent the number of times step C5 discovers that
M ≥ Mf ; it depends also on the current agility level (see ()) and on the
parameter ψ in Table 4. Some problems, like A1 and A2, had such high agility
that they were solved satisfactorily with no restarts whatsoever; but another
one, T4, finished in about 500 megamems after restarting more than 3000 times.

The number of “purges” (recycling phases) is not shown, but it can be
estimated from the number of learned clauses (see exercise 508). An aggressive
purging policy has kept the total number of memory cells comfortably small.

Tuning up the parameters. Table 7 shows that the hardest problem of all for
Algorithm C in these experiments, L4, found itself substituting trivial clauses
86% of the time but making only 5 restarts. That test case would probably have

September 23, 2015

7.2.2.2 SATISFIABILITY: TUNING THE PARAMETERS 125

Langford problem
RANGE scores
tradeoffs
damping factors
ACT scores
activity scores
purging threshold
trivial clauses
warmup runs
restarts
random decision variables
initial guess for literals
OVAL
agility threshold
defaults
author
Hutter
Hoos
Leyton-Brown
Stützle
ParamILS
ILS
iterated local search
training set
random walks
WalkSAT

been solved much more quickly if the algorithm’s parameters had been specially
adjusted for instances of the Langford problem.

Algorithm C, as implemented in the experiments above, has ten major
parameters that can be modified by the user on each run:

α, tradeoff between p and q in clause RANGE scores (see Eq. ());

ρ, damping factor in variable ACT scores (see after ());

̺, damping factor in clause ACT scores (see Eq. ());

∆p, initial value of the purging threshold Mp (see after ());

δp, amount of gradual increase in Mp (see after ());

τ, threshold used to prefer trivial clauses (see answer to exercise 269);

w, full “warmup” runs done after a restart (see answer to exercise 287);

p, probability of choosing a decision variable at random (see exercise 266);

P, probability that OVAL(k) is initially even;

ψ, agility threshold for flushing (see Table 4).

The values for these parameters initially came from seat-of-the-pants guesses

α = 0.2, ρ = 0.95, ̺ = 0.999, ∆p = 20000, δp = 500,

τ = 1, w = 0, p = 0.02, P = 0, ψ = 0.166667; ()

and these defaults gave reasonably good results, so they were used happily for
many months (although there was no good reason to believe that they couldn’t be
improved). Then finally, after the author had assembled the set of 100 test cases
in Table 6, it was time to decide whether to recommend the default values ()
or to come up with a better set of numbers.

Parameter optimization for general broad-spectrum use is a daunting task,
not only because of significant differences between species of SAT instances but
also because of the variability due to random choices when solving any specific
instance. It’s hard to know whether a change of parameter will be beneficial or
harmful, when running times are so highly erratic. Ouch—Fig. 54 illustrates
dramatic variations even when all ten parameters are held fixed, and only the
seed for random numbers is changed! Furthermore the ten parameters are not
at all independent: An increase in ρ, say, might be a good thing, but only if the
other nine parameters are also modified appropriately. How then could any set
of defaults be recommended, without an enormous expense of time and money?

Fortunately there’s a way out of this dilemma, thanks to advances in the
theory of learning. F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle have
developed a tool called ParamILS intended specifically for making such tuneups
[J. Artificial Intelligence Research 36 (2009), 267–306]; the ‘ILS’ in this name
stands for “iterated local search.” The basic idea is to start with a representative
training set of not-too-hard problems, and to carry out random walks in the 10-
dimensional parameter space using sophisticated refinements of WalkSAT-like
principles. The best parameters discovered during this training session are then
evaluated on more difficult problems outside the training set.

September 23, 2015

126 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Hoos
author
training set
SGB

book graphs
forty-two...
defaults
tradeoffs
damping factors
heuristic scores
adaptive control
trigger
double-looking ahead
ATPG
test pattern generation

In March 2015, Holger Hoos helped the author to tune Algorithm C using
ParamILS. The resulting parameters then yielded Fig. 54, and Table 7, and many
other runtime values discussed above and below. Our training set consisted
of 17 problems that usually cost less than 200Mµ with the original parame-
ters (), namely {K5,K6,M2,M4,N1, S1, S4,X4,X6} together with stripped-
down versions of {A1,C2,C3,D1,D2,D3,D4,K0}. For example, instead of the
vector x1 . . . x100 required by problem A1, we looked only for a shorter vector
x = x1 . . . x62, now with νx = 20; instead of D1 and D2 we sought 13-bit factors
of 31415926; instead of K0 we tried to 9-color the SGB graph jean.

Ten independent training runs with ParamILS gave ten potential parameter
settings (αi, ρi, . . . , ψi). We evaluated them on our original 17 benchmarks,
together with 25 others that were a bit more difficult: {F1,F2, S2, S3,T4,X5},
plus less-stripped-down variants of {A1,A2,A2,C7,C7,D3,D4,F1,F2,G1,G1,
G2,G2,G8,K0,O1,O2,Q0,Q2}. For each of the ten shortlisted parameter set-
tings, we ran each of these 17 + 25 problems with each of the random seeds
{1, 2, . . . , 25}. Finally, hurray, we had a winner: The parameters (αi, ρi, . . . , ψi)
with minimum total running time in this experiment were

α = 0.4, ρ = 0.9, ̺ = 0.9995, ∆p = 1000, δp = 500,

τ = 10, w = 0, p = 0.02, P = 0.5, ψ = 0.05. ()

And these are now the recommended defaults for general-purpose use.
How much have we thereby gained? Figure 55 compares the running times of

our 100 examples, before and after tuning. It shows that the vast majority—77
of them—now run faster; these are the cases to the right of the dotted line from
(1Mµ, 1Mµ) to (1Tµ, 1Tµ). Half of the cases experience a speedup exceeding
1.455; 27 of them now run more than twice as fast as they previously did.

Of course every rule has exceptions. The behavior of case P4 has gotten
spectacularly worse, almost three orders of magnitude slower! Indeed, we saw
earlier in Fig. 54 that this case has an amazingly unstable running time; further
peculiarities of P4 are discussed in exercise 511.

Our other major SAT solver, Algorithm L, also has parameters, notably

α, magic tradeoff coefficient in heuristic scores (see Eq. ());

β, damping factor for double-look triggering (see step Y1);

γ, clause weight per literal in heuristic scores (see exercise 175);

ε, offset in heuristic scores (see answer to exercise 146);

Θ, maximum heuristic score threshold (see answer to exercise 145);

Y, maximum depth of double-lookahead (see step Y1).

ParamILS suggests the following default values, which have been used in Fig. 53:

α = 3.5, β = 0.9998, γ = 0.2, ε = 0.001, Θ = 20.0, Y = 1. ()

Returning to Fig. 55, notice that the change from () to () has substan-
tially hindered cases G3 and G4, which are examples of test pattern generation.
Evidently such clauses have special characteristics that make them prefer special

September 23, 2015

7.2.2.2 SATISFIABILITY: TUNING THE PARAMETERS 127

Hoos
author

waerden

←
Im

p
ro

v
ed

ru
n
n
in

g
ti

m
e

fr
o
m

p
a
ra

m
et

er
s

(

)
→

← Original running time from parameters () →

A1
A2

B1

B2

C1C2

C3

C4

C5

C6

C7 C8
C9

D1

D2

D3

D4

D5

E0

E1

E2

F1

F2

G1

G2

G3

G4

G5

G6

G7

G8

K0
K1
K2

K3

K4

K5

K6

K7
K8

L1
L2

L3

L4

L5

L6

L7

L8

M1

M2

M3

M4

M5M6

M7 M8

N1

O1

O2

P0

P1
P2

P3

P4

Q0Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9
R1

R2

S1

S2S3

S4

T1
T2

T3

T4

T5

T6

T7T8

W1

W2

W3

W4

X1

X2

X3

X4X5X6

X7

X8

5
T
µ

2
T
µ

1
T
µ

.5
T
µ

.2
T
µ

.1
T
µ

5
0

G
µ

2
0

G
µ

1
0

G
µ

5
G
µ

2
G
µ

1
G
µ

.5
G
µ

.2
G
µ

.1
G
µ

5
0

M
µ

2
0

M
µ

1
0

M
µ

5
M
µ

2
M
µ

1
M
µ

1 Tµ

.5 Tµ

.2 Tµ

.1 Tµ

50 Gµ

20 Gµ

10 Gµ

5 Gµ

2 Gµ

1 Gµ

.5 Gµ

.2 Gµ

.1 Gµ

50 Mµ

20 Mµ

10 Mµ

5 Mµ

2 Mµ

1 Mµ

Fig. 55. Median running times
of Algorithm C, before and after
its parameters were tuned.

settings of the parameters. Our main reason for introducing parameters in the
first place was, of course, to allow tweaking for different families of clauses.

Instead of finding values of (α, ρ, . . . , ψ) that give good results in a broad
spectrum of applications, we can clearly use a system like ParamILS to find
values that are specifically tailored to a particular class of problems. In fact,
this task is easier. For example, Hoos and the author asked for settings of the
ten parameters that will tend to make Algorithm C do its best on problems of
the form waerden (3, k;n). A pair of ParamILS runs, based solely on the easy
training cases waerden (3, 9; 77) and waerden (3, 10; 95), suggested the parameters

α = 0.5, ρ = 0.9995, ̺ = 0.99, ∆p = 100, δp = 10,

τ = 10, w = 8, p = 0.01, P = 0.5, ψ = 0.15, ()

and this set indeed works very well. Figure 56 shows typical details, with 7 ≤
k ≤ 14 and with nine independent sample runs for every choice of k and n.
Each unsatisfiable instance has n =W (3, k), as given in the table following ()
above; each satisfiable instance has n =W (3, k)−1. The fastest run using default

September 23, 2015

128 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

parallel methods
backtracking

←
R

u
n
n
in

g
ti

m
e

fr
o
m

w
a
e
rd
e
n

p
a
ra

m
et

er
s

(

)
→

← Running time from default parameters () →

k=7 k=7

k=8 k=8

k=9

k=9

k=10

k=10

k=11 k=11

k=12

k=12

k=13

k=13

k=14

k=14

1
0

T
µ

5
T
µ

2
T
µ

1
T
µ

.5
T
µ

.2
T
µ

.1
T
µ

5
0

G
µ

2
0

G
µ

1
0

G
µ

5
G
µ

2
G
µ

1
G
µ

.5
G
µ

.2
G
µ

.1
G
µ

5
0

M
µ

2
0

M
µ

1
0

M
µ

5
M
µ

2
M
µ

1
M
µ

.5
M
µ

.2
M
µ

.1
M
µ

2 Tµ

1 Tµ

.5 Tµ

.2 Tµ

.1 Tµ

50 Gµ

20 Gµ

10 Gµ

5 Gµ

2 Gµ

1 Gµ

.5 Gµ

.2 Gµ

.1 Gµ

50 Mµ

20 Mµ

10 Mµ

5 Mµ

2 Mµ

1 Mµ

.5 Mµ

.2 Mµ

Fig. 56. Running times of Algo-
rithm C on clauses waerden (3, k;n),
with and without special tuning.

SAT UNSAT

parameters () has been paired in Fig. 56 with the fastest run using waerden -
tuned parameters (); similarly, the second-fastest, . . . , second-slowest, and
slowest runs have also been paired. Notice that satisfiable instances tend to take
an unpredictable amount of time, as in Fig. 54. In spite of the fact that the new
parameters () were found by a careful study of just two simple instances, they
clearly yield substantial savings when applied to much, much harder problems
of a similar nature. (See exercise 512 for another instructive example.)

Exploiting parallelism. Our focus in the present book is almost entirely on
sequential algorithms, but we should be aware that the really tough instances of
SAT are best solved by parallel methods.

Problems that are amenable to backtracking can readily be decomposed into
subproblems that partition the space of solutions. For example, if we have 16
processors available, we can start them off on independent SAT instances in which
variables x1x2x3x4 have been forced to equal 0000, 0001, . . . , 1111.

A näıve decomposition of that kind is rarely the best strategy, however.
Perhaps only one of those sixteen cases is really challenging. Perhaps some of

September 23, 2015

7.2.2.2 SATISFIABILITY: HISTORY 129

PSATO
Zhang
Bonacina
Hsiang
random numbers
cube and conquer
conflict-driven clause learning
lookahead
Heule
Kullmann
Wieringa
Biere

waerden
DODGSON
tautologous
truth table
QUINE
syllogism
Socrates
resolution
Boole
Dodgson
Carroll
eliminate variables
Dodgson
Bartley
Method of Trees
Carroll
backtracking

the processors are slower than others. Perhaps several processors will learn new
clauses that the other processors ought to know. Furthermore, the splitting into
subproblems need not occur only at the root of the search tree. Careful load-
balancing and sharing of information will do much better. These challenges were
addressed by a pioneering system called PSATO [H. Zhang, M. P. Bonacina, and
J. Hsiang, Journal of Symbolic Computation 21 (1996), 543–560].

A much simpler approach should also be mentioned: We can start up many
different solvers, or many copies of the same solver, with different sources of
random numbers. As soon as one has finished, we can then terminate the others.

The best parallelized SAT solvers currently available are based on the “cube
and conquer” paradigm, which combines conflict-driven clause learning with
lookahead techniques that choose branch variables for partitioning; see M. J. H.
Heule, O. Kullmann, S. Wieringa, and A. Biere, LNCS 7261 (2012), 50–65. In
particular, this approach is excellent for the waerden problems.

Today has proved to be an epoch in my Logical work.

. . . I think of calling it the ‘Genealogical Method.’

— CHARLES L. DODGSON, Diary (16 July 1894)

The method of showing a statement to be tautologous

consists merely of constructing a table under it in the usual way

and observing that the column under the main connective

is composed entirely of ‘T’s.

— W. V. O. QUINE, Mathematical Logic (1940)

A brief history. The classic syllogism “All men are mortal; Socrates is a man;
hence Socrates is mortal” shows that the notion of resolution is quite ancient:

¬Man ∨Mortal; ¬Socrates ∨ Man; ... ¬Socrates ∨ Mortal.

Of course, algebraic demonstrations that (¬x∨y)∧(¬z∨x) implies (¬z∨y), when
x, y, and z are arbitrary Boolean expressions, had to wait until Boole and his
19th-century followers brought mathematics to bear on the subject. The most
notable contributor, resolutionwise, was perhaps C. L. Dodgson, who spent the
last years of his life working out theories of inference by which complex chains of
reasoning could be analyzed by hand. He published Symbolic Logic, Part I, in
1896, addressing it to children and to the young-in-heart by using his famous pen
name Lewis Carroll. Section VII.II.§3 of that book explains and illustrates how
to eliminate variables by resolution, which he called the Method of Underscoring.

When Dodgson died unexpectedly at the beginning of 1898, his nearly com-
plete manuscript for Symbolic Logic, Part II, vanished until W. W. Bartley III
was able to resurrect it in 1977. Part II was found to contain surprisingly novel
ideas—especially its Method of Trees, which would have completely changed
the history of mechanical theorem proving if it had come to light earlier. In this
method, which Carroll documented at length in a remarkably clear and enter-
taining way, he constructed search trees essentially like Fig. 39, then converted
them into proofs by resolution. Instead of backtracking as in Algorithm D,

September 23, 2015

130 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

recursive
depth-first
breadth-first
dual form
tautology problem
unsolvable
halting problem
disjunctive normal forms
Blake
consensus
resolvent
Samson
Mills
Quine
Mueller
Davis
Putnam
first order logic
Samson
Mills
Mueller
unit clauses
pure literals
resolution
Logemann
Loveland
Davis
Cook
NP-complete problems

which is a recursive depth-first method, he worked breadth-first: Starting at the
root, he exploited unit clauses when possible, and branched on binary (or even
ternary) clauses when necessary, successively filling out all unfinished branches
level-by-level in hopes of being able to reuse computations.

Logicians of the 20th century took a different tack. They basically dealt with
the satisfiability problem in its equivalent dual form as the tautology problem,
namely to decide when a Boolean formula is always true. But they dismissed
tautology-checking as a triviality, because it could always be solved in a finite
number of steps by just looking at the truth table. Logicians were far more
interested in problems that were provably unsolvable in finite time, such as
the halting problem—the question of whether or not an algorithm terminates.
Nobody was bothered by the fact that an n-variable function has a truth table
of length 2n, which exceeds the size of the universe even when n is rather small.

Practical computations with disjunctive normal forms were pioneered by
Archie Blake in 1937, who introduced the “consensus” of two implicants, which
is dual to the resolvent of two clauses. Blake’s work was, however, soon forgotten;
E. W. Samson, B. E. Mills, and (independently) W. V. O. Quine rediscovered
the consensus operation in the 1950s, as discussed in exercise 7.1.1–31.

The next important step was taken by E. W. Samson and R. K. Mueller
[Report AFCRC-TR-55-118 (Cambridge, Mass.: Air Force Cambridge Research
Center, 1955), 16 pages], who presented an algorithm for the tautology problem
that uses consensus to eliminate variables one by one. Their algorithm therefore
was equivalent to SAT solving by successively eliminating variables via resolu-
tion. Samson and Mueller demonstrated their algorithm by applying it to the
unsatisfiable clauses that we considered in () above.

Independently, Martin Davis and Hilary Putnam had begun to work on the
satisfiability problem, motivated by the search for algorithms to deduce formulas
in first order logic—unlike Samson, Mills, and Mueller, who were chiefly inter-
ested in synthesizing efficient circuits. Davis and Putnam wrote an unpublished
62-page report “Feasible computational methods in the propositional calculus”
(Rensselaer Polytechnic Institute, October 1958) in which a variety of different
approaches were considered, such as the removal of unit clauses and pure literals,
as well as “case analysis,” that is, backtracking with respect to the subproblems
F |x and F | x̄. As an alternative to case analysis, they also discussed eliminating
the variable x by resolution. The account of this work that was eventually pub-
lished [JACM 7 (1960), 201–215] concentrated on hand calculation, and omitted
case analysis in favor of resolution; but when the process was later implemented
on a computer, jointly with George Logemann and Donald Loveland [CACM 5

(1962), 394–397], the method of backtracking through different cases was found
to work better with respect to memory requirements. (See Davis’s account of
these developments in Handbook of Automated Reasoning (2001), 3–15.)

This early work didn’t actually cause the satisfiability problem to appear
on many people’s mental radar screens, however. Far from it; ten years went
by before SAT became an important buzzword. The picture changed in 1971,
when Stephen A. Cook showed that satisfiability is the key to solving NP-

September 23, 2015

7.2.2.2 SATISFIABILITY: HISTORY 131

nondeterministic polynomial time
3SAT
Goldberg
Purdom
Brown
Franco
Haven
competition
Buro
Kleine Büning
contest
lookahead solvers
Böhm
Speckenmeyer
Rauzy
Stamm
strong components
dependency digraph
C-SAT
candidate literals
Dubois
Andre
Boufkhad
Carlier
Freeman
Li
double lookahead
Dubois
Dequen

complete problems: He proved that any algorithm to solve a decision problem in
nondeterministic polynomial time can be represented efficiently as a conjunction
of ternary clauses to be satisfied. (See STOC 3 (1971), 151–158. We’ll study NP-
completeness in Section 7.9.) Thus, a great multitude of hugely important prob-
lems could all be solved rather quickly, if we could only devise a decent algorithm
for a single problem, 3SAT; and 3SAT seemed almost absurdly simple to solve.

A year of heady optimism following the publication of Cook’s paper soon
gave way to the realization that, alas, 3SAT might not be so easy after all.
Ideas that looked promising in small cases didn’t scale well, as the problem
size was increased. Hence the central focus of work on satisfiability largely
retreated into theoretical realms, unrelated to programming practice, except
for occasional studies that used SAT as a simple model for the behavior of
backtracking algorithms in general. Examples of such investigations, pioneered
by A. T. Goldberg, P. W. Purdom, Jr., C. A. Brown, J. V. Franco, and others,
appear in exercises 213–216. See P. W. Purdom, Jr., and G. N. Haven, SICOMP
26 (1997), 456–483, for a survey of subsequent progress on questions of that kind.

The state of SAT art in the early 90s was well represented by an international
programming competition held in 1992 [see M. Buro and H. Kleine Büning,
Bulletin EATCS 49 (February 1993), 143–151]. The winning programs in that
contest can be regarded as the first successful lookahead solvers on the path from
Algorithm A to Algorithm L. Max Böhm “took the gold” by choosing the next
branch variable based on lexicographically maximal (H1(x), . . . , Hn(x)), where

Hk(x) = hk(x)+hk(x̄)+min
(
hk(x),hk(x̄)

)
, hk(x) =

∣∣{C ∈ F | x ∈ C, |C| = k}
∣∣.

[See M. Böhm and E. Speckenmeyer, Ann. Math. Artif. Intelligence 17 (1996),
381–400. A. Rauzy had independently proposed a somewhat similar branching
criterion in 1988; see Revue d’intelligence artificielle 2 (1988), 41–60.] The silver
medal went to Hermann Stamm, who used strong components of the dependency
digraph to narrow the search at each branch node.

Advances in practical algorithms for satisfiability now began to take off.
The benchmark programs of 1992 had been chosen at random, but the DIMACS
Implementation Challenge of 1993 featured also a large number of structured in-
stances of SAT. The main purpose of this “challenge” was not to crown a winner,
but to bring more than 100 researchers together for a three-day workshop, at
which they could compare and share results. In retrospect, the best overall
performance at that time was arguably achieved by an elaborate lookahead
solver called C-SAT, which introduced techniques for detailed exploration of the
first-order effects of candidate literals [see O. Dubois, P. Andre, Y. Boufkhad,
and J. Carlier, DIMACS 26 (1996), 415–436]. Further refinements leading
towards the ideas in Algorithm L appeared in a Ph.D. thesis by Jon W. Freeman
(Univ. of Pennsylvania, 1995), and in the work of Chu Min Li, who introduced
double lookahead [see Information Processing Letters 71 (1999), 75–80]. The
weighted binary heuristic () was proposed by O. Dubois and G. Dequen, Proc.
International Joint Conference on Artificial Intelligence 17 (2001), 248–253.

September 23, 2015

132 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Marques-Silva
Sakallah
unit-propagation
conflicts
unique implication points
UIP
backjump
Bayardo
Schrag
decision literal
purging
learned clause
St̊almarck
bounded model checking
Biere
Cimatti
Clarke
Zhu
planning
Kautz
Selman
BDD
Chaff
Moskewicz
Madigan
Zhao
Zhang
Malik
VSIDS
restarts
flushing
ACT
activity scores
watched literals
unit propagation
Zhang
Stickel
backtracking
competitions
BerkMin
Goldberg
Novikov
Järvisalo
Le Berre
Roussel
Simon
SATzilla
Horn clauses
unit propagations

Meanwhile the ideas underlying Algorithm C began to emerge. João P.
Marques-Silva, in his 1995 thesis directed by Karem A. Sakallah, discovered how
to turn unit-propagation conflicts into one or more clauses learned at “unique
implication points,” after which it was often possible to backjump past decisions
that didn’t affect the conflict. [See IEEE Trans. C48 (1999), 506–521.] Similar
methods were developed independently by R. J. Bayardo, Jr., and R. C. Schrag
[AAAI Conf. 14 (1997), 203–208], who considered only the special case of clauses
that include the current decision literal, but introduced techniques for purging
a learned clause when one of its literals was forced to flip its value. Both groups
limited the size of learned clauses, and noticed that their new methods gave
significant speedups on benchmark problems related to industrial applications.

The existence of fast SAT solvers, coupled with Gunnar St̊almarck’s new
ideas about applying logic to computer design [see Swedish patent 467076 (1992)],
led to the introduction of bounded model checking techniques by Armin Biere,
Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu [LNCS 1579 (1999),
193–207]. Satisfiability techniques had also been introduced to solve classical
planning problems in artificial intelligence [Henry Kautz and Bart Selman, Proc.
European Conf. Artificial Intelligence 10 (1992), 359–363]. Designers could now
verify much larger models than had been possible with BDD methods.

The major breakthroughs appeared in a solver called Chaff [M. W. Moske-
wicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, ACM/IEEE Design
Automation Conf. 38 (2001), 530–535], which had two especially noteworthy in-
novations: (i) “VSIDS” (the Variable State Independent Decreasing Sum heuris-
tic), a surprisingly effective way to select decision literals, which also worked well
with restarts, and which suggested the even better ACT heuristic of Algorithm C
that soon replaced it; also (ii) lazy data structures with two watched literals
per clause, which made unit propagation much faster with respect to large
learned clauses. (A somewhat similar watching scheme, introduced earlier by
H. Zhang and M. Stickel [J. Automated Reasoning 24 (2000), 277–296], had the
disadvantage that it needed to be downdated while backtracking.)

These exciting developments sparked a revival of international SAT compe-
titions, which have been held annually since 2002. The winner in 2002, BerkMin
by E. Goldberg and Y. Novikov, has been described well in Discrete Applied
Mathematics 155 (2007), 1549–1561. And year after year, these challenging con-
tests have continued to spawn further progress. By 2010, more than twice as
many benchmarks could be solved in a given period of time as in 2002, using
the programs of 2002 and 2010 on the computers of 2010 [see M. Järvisalo,
D. Le Berre, O. Roussel, and L. Simon, AI Magazine 33,1 (Spring 2012), 89–94].

The overall champion in 2007 was SATzilla, which was actually not a
separate SAT solver but rather a program that knew how to choose intelligently
between other solvers on any given instance. SATzillawould first take a few sec-
onds to compute basic features of a problem: the distribution of literals per clause
and clauses per literal, the balance between positive and negative occurrences of
variables, the proximity to Horn clauses, etc. Samples could quickly be taken to
estimate how many unit propagations occur at levels 1, 4, 16, 64, 256, and how

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 133

portfolio
tunes itself
Xu
Hutter
Hoos
Leyton-Brown
Tseytin
extended resolution
Pincusians
waerden
Local Lemma
W (k0, k1, . . . , kb−1)
monotonic
binary

many decisions are needed before reaching a conflict. Based on these numbers,
and experience with the performance of the other solvers on the previous year’s
benchmarks, SATzilla was trained to select the algorithm that appeared most
likely to succeed. This “portfolio” approach, which tunes itself nicely to the
characteristics of vastly different sets of clauses, has continued to dominate the
international competitions ever since. Of course portfolio solvers rely on the
existence of “real” solvers, invented independently and bug-free, which shine with
respect to particular classes of problems. And of course the winner of competi-
tions may not be the best actual system for practical use. [See L. Xu, F. Hutter,
H. H. Hoos, and K. Leyton-Brown, J. Artificial Intelligence Research 32 (2008),
565–606; LNCS 7317 (2012), 228–241; CACM 57, 5 (May 2014), 98–107.]

Historical notes about details of the algorithms, and about important related
techniques such as preprocessing and encoding, have already been discussed
above as the algorithms and techniques were described.

One recurring theme appears to be that the behavior of SAT solvers is full of
surprises: Some of the most important improvements have been introduced for
what has turned out to be the wrong reasons, and a theoretical understanding
is still far from adequate.

[In future, the next breakthrough might come from “variable learning,”
as suggested by Tseytin’s idea of extended resolution: Just as clause learning
increases the number of clauses, m, we might find good ways to increase the
number of variables, n. The subject seems to be far from fully explored.]

EXERCISES

1. [10] What are the shortest (a) satisfiable (b) unsatisfiable sets of clauses?

2. [20] Travelers to the remote planet Pincus have reported that all the healthy
natives like to dance, unless they’re lazy. The lazy nondancers are happy, and so are
the healthy dancers. The happy nondancers are healthy; but natives who are lazy and
healthy aren’t happy. Although the unhappy, unhealthy ones are always lazy, the lazy
dancers are healthy. What can we conclude about Pincusians, based on these reports?

3. [M21] Exactly how many clauses are in waerden (j, k;n)?

4. [22] Show that the 32 constraints of waerden (3, 3; 9) in () remain unsatisfiable
even if up to four of them are removed.

5. [M46] Is W (3, k) = Θ(k2)?

x 6. [HM37] Use the Local Lemma to show that W (3, k) = Ω(k2/(log k)3).

7. [21] Can one satisfy the clauses {(xi∨xi+2d∨xi+2d+1) | 1 ≤ i ≤ n−2d+1, d ≥ 0}∪
{(x̄i ∨ x̄i+2d ∨ x̄i+2d+1) | 1 ≤ i ≤ n− 2d+1, d ≥ 0}?

x 8. [20] Define clauses waerden (k0, k1, . . . , kb−1;n) that are satisfiable if and only if
n < W (k0, k1, . . . , kb−1).

9. [24] Determine the value of W (2, 2, k) for all k ≥ 0. Hint: Consider k mod 6.

x 10. [21] Show that every satisfiability problem with m clauses and n variables can be
transformed into an equivalent monotonic problem with m+n clauses and 2n variables,
in which the firstm clauses have only negative literals, and the last n clauses are binary
with two positive literals.

September 23, 2015

134 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Tsimelzon
3D MATCHING problem
gadget
Rivest
Heule
symmetric threshold functions
encoding
exclusion clauses
at-most-one
exact cover problem
Langford pairs

langford (n) and langford ′(n)
exclusion clauses
at-most-one
McGregor graph
kernel
strong product
complement of a graph
king move
torus

11. [27] (M. Tsimelzon, 1994.) Show that a general 3SAT problem with clauses
{C1, . . . , Cm} and variables {1, . . . , n} can be reduced to a 3D MATCHING problem
of size 10m that involves the following cleverly designed triples:

Each clause Cj corresponds to 3×10 vertices, namely lj, l̄j, |l|j′, and |l|j′′ for each
l ∈ Cj , together with wj, xj, yj, and zj, and also j′k and j′′k for 1 ≤ k ≤ 7. If i or ı̄ oc-
curs in t clauses Cj1 , . . . , Cjt , there are t “true” triples {ijk, ij′k, ij′′k } and t “false” triples
{ı̄jk, ij′k, ij′′1+(k mod t)}, for 1 ≤ k ≤ t. Each clause Cj = (l1 ∨ l2 ∨ l3) also spawns three

“satisfiability” triples {l̄1j, j′1, j′′1}, {l̄2j, j′1, j′′2}, {l̄3j, j′1, j′′3}; six “filler” triples
{l1j, j′2, j′′1}, {l̄1j, j′3, j′′1}, {l2j, j′4, j′′2}, {l̄2j, j′5, j′′2}, {l3j, j′6, j′′3}, {l̄3j, j′7, j′′3};
and twelve “gadget” triples {wj, j′2, j′′4}, {wj, j′4, j′′4}, {wj, j′6, j′′4}, {xj, j′2, j′′5},
{xj, j′5, j′′5}, {xj, j′7, j′′5}, {yj, j′3, j′′6}, {yj, j′4, j′′6}, {yj, j′7, j′′6}, {zj, j′3, j′′7},
{zj, j′5, j′′7}, {zj, j′6, j′′7}. Thus there are 27m triples altogether.

For example, Rivest’s satisfiability problem () leads to a 3D matching prob-
lem with 216 triples on 240 vertices; the triples that involve vertices 18 and 1̄8 are
{18, 18′, 18′′}, {1̄8, 18′, 11′′}, {1̄8, 8′1, 8′′2}, {18, 8′4, 8′′2}, {1̄8, 8′5, 8′′2}.
12. [21] (M. J. H. Heule.) Simplify () by exploiting the identity

S≤1(y1, . . . , yp) = ∃t (S≤1(y1, . . . , yj , t) ∧ S≤1(t̄, yj+1, . . . , yp)).

13. [24] Exercise 7.2.2.1–00 defines an exact cover problem that corresponds to Lang-
ford pairs of order n. (See page vii.)

a) What are the constraints analogous to () when n = 4?

b) Show that there’s a simple way to avoid duplicate binary clauses such as those
in (), whenever an exact cover problem is converted to clauses using ().

c) Describe the corresponding clauses langford (4) and langford ′(4).

14. [22] Explain why the clauses () might help a SAT solver to color a graph.

15. [24] By comparing the McGregor graph of order 10 in Fig. 33
with the McGregor graph of order 3 shown here, give a precise
definition of the vertices and edges of the McGregor graph that
has an arbitrary order n ≥ 3. Exactly how many vertices and
edges are present in this graph, as a function of n?

00 01 02

11 12

22

20 21

30 31 32

1016. [21] Do McGregor graphs have cliques of size 4?

17. [26] Let f(n) and g(n) be the smallest and largest values of r such that Mc-
Gregor’s graph of order n can be 4-colored, and such that some color appears exactly
r times. Use a SAT solver to find as many values of f(n) and g(n) as you can.

x 18. [28] By examining the colorings found in exercise 17, define an explicit way to
4-color a McGregor graph of arbitrary order n, in such a way that one of the colors is
used at most 5

6
n times. Hint: The construction depends on the value of nmod 6.

x 19. [29] Continuing exercise 17, let h(n) be the largest number of regions that can be
given two colors simultaneously (without using the clauses ()). Investigate h(n).

20. [40] In exactly how many ways can McGregor’s map (Fig. 33) be four-colored?

21. [22] Use a SAT solver to find a minimum-size kernel in the graph of Fig. 33.

22. [20] Color the graph C5×C5 with the fewest colors. (Two vertices of this graph
can receive the same color if and only if they are a king move apart in a 5× 5 torus.)

23. [20] Compare the clauses () and () to () and () in the case n = 7, r = 4.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 135

pure literal
complete binary tree
Sinz
cardinality constraint
Bailleux
Boufkhad
3SAT
auxiliary variables
arithmetic progressions, avoiding
list coloring
double coloring
coloring, multiple
cycle graphs
fractional coloring number
coloring, fractional
McGregor’s graphs
fractional exact cover
exact cover, fractional

x 24. [M32] The clauses obtained from () and () in the previous exercise can be
simplified, because we can remove the two that contain the pure literal b21.
a) Prove that the literal b21 is always pure in () and (), when r > n/2.
b) Show that b21 might also be pure in some cases when r < n/2.
c) The clauses obtained from () and () have many pure literals bkj when r has its

maximum value n− 1. Furthermore, their removal makes other literals pure. How
many clauses will remain in this case after all pure literals have been eliminated?

d) Show that the complete binary tree with n ≥ 2 leaves is obtained from complete
binary trees with n′ and n′′ = n− n′ leaves, where either n′ or n′′ is a power of 2.

e) Let a(n, r) and c(n, r) be respectively the number of auxiliary variables bkj and
the total number of clauses that remain after all of the pure auxiliary literals have
been removed from () and (). What are a(2k, 2k−1) and c(2k, 2k−1)?

f) Prove that a(n, r) = a(n, n′′) = a(n, n′) for n′′ ≤ r ≤ n′, and this common value is
max1≤r<n a(n, r). Also a(n, r) = a(n, n− r); and c(n, r) ≥ c(n, n− r) if r ≤ n/2.

25. [21] Show that ()–() and ()–() are equally effective when r = 2.

26. [22] Prove that Sinz’s clauses () and () enforce the cardinality constraint
x1 + · · ·+xn ≤ r. Hint: Show that they imply skj = 1 whenever x1 + · · ·+xj+k−1 ≥ k.
27. [20] Similarly, prove the correctness of Bailleux and Boufkhad’s () and ().
Hint: They imply bkj = 1 whenever the leaves below node k contain j or more 1s.

x 28. [20] What clauses result from () and () when we want to ensure that x1 +
· · ·+ xn ≥ 1? (This special case converts arbitrary clauses into 3SAT clauses.)

x 29. [20] Instead of the single constraint x1+ · · ·+xn ≤ r, suppose we wish to impose
a sequence of constraints x1 + · · ·+xi ≤ ri for 1 ≤ i ≤ n. Can this be done nicely with
additional clauses and auxiliary variables?

x 30. [22] If auxiliary variables skj are used as in () and () to make x1+· · ·+xn ≤ r,
while s′kj are used to make x̄1 + · · · + x̄n ≤ n − r, show that we may unify them by

taking s′jk = skj , for 1 ≤ j ≤ n− r, 1 ≤ k ≤ r. Can () and () be similarly unified?

x 31. [28] Let Ft(r) be the smallest n for which there is a bit vector x1 . . . xn with
x1 + · · ·+ xn = r and with no t equally spaced 1s. For example, F3(12) = 30 because
of the unique solution 101100011010000000010110001101. Discuss how Ft(n) might be
computed efficiently with the help of a SAT solver.

32. [15] A list coloring is a graph coloring in which v’s color belongs to a given
set L(v), for each vertex v. Represent list coloring as a SAT problem.

33. [21] A double coloring of a graph is an assignment of two distinct colors to every
vertex in such a way that neighboring vertices share no common colors. Similarly, a q-
tuple coloring assigns q distinct colors to each vertex. Find double and triple colorings
of the cycle graphs C5, C7, C9, . . . , using as few colors as possible.

34. [HM26] The fractional coloring number χ∗(G) of a graph G is defined to be the
minimum ratio p/q for which G has a q-tuple coloring that uses p colors.
a) Prove that χ∗(G) ≤ χ(G), and show that equality holds in McGregor’s graphs.
b) Let S1, . . . , SN be all the independent subsets of G’s vertices. Show that

χ∗(G) = min
λ
1
,...,λ

N
≥0

{λ1 + · · ·+ λN |∑N
j=1 λj [v ∈Sj] = 1 for all vertices v}.

(This is a fractional exact cover problem.)
c) What is the fractional coloring number χ∗(Cn) of the cycle graph Cn?

September 23, 2015

136 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

greedy algorithm
maximum independent set
contiguous United States
radio coloring
L(2, 1) labeling
Roberts
channel assignment
contiguous USA
square grid
grid graphs
triangular grid
simplex graph
n-cube
multiply
Dadda
Tseytin encoding
ternary operations
full adder
median operation
exclusive or, ternary
palindromic
Maximum ones
multiplications
palindrome
gates
wires
fanout gates
fanout gate
single-stuck-at faults

d) Consider the following greedy algorithm for coloring G: Set k ← 0 and G0 ← G;
while Gk is nonempty, set k ← k+1 and Gk ← Gk−1\Ck, where Ck is a maximum
independent set of Gk−1. Prove that k ≤ Hα(G)χ

∗(G), where α(G) is the size ofG’s
largest independent set; hence χ(G)/χ∗(G) ≤ Hα(G) = O(log n). Hint: Let tv =
1/|Ci| if v ∈ Ci, and show that

∑
v∈S tv ≤ H|S| whenever S is an independent set.

35. [22] Determine χ∗(G) when G is (a) the graph of the contiguous United States
(see 7–() and exercise 7–45); (b) the graph of exercise 22.

x 36. [22] A radio coloring of a graph, also known as an L(2, 1) labeling, is an assign-
ment of integer colors to vertices so that the colors of u and v differ by at least 2
when u−−−v, and by at least 1 when u and v have a common neighbor. (This notion,
introduced by Fred Roberts in 1988, was motivated by the problem of assigning channels
to radio transmitters, without interference from “close” transmitters and without strong
interference from “very close” transmitters.) Find a radio coloring of Fig. 33 that uses
only 16 consecutive colors.

37. [20] Find an optimum radio coloring of the contiguous USA graph (see 7–()).

38. [M25] How many consecutive colors are needed for a radio coloring of (a) the
n×n square grid Pn Pn? (b) the vertices {(x, y, z) | x, y, z ≥ 0, x+ y+ z = n}, which
form a triangular grid with n+ 1 vertices on each side.

39. [M46] Find an optimum radio coloring of the n-cube, for some value of n > 6.

40. [01] Is the factorization problem () unsatisfiable whenever z is a prime number?

41. [M21] Determine the number of Boolean operations ∧, ∨, ⊕ needed to multiply
m-bit numbers by n-bit numbers with Dadda’s scheme, when 2 ≤ m ≤ n.
42. [21] Tseytin encoding analogous to () can be devised also for ternary opera-
tions, without introducing any additional variables besides those of the function being
encoded. Illustrate this principle by encoding the basic operations x ← t ⊕ u ⊕ v and
y ← 〈tuv〉 of a full adder directly, instead of composing them from ⊕, ∧, and ∨.

x 43. [21] For which integers n ≥ 2 do there exist odd palindromic binary numbers
x = (xn . . . x1)2 = (x1 . . . xn)2 and y = (yn . . . y1)2 = (y1 . . . yn)2 such that their
product xy = (zm+n . . . z1)2 = (z1 . . . zm+n)2 is also palindromic?

x 44. [30] (Maximum ones.) Find the largest possible value of νx+ νy+ ν(xy), namely
the greatest total number of 1 bits, over all multiplications of 32-bit binary x and y.

45. [20] Specify clauses that constrain (zt . . . z1)2 to be a perfect square.

46. [30] Find the largest perfect square less than 2100 that is a binary palindrome.

x 47. [20] Suppose a circuit such as Fig. 34 has m outputs and n inputs, with g gates
that transform two signals into one and h gates that transform one signal into two.
Find a relation between g and h, by expressing the total number of wires in two ways.

48. [20] The small circuit shown here has three inputs, three XOR gates,
one fanout gate, eight wires, and one output. Which single-stuck-at faults are
detected by each of the eight test patterns pqr?

p q r

x y

z

z

49. [24] Write a program that determines exactly which of the 100 single-
stuck-at faults of the circuit in Fig. 34 are detected by each of the 32 possible
input patterns. Also find all the minimum sets of test patterns that will
discover every such fault (unless it’s not detectable).

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 137

Larrabee
automatic test pattern gen
single-stuck-at faults
prod
number theory
monotone decreasing
depends on
BDD
training sets
comparator modules
sorting network
Cray 2
Life
Bailleux
Boufkhad

50. [24] Demonstrate Larrabee’s method of representing stuck-at faults by describing
the clauses that characterize test patterns for the fault “x1

2 stuck at 1” in Fig. 34. (This
is the wire that splits off of x2 and feeds into x3

2 and x4
2, then to b2 and b3; see Table 1.)

51. [40] Study the behavior of SAT solvers on the problem of finding a small number of
test patterns for all of the detectable single-stuck-at faults of the circuit prod (32, 32).
Can a complete set of patterns for this large circuit be discovered “automatically”
(without relying on number theory)?

52. [15] What clauses correspond to () and () when the second case on the left
of Table 2, f(1, 0, 1, 0, . . . , 1) = 1, is taken into account?

x 53. [M20] The numbers in Table 2 are definitely nonrandom. Can you see why?

x 54. [23] Extend Table 2 using the rule in the previous exercise. How many rows are
needed before f(x) has no M -term representation in DNF, when M = 3, 4, and 5?

55. [21] Find an equation analogous to () that is consistent with Table 2 and has
every variable complemented. (Thus the resulting function is monotone decreasing.)

x 56. [22] Equation () exhibits a function matching Table 2 that depends on only 8
of the 20 variables. Use a SAT solver to show that we can actually find a suitable f
that depends on only five of the xj .

x 57. [29] Combining the previous exercise with the methods of Section 7.1.2, exhibit
a function f for Table 2 that can be evaluated with only six Boolean operations(!).

x 58. [20] Discuss adding the clauses p̄i,j ∨ q̄i,j to (), (), and ().

59. [M20] Compute the exact probability that f̂(x) in () differs from f(x) in ().

60. [24] Experiment with the problem of learning f(x) in () from training sets of
sizes 32 and 64. Use a SAT solver to find a conjectured function, f̂(x); then use BDD
methods to determine the probability that this f̂(x) differs from f(x) for random x.

61. [20] Explain how to test when a set of clauses generated from a training set via
()–() is satisfiable only by the function f(x) in ().

62. [23] Try to learn a secret small-DNF function with N-bit training sets x(0), x(1),
x(2), . . . , where x(0) is random but each bit of x(k) ⊕ x(k−1) for k > 0 is 1 with
probability p. (Thus, if p is small, successive data points will tend to be near each
other.) Do such sets turn out to be more efficient in practice than the purely random
ones that arise for p = 1/2?

x 63. [20] Given an n-network α = [i1 : j1][i2 : j2] . . . [ir : jr], as defined in the exercises
for Section 5.3.4, explain how to use a SAT solver to test whether or not α is a sorting
network. Hint: Use Theorem 5.3.4Z.

64. [26] The exact minimum time T̂ (n) of a sorting network for n elements is a famous
unsolved problem, and the fact that T̂ (9) = 7 was first established in 1987 by running a
highly optimized program for many hours on a Cray 2 supercomputer.

Show that this result can now be proved with a SAT solver in less than a second(!).

x 65. [28] Describe encodings of the Life transition function () into clauses.

a) Use only the variables x′ij and xij .
b) Use auxiliary variables as in the Bailleux and Boufkhad encoding ()–(), shar-

ing intermediate results between neighboring cells as discussed in the text.

66. [24] Use a SAT solver to find short counterparts to Fig. 35 in which (a) X1 = ;
(b) X2 = . In each case X0 should have the smallest possible number of live cells.

September 23, 2015

138 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

mobile
chessboard
glider
oscillator
rotor
stator
grid
symmetries
canonical forms
fourfold symmetry
reflection
rotational symmetry
chiral symmetry [rotation but not reflection)
Wainwright
snake dance
Mobile flipflops
oscillator
flipflop
toruses
Silver

67. [24] Find a mobile chessboard pathX0 → X1 → . . .→ X21 with no more than five
cells alive in each Xt. (The glider in () leaves the board after X20.) How about X22?

68. [39] Find a maximum-length mobile path in which 6 to 10 cells are always alive.

69. [23] Find all (a) still lifes and (b) oscillators of period > 1 that live in a 4×4 board.

70. [21] The live cells of an oscillator are divided into a rotor (those that change) and
a stator (those that stay alive).

a) Show that the rotor cannot be just a single cell.

b) Find the smallest example of an oscillator whose rotor is ↔ .

c) Similarly, find the smallest oscillators of period 3 whose rotors have the following
forms: → → → ; → → → ; → → → .

x 71. [22] When looking for sequences of Life transition on a square grid, an asymmet-
rical solution will appear in eight different forms, because the grid has eight different
symmetries. Furthermore, an asymmetrical periodic solution will appear in 8r different
forms, if r is the length of the period.

Explain how to add further clauses so that essentially equivalent solutions will
occur only once: Only “canonical forms” will satisfy the conditions.

72. [28] Oscillators of period 3 are particularly intriguing, because Life seems so
inherently binary.

a) What are the smallest such oscillators (in terms of bounding box)?

b) Find period-3 oscillators of sizes 9×n and 10×n, with n odd, that have “fourfold
symmetry”: The patterns are unchanged after left-right and/or up-down reflection.
(Such patterns are not only pleasant to look at, they also are much easier to find,
because we need only consider about one-fourth as many variables.)

c) What period-3 oscillators with fourfold symmetry have the most possible live cells,
on grids of sizes 15× 15, 15× 16, and 16× 16?

d) The period-3 oscillator shown here has another kind of four-way sym-
metry, because it’s unchanged after 90◦ rotation. (It was discovered in
1972 by Robert Wainwright, who called it “snake dance” because its
stator involves four snakes.) What period-3 oscillators with 90◦ symmetry have
the most possible live cells, on grids of sizes 15× 15 and 16× 16?

x 73. [21] (Mobile flipflops.) An oscillator of period 2 is called a flipflop, and the Life
patterns of mobile flipflops are particularly appealing: Each cell is either blank (dead
at every time t) or type A (alive when t is even) or type B (alive when t is odd). Every
nonblank cell (i) has exactly three neighbors of the other type, and (ii) doesn’t have
exactly two or three neighbors of the same type.

a) The blank cells of a mobile flipflop also satisfy a special condition. What is it?

b) Find a mobile flipflop on an 8× 8 grid, with top row BA
ABAB .

c) Find patterns that are mobile flipflops on m × n toruses for various m and n.
(Thus, if replicated indefinitely, each one will tile the plane with an infinite mobile
flipflop.) Hint: One solution has no blank cells whatsoever; another has blank
cells like a checkerboard.

74. [M28] Continuing the previous exercise, prove that no nonblank cell of a finite
mobile flipflop has more than one neighbor of its own type. (This fact greatly speeds
up the search for finite mobile flipflops.) Can two type A cells be diagonally adjacent?

75. [M22] (Stephen Silver, 2000.) Show that a finite, mobile oscillator of period p ≥ 3
must have some cell that is alive more than once during the cycle.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 139

Conway
spaceship
Light speed
benchmark tests
Garden of Eden
bitmap
orphan
Alice and Bob
mutual exclusion–

76. [41] Construct a mobile Life oscillator of period 3.

77. [20] “StepX−1,” which precedesX0 in (), has the glider configuration instead
of . What conditions on the still life X5 will ensure that state X0 is indeed reached?
(We don’t want digestion to begin prematurely.)

78. [21] Find a solution to the four-step eater problem in () that works on a 7× n
grid, for some n, instead of 8× 8.

79. [23] What happens if the glider meets the eater of () in its opposite phase
(namely instead of)?

80. [21] To counteract the problem in the previous exercise, find an eater that is
symmetrical when reflected about a diagonal, so that it eats both and . (You’ll
have to go larger than 8× 8, and you’ll have to wait longer for digestion.)

81. [21] Conway discovered a remarkable “spaceship,” where X4 is X0 shifted up 2:

X0 = → → → → = X4 .

Is there a left-right symmetrical still life that will eat such spaceships?

x 82. [22] (Light speed.) Imagine Life on an infinite plane, with all cells dead at time 0
except in the lower left quadrant. More precisely, suppose Xt = (xtij) is defined for all
t ≥ 0 and all integers −∞ < i, j < +∞, and that x0ij = 0 whenever i > 0 or j > 0.

a) Prove that xtij = 0 whenever 0 ≤ t < max(i, j).
b) Furthermore xtij = 0 when 0 ≤ −i ≤ j and 0 ≤ t < i+ 2j.
c) And xtij = 0 for 0 ≤ t < 2i + 2j, if i ≥ 0 and j ≥ 0. Hint: If xtij = 0 whenever

i ≥ −j, prove that xtij = 0 whenever i > −j.
83. [21] According to the previous exercise, the earliest possible time that cell (i, j)
can become alive, if all initial life is confined to the lower left quadrant of the plane, is
at least

f(i, j) = i[i≥ 0] + j [j≥ 0] + (i+ j)[i + j≥ 0].

For example, when |i| ≤ 5 and |j| ≤ 5 the values of f(i, j)
are shown at the right.

Let f∗(i, j) be the actual minimum time at which cell
(i, j) can be alive, for some such initial state. Devise a set
of clauses by which a SAT solver can test whether or not
f∗(i0, j0) = f(i0, j0), given i0 and j0. (Such clauses make
interesting benchmark tests.)

5 6 7 8 9 10 12 14 16 18 20
4 4 5 6 7 8 10 12 14 16 18
3 3 3 4 5 6 8 10 12 14 16
2 2 2 2 3 4 6 8 10 12 14
1 1 1 1 1 2 4 6 8 10 12
0 0 0 0 0 0 2 4 6 8 10
0 0 0 0 0 0 1 3 5 7 9
0 0 0 0 0 0 1 2 4 6 8
0 0 0 0 0 0 1 2 3 5 7
0 0 0 0 0 0 1 2 3 4 6
0 0 0 0 0 0 1 2 3 4 5

84. [33] Prove that f∗(i, j) = f(i, j) in the following cases when j > 0: (a) i = j,
i = j + 1, and i = j − 1. (b) i = 0 and i = −1. (c) i = 1− j. (d) i = j − 2. (e) i = −2.

x 85. [39] A Garden of Eden is a state of Life that has no predecessor.

a) If the pattern of 92 cells illustrated here occurs anywhere within a
bitmap X, verify that X is a Garden of Eden. (The gray cells can be
either dead or alive.)

b) This “orphan” pattern, found with a SAT solver’s help, is the smallest
that is currently known. Can you imagine how it was discovered?

86. [M23] How many Life predecessors does a random10×10 bitmap have, on average?

87. [21] Explain why the clauses () represent Alice and Bob’s programs (), and
give a general recipe for converting such programs into equivalent sets of clauses.

September 23, 2015

140 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

mutual-exclusion protocol
starvation
initial state
starvation cycle
simple path
invariant
mutual exclusion
Peterson
starvation cycles
pure cycle
simple cycle
Dekker

88. [18] Satisfy () and () for 0 ≤ t < 6, and the 20× 6 additional binary clauses
that exclude multiple states, along with the “embarrassing” unit clauses (A36)∧ (B36).

89. [21] Here’s a mutual-exclusion protocol once recommended in 1966. Does it work?

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If l go to A3, else to A5.
A3. If b go to A3, else to A4.
A4. Set l← 0, go to A2.
A5. Critical, go to A6.
A6. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If l go to B5, else to B3.
B3. If a go to B3, else to B4.
B4. Set l← 1, go to B2.
B5. Critical, go to B6.
B6. Set b← 0, go to B0.

90. [20] Show that (), (), and () permit starvation, by satisfying () and ().

91. [M21] Formally speaking, Alice is said to “starve” if there is (i) an infinite se-
quence of transitions X0 → X1 → · · · starting from the initial state X0, and (ii) an in-
finite sequence @0, @1, . . . of Boolean “bumps” that changes infinitely often, such that
(iii) Alice is in a “maybe” or “critical” state only a finite number of times. Prove that
this can happen if and only if there is a starvation cycle () as discussed in the text.

92. [20] Suggest O(r2) clauses with which we can determine whether or not a mutual
exclusion protocol permits a path X0 → X1 → · · · → Xr of distinct states.

93. [20] What clauses correspond to the term ¬Φ(X ′) in ()?

x 94. [21] Suppose we know that (X0 → X1 → · · · → Xr)∧¬Φ(Xr) is unsatisfiable for
0 ≤ r ≤ k. What clauses will guarantee that Φ is invariant? (The case k = 1 is ().)

95. [20] Using invariants like (), prove that () and () provide mutual exclusion.

96. [22] Find all solutions to () when r = 2. Also illustrate the fact that invariants
are extremely helpful, by finding a solution with distinct states X0, X1, . . . , Xr and
with r substantially greater than 2, if the clauses involving Φ are removed.

97. [20] Can states A6 and B6 occur simultaneously in Peterson’s protocol ()?

x 98. [M23] This exercise is about proving the nonexistence of starvation cycles ().

a) A cycle of states is called “pure” if one of the players is never bumped, and “simple”
if no state is repeated. Prove that the shortest impure cycle, if any, is either simple
or consists of two simple pure cycles that share a common state.

b) If Alice is starved by some cycle with protocol (), we know that she is never in
states A0 or A5 within the cycle. Show that she can’t be in A1, A2, or A6 either.

c) Construct clauses to test whether there exist states X0 → X1 → · · · → Xr, with
X0 arbitrary, such that (X0X1 . . . Xk−1) is a starvation cycle for some k ≤ r.

d) Therefore we can conclude that () is starvation-free without much extra work.

99. [25] Th.Dekker devised the first correct mutual-exclusion protocol in 1965:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A3, else to A6.
A3. If l go to A4, else to A2.
A4. Set a← 0, go to A5.
A5. If l go to A5, else to A1.
A6. Critical, go to A7.
A7. Set l← 1, go to A8.
A8. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B3, else to B6.
B3. If l go to B2, else to B4.
B4. Set b← 0, go to B5.
B5. If l go to B1, else to B5.
B6. Critical, go to B7.
B7. Set l← 0, go to B8.
B8. Set b← 0, go to B0.

Use bounded model checking to verify its correctness.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 141

simultaneous write/write
simultaneous read/write
nondeterministically
flickering
bishops
tomographically balanced
Basket weavers
gipatsi patterns
pixels, rotated
grid, rotated

100. [22] Show that the following protocol can starve one player but not the other:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A2, else to A3.
A3. Critical, go to A4.
A4. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B3, else to B5.
B3. Set b← 0, go to B4.
B4. If a go to B4, else to B1.
B5. Critical, go to B6.
B6. Set b← 0, go to B0.

x 101. [31] Protocol () has the potential defect that Alice and Bob might both be
trying to set the value of l at the same time. Design a mutual-exclusion protocol in
which each of them controls two binary signals, visible to the other. Hint: The method
of the previous exercise can be enclosed in another protocol.

102. [22] If Alice is setting a variable at the same time that Bob is trying to read
it, we might want to consider a more stringent model under which he sees either 0
or 1, nondeterministically. (And if he looks k times before she moves to the next
step, he might see 2k possible sequences of bits.) Explain how to handle this model of
“flickering” variables by modifying the clauses of exercise 87.

103. [18] (Do this exercise by hand, it’s fun!) Find the 7×21 image whose tomographic
sums are (r1, . . . , r7) = (1, 0, 13, 6, 12, 7, 19); (c1, . . . , c21) = (4, 3, 3, 4, 1, 6, 1, 3, 3, 3, 5, 1,
1, 5, 1, 5, 1, 5, 1, 1, 1); (a1, . . . , a27) = (0, 0, 1, 2, 2, 3, 2, 3, 3, 2, 3, 3, 4, 3, 2, 3, 3, 3, 4, 3, 2, 2, 1,
1, 1, 1, 1); (b1, . . . , b27) = (0, 0, 0, 0, 0, 1, 3, 3, 4, 3, 2, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 4, 3, 2, 1, 1).

104. [M21] For which m and n is it possible to satisfy the digital tomography problem
with ad = bd = 1 for 0 < d < m+ n? (Equivalently, when can m+ n− 1 nonattacking
bishops be placed on an m× n board?)

x 105. [M28] A matrix whose entries are {−1, 0,+1} is tomographically balanced if its
row, column, and diagonal sums are all zero. Two binary images X = (xij) and
X ′ = (x′ij) clearly have the same row, column, and diagonal sums if and only if X−X ′
is tomographically balanced.

a) Suppose Y is tomographically balanced and has m rows, n columns, and t occur-
rences of +1. How many m× n binary matrices X and X ′ satisfy X −X ′ = Y ?

b) Express the condition “Y is tomographically balanced” in terms of clauses, with
the values {−1, 0,+1} represented respectively by the 2-bit codes {10, 00, 01}.

c) Count the number T (m,n) of tomographically balanced matrices, for m,n ≤ 8.
d) How many such matrices have exactly four occurrences of +1?
e) At most how many +1s can a 2n× 2n tomographically balanced matrix have?
f) True or false: The positions of the +1s determine the positions of the −1s.

106. [M20] Determine a generous upper bound on the possible number of different
sets of input data {ri, cj , ad, bd} that might be given to a 25 × 30 digital tomography
problem, by assuming that each of those sums independently has any of its possible
values. How does this bound compare to 2750?

x 107. [22] Basket weavers from the Tonga culture of Inhambane, Mozambique, have
developed appealing periodic designs called “gipatsi patterns” such as this:

· · · · · ·

(Notice that an ordinary pixel grid has been rotated by 45◦.) Formally speaking, a
gipatsi pattern of period p and width n is a p×n binary matrix (xi,j) in which we have

September 23, 2015

142 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

lexicographically smallest solution
interactive SAT solving
van der Waerden numbers
waerden
digital tomography
NP-complete
0–1 matrices
binary tensor contingency problem
contingency
grid
land mine
Minesweeper

xi,1 = xi,n = 1 for 1 ≤ i ≤ p. Row i of the matrix is to be shifted right by i− 1 places
in the actual pattern. The example above has p = 6, n = 13, and the first row of its
matrix is 1111101111101. Such a pattern has row sums ri =

∑n
j=1 xi,j for 1 ≤ i ≤ p and

column sums cj =
∑p

i=1 xi,j for 1 ≤ j ≤ n, as usual. By analogy with (), it also has

ad =
∑

i+j≡d (modulop)

xi,j , 1 ≤ d ≤ p; bd =
∑

2i+j≡d (modulo2p)

xi,j , 1 ≤ d ≤ 2p.

a) What are the tomographic parameters ri, cj , ad, and bd in the example pattern?
b) Do any other gipatsi patterns have the same parameters?

108. [23] The column sums cj in the previous exercise are somewhat artificial, because
they count black pixels in only a small part of an infinite line. If we rotate the grid at
a different angle, however, we can obtain infinite periodic patterns for which each of
Fig. 36’s four directions encounters only a finite number of pixels.

Design a pattern of period 6 in which parallel lines always have equal tomographic
projections, by changing each of the gray pixels in the following diagram to either white
or black:

· · ·

6 6 6 6 6 6 444444444 12 12 12121212

· · ·

x 109. [20] Explain how to find the lexicographically smallest solution x1 . . . xn to a
satisfiability problem, using a SAT solver repeatedly. (See Fig. 37(a).)

110. [19] What are the lexicographically (first, last) solutions to waerden (3, 10; 96)?

111. [40] The lexicographically first and last solutions to the “Cheshire Tom” problem
in Fig. 37 are based on the top-to-bottom-and-left-to-right ordering of pixels. Experi-
ment with other pixel orderings— for example, try bottom-to-top-and-right-to-left.

112. [46] Exactly how many solutions does the tomography problem of Fig. 36 have?

x 113. [30] Prove that the digital tomography problem is NP-complete, even if the
marginal sums r, c, a, b are binary: Show that an efficient algorithm to decide whether
or not an n × n pixel image (xij) exists, having given 0–1 values of ri =

∑
j xij ,

cj =
∑

i xij , ad =
∑

i+j=d+1 xij , and bd =
∑

i−j=d−n xij , could be used to solve the
binary tensor contingency problem of exercise 212(a).

114. [27] Each cell (i, j) of a given rectangular grid either contains a land mine
(xi,j= 1) or is safe (xi,j= 0). In the game of Minesweeper, you are supposed to identify
all of the hidden mines, by probing locations that you hope are safe: If you decide to
probe a cell with xi,j = 1, the mine explodes and you die (at least virtually). But if
xi,j= 0 you’re told the number ni,j of neighboring cells that contain mines, 0 ≤ ni,j≤ 8,
and you live to make another probe. By carefully considering these numeric clues, you
can often continue with completely safe probes, eventually touching every mine-free cell.

For example, suppose the hidden mines happen to match the 25× 30 pattern of
the Cheshire cat (Fig. 36), and you start by probing the upper right corner. That cell
turns out to be safe, and you learn that n1,30 = 0; hence it’s safe to probe all three
neighbors of (1, 30). Continuing in this vein soon leads to illustration (α) below, which
depicts information about cells (i, j) for 1 ≤ i ≤ 9 and 21 ≤ j ≤ 30; unprobed cells are

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 143

Minesweeper
Life
flipflops
serial correlation coefficient
runs of 1s
Bailleux
Boufkhad
tatami tiling
dominoes
waerden
conditioning
reduced clauses
all solutions
satisfying assignments

shown in gray, otherwise the value of ni,j appears. From this data it’s easy to deduce
that x1,24 = x2,24 = x3,25 = x4,25 = · · · = x9,26 = 1; you’ll never want to probe in those
places, so you can mark such cells with X, arriving at state (β) since n3,24 = n5,25 = 4.
Further progress downward to row 17, then leftward and up, leads without difficulty to
state (γ). (Notice that this process is analogous to digital tomography, because you’re
trying to reconstruct a binary array from information about partial sums.)

(α) =

200000
310000
20000
31000
2000
3000
3000
3000
3100

; (β) =

X200000
X310000
4X20000
X31000
4X2000
X3000
X3000
X3000
X3100

; (γ) =

01 X200000
12 X310000
2X 4X20000
5X X31000
XX 4X2000
5X X3000
3X X3000
2X424X3000
12X23X3100

.

a) Now find safe probes for all thirteen of the cells that remain gray in (γ).

b) Exactly how much of the Cheshire cat can be revealed without making any unsafe
guesses, if you’re told in advance that (i) x1,1 = 0? (ii) x1,30 = 0? (iii) x25,1 = 0?
(iv) x25,30 = 0? (v) all four corners are safe? Hint: A SAT solver can help.

115. [25] Empirically estimate the probability that a 9×9 game of Minesweeper, with
10 randomly placed mines, can be won with entirely safe probes after the first guess.

116. [22] Find examples of Life flipflops for which X and X ′ are tomographically
equal.

117. [23] Given a sequence x = x1 . . . xn, let ν
(2)x = x1x2 + x2x3 + · · · + xn−1xn.

(A similar sum appears in the serial correlation coefficient, 3.3.2–().)

a) Show that, when x is a binary sequence, the number of runs of 1s in x can be
expressed in terms of νx and ν(2)x.

b) Explain how to encode the condition ν(2)x ≤ r as a set of clauses, by modifying
the cardinality constraints ()–() of Bailleux and Boufkhad.

c) Similarly, encode the condition ν(2)x ≥ r.
118. [20] A tatami tiling is a covering by dominoes in which no three share a corner:

(Notice that is disallowed, but would be fine.) Explain how to use a SAT solver
to find a tatami tiling that covers a given set of pixels, unless no such tiling exists.

119. [18] Let F = waerden (3, 3; 9) be the 32 clauses in (). For which literal l is the
reduced formula F | l smallest? Exhibit the resulting clauses.

120. [M20] True or false: F |L = {C \ L | C ∈ F and C ∩ L = ∅}, if L = {l̄ | l ∈ L}.
121. [21] Spell out the changes to the link fields in the data structures, by expanding
the higher-level descriptions that appear in steps A3, A4, A7, and A8 of Algorithm A.

x 122. [21] Modify Algorithm A so that it finds all satisfying assignments of the clauses.

123. [17] Show the contents of the internal data structures L, START, and LINK when
Algorithm B or Algorithm D begins to process the seven clauses R′ of ().

September 23, 2015

144 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

satisfying assignments
Rivest
watched
unit clauses
watch list
branching heuristics
2SAT
exponential time
backtrack tree, optimum
BIMP tables
sequential lists
dynamic storage allocation
buddy system
implication digraph
Compensation resolvents
resolve

x 124. [21] Spell out the low-level link field operations that are sketched in step B3.

x 125. [20] Modify Algorithm B so that it finds all satisfying assignments of the clauses.

126. [20] Extend the computation in () by one more step.

127. [17] What move codesm1 . . . md correspond to the computation sketched in (),
just before and after backtracking occurs?

128. [19] Describe the entire computation by which Algorithm D proves that Rivest’s
clauses () are unsatisfiable, using a format like (). (See Fig. 39.)

129. [20] In the context of Algorithm D, design a subroutine that, given a literal l,
returns 1 or 0 according as l is or is not being watched in some clause whose other
literals are entirely false.

130. [22] What low-level list processing operations are needed to “clear the watch list
for x̄k” in step D6?

x 131. [30] After Algorithm D exits step D3 without finding any unit clauses, it has
examined the watch lists of every free variable. Therefore it could have computed the
lengths of those watch lists, with little additional cost; and information about those
lengths could be used to make a more informed decision about the variable that’s chosen
for branching in step D4. Experiment with different branching heuristics of this kind.

x 132. [22] Theorem 7.1.1K tells us that every 2SAT problem can be solved in linear
time. Is there a sequence of 2SAT clauses for which Algorithm D takes exponential time?

x 133. [25] The size of a backtrack tree such as Fig. 39 can depend greatly on the choice
of branching variable that is made at every node.

a) Find a backtrack tree for waerden (3, 3; 9) that has the fewest possible nodes.

b) What’s the largest backtrack tree for that problem?

134. [22] The BIMP tables used by Algorithm L are sequential lists of dynamically
varying size. One attractive way to implement them is to begin with every list having
capacity 4 (say); then when a list needs to become larger, its capacity can be doubled.

Adapt the buddy system (Algorithm 2.5R) to this situation. (Lists that shrink
when backtracking needn’t free their memory, since they’re likely to grow again later.)

x 135. [16] The literals l′ in BIMP(l) are those for which l −−→ l′ in the “implication
digraph” of a given satisfiability problem. How can we easily find all of the literals l′′

such that l′′−−→ l, given l?

136. [15] What pairs will be in TIMP(3̄), before and after x5 is set to zero with respect
to the clauses () of waerden (3, 3; 9), assuming that we are on decision level d = 0?

137. [24] Spell out in detail the processes of (a) removing a variable X from the free
list and from all pairs in TIMP lists (step L7 of Algorithm L), and of (b) restoring it
again later (step L12). Exactly how do the data structures change?

x 138. [20] Discuss what happens in step L9 of Algorithm L if we happen to have both
v̄ ∈ BIMP(ū) and ū ∈ BIMP(v̄).

139. [25] (Compensation resolvents.) If w ∈ BIMP(v), the binary clause u ∨ v implies
the binary clause u ∨ w, because we can resolve u ∨ v with v̄ ∨ w. Thus step L9 could
exploit each new binary clause further, by appending w as well as v to BIMP(ū), for all
such w. Discuss how to do this efficiently.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 145

ISTAMP
stamping
move codes
big clause
heuristic scores
cutoffs
participant
participants

140. [21] The FORCE, BRANCH, BACKF, and BACKI arrays in Algorithm L will obviously
never contain more than n items each. Is there a fairly small upper bound on the
maximum possible size of ISTACK?

141. [18] Algorithm L might increase ISTAMP so often that it overflows the size of the
IST(l) fields. How can the mechanism of () avoid bugs in such a case?

142. [24] Algorithms A, B, and D can display their current progress by exhibiting
a sequence of move codes m1 . . .md such as () and (); but Algorithm L has no
such codes. Show that an analogous sequence m1 . . .mF could be printed in step L2,
if desired. Use the codes of Algorithm D; but extend them to show mj = 6 (or 7) if
Rj−1 is a true (or false) literal whose value was found to be forced by Algorithm X, or
forced by being a unit clause in the input.

x 143. [30] Modify Algorithm L so that it will apply to nonempty clauses of any size.
Call a clause big if its size is greater than 2. Instead of TIMP tables, represent every big
clause by ‘KINX’ and ‘CINX’ tables: Every literal l has a sequential list KINX(l) of big
clause numbers; every big clause c has a sequential list CINX(c) of literals; c is in KINX(l)
if and only if l is in CINX(c). The current number of active clauses containing l is indi-
cated by KSIZE(l); the current number of active literals in c is indicated by CSIZE(c).

144. [15] True or false: If l doesn’t appear in any clause, h′(l) = 0.1 in ().

145. [23] Starting with h(l) = 1 for each of the 18 literals l in waerden (3, 3; 9), find
successively refined estimates h′(l), h′′(l), . . . , using () with respect to the 32 ternary
clauses (). Then, assuming that x5 has been set false as in exercise 136, and that the
resulting binary clauses 13, 19, 28, 34, 37, 46, 67, 79 have been included in the BIMP

tables, do the same for the 16 literals that remain at depth d = 1.

146. [25] Suggest an alternative to () and () for use when Algorithm L has been
extended to nonternary clauses as in exercise 143. (Strive for simplicity.)

147. [05] Evaluate Cmax in () for d = 0, 1, 10, 20, 30, using the default C0 and C1.

148. [21] Equation () bounds the maximum number of candidates using a formula
that depends on the current depth d, but not on the total number of free variables.
The same cutoffs are used in problems with any number of variables. Why is that a
reasonable strategy?

x 149. [26] Devise a data structure that makes it convenient to tell whether a given
variable x is a “participant” in Algorithm L.

150. [21] Continue the text’s story of lookahead in waerden (3, 3; 9): What happens at
depth d = 1 when l ← 7 and T ← 22 (see ()), after literal 4 has become proto true?
(Assume that no double-lookahead is done.)

x 151. [26] The dependency digraph () has 16 arcs, only 8 of which are captured in the
subforest (). Show that, instead of (), we could actually list the literals l and give
them offsets o(l) in such a way that u appears before v in the list and has o(u) > o(v) if
and only if v−−→u in (). Thus we could capture all 16 dependencies via levels of truth.

152. [22] Give an instance of 3SAT for which no free “participants” are found in
step X3, yet all clauses are satisfied. Also describe an efficient way to verify satisfaction.

153. [17] What’s a good way to weed out unwanted candidates in step X3, if C>Cmax?

154. [20] Suppose we’re looking ahead with just four candidate variables, {a, b, c, d},
and that they’re related by three binary clauses (a∨b̄)∧(a∨c̄)∧(c∨d̄). Find a subforest
and a sequence of truth levels to facilitate lookaheads, analogous to () and ().

September 23, 2015

146 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

lookahead forest
pure literal
autarky
Black and white principle
Black and blue principle
blocked binary clause
kSAT
3SAT
analysis of algs
kSAT
positive autarky
positive literals
autarky
necessary assignments

155. [32] Sketch an efficient way to construct the lookahead forest in step X4.

156. [05] Why is a pure literal a special case of an autarky?

157. [10] Give an example of an autarky that is not a pure literal.

158. [15] If l is a pure literal, will Algorithm X discover it?

159. [M17] True or false: (a) A is an autarky for F if and only if F |A ⊆ F . (b) If
A is an autarky for F and A′ ⊆ A, then A \A′ is an autarky for F |A′.
160. [18] (Black and white principle.) Consider any rule by which literals have been
colored white, black, or gray in such a way that l is white if and only if l̄ is black. (For
example, we might say that l is white if it appears in fewer clauses than l̄.)

a) Suppose every clause of F that contains a white literal also contains a black
literal. Prove that F is satisfiable if and only if its all-gray clauses are satisfiable.

b) Explain why this metaphor is another way to describe the notion of an autarky.

x 161. [21] (Black and blue principle.) Now consider coloring literals either white, black,
orange, blue, or gray, in such a way that l is white if and only if l̄ is black, and l is
orange if and only if l̄ is blue. (Hence l is gray if and only if l̄ is gray.) Suppose further
that F is a set of clauses in which every clause containing a white literal also contains
either a black literal or a blue literal (or both). Let A = {a1, . . . , ap} be the black
literals and let L = {l1, . . . , lq} be the blue literals. Also let F ′ be the set of clauses
obtained by adding p additional clauses (l̄1 ∨ · · · ∨ l̄q ∨ aj) to F , for 1 ≤ j ≤ p.

a) Prove that F is satisfiable if and only if F ′ is satisfiable.
b) Restate and simplify that result in the case that p = 1.

c) Restate and simplify that result in the case that q = 1.
d) Restate and simplify that result in the case that p = q = 1. (In this special case,

(l̄ ∨ a) is called a blocked binary clause.)

162. [21] Devise an efficient way to discover all of the (a) blocked binary clauses (l̄∨a)
and (b) size-two autarkies A = {a, a′} of a given kSAT problem F .

x 163. [M25] Prove that the following recursive procedureR(F) will solve any n-variable
3SAT problem F with at most O(φn) executions of steps R1, R2, or R3:

R1. [Check easy cases.] If F = ∅, return true. If ∅ ∈ F , return false. Otherwise let
{l1, . . . , ls} ∈ F be a clause of minimum size s.

R2. [Check autarkies.] If s = 1 or if {ls} is an autarky, set F ← F | ls and return to R1.
Otherwise if {l̄s, ls−1} is an autarky, set F ← F | l̄s, ls−1 and return to R1.

R3. [Recurse.] If R(F | ls) is true, return true. Otherwise set F ← F | l̄s, s ← s − 1,
and go back to R2.

164. [M30] Continuing exercise 163, bound the running time when F is kSAT.

x 165. [26] Design an algorithm to find the largest positive autarky A for a given F ,
namely an autarky that contains only positive literals. Hint: Warm up by finding the
largest positive autarky for the clauses {123̄, 125̄, 1̄3̄4̄, 136̄, 14̄5, 156, 2̄35, 24̄6, 345, 3̄56}.
166. [30] Justify the operations of step X9. Hint: Prove that an autarky can be con-
structed, if w = 0 after () has been performed.

x 167. [21] Justify step X11 and the similar use of X12 in step X6.

168. [26] Suggest a way to choose the branch literal l in step L3, based on the heuristic
scores H(l) that were compiled by Algorithm X in step L2. Hint: Experience shows
that it’s good to have both H(l) and H(l̄) large.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 147

Ahmed
Kullmann
τ function
Heule
2SAT
DFAIL
random 3SAT
rand
pi
lookahead forest
compensation resolvents
windfalls

Algorithm L
0

heuristic
preselection
flower snark
cubic graph
trivalent graph, see cubic
line graph
chromatic number χ
fsnark
benchmark tests
independent sets
asymptotic

x 169. [HM30] (T. Ahmed, O. Kullmann.) Excellent results have been obtained in
some problems when the branch variable in step L3 is chosen to minimize the quantity
τ(H(l),H(l̄)), where τ (a, b) is the positive solution to τ−a + τ−b = 1. (For example,

τ (1, 2) = φ ≈ 1.62 and τ (
√
2,
√
2) = 21/

√
2 ≈ 1.63, so we prefer (1, 2) to (

√
2,
√
2).)

Given a list of pairs of positive numbers (a1, b1), . . . , (as, bs), what’s an efficient way
to determine an index j that minimizes τ (aj, bj), without computing logarithms?

170. [25] (Marijn Heule, 2013.) Show that Algorithm L solves 2SAT in linear time.

171. [20] What is the purpose of DFAIL in Algorithm Y?

172. [21] Explain why ‘+LO[j]’ appears in step Y2’s formula for DT.

173. [40] Use an implementation of Algorithm L to experiment with random 3SAT

problems such as rand (3, 2062, 500, 314). Examine the effects of such things as (i) dis-
abling double lookahead; (ii) disabling “wraparound,” by changing the cases j = S and
̂ = S in X7 and Y4 so that they simply go to X6 and Y3; (iii) disabling the lookahead
forest, by letting all candidate literals have null PARENT; (iv) disabling compensation
resolvents in step L9; (v) disabling “windfalls” in (); (vi) branching on a random free
candidate l in L3, instead of using the H scores as in exercise 168; or (vii) disabling all
lookahead entirely as in “Algorithm L0.”

174. [15] What’s an easy way to accomplish (i) in the previous exercise?

175. [32] When Algorithm L is extended to nonternary clauses as in exercise 143, how
should Algorithms X and Y also change? (Instead of using () and () to compute a
heuristic for preselection, use the much simpler formula in answer 146. And instead of
using h(u)h(v) in () to estimate the weight of a ternary clause that will be reduced
to binary, consider a simulated reduced clause of size s ≥ 2 to have weight Ks ≈ γs−2,
where γ is a constant (typically 0.2).)

176. [M25] The “flower snark” Jq is a cubic graph with 4q vertices tj , uj , vj , wj , and
6q edges tj−−−tj+1, tj−−−uj , uj−−−vj , uj−−−wj , vj−−−wj+1, wj−−−vj+1, for 1 ≤ j ≤ q,
with subscripts treated modulo q. Here, for example, are J5 and its line graph L(J5):

J5 = ; L(J5) = .

a) Give labels aj , bj , cj , dj , ej , and fj to the edges of Jq, for 1 ≤ j ≤ q. (Thus aj
denotes tj−−−tj+1 and bj denotes tj−−−uj , etc.) What are the edges of L(Jq)?

b) Show that χ(Jq) = 2 and χ(L(Jq)) = 3 when q is even.

c) Show that χ(Jq) = 3 and χ(L(Jq)) = 4 when q is odd. Note: Let fsnark (q) denote
the clauses () and () that correspond to 3-coloring L(Jq), together with b1,1∧
c1,2∧d1,3 to set the colors of (b1, c1, d1) to (1, 2, 3). Also let fsnark ′(q) be fsnark (q)
augmented by (). These clauses make excellent benchmark tests for SAT solvers.

177. [HM26] Let Iq be the number of independent sets of the flower snark line graph
L(Jq). Compute Iq for 1 ≤ q ≤ 8, and determine the asymptotic growth rate.

x 178. [M23] When Algorithm B is presented with the unsatisfiable clauses fsnark (q)
of exercise 176, with q odd, its speed depends critically on the ordering of the variables.

September 23, 2015

148 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

subcubes
n-cube
BDD
1SAT
BDD
3SAT–
3CNF
auxiliary variables
random satisfiability
stopping time
Franco
Paull
kSAT
first moment principle

Show that the running time is Θ(2q) when the variables are considered in the order

a1,1a1,2a1,3b1,1b1,2b1,3c1,1c1,2c1,3d1,1d1,2d1,3e1,1e1,2e1,3f1,1f1,2f1,3a2,1a2,2a2,3 . . . ;

but much, much more time is needed when the order is

a1,1b1,1c1,1d1,1e1,1f1,1a2,1b2,1c2,1d2,1e2,1f2,1 . . . aq,1bq,1cq,1dq,1eq,1fq,1a1,2b1,2c1,2

179. [25] Show that there are exactly 4380 ways to fill the 32 cells of the 5-cube with
eight 4-element subcubes. For example, one such way is to use the subcubes 000∗∗,
001∗∗, . . . , 111∗∗, in the notation of 7.1.1–(); a more interesting way is to use

0∗0∗0, 1∗0∗0, ∗∗001, ∗∗110, ∗010∗, ∗110∗, 0∗∗11, 1∗∗11.
What does this fact tell you about the value of q8 in Fig. 40?

x 180. [25] Explain how to use BDDs to compute the numbersQm that underlie Fig. 40.
What is max0≤m≤80Qm?

x 181. [25] Extend the idea of the previous exercise so that it is possible to determine
the probability distributions Tm of Fig. 41.

182. [M16] For which values of m in Fig. 41 does Tm have a constant value?

183. [M30] Discuss the relation between Figs. 42 and 43.

184. [M20] Why does () characterize the relation between q̂m and qm?

185. [M20] Use () to prove the intuitively obvious fact that q̂m ≥ qm.

186. [M21] Use () to reduce
∑

m q̂m and
∑

m(2m+ 1)q̂m to () and ().

187. [M20] Analyze random satisfiability in the case k = n: What are Sn,n and Ŝn,n?

x 188. [HM25] Analyze random 1SAT, the case k = 1: What are S1,n and Ŝ1,n?

189. [27] Apply BDD methods to random 3SAT problems on 50 variables. What is the
approximate BDD size after m distinct clauses have been ANDed together, as m grows?

190. [M20] Exhibit a Boolean function of 4 variables that can’t be expressed in 3CNF.
(No auxiliary variables are allowed: Only x1, x2, x3, and x4 may appear.)

191. [M25] How many Boolean functions of 4 variables can be expressed in 3CNF?

x 192. [HM21] Another way to model satisfiability when there are N equally likely
clauses is to study S(p), the probability of satisfiability when each clause is indepen-
dently present with probability p.

a) Express S(p) in terms of the numbers Qm =
(
N
m

)
qm.

b) Assign uniform random numbers in [0 . . 1) to each clause; then at time t, for
0 ≤ t ≤ N , consider all clauses that have been assigned a number less than t/N .
(Approximately t clauses will therefore be selected, when N is large.) Show that

Sk,n =
∫ N

0
Sk,n(t/N) dt, the expected amount of time during which the chosen

clauses remain satisfiable, is very similar to the satisfiability threshold Sk,n of ().

193. [HM48] Determine the satisfiability threshold () of random 3SAT. Is it true
that lim infn→∞ S3,n/n = lim supn→∞ S3,n/n? If so, is the limit ≈ 4.2667?

194. [HM49] If α < lim infn→∞ S3,n/n, is there a polynomial-time algorithm that is
able to satisfy ⌊αn⌋ random 3SAT clauses with probability ≥ δ, for some δ > 0?

195. [HM21] (J. Franco and M. Paull, 1983.) Use the first moment principle MPR–()
to prove that ⌊(2k ln 2)n⌋ random kSAT clauses are almost always unsatisfiable. Hint:

Let X =
∑

x [x satisfies all clauses], summed over all 2n binary vectors x = x1 . . . xn.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 149

Wilson
easy clauses
bystanders, see easy clauses
binomial coefficients
phase transition
sharp threshold
random word
Stirling subset numbers
2SAT
snare
t-snake
Xu
Li
exclusion clauses
at-most-one
Model RB
random 2SAT
threshold of satisfiability
q.s.
a.s.

x 196. [HM25] (D. B. Wilson.) A clause of a satisfiability problem is “easy” if it
contains one or more variables that don’t appear in any other clauses. Prove that,
with probability 1 − O(n−2ǫ), a kSAT problem that has m = ⌊αn⌋ random clauses
contains (1− (1− e−kα)k)m+O(n1/2+ǫ) easy ones. (For example, about 0.000035n of
the 4.27n clauses in a random 3SAT problem near the threshold will be easy.)

197. [HM21] Prove that the quotient q(a, b, A,B, n) =
(
(a+b)n

an

)(
(A+B)n

An

)
/
(
(a+b+A+B)n

(a+A)n

)

is O(n−1/2) as n→∞, if a, b, A,B > 0.

x 198. [HM30] Use exercises 196 and 197 to show that the phase transition in Fig. 46 is
not extremely abrupt: If S3(m,n) >

2
3
and S3(m

′, n) < 1
3
, prove thatm′ = m+Ω(

√
n).

199. [M21] Let p(t,m,N) be the probability that t specified letters each occur at least
once within a random m-letter word on an N-letter alphabet.

a) Prove that p(t,m,N) ≤ mt/N t.

b) Derive the exact formula p(t,m,N) =
∑

k

(
t
k

)
(−1)k(N − k)m/Nm.

c) And p(t,m,N)/t! =
{
t
t

}(
m
t

)
/N t −

{
t+1
t

}(
m
t+1

)
/N t+1 +

{
t+2
t

}(
m
t+2

)
/N t+2 − · · · .

x 200. [M21] Complete the text’s proof of () when c < 1:

a) Show that every unsatisfiable 2SAT formula contains clauses of a snare.

b) Conversely, are the clauses of a snare always unsatisfiable?

c) Verify the inequality (). Hint: See exercise 199.

201. [HM29] The t-snake clauses specified by a chain (l1, . . . , l2t−1) can be written
(l̄i ∨ li+1) for 0 ≤ i < 2t, where l0 = l̄t and subscripts are treated mod 2t.

a) Describe all ways to set two of the l’s so that (x̄1 ∨ x2) is one of those 2t clauses.

b) Similarly, set three l’s in order to obtain (x̄1 ∨ x2) and (x̄2 ∨ x3).

c) Also set three to obtain both (x̄0 ∨ x1) and (x̄t−1 ∨ xt); here x̄0 ≡ xt and t > 2.

d) How can the clauses (x̄i∨xi+1) for 0 ≤ i < t all be obtained by setting t of the l’s?

e) In general, let N(q, r) be the number of ways to choose r of the standard clauses
(x̄i ∨ xi+1), which involve exactly q of the variables {x1, . . . , x2t−1}, and to set q
values of {l1, . . . , l2t−1} in order to obtain the r chosen clauses. Evaluate N(2, 1).

f) Similarly, evaluate N(3, 2), N(t, t), and N(2t − 1, 2t).

g) Show that the probability pr in () is ≤∑
q N(q, r)/(2qnq).

h) Therefore the upper bound () is valid.

202. [HM21] This exercise amplifies the text’s proof of Theorem C when c > 1.

a) Explain the right-hand side of Eq. ().

b) Why does () follow from (), (), and the stated choices of t and m?

x 203. [HM33] (K. Xu and W. Li, 2000.) Beginning with the n graph-coloring clauses
(), and optionally the n

(
d
2

)
exclusion clauses (), consider using randomly generated

binary clauses instead of (). There are mq random binary clauses, obtained as m
independent sets of q clauses each, where every such set is selected by choosing distinct
vertices u and v, then choosing q distinct binary clauses (ūi ∨ v̄j) for 1 ≤ i, j ≤ d.
(The number of different possible sequences of random clauses is therefore exactly

(
(
n
2

)(
d2

q

)
)m and each sequence is equally likely.) This method of clause generation is

known as “Model RB”; it generalizes random 2SAT, which is the case d = 2 and q = 1.

Suppose d = nα and q = pd2, where we require 1
2
< α < 1 and 0 ≤ p ≤ 1

2
.

Also let m = rn ln d. For this range of the parameters, we will prove that there is
a sharp threshold of satisfiability: The clauses are unsatisfiable q.s., as n → ∞, if
r ln(1− p) + 1 < 0; but they are satisfiable a.s. if r ln(1− p) + 1 > 0.

September 23, 2015

150 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

first moment principle
conditional expectation inequality
4SAT
minimally unsatisfiable
clauses per literal
Tovey
bipartite matching
matching

Let X(j1, . . . , jn) = [all clauses are satisfied when each ith variable v has vji = 1];
here 1 ≤ j1, . . . , jn ≤ d. Also let X =

∑
1≤j1 ,...,jn≤dX(j1, . . . , jn). Then X = 0 if and

only if the clauses are unsatisfiable.

a) Use the first moment principle to prove that X = 0 q.s. when r ln(1− p)+ 1 < 0.

b) Find a formula for ps = Pr(X(j1, . . . , jn) = 1 | X(1, . . . , 1) = 1), given that
exactly s of the colors {j1, . . . , jn} are equal to 1.

c) Use (b) and the conditional expectation inequality MPR–() to prove thatX > 0
a.s. if

n∑

s=0

(
n

s

)(
1

d

)s(
1− 1

d

)n−s(
1 +

p

1− p
s2

n2

)m
→ 1 as n→∞.

d) Letting ts denote the term for s in that sum, prove that
∑3n/d

s=0 ts ≈ 1.

e) Suppose r ln(1 − p) + 1 = ǫ > 0, where ǫ is small. Show that the terms ts first
increase, then decrease, then increase, then decrease again, as s grows from 0
to n. Hint: Consider the ratio xs = ts+1/ts.

f) Finally, prove that ts is exponentially small for 3n/d ≤ s ≤ n.
x 204. [28] Figure 46 might suggest that 3SAT problems on n variables are always easy

when there are fewer than 2n clauses. We shall prove, however, that any set of m
ternary clauses on n variables can be transformed mechanically into another set of
ternary clauses on N = O(m) variables in which no variable occurs more than four
times. The transformed problem is satisfiable if and only if the original problem was;
thus it isn’t any simpler, although (with at most 4N literals) it has at most 4

3
N clauses.

a) First replace the originalm clauses bym new clauses (X1∨X2∨X3), . . . , (X3m−2∨
X3m−1 ∨X3m), on 3m new variables, and show how to add 3m clauses of size 2
so that the resulting 4m clauses have exactly as many solutions as the original.

b) Construct 16 unsatisfiable ternary clauses on 15 variables, where each variable
occurs at most four times. Hint: If F and F ′ are sets of clauses, let F ⊔F ′ stand
for any other set obtained from F ∪F ′ by replacing one or more clauses C of F by
x∪C and one or more clauses C ′ of F ′ by x̄∪C′, where x is a new variable; then
F ⊔F ′ is unsatisfiable whenever F and F ′ are both unsatisfiable. For example, if
F = {ǫ} and F ′ = {1, 1̄}, then F ⊔F ′ is either {2, 12̄, 1̄2̄} or {2, 1, 1̄2̄} or {2, 12̄, 1̄}.

c) Remove one of the clauses from solution (b) and find all solutions of the 15 clauses
that remain. (At least three of the variables will have forced values.)

d) Use (a), (b), and (c) to prove the N-variable result claimed above.

205. [26] Construct an unsatisfiable 4SAT problem in which every variable occurs at
most 5 times. Hint: Use the ⊔ operation as in the previous exercise.

206. [M22] A set of clauses is minimally unsatisfiable if it is unsatisfiable, yet becomes
satisfiable if any clause is deleted. Show that, if F and F ′ have no variables in common,
then F⊔F ′ is minimally unsatisfiable if and only if F and F ′ are minimally unsatisfiable.

207. [25] Each of the literals {1, 1̄, 2, 2̄, 3, 3̄, 4, 4̄} occurs exactly thrice in the eight
unsatisfiable clauses (). Construct an unsatisfiable 3SAT problem with 15 variables in
which each of the 30 literals occurs exactly twice. Hint: Consider {1̄2, 2̄3, 3̄1, 123, 1̄2̄3̄}.
208. [25] Via exercises 204(a) and 207, show that any 3SAT problem can be trans-
formed into an equivalent set of ternary clauses where every literal occurs just twice.

209. [25] (C. A. Tovey.) Prove that every kSAT formula in which no variable occurs
more than k times is satisfiable. (Thus the limits on occurrences in exercises 204–208
cannot be lowered, when k = 3 and k = 4.) Hint: Use the theory of bipartite matching.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 151

Local Lemma
7SAT
Irving
Jerrum
list coloring
grid graph
latin rectangle construction
NP-complete
grid list coloring
partial latin square construction
binary matrices
tensor
row sums
column sums
pile sums
contingency tables, 3D
random satisfiability
recurrence
generating functions
Mellin transforms
asymptotics
wobble
profile
backtrack
asymptotics
Purdom
Brown

210. [M36] But the result in the previous exercise can be improved when k is large.
Use the Local Lemma to show that every 7SAT problem with at most 13 occurrences
of each variable is satisfiable.

211. [30] (R. W. Irving and M. Jerrum, 1994.) Use exercise 208 to reduce 3SAT to the
problem of list coloring a grid graph of the form KN K3. (Hence the latter problem,
which is also called latin rectangle construction, is NP-complete.)

212. [32] Continuing the previous exercise, we shall reduce grid list coloring to another
interesting problem called partial latin square construction. Given three n × n binary
matrices (rik), (cjk), (pij), the task is to construct an n× n array (Xij) such that Xij

is blank when pij = 0, otherwise Xij = k for some k with rik = cjk = 1; furthermore
the nonblank entries must be distinct in each row and column.

a) Show that this problem is symmetrical in all three coordinates: It’s equivalent to
constructing a binary n × n × n tensor (xijk) such that x∗jk = cjk, xi∗k = rik,
and xij∗ = pij , for 1 ≤ i, j, k ≤ n, where ‘∗’ denotes summing an index from 1
to n. (Therefore it is also known as the binary n × n × n contingency problem,
given n2 row sums, n2 column sums, and n2 pile sums.)

b) A necessary condition for solution is that c∗k = r∗k, cj∗ = p∗j , and ri∗ = pi∗.
Exhibit a small example where this condition is not sufficient.

c) IfM < N , reduce KM KN list coloring to the problem of KN KN list coloring.
d) Finally, explain how to reduceKN KN list coloring to the problem of constructing

an n × n partial latin square, where n = N +
∑

I,J |L(I, J)|. Hint: Instead of
considering integers 1 ≤ i, j, k ≤ n, let i, j, k range over a set of n elements.
Define pij = 0 for most values of i and j; also make rik = cik for all i and k.

x 213. [M20] Experience with the analyses of sorting algorithms in Chapter 5 suggests
that random satisfiability problems might be modeled nicely if we assume that, in each
of m independent clauses, the literals xj and x̄j occur with respective probabilities p
and q, independently for 1 ≤ j ≤ n, where p + q ≤ 1. Why is this not an interesting
model as n → ∞, when p and q are constant? Hint: What is the probability that
x1 . . . xn = b1 . . . bn satisfies all of the clauses, when b1 . . . bn is a given binary vector?

214. [HM38] Although the random model in the preceding exercise doesn’t teach us
how to solve SAT problems, it does lead to interesting mathematics: Let 0 < p < 1 and
consider the recurrence

T0 = 0; Tn = n+ 2

n−1∑

k=0

(
n

k

)
pk(1− p)n−kTk, for n > 0.

a) Find a functional relation satisfied by T (z) =
∑∞

n=0 Tnz
n/n!.

b) Deduce that we have T (z) = zez
∑∞

m=0(2p)
m ∏m−1

k=0 (1− e−pk(1−p)z).

c) Hence, if p 6= 1/2, we can use Mellin transforms (as in the derivation of 5.2.2–())
to show that Tn = Cpn

α(1 + δ(n) +O(1/n))+ n/(1− 2p), where α = 1/lg(1/p),
Cp is a constant, and δ is a small “wobble” with δ(n) = δ(pn).

x 215. [HM23] What is the expected profile of the search tree when a simple backtrack
procedure is used to find all solutions to a random 3SAT problem with m independent
clauses on n variables? (There is a node on level l for every partial solution x1 . . . xl

that doesn’t contradict any of the clauses.) Compute these values when m = 200 and
n = 50. Also estimate the total tree size when m = αn, for fixed α as n→∞.

216. [HM38] (P. W. Purdom, Jr., and C. A. Brown.) Extend the previous exercise to
a more sophisticated kind of backtracking, where all choices forced by unit clauses are

September 23, 2015

152 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

pure literal
if-then-else operator

Notation C′ ⋄C ′′
Notation C ⊆ C′
Notation F ⊢ C
resolution chain
search tree
resolution refutation
Kullmann
autarky
resolution tree
Tseytin
regular resolution
treelike resolution
refutation tree
Prover–Delayer game
Horton–Strahler number
Strahler

pursued before two-way branching is done. (The “pure literal rule” is not exploited,
however, because it doesn’t find all solutions.) Prove that the expected tree size is
greatly reduced when m = 200 and n = 50. (An upper bound is sufficient.)

217. [20] True or false: If A and B are arbitrary clauses that are simultaneously
satisfiable, and if l is any literal, then the clause C = (A ∪B) \ {l, l̄} is also satisfiable.
(We’re thinking here of A, B, and C as sets of literals, not as disjunctions of literals.)

218. [20] Express the formula (x∨A)∧(x̄∨B) in terms of the ternary operator u? v:w.

x 219. [M20] Formulate a general definition of the resolution operator C = C ′⋄C ′′ that
(i) agrees with the text’s definition when C′ = x ∨A′ and C′′ = x̄ ∨A′′; (ii) applies to
arbitrary clauses C′ and C′′; (iii) has the property that C′ ∧ C′′ implies C ′ ⋄ C ′′.
220. [M24] We say that clause C subsumes clause C′, written C ⊆ C′, if C′ = ℘ or if
C′ 6= ℘ and every literal of C appears in C′.

a) True or false: C ⊆ C′ and C′ ⊆ C′′ implies C ⊆ C ′′.
b) True or false: (C ∨ α) ⋄ (C ′ ∨ α′) ⊆ (C ⋄ C ′) ∨ α ∨ α′, with ⋄ as in exercise 219.

c) True or false: C′ ⊆ C′′ implies C ⋄C ′ ⊆ C ⋄ C ′′.
d) The notation C1, . . . , Cm ⊢ C means that a resolution chain C1, . . . , Cm+r exists

with Cm+r ⊆ C, for some r ≥ 0. Show that we might have C1, . . . , Cm ⊢ C even
though C cannot be obtained from {C1, . . . , Cm} by successive resolutions ().

e) Prove that if C1 ⊆ C′1, . . . , Cm ⊆ C′m, and C′1, . . . , C
′
m ⊢ C, then C1, . . . , Cm ⊢ C.

f) Furthermore C1, . . . , Cm ⊢ C implies C1∨ α1, . . . , Cm∨ αm ⊢ C ∨ α1 ∨ · · · ∨ αm.

221. [16] Draw the search tree analogous to Fig. 38 that is implicitly traversed when
Algorithm A is applied to the unsatisfiable clauses {12, 2, 2̄}. Explain why it does not
correspond to a resolution refutation that is analogous to Fig. 48.

222. [M30] (Oliver Kullmann, 2000.) Prove that, for every clause C in a satisfiability
problem F , there is an autarky satisfying C if and only if C cannot be used as the label
of a source vertex in any resolution refutation of F .

223. [HM40] Step X9 deduces a binary clause that cannot be derived by resolution
(see exercise 166). Prove that, nevertheless, the running time of Algorithm L on un-
satisfiable input will never be less than the length of a shortest treelike refutation.

224. [M20] Given a resolution tree that refutes the axioms F | x̄, show how to construct
a resolution tree of the same size that either refutes the axioms F or derives the clause
{x} from F without resolving on the variable x.

x 225. [M31] (G. S. Tseytin, 1966.) If T is any resolution tree that refutes a set of
axioms F , show how to convert it to a regular resolution tree Tr that refutes F , where
Tr is no larger than T .

226. [M20] If α is a node in a refutation tree, let C(α) be its label, and let ‖α‖ denote
the number of leaves in its subtree. Show that, given a refutation tree with N leaves,
the Prover can find a node with ‖α‖ ≤ N/2s for which the current assignment falsifies
C(α), whenever the Delayer has scored s points in the Prover–Delayer game.

227. [M27] Given an extended binary tree, exercise 7.2.1.6–124 explains how to label
each node with its Horton–Strahler number. For example, the nodes at depth 2 in
Fig. 48 are labeled 1, because their children have the labels 1 and 0; the root is labeled 3.

Prove that the maximum score that the Delayer can guarantee, when playing
the Prover–Delayer game for a set of unsatisfiable clauses F , is equal to the minimum
possible Horton–Strahler root label in a tree refutation of F .

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 153

St̊almarck
anti-maximal-element clauses
minimal unsatisfiable set
Buss
fsnark
treelike resolution
flower snark
Delayer
pigeonhole
pigeonhole
color
complete graph
exclusion clauses
Ben-Sasson
Wigderson
random 3SAT
3SAT

notation: µ(C)
notation F ⊢ C
a.s.: almost surely
q.s.: quite surely

x 228. [M21] St̊almarck’s refutation of ()–() actually obtains ǫ without using all of
the axioms! Show that only about 1/3 of those clauses are sufficient for unsatisfiability.

x 229. [M21] Continuing exercise 228, prove also that the set of clauses (), (′),
() is unsatisfiable, where (′) denotes () restricted to the cases i ≤ k and j < k.

230. [M22] Show that the clauses with i 6= j in the previous exercise form a minimal

unsatisfiable set: Removing any one of them leaves a satisfiable remainder.

231. [M30] (Sam Buss.) Refute the clauses of exercise 229 with a resolution chain of
length O(m3). Hint: Derive the clauses Gij = (xij∨xi(j+1)∨· · ·∨xim) for 1 ≤ i ≤ j ≤ m.

x 232. [M28] Prove that the clauses fsnark (q) of exercise 176 can be refuted by treelike
resolution in O(q6) steps.

233. [16] Explain why () satisfies (), by exhibiting j(i) and k(i) for 9 ≤ i ≤ 22.

234. [20] Show that the Delayer can score at least m points against any Prover who
tries to refute the pigeonhole clauses () and ().

x 235. [30] Refute those pigeonhole clauses with a chain of length m(m+3)2m−2.

236. [48] Is the chain in the previous exercise as short as possible?

x 237. [28] Show that a polynomial number of steps suffice to refute the pigeonhole
clauses (), (), if the extended resolution trick is used to append new clauses.

238. [HM21] Complete the proof of Lemma B. Hint: Make r ≤ ρ−b when W = b.

x 239. [M21] What clauses α0 on n variables make ‖α0 ⊢ ǫ‖ as large as possible?

x 240. [HM23] Choose integers fij ∈ {1, . . . ,m} uniformly at random, for 1 ≤ i ≤ 5
and 0 ≤ j ≤ m, and let G0 be the bipartite graph with edges aj−−−bk if and only if k ∈
{f1j , . . . , f5j}. Show that Pr(G0 satisfies the strong expansion condition ()) ≥ 1/2.

241. [20] Prove that any set of at most m/3000 pigeons can be matched to distinct
holes, under the restricted pigeonhole constraints G0 of Theorem B.

242. [M20] The pigeonhole axioms () and () are equivalent to the clauses ()
and () that arise if we try to color the complete graph Km+1 with m colors.

Suppose we include further axioms corresponding to (), namely

(x̄jk ∨ x̄jk′), for 0 ≤ j ≤ m and 1 ≤ k < k′ ≤ m.

Does Theorem B still hold, or do these additional axioms decrease the refutation width?

243. [HM31] (E. Ben-Sasson and A. Wigderson.) Let F be a set of ⌊αn⌋ random
3SAT clauses on n variables, where α > 1/e is a given constant. For any clause C on
those variables, define µ(C) = min{ |F ′| | F ′ ⊆ F and F ′ ⊢ C}. Also let V (F ′) denote
the variables that occur in a given family of clauses F ′.

a) Prove that |V (F ′)| ≥ |F ′| a.s., when F ′ ⊆ F and |F ′| ≤ n/(2αe2).
b) Therefore either F is satisfiable or µ(ǫ) > n/(2αe2), a.s.
c) Let n′ = n/(1000000α4), and assume that n′ ≥ 2. Prove that 2|V (F ′)| − 3|F ′| ≥

n′/4 q.s., when F ′ ⊆ F and n′/2 ≤ |F ′| < n′.
d) Consequently either F is satisfiable or w(F ⊢ ǫ) ≥ n′/4, a.s.

244. [M20] If A is a set of variables, let [A]0 or [A]1 stand for the set of all clauses
that can be formed from A with an even or odd number of negative literals, respec-
tively; each clause should involve all of the variables. (For example, [{1, 2, 3}]1 =
{123̄, 12̄3, 1̄23, 1̄2̄3̄}.) If A and B are disjoint, express [A ∪ B]0 in terms of the sets
[A]0, [A]1, [B]0, [B]1.

September 23, 2015

154 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

graph-based axioms
cubic
Ramanujan graph
Tseytin
extended resolution
variable elimination
quantified formula
CNF
Cook
Method IA
clause learning

x 245. [M27] Let G be a connected graph whose vertices v ∈ V have each been labeled
0 or 1, where the sum of all labels is odd. We will construct clauses on the set of
variables euv, one for each edge u−−− v in G. The axioms are α(v) = [E(v)]l(v)⊕1 for
each v ∈ V (see exercise 244), where E(v) = {euv | u−−−v} and l(v) is the label of v.

For example, vertex 1 of the graph below is shown as a black dot in order to
indicate that l(1) = 1, while the other vertices appear as white dots and are labeled
l(2) = · · · = l(6) = 0. The graph and its axioms are

G = 1

2 3

4

56

a
b

c

d
e

f

g h ,

α(1) = {af, āf̄},
α(2) = {abḡ, ab̄g, ābg, āb̄ḡ},
α(3) = {bch̄, bc̄h, b̄ch, b̄c̄h̄},

α(4) = {cd̄, c̄d},
α(5) = {deh̄, dēh, d̄eh, d̄ēh̄},
α(6) = {efḡ, ef̄g, ēfg, ēf̄ḡ}.

Notice that, when v has d > 0 neighbors in G, the set α(v) consists of 2d−1 clauses of
size d. Furthermore, the axioms of α(v) are all satisfied if and only if

⊕

euv∈E(v)

euv = ℓ(v).

If we sum this equation over all vertices v, mod 2, we get 0 on the left, because each
edge euv occurs exactly twice (once in E(u) and once in E(v)). But we get 1 on the
right. Therefore the clauses α(G) =

⋃
v α(v) are unsatisfiable.

a) The axioms α(G) |b and α(G) | b̄ in this example turn out to be α(G′) and α(G′′),

where G′ = and G′′ = . Explain what happens in general.

b) Let µ(C) = min{ |V ′| | V ′ ⊆ V and
⋃

v∈V ′ α(v) ⊢ C}, for every clause C involv-
ing the variables euv. Show that µ(C)=1 for every axiom C∈α(G). What is µ(ǫ)?

c) If V ′ ⊆ V , let ∂V ′ = { euv | u ∈ V ′ and v /∈ V ′}. Prove that, if |V ′| = µ(C),
every variable of ∂V ′ appears in C.

d) A nonbipartite cubic Ramanujan graphG onm vertices V has three edges v−−−vρ,
v−−−vσ, v−−−vτ touching each vertex, where ρ, σ, and τ are permutations with
the following properties: (i) ρ = ρ− and τ = σ−; (ii) G is connected; (iii) If V ′ is
any subset of s vertices, and if there are t edges between V ′ and V \ V ′, then we
have s/(s+ t) ≤ (s/n+ 8)/9. Prove that w(α(G) ⊢ ǫ) > m/78.

x 246. [M28] (G. S. Tseytin.) Given a labeled graph G with m edges, n vertices, and
N unsatisfiable clauses α(G) as in the previous exercise, explain how to refute those
clauses with O(mn+N) steps of extended resolution.

247. [18] Apply variable elimination to just five of the six clauses (), omitting ‘12̄’.

248. [M20] Formally speaking, SAT is the problem of evaluating the quantified for-
mula

∃x1 . . . ∃xn−1 ∃xn F (x1, . . . , xn−1, xn),

where F is a Boolean function given in CNF as a conjunction of clauses. Explain how
to transform the CNF for F into the CNF for F ′ in the reduced problem

∃x1 . . . ∃xn−1F
′(x1, . . . , xn−1), F

′(x1, . . . , xn−1) = F (x1, . . . , xn−1, 0)∨F (x1, . . . , xn−1, 1).

249. [18] Apply Algorithm I to () using Cook’s Method IA.

250. [25] Since the clauses R′ in () are satisfiable, Algorithm I might discover a
solution without ever reaching step I4. Try, however, to make the choices in steps I2,
I3, and I4 so that the algorithm takes as long as possible to discover a solution.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 155

anti-maximal-element
variable elimination
subsumption
CDCL solver
Sörensson
redundant
stamps
activity scores
damping factor
unit-propagation
move codes
watched literals
random decisions
binary clauses
unit-propagation
watched literals

x 251. [30] Show that Algorithm I can prove the unsatisfiability of the anti-maximal-
element clauses ()–() by making O(m3) resolutions, if suitably clairvoyant choices
are made in steps I2, I3, and I4.

252. [M26] Can the unsatisfiability of ()–() be proved in polynomial time by
repeatedly performing variable elimination and subsumption?

x 253. [18] What are the next two clauses learned if decision ‘5’ follows next after ()?

254. [16] Given the binary clauses {12, 1̄3, 23̄, 2̄4̄, 3̄4}, what clause will a CDCL solver
learn first if it begins by deciding that 1 is true?

x 255. [20] Construct a satisfiability problem with ternary clauses, for which a CDCL
solver that is started with decision literals ‘1’, ‘2’, ‘3’ on levels 1, 2, and 3 will learn
the clause ‘45’ after a conflict on level 3.

256. [20] How might the clause ‘∗∗’ in Table 3 have been easily learned?

x 257. [30] (Niklas Sörensson.) A literal l̄ is said to be redundant, with respect to a given
clause c and the current trail, if l is in the trail and either (i) l is defined at level 0, or (ii) l
is not a decision literal and every false literal in l’s reason is either in c or (recursively)
redundant. (This definition is stronger than the special cases by which () reduces
to (), because l̄ itself needn’t belong to c.) If, for example, c = (l̄ ′∨ b̄1∨ b̄2∨ b̄3∨ b̄4),
let the reason for b4 be (b4 ∨ b̄1 ∨ ā1), where the reason for a1 is (a1 ∨ b̄2 ∨ ā2) and the
reason for a2 is (a2 ∨ b̄1 ∨ b̄3). Then b̄4 is redundant, because ā2 and ā1 are redundant.

a) Suppose c = (l̄ ′ ∨ b̄1 ∨ · · · ∨ b̄r) is a newly learned clause. Prove that if b̄j ∈ c is
redundant, some other b̄i ∈ c became false on the same level of the trail as b̄j did.

b) Devise an efficient algorithm that discovers all of the redundant literals b̄i in a
given newly learned clause c = (l̄ ′ ∨ b̄1 ∨ · · · ∨ b̄r). Hint: Use stamps.

258. [21] A non-decision literal l in Algorithm C’s trail always has a reason Rl =
(l0 ∨ l1 ∨ · · · ∨ lk−1), where l0 = l and l̄1, . . . , l̄k−1 precede l in the trail. Furthermore,
the algorithm discovered this clause while looking at the watch list of l1. True or false:
l̄2, . . . , l̄k−1 precede l̄1 in the trail. Hint: Consider Table 3 and its sequel.

259. [M20] Can ACT(j) exceed ACT(k) for values of ρ near 0 or 1, but not for all ρ?

260. [18] Describe in detail step C1’s setting-up of MEM, the watch lists, and the trail.

261. [21] The main loop of Algorithm C is the unit-propagation process of steps C3
and C4. Describe the low-level details of link adjustment, etc., to be done in those steps.

262. [20] What low-level operations underlie changes to the heap in steps C6–C8?

263. [21] Write out the gory details by which step C7 constructs a new clause and
step C9 puts it into the data structures of Algorithm C.

264. [20] Suggest a way by which Algorithm C could indicate progress by displaying
“move codes” analogous to those of Algorithms A, B, D, and L. (See exercise 142.)

265. [21] Describe several circumstances in which the watched literals l0 and/or l1 of
a clause c actually become false during the execution of Algorithm C.

266. [20] In order to keep from getting into a rut, CDCL solvers are often designed to
make decisions at random, with a small probability p (say p = .02), instead of always
choosing a variable of maximum activity. How would this policy change step C6?

x 267. [25] Instances of SAT often contain numerous binary clauses, which are handled
efficiently by the unit-propagation loop () of Algorithm L but not by the correspond-
ing loop in step C3 of Algorithm C. (The technique of watched literals is great for long

September 23, 2015

156 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

level 0
eagerly
lazy
MEM
in situ
trivial clause
redundant
On-the-fly subsumption
subsumption
strengthen
learned clauses, sequence of
subsumes
discard
MEM
waerden
on-the-fly subsumptions
waerden
symmetrical
reflection
van der Waerden numbers

clauses, but it is comparatively cumbersome for short ones.) What additional data
structures will speed up Algorithm C’s inner loop, when binary clauses are abundant?

268. [21] When Algorithm C makes a literal false at level 0 of the trail, we can remove
it from all of the clauses. Such updating might take a long time, if we did it “eagerly”;
but there’s a lazy way out: We can delete a permanently false literal if we happen to
encounter it in step C3 while looking for a new literal to watch (see exercise 261).

Explain how to adapt the MEM data structure conventions so that such deletions
can be done in situ, without copying clauses from one location into another.

269. [23] Suppose Algorithm C reaches a conflict at level d of the trail, after having
chosen the decision literals u1, u2, . . . , ud. Then the “trivial clause” (l̄ ′∨ ū1 ∨· · ·∨ ūd′)
must be true if the given clauses are satisfiable, where l′ and d′ are defined in step C7.

a) Show that, if we start with the clause (l̄′ ∨ b̄1 ∨ · · · ∨ b̄r) that is obtained in
step C7 and then resolve it somehow with zero or more known clauses, we can
always reach a clause that subsumes the trivial clause.

b) Sometimes, as in (), the clause that is slated to be learned in step C9 is much
longer than the trivial clause. Construct an example in which d = 3, d′ = 1, and
r = 10, yet none of b̄1, . . . , b̄r are redundant in the sense of exercise 257.

c) Suggest a way to improve Algorithm C accordingly.

270. [25] (On-the-fly subsumption.) The intermediate clauses that arise in step C7,
immediately after resolving with a reason Rl, occasionally turn out to be equal to the
shorter clause Rl \ l. In such cases we have an opportunity to strengthen that clause
by deleting l from it, thus making it potentially more useful in the future.

a) Construct an example where two clauses can each be subsumed in this way while
resolving a single conflict. The subsumed clauses should both contain two literals
assigned at the current level in the trail, as well as one literal from a lower level.

b) Show that it’s easy to recognize such opportunities, and to strengthen such clauses
efficiently, by modifying the steps of answer 263.

x 271. [25] The sequence of learned clauses C1, C2, . . . often includes cases where Ci

subsumes its immediate predecessor, Ci−1. In such cases we might as well discard

Ci−1, which appears at the very end of MEM, and store Ci in its place, unless Ci−1 is
still in use as a reason for some literal on the trail. (For example, more than 8,600
of the 52,000 clauses typically learned from waerden (3, 10; 97) by Algorithm C can be
discarded in this way. Such discards are different from the on-the-fly subsumptions
considered in exercise 270, because the subsumed Ci−1 includes only one literal from
its original conflict level; furthermore, learned clauses have usually been significantly
simplified by the procedure of exercise 257, unless they’re trivial.)

Design an efficient way to discover when Ci−1 can be safely discarded.

272. [30] Experiment with the following idea: The clauses of waerden (j, k;n) are
symmetrical under reflection, in the sense that they remain unchanged overall if we
replace xk by xR

k = xn+1−k for 1 ≤ k ≤ n. Therefore, whenever Algorithm C learns
a clause C = (l̄′ ∨ b̄1 ∨ · · · ∨ b̄r), it is also entitled to learn the reflected clause CR =
(l̄′R ∨ b̄R1 ∨ · · · ∨ b̄Rr).
273. [27] A clause C that is learned from waerden (j, k;n) is valid also with respect
to waerden (j, k;n′) when n′ > n; and so are the clauses C + i that are obtained by
adding i to each literal of C, for 1 ≤ i ≤ n′ −n. For example, the fact that ‘35’ follows
from waerden (3, 3; 7) allows us to add the clauses 35, 46, 57 to waerden (3, 3; 9).

a) Exploit this idea to speed up the calculation of van der Waerden numbers.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 157

bounded model checking
better reason
lexicographically smallest solution

notation F |L
notation F ⊢1 ǫ
certificate of unsatisfiability
unit clause
2SAT
positive j-clauses
negative k-clauses
cook
purging
flushing
maximal elements
fsnark
flower snark
reason

b) Explain how to apply it also to bounded model checking.

274. [35] Algorithm C sets the “reason” for a literal l as soon as it notices a clause
that forces l to be true. Later on, other clauses that force l are often encountered, in
practice; but Algorithm C ignores them, even though one of them might be a “better
reason.” (For example, another forcing clause might be significantly shorter.) Explore
a modification of Algorithm C that tries to improve the reasons of non-decision literals.

x 275. [22] Adapt Algorithm C to the problem of finding the lexicographically smallest
solution to a satisfiability problem, by incorporating the ideas of exercise 109.

276. [M15] True or false: If F is a family of clauses and L is a set of strictly distinct
literals, then F ∧ L ⊢1 ǫ if and only if (F |L) ⊢1 ǫ.
277. [M18] If (C1, . . . , Ct) is a certificate of unsatisfiability for F , and if all clauses
of F have length ≥ 2, prove that some Ci is a unit clause.

278. [22] Find a six-step certificate of unsatisfiability for waerden (3, 3; 9).

279. [M20] True or false: Every unsatisfiable 2SAT problem has a certificate ‘(l, ǫ)’.

x 280. [M26] The problem cook (j, k) consists of all
(
n
j

)
positive j-clauses and all

(
n
k

)

negative k-clauses on {1, . . . , n}, where n = j + k − 1. For example, cook (2, 3) is

{12, 13, 14, 23, 24, 34, 1̄2̄3̄, 1̄2̄4̄, 1̄3̄4̄, 2̄3̄4̄}.
a) Why are these clauses obviously unsatisfiable?
b) Find a totally positive certificate for cook (j, k), of length

(
n−1
j−1

)
.

c) Prove in fact that Algorithm C always learns exactly
(
n−1
j−1

)
clauses when it proves

the unsatisfiability of cook (j, k), if Mp =Mf =∞ (no purging or flushing).

281. [21] Construct a certificate of unsatisfiability that refutes (), (), ().

x 282. [M33] Construct a certificate of unsatisfiability for the clauses fsnark (q) of exer-
cise 176 when q ≥ 3 is odd, using O(q) clauses, all having length ≤ 4. Hint: Include the
clauses (āj,p∨ēj,p), (āj,p∨f̄j,p), (ēj,p∨f̄j,p), and (aj,p∨ej,p∨fj,p) for 1 ≤ j ≤ q, 1 ≤ p ≤ 3.

283. [HM46] Does Algorithm C solve the flower snark problem in linear time? More
precisely, let pq(M) be the probability that the algorithm refutes fsnark (q) while mak-
ing at most M references to MEM. Is there a constant N such that pq(Nq) >

1
2
for all q?

284. [23] Given F and (C1, . . . , Ct), a certificate-checking program tests condition
() by verifying that F and clauses C1, . . . , Ci−1 will force a conflict when they
are augmented by the unit literals of Ci. While doing this, it can mark each clause
of F ∪ {C1, . . . , Ci−1} that was reduced to a unit during the forcing process; then the
truth of Ci does not depend on the truth of any unmarked clause.

In practice, many clauses of F are never marked at all, hence F will remain
unsatisfiable even if we leave them out. Furthermore, many clauses Ci are not marked
during the verification of any of their successors, {Ci+1, . . . , Ct}; such clauses Ci needn’t
be verified, nor need we mark any of the clauses on which they depend.

Therefore we can save work by checking the certificate backwards: Start by
marking the final clause Ct, which is ǫ and always needs to be verified. Then, for
i = t, t− 1, . . . , check Ci only if it has been marked.

The unit propagations can all be done without recording the “reason” Rl that
has caused any literal l to be forced. In practice, however, many of the forced literals
don’t actually contribute to the conflicts that arise, and we don’t want to mark any
clauses that aren’t really involved.

Explain how to use reasons, as in Algorithm C, so that clauses are marked by the
verifier only if they actually participate in the proof of a marked clause Ci.

September 23, 2015

158 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

signature
knapsack problem with a partial ordering
full run
compressing
purging
flushing literals
HEAP
AGILITY
agility threshold
generating function
variance
Welzl
Markov’s inequality
bitwise operations
broadword computation
MMIX

285. [19] Using the data in Fig. 50, the text observes that Eq. () gives j = 95,
sj = 3081, and mj = 59 when α = 15

16
. What are j, sj , and mj when (a) α = 9

16
?

(b) α = 1
2
? (c) α = 7

16
? Also compare the effectiveness of different α’s by computing the

number bj of “black” clauses (those with 0 < RANGE(c) < j that proved to be useful).

286. [M24] What choice of signatures-to-keep in Fig. 50 is optimum, in the sense that
it maximizes

∑
bpqxpq subject to the conditions

∑
apqxpq ≤ 3114, xpq ∈ {0, 1}, and

xpq ≥ xp′q′ for 1 ≤ p ≤ p′ ≤ 7, 0 ≤ q ≤ q′ ≤ 8? Here apq and bpq are the areas of the
gray and black clauses that have signature (p, q), as given by the matrices in the text.
[This is a special case of the “knapsack problem with a partial ordering.”]

287. [25] What changes to Algorithm C are necessary to make it do a “full run,” and
later to learn from all of the conflicts that arose during that run?

288. [28] Spell out the details of computing RANGE scores and then compressing the
database of learned clauses, during a round of purging.

289. [M20] Assume that the kth round of purging begins with yk clauses in memory
after k∆ +

(
k
2

)
δ clauses have been learned, and that purging removes 1

2
yk of those

clauses. Find a closed formula for yk as a function of k.

290. [17] Explain how to find xk, the unassigned variable of maximum activity that
is used for flushing literals. Hint: It’s in the HEAP array.

291. [20] In the text’s hypothetical scenario about flushing Table 3 back to level 15,
why will 49 soon appear on the trail, instead of 49?

292. [M21] How large can AGILITY get after repeatedly executing ()?

293. [21] Spell out the details of updatingMf toM+∆f when deciding whether or not
to flush. Also compute the agility threshold that’s specified in Table 4. Hint: See ().

294. [HM21] For each binary vector α = x1x2x3x4, find the generating function
gα(z) =

∑∞
j=0 pα,jzj, where pα,j is the probability that Algorithm P will solve the

seven clauses of () after making exactly j flips, given the initial values α in step P1.
Deduce the mean and variance of the number of steps needed to find a solution.

295. [M23] Algorithm P often finds solutions much more quickly than predicted by
Corollary W. But show that some 3SAT clauses will indeed require Ω((4/3)n) trials.

296. [HM20] Complete the proof of Theorem U by (approximately) maximizing the
quantity f(p, q) in (). Hint: Consider f(p+ 1, q)/f(p, q).

x 297. [HM26] (Emo Welzl.) Let Gq(z) =
∑

p Cp,p+q−1(z/3)
p+q(2z/3)p be the generat-

ing function for stopping time t = 2p+ q when Y0 = q in the proof of Theorem U.
a) Find a closed form for Gq(z), using formulas from Section 7.2.1.6.
b) Explain why Gq(1) is less than 1.

c) Evaluate and interpret the quantity G′q(1)/Gq(1).
d) Use Markov’s inequality to bound the probability that Yt = 0 for some t ≤ N .
e) Show that Corollary W follows from this analysis.

298. [HM22] Generalize Theorem U and Corollary W to the case where each clause
has at most k literals, where k ≥ 3.

299. [HM23] Continuing the previous exercise, investigate the case k = 2.

x 300. [25] Modify Algorithm P so that it can be implemented with bitwise operations,
thereby running (say) 64 independent trials simultaneously.

x 301. [25] Discuss implementing the algorithm of exercise 300 efficiently on MMIX.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 159

WalkSAT+
analysis of algorithms
Luby
Sinclair
Zuckerman
Las Vegas algorithm
uniform distribution
reluctant doubling
generating function

302. [26] Expand the text’s high-level description of steps W4 and W5, by providing
low-level details about exactly what the computer should do.

303. [HM20] Solve exercise 294 with Algorithm W in place of Algorithm P.

304. [HM34] Consider the 2SAT problem with n(n− 1) clauses (x̄j ∨xk) for all j 6= k.
Find the generating functions for the number of flips taken by Algorithms P and W.
Hint: Exercises 1.2.6–68 and MPR–105 are helpful for finding the exact formulas.

x 305. [M25] Add one more clause, (x̄1 ∨ x̄2), to the previous exercise and find the
resulting generating functions when n = 4. What happens when p = 0 in AlgorithmW?

x 306. [HM32] (Luby, Sinclair, and Zuckerman, 1993.) Consider a “Las Vegas algo-
rithm” that succeeds or fails; it succeeds at step t with probability pt, and fails with
probability p∞ < 1. Let qt = p1 + p2 + · · ·+ pt and Et = p1 + 2p2 + · · ·+ tpt; also let
E∞ =∞ if p∞ > 0, otherwise E∞ =

∑
ttpt. (The latter sum might be ∞.)

a) Suppose we abort the algorithm and restart it again, whenever the first N steps
have not succeeded. Show that if qN > 0, this strategy will succeed after per-
forming an average of l(N) <∞ steps. What is l(N)?

b) Compute l(N) when pm = m
n
, p∞ = n−m

n
, otherwise pt = 0, where 1 ≤ m ≤ n.

c) Given the uniform distribution, pt =
1
n
for 1 ≤ t ≤ n, what is l(N)?

d) Find all probability distributions such that l(N) = l(1) for all N ≥ 1.
e) Find all probability distributions such that l(N) = l(n) for all N ≥ n.
f) Find all probability distributions such that qn+1 = 1 and l(n) ≤ l(n+ 1).
g) Find all probability distributions such that q3 = 1 and l(1) < l(3) < l(2).
h) Let l = infN≥1 l(N), and let N∗ be the least positive integer such that l(N∗) = l,

or ∞ if no such integer exists. Prove that N∗ =∞ implies l = E∞ <∞.
i) Find N∗ for the probability distribution pt=[t >n]/((t−n)(t+1−n)), given n≥0.
j) Exhibit a simple example of a probability distribution for which N ∗ =∞.
k) Let L = mint≥1 t/qt. Prove that l ≤ L ≤ 2l − 1.

307. [HM28] Continuing exercise 306, consider a more general strategy defined by an
infinite sequence of positive integers (N1, N2, . . .): “Set j ← 0; then, while success has
not yet been achieved, set j ← j+1 and run the algorithm with cutoff parameter Nj .”

a) Explain how to compute EX, where X is the number of steps taken before this
strategy succeeds.

b) Let Tj = N1 + · · · + Nj . Prove that EX =
∑∞

j=1Pr(Tj−1<X≤Tj) l(Nj), if we
have qNj

> 0 for all j.
c) Consequently the steady strategy (N∗, N∗, . . .) is best: EX ≥ l(N∗) = l.

d) Given n, exercise 306(b) defines n simple probability distributions p(m) that have
l(N∗) = n, but the value of N∗ = m is different in each case. Prove that any
sequence (N1, N2, . . .) must have EX > 1

4
nHn − 1

2
n = 1

4
lHl − 1

2
l on at least one

of those p(m). Hint: Consider the smallest r such that, for each m, the probability
is ≥ 1

2
that r trial runs suffice; show that ≥ n/(2m) of {N1, . . . , Nr} are ≥ m.

308. [M29] This exercise explores the “reluctant doubling” sequence ().
a) What is the smallest n such that Sn = 2a, given a ≥ 0?
b) Show that {n | Sn = 1} = {2k + 1− νk | k ≥ 0}; hence the generating function∑

nz
n[Sn =1] is the infinite product z(1 + z)(1 + z3)(1 + z7)(1 + z15)

c) Find similar expressions for {n | Sn = 2a} and ∑
nz

n[Sn =2a].

d) Let Σ(a, b, k) =
∑r(a,b,k)

n=1 Sn, where Sr(a,b,k) is the 2
bkth occurrence of 2a in 〈Sn〉.

For example, Σ(1, 0, 3) = S1 + · · ·+ S10 = 16. Evaluate Σ(a, b, 1) in closed form.
e) Show that Σ(a, b, k+1)− Σ(a, b, k) ≤ (a+ b+ 2k − 1)2a+b, for all k ≥ 1.

September 23, 2015

160 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Las Vegas
reluctant Fibonacci sequence
Fibonacci numbers
ruler doubling
Hoos
Shearer
complete t-ary trees
lopsidependency graph
occurrence threshold
Möbius polynomial
path
phi
cycle graph

f) Given any probability distribution as in exercise 306(k), let a = ⌈lg t⌉ and b =
⌈lg 1/qt⌉, where t/qt = L; thus L ≤ 2a+b < 4L. Prove that if the strategy of
exercise 307 is used with Nj = Sj , we have

EX ≤ Σ(a, b, 1) +
∑

k≥1

Qk(Σ(a, b, k+1) − Σ(a, b, k)), where Q = (1− q2a)2b.

g) Therefore 〈Sn〉 gives EX < 13l lg l + 49l, for every probability distribution.

309. [20] Exercise 293 explains how to use the reluctant doubling sequence with
Algorithm C. Is Algorithm C a Las Vegas algorithm?

310. [M25] Explain how to compute the “reluctant Fibonacci sequence”

1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 5, 1, 1, 2, 1, 2, 3, 5, 8, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 5, 8, 13, 1, . . . ,

which is somewhat like () and useful as in exercise 308, but its elements are Fibonacci
numbers instead of powers of 2.

311. [21] Compute approximate values of EX for the 100 probability distributions of
exercise 306(b) when n = l = 100, using the method of exercise 307 with the sequences
〈Sn〉 of exercise 308 and 〈S′n〉 of exercise 310. Also consider the more easily generated
“ruler doubling” sequence 〈Rn〉, where Rn = n&−n = 2ρn. Which sequence is best?

312. [HM24] Let T (m,n) = EX when the reluctant doubling method is applied to
the probability distribution defined in exercise 306(b). Express T (m,n) in terms of the
generating functions in exercise 308(c).

x 313. [22] Algorithm W always flips a cost-free literal if one is present in Cj , without
considering its parameter p. Show that such a flip always decreases the number of
unsatisfied clauses, r; but it might increase the distance from x to the nearest solution.

x 314. [36] (H. H. Hoos, 1998.) If the given clauses are satisfiable, and if p > 0, can
there be an initial x for which Algorithm W always loops forever?

315. [M18] What value of p is appropriate in Theorem J when d = 1?

316. [HM20] Is Theorem J a consequence of Theorem L?

x 317. [M26] Let α(G) = Pr(A1 ∩ · · · ∩Am) under the assumptions of (), when pi =
p = (d−1)d−1/dd for 1 ≤ i ≤ m and every vertex of G has degree at most d > 1. Prove,
by induction on m, that α(G) > 0 and that α(G) > d−1

d
α(G\v) when v has degree < d.

318. [HM27] (J. B. Shearer.) Prove that Theorem J is the best possible result of its
kind: If p > (d − 1)d−1/dd and d > 1, there is a graph G of maximum degree d for
which (p, . . . , p) /∈ R(G). Hint: Consider complete t-ary trees, where t = d− 1.

319. [HM20] Show that pde < 1 implies p ≤ (d− 1)d−1/dd.

320. [M24] Given a lopsidependency graph G, the occurrence threshold ρ(G) is the
smallest value p such that it’s sometimes impossible to avoid all events when each
event occurs with probability p. For example, the Möbius polynomial for the path P3 is
1−p1−p2−p3+p1p3; so the occurrence threshold is φ−2, the least p with 1−3p+p2 ≤ 0.

a) Prove that the occurrence threshold for Pm is 1/(4 cos2 π
m+2

).

b) What is the occurrence threshold for the cycle graph Cm?

321. [M24] Suppose each of four random events A, B, C, D occurs with probability p,
where {A,C} and {B,D} are independent. According to exercise 320(b) with m = 4,
there’s a joint distribution of (A,B,C,D) such that at least one of the events always
occurs, whenever p ≥ (2−

√
2)/2 ≈ 0.293. Exhibit such a distribution when p = 3/10.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 161

Kolipaka
Szegedy
acyclic orientation
digraph
territory sets
bitwise operations
territories
multiplication of traces
right factor
right division of traces
left factor
left division of traces
territory sets
intersection graphs
empilements

x 322. [HM35] (K. Kolipaka and M. Szegedy, 2011.) Surprisingly, the previous exercise
cannot be solved in the setting of Algorithm M! Suppose we have independent random
variables (W,X, Y, Z) such that A depends on W and X, B depends on X and Y,
C depends on Y and Z, D depends on Z and W. Here W equals j with probability wj

for all integers j; X, Y, and Z are similar. This exercise will prove that the constraint
A ∩B ∩ C ∩D is always satisfiable, even when p is as large as 0.333.

a) Express the probability Pr(A ∩B ∩ C ∩D) in a convenient way.
b) Suppose there’s a distribution of W, X, Y, Z with Pr(A) = Pr(B) = Pr(C) =

Pr(D) = p and Pr(A∩B ∩C ∩D) = 0. Show that there are ten values such that

0 ≤ a, b, c, d, a′, b′, c′, d′ ≤ 1, 0 < µ, ν < 1,

µa+ (1− µ)a′ ≤ p, µb+ (1− µ)b′ ≤ p,
νc+ (1− ν)c′ ≤ p, νd+ (1− ν)d′ ≤ p,

a+ d ≥ 1 or b+ c ≥ 1, a+ d′ ≥ 1 or b+ c′ ≥ 1,

a′ + d ≥ 1 or b′ + c ≥ 1, a′ + d′ ≥ 1 or b′ + c′ ≥ 1.

c) Find all solutions to those constraints when p = 1/3.

d) Convert those solutions to distributions that have Pr(A ∩ B ∩ C ∩D) = 0.

323. [10] What trace precedes ccb in the list ()?

x 324. [22] Given a trace α = x1x2 . . . xn for a graph G, explain how to find all strings β
that are equivalent to α, using Algorithm 7.2.1.2V. How many strings yield ()?

x 325. [20] An acyclic orientation of a graph G is an assignment of directions to each of
its edges so that the resulting digraph has no oriented cycles. Show that the number of
traces for G that are permutations of the vertices (with each vertex appearing exactly
once in the trace) is the number of acyclic orientations of G.

326. [20] True or false: If α and β are traces with α = β, then αR = βR. (See ().)

x 327. [22] Design an algorithm to multiply two traces α and β, when clashing is defined
by territory sets T (a) in some universe U . Assume that U is small (say |U | ≤ 64), so
that bitwise operations can be used to represent the territories.

328. [20] Continuing exercise 327, design an algorithm that computes α/β. More
precisely, if β is a right factor of α, in the sense that α = γβ for some trace γ, your
algorithm should compute γ; otherwise it should report that β is not a right factor.

329. [21] Similarly, design an algorithm that either computes α \ β or reports that
α isn’t a left factor of β.

x 330. [21] Given any graph G, explain how to define territory sets T (a) for its vertices a
in such a way that we have a = b or a−−−b if and only if T (a)∩T (b) 6= ∅. (Thus traces
can always be modeled by empilements of pieces.) Under what circumstances is it
possible to do this with |T (a)| = 2 for all a, as in the text’s example ()?

331. [M20] What happens if the right-hand side of () is expanded without allowing
any of the variables to commute with each other?

332. [20] When a trace is represented by its lexicographically smallest string, no letter
in that representative string is followed by a smaller letter with which it commutes.
(For example, no c is followed by a in (), because we could get an equivalent smaller
string by changing ca to ac.)

Conversely, given any ordered set of letters, some of which commute, consider all
strings having no letter followed by a smaller letter with which it commutes. Is every
such string the lexicographically smallest of its trace?

September 23, 2015

162 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Carlitz
Scoville
Vaughan
digraph
noncommutative variables
lexicographically smallest
determinant
Möbius series
direct sum of graphs
join of graphs
clique
Viennot
Viennot
pyramids
left factor
labeled trace
labeled pyramid
generating functions, exponential

x 333. [M20] (Carlitz, Scoville, and Vaughan, 1976.) Let D be a digraph on {1, . . . ,m},
and let A be the set of all strings aj1 . . . ajn such that ji−−→ ji+1 in D for 1 ≤ i < n.
Similarly let B be the set of all strings aj1 . . . ajn such that ji 6−−→ ji+1 for 1 ≤ i < n.
Prove that ∑

α∈A
α = 1

/∑

β∈B
(−1)|β|β =

∑

k≥0

(
1−

∑

β∈B
(−1)|β|β

)k

is an identity in the noncommutative variables {a1, . . . , am}. (For example, we have

1 + a+ b+ ab+ ba+ aba+ bab+ · · · =
∑

k≥0

(a+ b− aa− bb+ aaa+ bbb− · · ·)k

in the case m = 2, 1 6−−→1, 1−−→2, 2−−→1, 2 6−−→2.)

x 334. [25] Design an algorithm to generate all traces of length n that correspond to a
given graph on the alphabet {1, . . . ,m}, representing each trace by its lexicographically
smallest string.

335. [HM26] If the vertices of G can be ordered in such a way that x < y < z and
x /−−−y and y /−−−z implies x /−−−z, show that the Möbius series MG can be expressed as
a determinant. For example,

if G =
a b
c d
e f

then MG = det

1− a −b −c 0 0 0
−a 1− b 0 −d 0 0
−a −b 1− c −d −e 0
−a −b −c 1− d 0 −f
−a −b −c −d 1− e −f
−a −b −c −d −e 1− f

.

x 336. [M20] If graphsG andH on distinct vertices have the Möbius seriesMG andMH ,
what are the Möbius series for (a) G⊕H and (b) G−−−H?

337. [M20] Suppose we obtain the graph G′ from G by substituting a clique of vertices
{a1, . . . , ak} for some vertex a, then including edges from aj to each neighbor of a for
1 ≤ j ≤ k. Describe the relation between MG′ and MG.

338. [M21] Prove Viennot’s general identity () for source-constrained traces.

x 339. [HM26] (G. Viennot.) This exercise explores factorization of traces into pyramids.
a) Each letter xj of a given trace α = x1 . . . xn lies at the top of a unique pyramid βj

such that βj is a left factor of α. For example, in the trace bcebafdc of (), the
pyramids β1, . . . , β8 are respectively b, bc, e, bcb, bcba, ef, bced, and bcebdc.
Explain intuitively how to find these pyramidal left factors from α’s empilement.

b) A labeled trace is an assignment of distinct numbers to the letters of a trace; for
example, abca might become a4b7c6a3. A labeled pyramid is the special case when
the pyramid’s top element is required to have the smallest label. Prove that every
labeled trace is uniquely factorizable into labeled pyramids whose topmost labels
are in ascending order. (For example, b6c2e4b7a8f5d1c3 = b6c2e4d1 · b7a8c3 · f5.)

c) Suppose there are tn traces of length n, and pn pyramids. Then there are Tn =
n! tn labeled traces and Pn = (n − 1)! pn labeled pyramids (because only the
relative order of the labels is significant). Letting T (z) =

∑
n≥0 Tnz

n/n! and
P (z) =

∑
n≥1 Pnz

n/n!, prove that the number of labeled traces of length n whose
factorization in part (b) has exactly l pyramids is n! [zn]P (z)l/l!.

d) Consequently T (z) = eP (z).

e) Therefore (and this is the punch line!) lnMG(z) = −
∑

n≥1 pnz
n/n.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 163

cyclic permutation
weighted permutations
permutations, weighted
permutation polynomial
determinant
involution polynomial
real roots of polynomials
interlaced roots
Cartier
Foata
characteristic polynomial
cograph
extreme distribution
monotonic
chordal
territory sets
interval graphs
forests

x 340. [M20] If we assign a weight w(σ) to every cyclic permutation σ, then every per-
mutation π has a weight w(π) that is the product of the weights of its cycles. For
example, if π =

(
1 2 3 4 5 6 7
3 1 4 2 7 6 5

)
= (1 3 4 2)(5 7)(6) then w(π) = w((1 3 4 2))w((5 7))w((6)).

The permutation polynomial of a set S is the sum of w(π) over all permutations
of S. Given any n× n matrix A = (aij), show that it’s possible to define appropriate
cycle weights so that the permutation polynomial of {1, . . . , n} is the determinant of A.

341. [M25] The involution polynomial of a set S is the special case of the permuta-
tion polynomial when the cycle weights have the form wjjx for the 1-cycle (j) and
−wij for the 2-cycle (i j), otherwise w(σ) = 0. For example, the involution polyno-
mial of {1, 2, 3, 4} is w11w22w33w44x

4−w11w22w34x
2−w11w23w44x

2−w11w24w33x
2−

w12w33w44x
2 − w13w22w44x

2 −w14w22w33x
2 + w12w34 + w13w24 + w14w23.

Prove that, if wij > 0 for 1 ≤ i ≤ j ≤ n, the involution polynomial of {1, . . . , n}
has n distinct real roots. Hint: Show also that, if the roots for {1, . . . , n − 1} are
q1 < · · · < qn−1, then the roots rk for {1, . . . , n} satisfy r1 < q1 < r2 < · · · < qn−1 < rn.

342. [HM25] (Cartier and Foata, 1969.) Let Gn be the graph whose vertices are the∑n
k=1

(
n
k

)
(k− 1)! cyclic permutations of subsets of {1, . . . , n}, with σ−−−τ when σ and

τ intersect. For example, the vertices of G3 are (1), (2), (3), (12), (13), (23), (123),
(132); and they’re mutually adjacent except that (1) /−−− (2), (1) /−−− (3), (1) /−−− (23),
(2) /−−− (3), (2) /−−− (13), (12) /−−− (3). Find a beautiful relation between MGn and the
characteristic polynomial of an n× n matrix.

x 343. [M25] If G is any cograph, show that (p1, . . . , pm) ∈ R(G) if and only if we have
MG(p1, . . . , pm) > 0. Exhibit a non-cograph for which the latter statement is not true.

344. [M33] Given a graph G as in Theorem S, let B1, . . . , Bm have the joint probabil-
ity distribution of exercise MPR–31, with πI = 0 whenever I contains distinct vertices
{i, j} with i−−−j, otherwise πI =

∏
i∈I pi.

a) Show that this distribution is legal (see exercise MPR–32) if (p1, . . . , pm) ∈ R(G).
b) Show that this “extreme distribution” also satisfies condition ().

c) Let β(G) = Pr(B1∩· · ·∩Bm). If J ⊆ {1, . . . ,m}, express β(G|J) in terms ofMG.

d) Defining α(G) as in exercise 317, with events Aj satisfying () and probabilities
(p1, . . . , pm) ∈ R(G), show that α(G | J) ≥ β(G | J) for all J ⊆ {1, . . . ,m}.

e) If pi satisfies (), show that β(G|J) ≥∏
j∈J (1− θj).

345. [M30] Construct unavoidable events that satisfy () when (p1, . . . , pm) /∈ R(G).

x 346. [HM28] Write () as MG =MG\a(1− aKa,G) where Ka,G =MG\a∗/MG\a.

a) If (p1, . . . , pm) ∈ R(G), prove that Ka,G is monotonic in all of its parameters: It
does not increase if any of p1, . . . , pm are decreased.

b) Exploit this fact to design an algorithm that computes MG(p1, . . . , pm) and
decides whether or not (p1, . . . , pm) ∈ R(G), given a graph G and probabilities
(p1, . . . , pm). Illustrate your algorithm on the graph G = P3 P2 of exercise 335.

x 347. [M28] A graph is called chordal when it has no induced cycle Ck for k > 3.
Equivalently (see Section 7.4.2), a graph is chordal if and only if its edges can be
defined by territory sets T (a) that induce connected subgraphs of some tree. For
example, interval graphs and forests are chordal.

a) Say that a graph is tree-ordered if its vertices can be arranged as nodes of a forest
in such a way that

a−−−b implies a ≻ b or b ≻ a;
a ≻ b ≻ c and a−−−c implies a−−−b. (∗)

September 23, 2015

164 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

proper ancestor
tree-ordered graph
Pringsheim
nonnegative coefficients
analysis of algorithms
variance
Pegden
asymptotic
Local Lemma
dependency graph
resolvable
lopsidependency graph

(Here ‘a ≻ b’ means that a is a proper ancestor of b in the forest.) Prove that
every tree-ordered graph is chordal.

b) Conversely, show that every chordal graph can be tree-ordered.
c) Show that the algorithm in the previous exercise becomes quite simple when it

is applied to a tree-ordered graph, if a is eliminated before b whenever a ≻ b.
d) Consequently Theorem L can be substantially strengthened when G is a chordal

graph: When G is tree-ordered by ≻, the probability vector (p1, . . . , pm) is in

R(G) if and only if there are numbers 0 ≤ θ1, . . . , θm < 1 such that

pi = θi
∏

i−−j inG, i≻j

(1− θj).

348. [HM26] (A. Pringsheim, 1894.) Show that any power series f(z) =
∑∞

n=0 anz
n

with an ≥ 0 and radius of convergence ρ, where 0 < ρ <∞, has a singularity at z = ρ.

x 349. [M24] Analyze Algorithm M exactly in the two examples considered in the text
(see ()): For each binary vector x = x1 . . . x7, compute the generating function
gx(z) =

∑
t px,tz

t, where px,t is the probability that step M3 will be executed exactly
t times after step M1 produces x. Assume that step M2 always chooses the smallest
possible value of j. (Thus the ‘Case 2’ scenario in () will never occur.)

What are the mean and variance of the running times, in (i) Case 1? (ii) Case 2?

x 350. [HM26] (W. Pegden.) Suppose Algorithm M is applied to the m = n+ 1 events

Aj = xj for 1 ≤ j ≤ n; Am = x1 ∨ · · · ∨ xn.

Thus Am is true whenever any of the other Aj is true; so we could implement step M2
by never setting j ← m. Alternatively, we could decide to set j ← m whenever possible.
Let (Ni, Nii, Niii, Niv, Nv) be the number of resamplings performed when parameter ξk
of the algorithm is (i) 1/2; (ii) 1/(2n); (iii) 1/2n; (iv) 1/(n+ k); (v) 1/(n+ k)2.

a) Find the asymptotic mean and variance of each N , if j is never equal to m.
b) Find the asymptotic mean and variance of each N , if j is never less than m.
c) Let G be the graph on {1, . . . , n+ 1} with edges j−−−(n+ 1) for 1 ≤ j ≤ n, and

let pj = Pr(Aj). For which of the five choices of ξk is (p1, . . . , pn+1) ∈ R(G)?

x 351. [25] The Local Lemma can be applied to the satisfiability problem for m clauses
on n variables if we let Aj be the event “Cj is not satisfied.” The dependency graph G
then has i−−− j whenever two clauses Ci and Cj share at least one common variable.
If, say, Ci is (x3∨ x̄5∨x6), then () holds whenever pi ≥ (1− ξ3)ξ5(1− ξ6), assuming
that each xk is true with probability ξk, independent of the other x’s.

But if, say, Cj is (x̄2 ∨ x3 ∨ x7), condition () remains true even if we don’t
stipulate that i−−− j. Variable x3 appears in both clauses, yet the cases when Cj is
satisfied are never bad news for Ci. We need to require that i−−− j in condition ()
only when Ci and Cj are “resolvable” clauses, namely when some variable occurs
positively in one and negatively in the other.

Extend this reasoning to the general setting of Algorithm M, where we have
arbitrary events Aj that depend on variables Ξj : Define a lopsidependency graph G for
which () holds even though we might have i /−−−j in some cases when Ξi ∩ Ξj 6= ∅.
352. [M21] Show that Ej ≤ θj/(1− θj) in (), when () holds.

353. [M21] Consider Case 1 and Case 2 of Algorithm M as illustrated in ().
a) How many solutions x1 . . . xn are possible? (Generalize from n = 7 to any n.)
b) How many solutions are predicted by Theorem S?

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 165

lopsidependency graph
dependency graph
Clique Local Lemma
clique cover
field
Lattices of partial assignments
partial assignment
stable
valid partial assignment
consistent
unit propagation
constrained
reason
strictly distinct literals

c) Show that in Case 2 the lopsidependency graph is much smaller than the depend-
ency graph. How many solutions are predicted when the smaller graph is used?

354. [HM20] Show that the expected number EN of resampling steps in Algorithm M
is at most −M∗′G (1)/M∗G(1).

355. [HM21] In (), prove that Ej ≤ 1/δ when (p1, . . . , pm) has positive slack δ.
Hint: Consider replacing pj by pj + δpj .

x 356. [M33] (The Clique Local Lemma.) Let G be a graph on {1, . . . ,m}, and let
G | U1, . . . , G | Ut be cliques that cover all the edges of G. Assign numbers θij ≥ 0 to
the vertices of each Uj , such that Σj =

∑
i∈Uj

θij < 1. Assume that

Pr(Ai) = pi ≤ θij
∏

k 6=j, i∈Uk

(1 + θik −Σk) whenever 1 ≤ i ≤ m and i ∈ Uj .

a) Prove that (p1, . . . , pm) ∈ R(G). Hint: Letting AS denote
⋂

i∈S Ai, show that

Pr(Ai | AS) ≤ θij whenever 1 ≤ i ≤ m and i ∈ Uj and S ∩ Uj = ∅.
b) Also Ei in () is at most mini−−−j inG θij/(1−Σj). (See Theorems M and K.)

c) Improve Theorem L by showing that, if 0≤θj< 1
2
, then (p1, . . . , pm)∈R(G) when

pi = θi

(∏

i−−−j inG

(1− θj)
)/

max
i−−−j inG

(1− θj).

x 357. [M20] Let x = πv̄ and y = πv in (), and suppose the field of variable v is
(p, q, r). Express x and y as functions of p, q, and r.

358. [M20] Continuing exercise 357, prove that r = max(p, q, r) if and only if x, y ≥ 1
2
.

359. [20] Equations () and () should actually have been written

γl→C =
(1− πl̄)(1− ηl)

∏
l∈C′ 6=C(1− ηC→l)

π
l̄
+ (1− π

l̄
)(1− ηl)

∏
l∈C′ 6=C(1− ηC→l)

and η′C→l =
∏

C∋l′ 6=l

γl′→C ,

to avoid division by zero. Suggest an efficient way to implement these calculations.

360. [M23] Find all fixed points of the seven-clause system illustrated in (), given
that π1 = π2̄ = π4̄ = 1. Assume also that ηlη l̄ = 0 for all l.

x 361. [M22] Describe all fixed points ηC→l = η′C→l of the equations (), (), (),
for which each ηC→l and each ηl is either 0 or 1.

362. [20] Spell out the computations needed to finish Algorithm S in step S8.

x 363. [M30] (Lattices of partial assignments.) A partial assignment to the variables
of a satisfiability problem is called stable (or “valid”) if it is consistent and cannot be
extended by unit propagation. In other words, it’s stable if and only if no clause is
entirely false, or entirely false except for at most one unassigned literal. Variable xk of
a partial assignment is called constrained if it appears in a clause where ±xk is true
but all the other literals are false (thus its value has a “reason”).

The 3n partial assignments of an n-variable problem can be represented either as
strings x = x1 . . . xn on the alphabet {0, 1, ∗} or as sets L of strictly distinct literals. For
example, the string x = ∗1∗01∗ corresponds to the set L = {2, 4̄, 5}. We write x ≺ x′

if x′ is equal to x except that xk = ∗ and x′k ∈ {0, 1}; equivalently L ≺ L′ if L′ = L∪ k
or L′ = L ∪ k̄. Also x ⊑ x′ if there are t ≥ 0 stable partial assignments x(j) with

x = x(0) ≺ x(1) ≺ · · · ≺ x(t) = x′.

September 23, 2015

166 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

Maneva
Mossel
Wainwright
message-passing algorithms
survey propagation
trail
Horn clauses
covering assignment
core assignment
empty partial assignment
satisfying assignment
clusters
waerden
Preprocess
erp rules
elimination by resolution
downhill resolution
unit conditioning
Eén
Biere
erp rule

Let p1, . . . , pn, q1, . . . , qn be probabilities, with pk+qk = 1 for 1 ≤ k ≤ n. Define
the weight W (x) of a partial assignment to be 0 if x is unstable, otherwise

W (x) =
∏
{pk | xk = ∗} ·

∏
{qk | xk 6= ∗ and xk is unconstrained}.

[E. Maneva, E. Mossel, and M. J. Wainwright, in JACM 54 (2007), 17:1–17:41, studied
general message-passing algorithms on partial assignments that are distributed with
probability proportional to their weights, in the case p1 = · · · = pn = p, showing that
survey propagation (Algorithm S) corresponds to the limit as p→ 1.]

a) True or false: The partial assignment specified by the literals currently on the
trail in step C5 of Algorithm C is stable.

b) What weights W (x) correspond to the clauses F in ()?
c) Let x be a stable partial assignment with xk = 1, and let x′ and x′′ be obtained

from x by setting x′k ← 0, x′′k ← ∗. True or false: xk is unconstrained in x if and
only if (i) x′ is consistent; (ii) x′ is stable; (iii) x′′ is stable.

d) If the only clause is 123 = (x1 ∨ x2 ∨ x3), find all sets L such that L ⊑ {1, 2̄, 3̄}.
e) What are the weights when there’s only a single clause 123 = (x1 ∨ x2 ∨ x3)?
f) Find clauses such that the sets L with L ⊑ {1, 2, 3, 4, 5} are ∅, {4}, {5}, {1, 4},
{2, 5}, {4, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}.

g) Let L be a family of sets ⊆ {1, . . . , n}, closed under intersection, with the property
that L ∈ L implies L = L(0) ≺ L(1) ≺ · · · ≺ L(t) = {1, . . . , n} for some L(j) ∈ L.
(The sets in (d) form one such family, with n = 5.) Construct strict Horn clauses
with the property that L ∈ L if and only if L ⊑ {1, . . . , n}.

h) True or false: If L, L′, L′′ are stable and L′ ≺ L, L′′ ≺ L, then L′ ∩L′′ is stable.
i) If L′ ⊑ L and L′′ ⊑ L, prove that L′ ∩ L′′ ⊑ L.
j) Prove that

∑
x′⊑xW (x′) =

∏{pk | xk = ∗} whenever x is stable.

x 364. [M21] A covering assignment is a stable partial assignment in which every as-
signed variable is constrained. A core assignment is a covering assignment L that
satisfies L ⊑ L′ for some total assignment L′.

a) True or false: The empty partial assignment L = ∅ is always covering.
b) Find all the covering and core assignments of the clauses F in ().
c) Find all the covering and core assignments of the clauses R′ in ().
d) Show that every satisfying assignment L′ has a unique core.
e) The satisfying assignments form a graph, if two of them are adjacent when they

differ by complementing just one literal. The connected components of this graph
are called clusters. Prove that the elements of each cluster have the same core.

f) If L′ and L′′ have the same core, do they belong to the same cluster?

365. [M27] Prove that the clauses waerden (3, 3;n) have a nontrivial (i.e., nonempty)
covering assignment for all sufficiently large n (although they’re unsatisfiable).

x 366. [18] Preprocess the clauses R′ of (). What erp rules are generated?

x 367. [20] Justify the erp rule () for elimination by resolution.

368. [16] Show that subsumption and downhill resolution imply unit conditioning:
Any preprocessor that does transformations 2 and 4 will also do transformation 1.

x 369. [21] (N. Eén and A. Biere.) Suppose l appears only in clauses C1, . . . , Cp and l̄
appears only in clauses C′1, . . . , C

′
q, where we have C1 = (l∨l1∨· · ·∨lr) and C′j = (l̄∨ l̄j)

for 1 ≤ j ≤ r. Prove that we can eliminate |l| by using the erp rule l̄ ← (l1 ∨ · · · ∨ lr)
and replacing those p+ q clauses by only (p− 2)r + q others, namely

{C1 ⋄C ′j | r < j ≤ q} ∪ {Ci ⋄C ′j | 1 < i ≤ p, 1 ≤ j ≤ r}.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 167

fault testing
tomography
Life in 4
resolution
waerden
anti-maximal-element
data structures
preprocessor
resolution, implementation of
subsumption, implementation of
self-subsumed
Vassilevska Williams
clique
failed literal
triangle-free graph
Blocked clause elimination
erp rule
Blocked self-subsumption
self-subsumption

(The case r = 1 is especially important. In many applications— for example in the
examples of fault testing, tomography, and the “Life in 4” problem about extending
Fig. 35—more than half of all variable eliminations admit this simplification.)

370. [20] The clauses obtained by resolution might be needlessly complex even when
exercise 369 doesn’t apply. For example, suppose that variable x appears only in the
clauses (x∨ a)∧ (x∨ ā∨ c)∧ (x̄∨ b)∧ (x̄∨ b̄∨ c̄). Resolution replaces those four clauses
by three others: (a∨ b)∧ (a∨ b̄∨ c̄)∧ (ā∨ b∨ c). Show, however, that only two clauses,
both binary, would actually suffice in this particular case.

371. [24] By preprocessing repeatedly with transformations 1–4, and using exercise
369, prove that the 32 clauses () of waerden (3, 3; 9) are unsatisfiable.

372. [25] Find a “small” set of clauses that cannot by solved entirely via transforma-
tions 1–4 and the use of exercise 369.

373. [25] The answer to exercise 228 defines 2m +
∑m

j=1(j − 1)2 ≈ m3/3 clauses

in m2 variables that suffice to refute the anti-maximal-element axioms of ()–().
Algorithm L needs exponential time to handle these clauses, according to Theorem R;
and experiments show that they are bad news for Algorithm C too. Show, however,
that preprocessing with transformations 1–4 will rapidly prove them unsatisfiable.

x 374. [32] Design data structures for the efficient representation of clauses within a SAT

preprocessor. Also design algorithms that (a) resolve clauses C and C ′ with respect to
a variable x; (b) find all clauses C′ that are subsumed by a given clause C; (c) find all
clauses C′ that are self-subsumed by a given clause C and a literal l ∈ C.

375. [21] Given |l|, how can one test efficiently whether or not the special situation in
exercise 369 applies, using (and slightly extending) the data structures of exercise 374?

x 376. [32] After a preprocessor has found a transformation that reduces the current set
of clauses, it is supposed to try again and look for further simplifications. (See ().)
Suggest methods that will avoid unnecessary repetition of previous work, by using (and
slightly extending) the data structures of exercise 374.

377. [22] (V. Vassilevska Williams.) If G is a graph with n vertices and m edges,
construct a 2SAT problem F with 3n variables and 6m clauses, such that G contains a
triangle (a 3-clique) if and only if F has a failed literal.

378. [20] (Blocked clause elimination.) Clause C = (l ∨ l1 ∨ · · · ∨ lq) is said to be
blocked by the literal l if every clause that contains l̄ also contains either l̄1 or · · · or l̄q.
Exercise 161(b) proves that clause C can be removed without making an unsatisfiable
problem satisfiable. Show that this transformation requires an erp rule, even though it
doesn’t eliminate any of the variables. What erp rule works?

x 379. [20] (Blocked self-subsumption.) Consider the clause (a∨ b∨ c∨ d), and suppose
that every clause containing ā but not b̄ nor c̄ also contains d. Show that we can then
shorten the clause to (b ∨ c ∨ d) without affecting satisfiability. Is an erp rule needed?

380. [21] Sometimes we can use self-subsumption backwards, for example by weaken-
ing the clause (l1∨l2∨l3) to (l1∨· · ·∨lk) if each intermediate replacement of (l1∨· · ·∨lj)
by (l1∨· · ·∨lj−1) is justifiable for 3 < j ≤ k. Then, if we’re lucky, the clause (l1∨· · ·∨lk)
is weak enough to be eliminated; in such cases we are allowed to eliminate (l1 ∨ l2 ∨ l3).

a) Show that (a ∨ b ∨ c) can be eliminated if it is accompanied by the additional
clauses (a ∨ b ∨ d̄), (a ∨ d ∨ e), (b ∨ d ∨ ē).

b) Show that (a ∨ b ∨ c) can also be eliminated when accompanied by (a ∨ b ∨ d̄),
(a ∨ c̄ ∨ d̄), (b ∨ d ∨ ē), (b ∨ c̄ ∨ ē), provided that no other clauses contain c̄.

September 23, 2015

168 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

lookahead forest
dependency digraph
Inprocessing
hard
soft
Learning
Forgetting
purge
erp rules
certifiable
subsumed
self-subsumption
variable elimination
Tseytin
extended resolution
erp rule
certifiable
absorbed
asymmetric tautology, see certifiable clause

c) What erp rules, if any, are needed for those eliminations?

381. [22] Combining exercises 379 and 380, show that any one of the clauses in

(x̄1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ · · · ∧ (x̄n−1 ∨ xn) ∧ (x̄n ∨ x1)

can be removed if there are no other clauses with negative literals. State the erp rules.

382. [30] Although the techniques in the preceding exercises are computationally
difficult to apply, show that a lookahead forest based on the dependency digraph can
be used to discover some of those simplifications efficiently.

x 383. [23] (Inprocessing.) A SAT solver can partition its database of current clauses
into two parts, the “hard” clauses Φ and the “soft” clauses Ψ. Initially Ψ is empty, while
Φ is F , the set of all input clauses. Four kinds of changes are subsequently allowed:

• Learning. We can append a new soft clause C, provided that Φ ∪ Ψ ∪ C is
satisfiable whenever Φ ∪Ψ is satisfiable.

• Forgetting. We can discard (purge) any soft clause.

• Hardening. We can reclassify any soft clause and call it hard.

• Softening. We can reclassify any hard clause C and call it soft, provided that
Φ is satisfiable whenever Φ \ C is satisfiable. In this case we also should output any
necessary erp rules, which change the settings of variables in such a way that any
solution to Φ \ C becomes a solution to Φ.

a) Prove that, throughout any such procedure, F is satisfiable ⇐⇒ Φ is satisfiable
⇐⇒ Φ ∪Ψ is satisfiable.

b) Furthermore, given any solution to Φ, we obtain a solution to F by applying the
erp rules in reverse order.

c) What is wrong with the following scenario? Start with one hard clause, (x), and
no soft clauses. Reclassify (x) as soft, using the erp rule x← 1. Then append a
new soft clause (x̄).

d) If C is certifiable for Φ (see exercise 385), can we safely learn C?

e) If C is certifiable for Φ \ C, can we safely forget C?

f) In what cases is it legitimate to discard a clause, hard or soft, that is subsumed
by another clause, hard or soft?

g) In what cases is self-subsumption permissible?

h) Explain how to eliminate all clauses that involve a particular variable x.

i) Show that, if z is a new variable, we can safely learn the three new soft clauses
(x ∨ z), (y ∨ z), (x̄ ∨ ȳ ∨ z̄) in Tseytin’s concept of extended resolution.

384. [25] Continuing the previous exercise, show that we can always safely forget any
clause C that contains a literal l for which C ⋄ C ′ is certifiable for Φ \ C whenever
C′ ∈ Φ contains l̄. What erp rule is appropriate?

385. [22] Clause C is called certifiable for a set of clauses F if F ∧C ⊢1 ǫ, as in ().
It is said to be absorbed by F if it is nonempty and F ∧C \ l ⊢1 l for every l ∈ C, or if
it is empty and F ⊢1 ǫ. (Every clause of F is obviously absorbed by F .)

a) True or false: If C is absorbed by F , it is certifiable for F .

b) Which of {1̄, 1̄2, 1̄23} are implied by, certifiable for, or absorbed by R′ in (7)?

c) If C is certifiable for F and if all clauses of F are absorbed by F ′, prove that C
is certifiable for F ′.

d) If C is absorbed by F and if all clauses of F are absorbed by F ′, prove that C is
absorbed by F ′.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 169

helpful round
certificate of unsatisfiability
embedded
homomorphic embedding
clique
Hamiltonian cycle
king moves
knight moves
path
reachability in a graph
connected
path

x 386. [M25] Let Algorithm C0 be a variant of Algorithm C that (i) makes all decisions
at random; (ii) never forgets a learned clause; and (iii) restarts whenever a new clause
has been learned. (Thus, step C5 ignores Mp and Mf ; step C6 chooses l uniformly at
random from among the 2(n−F) currently unassigned literals; step C8 backjumps while
F > i1, instead of while F > id′+1; and after step C9 has stored a new clause, with
d > 0, it simply sets d← 0 and returns to C2. The data structures HEAP, OVAL, and ACT

are no longer used.) We will prove that Algorithm C0 is, nevertheless, quite powerful.

In the remainder of this exercise, F denotes the set of clauses known by Algo-
rithm C0, both original and learned; in particular, the unit clauses of F will be the
first literals L0, L1, . . . , Li1−1 on the trail. If C is any clause and if l ∈ C, we define

score(F,C, l) =

{
∞, if F ∧ C \ l ⊢1 l;
|{l′ | F ∧ C \ l ⊢1 l′}|, otherwise.

Thus score(F,C, l) represents the total number of literals on the trail after making all
the unforced decisions of C \ l̄, if no conflict arises. We say that Algorithm C0 performs
a “helpful round” for C and l if (i) every decision literal belongs to C; and (ii) l̄ is
chosen as a decision literal only if the other elements of C are already in the trail.

a) Let C be certifiable for F , and suppose that score(F,C, l) < ∞ for some l ∈ C.
Prove that if F ′ denotes F together with a clause learned on a helpful round,
then score(F ′, C, l) > score(F,C, l).

b) Furthermore score(F ′, C, l) ≥ score(F,C, l) after an unhelpful round.

c) Therefore C will be absorbed by the set F ′ of known clauses after at most |C|n
helpful rounds have occurred.

d) If |C| = k, show that Pr(helpful round) ≥ (k − 1)!/(2n)k ≥ 1/(4nk).

e) Consequently, by exercise 385(c), if there exists a certificate of unsatisfiability
(C1, . . . , Ct) for a family of clauses F with n variables, Algorithm C0 will prove
F unsatisfiable after learning an average of µ ≤ 4

∑t
i=1 |Ci|n1+|Ci| clauses. (And

it will q.s. need to learn at most µ lnn ln lnn clauses, by exercise MPR–102.)

x 387. [21] Graph G is said to be embedded in graph G′ if every vertex v of G corre-
sponds to a distinct vertex v′ of G′, where u′−−−v′ in G′ whenever u−−−v in G. Explain
how to construct clauses that are satisfiable if and only if G can be embedded in G′.

388. [20] Show that the problems of deciding whether or not a given graph G (a) con-
tains a k-clique, (b) can be k-colored, or (c) has a Hamiltonian cycle can all be regarded
as graph embedding problems.

x 389. [22] In this 4 × 4 diagram, it’s possible to trace out the phrase
‘THE ART OF COMPUTER PROGRAMMING ’ by making only king moves and
knight moves, except for the final step from N to G.

Rearrange the letters so that the entire phrase can be traced.

N T E F

H I R

U P O A

M M C G

x 390. [23] Let G be a graph with vertices V, edges E, |E| = m, |V | = n, and s, t ∈ V .

a) Construct O(kn) clauses that are satisfiable if and only if there’s a path of length
k or less from s to t, given k.

b) Construct O(m) clauses that are satisfiable if and only if there’s at least one path
from s to t.

c) Construct O(n2) clauses that are satisfiable if and only if G is connected.

d) Construct O(km) clauses that are unsatisfiable if and only if there’s a path of
length k or less from s to t, given k.

September 23, 2015

170 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

connected
encode
rookwise connected
multicommodity flow
routing, disjoint
connection puzzles
kingwise connectedness
Dawson
chess diagram
nonintersecting paths
at-most-one
auxiliary variables
broadcast
Langford’s problem
order encoding

e) Construct O(m) clauses that are unsatisfiable if and only if there’s at least one
path from s to t.

f) Construct O(m) clauses that are unsatisfiable if and only if G is connected. (This
construction is much better than (c), in a sparse graph.)

391. [M25] The values of two integer variables satisfy 0 ≤ x, y < d, and they are to
be represented as l-bit quantities xl−1 . . . x0, yl−1 . . . y0, where l = ⌈lg d⌉. Specify three
different ways to encode the relation x 6= y:

a) Let x = (xl−1 . . . x0)2 and y = (yl−1 . . . y0)2; and let the encoding enforce the
conditions (xl−1 . . . x0)2 < d, and (yl−1 . . . y0)2 < d, as well as ensuring that
x 6= y by introducing 2l + 1 additional clauses in l auxiliary variables.

b) Like (a), but there are d additional clauses (not 2l + 1), and no auxiliaries.
c) All bit patterns xl−1 . . . x0 and yl−1 . . . y0 are valid, but some values might have

two different patterns. The encoding has d clauses and no auxiliary variables.

392. [22] The blank spaces in the following diagrams can be filled with letters in such
a way that all occurrences of the same letter are rookwise connected:

A
B B

C C
A

A
D E

C D
B B

E
C A

A B B
C C

A B

D C E
F D E

A
D B

F F E

H A

B C D C
E E

G G

F J F
J

I H I A
B D

A

B C

D
E

F A E D
C B F

(i) (ii) (iii) (iv) (v)

a) Demonstrate how to do it. (Puzzle (i) is easy; the others less so.)
b) Similarly, solve the following puzzles—but use kingwise connectedness instead.

A H
B G
C F
D E
E D
F C
G B
H A

A
B G
C F
D E
E D
F C
G B

A

A B C D A
D B

C
C

B D
A D C B A

(vi) (vii) (viii)

c) Construct clauses with which a SAT solver can solve general puzzles of this kind:
Given a graph G and disjoint sets of vertices T1, T2, . . . , Tt, a solution should ex-
hibit disjoint connected sets of vertices S1, S2, . . . , St, with Tj ⊆ Sj for 1 ≤ j ≤ t.

393. [25] (T. R. Dawson, 1911.) Show that it’s possible for each white
piece in the accompanying chess diagram to capture the corresponding
black piece, via a path that doesn’t intersect any of the other paths. How
can SAT help to solve this problem?

bZ0Z0Z0Z

Z0Z0Z0a0

0Z0Z0Z0l

Z0m0Z0Z0

0Z0Z0Z0s

Z0L0ZNZ0

0Z0Z0Z0S

Z0Z0A0ZB

394. [25] One way to encode the at-most-one constraint S≤1(y1, . . . , yp)
is to introduce l = ⌈lg p⌉ auxiliary variables together with the following nl + n − 2l

clauses, which essentially “broadcast” the value of j when yj becomes true:

(ȳj ∨ (−1)btat) for 1 ≤ j ≤ p, 1 ≤ t ≤ q = ⌊lg(2p− j)⌋, where 2p− j = (1b1 . . . bq)2.

For example, the clauses when p = 3 are (ȳ1∨a1)∧(ȳ1∨ā2)∧(ȳ2∨a1)∧(ȳ2∨a2)∧(ȳ3∨ā1).
Experiment with this encoding by applying it to Langford’s problem, using it in

place of () whenever p ≥ 7.

395. [20] What clauses should replace (), (), and () if we want to use the order
encoding for a graph coloring problem?

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 171

Double clique hints
order encoding
graph coloring
hints
redundant representation
clique
queens graph
organ-pipe permutation
Tamura
order encoding
all-different
direct encoding
direct encoding
at-least-one
at-most-one
binary constraint
graph-coloring
preclusion clauses
conflict clauses, see also preclusion clauses
support clauses
unit propagation
n queens problem
unary representation

x 396. [23] (Double clique hints.) If x has one of the d values {0, 1, . . . , d − 1}, we can
represent it binarywise with respect to two different orderings by letting xj = [x≥ j]
and x̂j = [xπ≥ j] for 1 ≤ j < d, where π is any given permutation. For example, if
d = 4 and (0π, 1π, 2π, 3π) = (2, 3, 0, 1), the representations x1x2x3:x̂1x̂2x̂3 of 0, 1, 2,
and 3 are respectively 000:110, 100:111, 110:000, and 111:100. This double ordering
allows us to encode graph coloring problems by including not only the hints () but
also

(v̂d−k+1
1 ∨ · · · ∨ v̂d−k+1

k) ∧ (v̂k−1
1 ∨ · · · ∨ v̂k−1

k),

whenever the vertices {v1, . . . , vk} form a k-clique.
Explain how to construct clauses for this encoding, and experiment with coloring

the n × n queens graph when (0π, 1π, 2π, 3π, 4π, . . .) = (0, d−1, 1, d−2, 2, . . .) is the
inverse of the organ-pipe permutation.

x 397. [22] (N. Tamura, 2014.) Suppose x0, x1, . . . , xp−1 are integer variables with the
range 0 ≤ xi < d, represented in order encoding by Boolean variables xj

i = [xi≥ j]
for 0 ≤ i < p and 1 ≤ j < d. Show that the all-different constraint, “xi 6= xj for
0 ≤ i < j < p,” can be nicely encoded by introducing auxiliary integer variables y0,
y1, . . . , yd−1 with the range 0 ≤ yj < p, represented in order encoding by Boolean
variables yij = [yj ≥ i] for 1 ≤ i < p and 0 ≤ j < d, and by devising clauses to enforce
the condition xi = j =⇒ yj = i. Furthermore, hints analogous to () can be given.

398. [18] Continuing exercise 397, what’s an appropriate way to enforce the all-
different constraint when x0, . . . , xp−1 are represented in the direct encoding?

x 399. [23] If the variables u and v range over d values {1, . . . , d}, it’s natural to encode
them directly as sequences u1 . . . ud and v1 . . . vd, where ui = [u= i] and vj = [v= j],
using the at-least-one clauses () and the at-most-one clauses (). A binary constraint

tells us which pairs (i, j) are legal; for example, the graph-coloring constraint says that
i 6= j when i and j are the colors of adjacent vertices in some graph.

One way to specify such a constraint is to assert the preclusion clauses (ūi ∨ v̄j)
for all illegal pairs (i, j), as we did for graph coloring in (). But there’s also another
general way: We can assert the support clauses

d∧

i=1

(
ūi ∨

∨{vj | (i, j) is legal}
)
∧

d∧

j=1

(
v̄j ∨

∨{ui | (i, j) is legal}
)

instead. Graph coloring with d colors would then be represented by clauses such as
(ū3 ∨ v1 ∨ v2 ∨ v4 ∨ · · · ∨ vd), when u and v are adjacent.

a) Suppose t of the d2 pairs (i, j) are legal. How many preclusion clauses are needed?
How many support clauses?

b) Prove that the support clauses are always at least as strong as the preclusion
clauses, in the sense that all consequences of the preclusion clauses under unit
propagation are also consequences of the support clauses under unit propagation,
given any partial assignment to the binary variables {u1, . . . , ud, v1, . . . , vd}.

c) Conversely, in the case of the graph-coloring constraint, the preclusion clauses
are also at least as strong as the support clauses (hence equally strong).

d) However, exhibit a binary constraint for which the support clauses are strictly
stronger than the preclusion clauses.

400. [25] Experiment with preclusion clauses versus support clauses by applying them
to the n queens problem. Use Algorithms L, C, and W for comparison.

401. [16] If x has the unary representation x1x2 . . . xd−1, what is the unary represen-
tation of (a) y = ⌈x/2⌉? (b) z = ⌊(x+ 1)/3⌋?

September 23, 2015

172 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

auxiliary variables
linear inequalities
recursively
Open shop scheduling
job shop problems
makespan
“greedy” algorithm

402. [18] If x has the unary representation x1x2 . . . xd−1, encode the further condition
that x is (a) even; (b) odd.

403. [20] Suppose x, y, z have the order encoding, with 0 ≤ x, y, z < d. What clauses
enforce (a) min(x, y) ≤ z? (b) max(x, y) ≤ z? (c) min(x, y) ≥ z? (d) max(x, y) ≥ z?

x 404. [21] Continuing exercise 403, encode the condition |x − y| ≥ a, for a given
constant a ≥ 1, using either (a) d clauses of length ≤ 4 and no auxiliary variables;
or (b) 2d−O(a) clauses of length ≤ 3, and one auxiliary variable.

x 405. [M23] The purpose of this exercise is to encode the constraint ax+ by ≤ c, when
a, b, c are integer constants, assuming that x, y are order-encoded with range [0 . . d).

a) Prove that it suffices to consider cases where a, b, c > 0.

b) Exhibit a suitable encoding for the special case 13x− 8y ≤ 7, d = 8.
c) Exhibit a suitable encoding for the special case 13x− 8y ≥ 1, d = 8.

d) Specify an encoding that works for general a, b, c, d.

406. [M24] Order-encode (a) xy ≤ a and (b) xy ≥ a, when a is an integer constant.

x 407. [M22] If x, y, z are order-encoded, with 0≤x, y<d and 0≤z<2d−1, the clauses

2d−2∧

k=1

k∧

j=max(0,k+1−d)

(x̄j ∨ ȳk−j ∨ zk)

are satisfiable if and only if x+y ≤ z; this is the basic idea underlying (). Another way
to encode the same relation is to introduce new order-encoded variables u and v, and to
construct clauses for the relations ⌊x/2⌋+⌊y/2⌋ ≤ u and ⌈x/2⌉+⌈y/2⌉ ≤ v, recursively
using methods for numbers less than ⌈d/2⌉ and ⌊d/2⌋ + 1. Then we can finish the job
by letting z1 = v1, z2d−2 = vd (d even) or ud−1 (d odd), and appending the clauses

(ūj ∨ z2j) ∧ (v̄j+1 ∨ z2j) ∧ (ūj ∨ v̄j+1 ∨ z2j+1), for 1 ≤ j ≤ d− 2.

a) Explain why the alternative method is valid.

b) For what values of d does that method produce fewer clauses?
c) Consider analogous methods for the relation x+ y ≥ z.

x 408. [25] (Open shop scheduling.) Consider a system of m machines and n jobs,
together with an m×n matrix of nonnegative integer weightsW = (wij) that represent
the amount of uninterrupted time on machine i that is needed by job j.

The open shop scheduling problem seeks a way to get all the work done in t units
of time, without assigning two jobs simultaneously to the same machine and without
having two machines simultaneously assigned to the same job. We want to minimize t,
which is called the “makespan” of the schedule.

For example, suppose m = n = 3 and W =
(

703
172
235

)
. A “greedy” algorithm, which

repeatedly fills the lexicographically smallest time slot (t, i, j) such that wij > 0 but
neither machine i nor job j have yet been scheduled at time t, achieves a makespan
of 12 with the following schedule:

M1:

M2:

M3:

J1 J3

J2 J1 J3

J3 J2 J1

a) Is 12 the optimum makespan for this W ?

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 173

order encoding
linear inequalities
log-encoded
Napier
Dadda
multiplication
radix-d representation
order encoding
auxiliary variables
eliminated
resolution
lexicographic order
order encoding
CNF
Tseytin encoding
mux operation
branching programs
hidden weighted bit function
Boolean chain

b) Prove that the greedy algorithm always produces a schedule whose makespan is
less than (maxm

i=1

∑n
j=1 wij)+ (maxn

j=1

∑m
i=1 wij), unless W is entirely zero.

c) Suppose machine i begins to work on job j at time sij , when wij > 0. What
conditions should these starting times satisfy, in order to achieve the makespan t?

d) Show that the order encoding of these variables sij yields SAT clauses that nicely
represent any open shop scheduling problem.

e) Let ⌊W/k⌋ be the matrix obtained by replacing each element wij ofW by ⌊wij/k⌋.
Prove that if the open shop scheduling problem for ⌊W/k⌋ and t is unsatisfiable,
so is the problem for W and kt.

x 409. [M26] Continuing exercise 408, find the best makespans in the following cases:

a) m = 3, n = 3r + 1; w1j = w2(r+j) = w3(2r+j) = aj for 1 ≤ j ≤ r; w1n = w2n =
w3n = ⌊(a1+ · · ·+ar)/2⌋; otherwise wij = 0. (The positive integers aj are given.)

b) m = 4, n = r + 2; w1j = (r + 1)aj and w2j = 1 for 1 ≤ j ≤ r; w2(n−1) = w2n =
(r + 1)⌊(a1 + · · ·+ ar)/2⌋; w3(n−1) = w4n = w2n + r ; otherwise wij = 0.

c) m = n; wjj = n− 2, wjn = wnj = 1 for 1 ≤ j < n; otherwise wij = 0.
d) m = 2; w1j = aj and w2j = bj for 1 ≤ j ≤ n, where a1+· · ·+an = b1+· · ·+bn = s

and aj + bj ≤ s for 1 ≤ j ≤ n.
410. [24] Exhibit clauses for the constraint 13x−8y ≤ 7 when x and y are log-encoded
as 3-bit integers x = (x2x1x0)2 and y = (y2y1y0)2. (Compare with exercise 405(b).)

x 411. [25] If x = (xm . . . x1)2, y = (yn . . . y1)2, and z = (zm+n . . . z1)2 stand for
binary numbers, the text explains how to encode the relation xy = z with fewer than
20mn clauses, using Napier–Dadda multiplication. Explain how to encode the relations
xy ≤ z and xy ≥ z with fewer than 9mn and 11mn clauses, respectively.

412. [40] Experiment with the encoding of somewhat large numbers by using a radix-d
representation in which each digit has the order encoding.

413. [M20] How many clauses will remain after the auxiliary variables a1, . . . , an−1

of () have been eliminated by resolution?

x 414. [M22] Generalize () to an encoding of lexicographic order on d-ary vectors,
(x1 . . . xn)d ≤ (y1 . . . yn)d, where each xk = x1

k + · · ·+ xd−1
k and yk = y1k + · · · + yd−1

k

has the order encoding. What modifications to your construction will encode the strict

relation x1 . . . xn < y1 . . . yn?

415. [M22] Find all CNF formulas for the function (x1 ⊕ y1) ∨ · · · ∨ (xn ⊕ yn).
416. [20] Encode the condition ‘if x1 . . . xn = y1 . . . yn then u1 . . . um = v1 . . . vm’, us-
ing 2m+2n+1 clauses and n+1 auxiliary variables. Hint: 2n of the clauses are in ().

417. [21] Continuing exercise 42, what is the Tseytin encoding of the ternary mux op-
eration ‘s← t?u: v’ ? Use it to justify the translation of branching programs via ().

418. [23] Use a branching program to construct clauses that are satisfiable if and
only if (xij) is an m × n Boolean matrix whose rows satisfy the hidden weighted bit
function hn and whose columns satisfy the complementary function h̄m. In other words,

ri =
n∑

j=1

xij , cj =
m∑

i=1

xij , and xiri = 1, xcjj = 0, assuming that xi0 = x0j = 0.

419. [M21] If m,n ≥ 3, find (by hand) all solutions to the problem of exercise 418
such that (a)

∑
xij = m+1 (the minimum); (b)

∑
xij = mn− n− 1 (the maximum).

420. [18] Derive () mechanically (that is, “without thinking”) from the Boolean
chain s← x1 ⊕ x2, c← x1 ∧ x2, t← s⊕ x3, c

′ ← s ∧ x3, requiring c = c′ = 0.

September 23, 2015

174 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

branching program
weakly forcing
BDD
dual
Pi function
prime clauses
forcing representation
definite Horn clause
Horn core
eliminated
auxiliary variables
generic graph
forcing
Alon
Boppana
Bailleux
Boufkhad
forcing
unit propagation
Sinz
equal sums
regular expression

421. [18] Derive () mechanically from the branching program I5 = (1̄? 4: 3), I4 =
(2̄? 1: 2), I3 = (2̄? 2: 0), I2 = (3̄? 1: 0), beginning at I5.

422. [11] What does unit propagation deduce when the additional clause (x1) or (x2)
is appended to (a) F in ()? (b) G in ()?

423. [22] A representation F that satisfies a condition like () but with l replaced
by ǫ can be called “weakly forcing.” Exercise 422 shows that () and () are weakly
forcing. Does the BDD of every function define a weakly forcing encoding, via ()?

x 424. [20] The dual of the Pi function has the prime clauses {1̄2̄3̄, 1̄3̄4̄, 23̄4̄, 234, 12}
(see 7.1.1–()). Can any of them be omitted from a forcing representation?

425. [18] A clause with exactly one positive literal is called a definite Horn clause,
and Algorithm 7.1.1C computes the “core” of such clauses. If F consists of definite
Horn clauses, prove that x is in the core if and only if F ⊢1 x, if and only if F ∧(x̄) ⊢1 ǫ.

x 426. [M20] Suppose F is a set of clauses that represent f(x1, . . . , xn) using auxiliary
variables {a1, . . . , am} as in (), where m > 0. Let G be the clauses that result after
variable am has been eliminated as in ().

a) True or false: If F is forcing then G is forcing.
b) True or false: If F is not forcing then G is not forcing.

427. [M30] Exhibit a function f(x1, . . . , xn) for which every set of forcing clauses that
uses no auxiliary variables has size Ω(3n/n2), although f can actually be represented
by a polynomial number of forcing clauses when auxiliary variables are introduced.
Hint: See exercise 7.1.1–116.

428. [M27] A generic graph G on vertices {1, . . . , n} can be characterized by
(
n
2

)

Boolean variables X = {xij | 1 ≤ i < j ≤ n}, where xij = [i−−−j in G]. Properties
of G can therefore be regarded as Boolean functions, f(X).

a) Let fnd(X) = [χ(G)≤ d]; that is, fnd is true if and only if G has a d-coloring.
Construct clauses Fnd that represent the function fnd(X) ∨ y, using auxiliary
variables Z = {zjk | 1 ≤ j ≤ n, 1 ≤ k ≤ d} that mean “vertex j has color k.”

b) Let Gnd be a forcing representation of the Boolean function Fnd(X, y, Z), and
suppose that Gnd has M clauses in N variables. (These N variables should
include the

(
n
2

)
+ 1 + nd variables of Fnd, along with an arbitrary number of

additional auxiliaries.) Explain how to construct a monotone Boolean chain of
cost O(MN2) for the function f̄nd (see exercise 7.1.2–84), given the clauses ofGnd.

Note: Noga Alon and Ravi B. Boppana, Combinatorica 7 (1987), 1–22, proved that
every monotone chain for this function has length expΩ((n/ log n)1/3) when d + 1 =
⌊(n/ lgn)2/3/4⌋. Hence M and N cannot be of polynomial size.

429. [22] Prove that Bailleux and Boufkhad’s clauses (), () are forcing: If any r
of the x’s have been set to 1, then unit propagation will force all the others to 0.

430. [25] Similarly, Sinz’s clauses () and () are forcing.

x 431. [20] Construct efficient, forcing clauses for the relation x1+· · ·+xm≤y1+· · ·+yn.
432. [24] Exercise 404 gives clauses for the relation |x− y| ≥ a. Are they forcing?

433. [25] Are the lexicographic-constraint clauses in () forcing?

434. [21] Let Ll be the language defined by the regular expression 0∗1l0∗; in other
words, the binary string x1 . . . xn is in Ll if and only if it consists of zero or more 0s
followed by exactly l 1s followed by zero or more 0s.

a) Explain why the following clauses are satisfiable if and only if x1 . . . xn ∈ Ll:
(i) (p̄k∨x̄k), (p̄k∨pk−1), and (p̄k−1∨xk∨pk) for 1 ≤ k ≤ n, also (p0); (ii) (q̄k∨x̄k),

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 175

forcing
Nondeterministic finite-state automata
finite-state automata
regular language
input states
output states
transition rules
forcing
runs of 1s
regular expression
consecutive 1s
context free languages
production rules
nonterminal symbols
threshold function
Pseudo-Boolean constraints, see threshold functions
unit propagation
propagation, kth order
failed literals

(q̄k ∨ qk+1), and (q̄k+1 ∨ xk ∨ qk) for 1 ≤ k ≤ n, also (qn+1); (iii) (r̄k ∨ pk−1) ∧∧
0≤d<l(r̄k ∨ xk+d) ∧ (r̄k ∨ qk+l) for 1 ≤ k ≤ n+ 1− l, also (r1 ∨ · · · ∨ rn+1−l).

b) Show that those clauses are forcing when l = 1 but not when l = 2.

x 435. [28] Given l ≥ 2, construct a set of O(n log l) clauses that characterize the
language Ll of exercise 434 and are forcing.

436. [M32] (Nondeterministic finite-state automata.) A regular language L on the
alphabet A can be defined in the following well-known way: Let Q be a finite set of
“states,” and let I ⊆ Q and O ⊆ Q be designated “input states” and “output states.”
Also let T ⊆ Q×A×Q be a set of “transition rules.” Then the string x1 . . . xn is in L if
and only if there’s a sequence of states q0, q1, . . . , qn such that q0 ∈ I , (qk−1, xk, qk) ∈ T
for 1 ≤ k ≤ n, and qn ∈ O.

Given such a definition, where A = {0, 1}, use auxiliary variables to construct
clauses that are satisfiable if and only if x1 . . . xn ∈ L. The clauses should be forcing,
and there should be at most O(n|T |) of them.

As an example, write out the clauses for the language L2 = 0∗120∗ of exercise 434.

437. [M21] Extend exercise 436 to the general case where A has more than two letters.

438. [21] Construct a set of forcing clauses that are satisfiable if and only if a given
binary string x1 . . . xn contains exactly t runs of 1s, having lengths (l1, l2, . . . , lt) from
left to right. (Equivalently, the string x1 . . . xn should belong to the language defined
by the regular expression 0∗1l10+1l20+. . . 0+1lt0∗.)

x 439. [30] Find efficient forcing clauses for the constraint that x1 + · · · + xn = t and
that there are no two consecutive 1s. (This is the special case l1 = · · · = lt = 1 of the
previous exercise, but a much simpler construction is possible.)

440. [M33] Extend exercise 436 to context free languages, which can be defined by
a set S ⊆ N and by production rules U and W of the following well-known forms:
U ⊆ {P → a | P ∈ N, a ∈ A} and W ⊆ {P → QR | P,Q,R ∈ N}, where N is a set of
“nonterminal symbols.” A string x1 . . . xn with each xj ∈ A belongs to the language if
and only if it can be produced from a nonterminal symbol P ∈ S.
441. [M35] Show that any threshold function f(x1, . . . , xn) = [w1x1 + · · ·+ wnxn≥ t]
has a forcing representation whose size is polynomial in log |w1|+ · · ·+ log |wn|.

x 442. [M27] The unit propagation relation ⊢1 can be generalized to kth order propa-
gation ⊢k as follows: Let F be a family of clauses and let l be a literal. If (l1, l2, . . . , lp)
is a sequence of literals, we write L−q = {l1, . . . , lq−1, l̄q} for 1 ≤ q ≤ p. Then

F ⊢0 l ⇐⇒ ǫ ∈ F ;

F ⊢k+1 l ⇐⇒ F |L−1 ⊢k ǫ, F |L−2 ⊢k ǫ, . . . , and F |L−p ⊢k ǫ
for some strictly distinct literals l1, l2, . . . , lp with lp = l;

F ⊢k ǫ ⇐⇒ F ⊢k l and F ⊢k l̄ for some literal l.

a) Verify that ⊢1 corresponds to unit propagation according to this definition.
b) Describe ⊢2 informally, using the concept of “failed literals.”
c) Prove that F ⊢k ǫ or F ⊢k l̄ implies F | l ⊢k ǫ for all literals l, and furthermore

that F ⊢k ǫ implies F ⊢k+1 ǫ, for all k ≥ 0.
d) True or false: F ⊢k l implies F ⊢k+1 l.
e) Let Lk(F) = {l | F ⊢k l}. What is Lk(R

′), where R′ appears in () and k ≥ 0?

f) Given k ≥ 1, explain how to compute Lk(F) and F |Lk(F) in O(n2k−1m) steps,
when F has m clauses in n variables.

September 23, 2015

176 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

hierarchy of hardness
UCk
partial assignment
propagation completeness, see UC1
PCk
single lookahead unit resolution
SLUR
lookahead
backtrack
Horn clauses
renamed
certificates of unsatisfiability
pigeonhole
Km,n
girth
Z(m, n)
nonchromatic rectangle

443. [M24] (A hierarchy of hardness.) Continuing the previous exercise, a family of
clauses F is said to belong to class UCk if it has the property that

F |L ⊢ ǫ implies F |L ⊢k ǫ for all sets of strictly distinct literals L.

(“Whenever a partial assignment yields unsatisfiable clauses, the inconsistency can be
detected by kth order propagation.”) And F is said to belong to class PCk if

F |L ⊢ l implies F |L ⊢k l for all sets of strictly distinct literals L ∪ l.
a) Prove that PC0 ⊂ UC0 ⊂ PC1 ⊂ UC1 ⊂ PC2 ⊂ UC2 ⊂ · · · , where the set

inclusions are strict (each class is contained in but unequal to its successor).
b) Describe all families F that belong to the smallest class, PC0.
c) Give interesting examples of families in the next smallest class, UC0.
d) True or false: If F contains n variables, F ∈ PCn.
e) True or false: If F contains n variables, F ∈ UCn−1.
f) Where do the clauses R′ of () fall in the hierarchy?

444. [M26] The following single lookahead unit resolution algorithm, called SLUR,
returns either ‘sat’, ‘unsat’, or ‘maybe’, depending on whether a given set F of clauses
is satisfiable, unsatisfiable, or beyond its ability to decide via easy propagations:

E1. [Propagate.] If F ⊢1 ǫ, terminate (‘unsat’). Otherwise set F ← F |{l | F ⊢1 l}.
E2. [Satisfied?] If F = ∅, terminate (‘sat’). Otherwise set l to any literal within F .

E3. [Lookahead and propagate.] If F | l 6⊢1 ǫ, set F ← F | l | {l′ | F | l ⊢1 l′} and
return to E2. Otherwise if F | l̄ 6⊢1 ǫ, F ← F | l̄ | {l′ | F | l̄ ⊢1 l′} and return to E2.
Otherwise terminate (‘maybe’).

Notice that this algorithm doesn’t backtrack after committing itself in E2 to either l or l̄.

a) If F consists of Horn clauses, possibly renamed (see exercise 7.1.1–55), prove that
SLUR will never return ‘maybe’, regardless of how it chooses l in step E2.

b) Find four clauses F on three variables such that SLUR always returns ‘sat’,
although F is not a set of possibly renamed Horn clauses.

c) Prove that SLUR never returns ‘maybe’ if and only if F ∈ UC1 (see exercise 443).
d) Explain how to implement SLUR in linear time with respect to total clause length.

x 445. [22] Find short certificates of unsatisfiability for the pigeonhole clauses ()–
(), when they are supplemented by (a) (); (b) (); (c) ().

446. [M10] What’s the maximum number of edges in a subgraph of Km,n that has
girth ≥ 6? (Express your answer in terms of Z(m,n).)

x 447. [22] Determine the maximum number of edges in a girth-8 subgraph of K8,8.

448. [M25] What is Z(m,n) when m is odd and n = m(m−1)/6? Hint: See 6.5–().

449. [21] Exhibit n× n quad-free matrices that contain the maximum number of 1s
and obey the lexicographic constraints (), (), for 8 ≤ n ≤ 16.

450. [25] Prove that there is essentially only one 10 × 10 quad-free system of points
and lines with 34 incidences. Hint: First show that every line must contain either 3
points or 4 points; hence every point must belong to either 3 lines or 4 lines.

x 451. [28] Find a way to color the squares of a 10×10 board with three colors, so that
no rectangle has four corners of the same color. Prove furthermore that every such
“nonchromatic rectangle” board has the color distribution {34, 34, 32}, not {34, 33, 33}.
But show that if any square of the board is removed, a nonchromatic rectangle is
possible with 33 squares of each color.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 177

decomposable
bipartite graph
indecomposable
connected
direct sum
notation A⊕B
block diagonal
lexicographically
endomorphism
autarky
submatrix
sweep
recurrence
perfect matching
domino coverings
fixed point
Mutilate
even-odd endomorphisms

452. [34] Find a nonchromatic rectangle with four colors on an 18× 18 board.

453. [M23] An m×n matrix X = (xij) is said to be decomposable if it has row indices
R ⊆ {1, . . . , m} and column indices C ⊆ {1, . . . , n} such that 0 < |R| + |C| < m + n,
with xij = 0 whenever (i ∈ R and j /∈ C) or (i /∈ R and j ∈ C). It represents a
bipartite graph on the vertices {u1, . . . , um} and {v1, . . . , vn}, if [ui−−−vj] = [xij 6=0].

a) Prove that X is indecomposable if and only if its bipartite graph is connected.

b) The direct sum X ′ ⊕X ′′ of matrices X ′ and X ′′, where X ′ is m′ × n′ and X ′′ is
m′′ × n′′, is the (m′ +m′′) × (n′ + n′′) “block diagonal” matrix X that has X ′

in its upper left corner, X ′′ in the lower right corner, and zeros elsewhere (see
7–()). True or false: If the rows and columns of X ′ and X ′′ are nonnegative and
lexicographically ordered as in () and (), so are the rows and columns of X.

c) Let X be any nonnegative matrix whose rows and columns are lexicographically
nonincreasing, as in () and (). True or false: X is decomposable if and
only if X is a direct sum of smaller matrices X ′ and X ′′.

454. [15] If τ is an endomorphism for the solutions of f , show that f(x) = f(xτ) for
every cyclic element x (every element that’s in a cycle of τ).

455. [M20] Suppose we know that () is an endomorphism of some given clauses F
on the variables {x1, x2, x3, x4}. Can we be sure that F is satisfiable if and only if F ∧C
is satisfiable, when (a) C = 1̄24̄, i.e., C = (x̄1∨ x2∨ x̄4)? (b) C = 23̄4̄? (c) C = 123?
(d) C = 13̄4?

456. [M21] For how many functions f(x1, x2, x3, x4) is () an endomorphism?

457. [HM19] Show that every Boolean f(x1, x2, x3, x4) has more than 51 quadrillion
endomorphisms, and an n-variable function has more than 22n(n−1).

458. [20] The simplification of clauses by removing an autarky can be regarded as the
exploitation of an endomorphism. Explain why.

x 459. [20] Let Xij denote the submatrix of X consisting of the first i rows and the
first j columns. Show that the numbers sweep(Xij) satisfy a simple recurrence, from
which it’s easy to compute sweep(X) = sweep(Xmn).

460. [21] Given m, n, k, and r, construct clauses that are satisfied by an m×n binary
matrix X = (xij) if and only if sweep(X) ≤ k and

∑
i,j xij ≥ r.

461. [20] What additional clauses will rule out non-fixed points of τ1 and τ2?

462. [M22] Explain why τ1, τ2, and τ3 preserve satisfiability in the sweep problem.

x 463. [M21] Show that X is a fixed point of τ1, τ2, and τ3 if and only if its rows and
columns are nondecreasing. Therefore the maximum of νX =

∑
i,j xij over all binary

matrices of sweep k is a simple function of m, n, and k.

x 464. [M25] Transformations τ1 and τ2 don’t change the text’s example 10×10 matrix.
Prove that they will never change any 10× 10 matrix of sweep 3 that has νX = 51.

465. [M21] Justify the text’s rule for simultaneous endomorphisms in the perfect
matching problem: Any perfect matching must lead to one that’s fixed by every τuv.

466. [M23] Prove that when mn is even, the text’s even-odd rule () for endomor-
phisms of m× n domino coverings has exactly one fixed point.

467. [20] Mutilate the 7×8 and 8×7 boards by removing the upper right and lower left
cells. What domino coverings are fixed by all the even-odd endomorphisms like ()?

September 23, 2015

178 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

certificate of unsatisfiability
PC2
hierarchy
4-cycle
complete graph
Tseytin
graph-based axioms
parity-related clauses
signed permutation
antisymmetry
cycle form
asymmetric
equivalence of Boolean functions
evaluation of Boolean functions
Boolean chain

468. [20] Experiment with the mutilated chessboard problem when the even-odd
endomorphisms are modified so that (a) they use the same rule for all i and j; or
(b) they each make an independent random choice between horizontal and vertical.

x 469. [M25] Find a certificate of unsatisfiability (C1, C2, . . . , Ct) for the fact that an
8×8 chessboard minus cells (1, 8) and (8, 1) cannot be exactly covered by dominoes hij

and vij that are fixed under all of the even-odd endomorphisms. Each Ck for 1 ≤ k < t
should be a single positive literal. (Therefore the clauses for this problem belong to
the relatively simple class PC2 in the hierarchy of exercise 443.)

x 470. [M22] Another class of endomorphisms, one for every 4-cycle, can also be used in
perfect matching problems: Let the vertices (instead of the edges) be totally ordered
in some fashion. Every 4-cycle can be written v0 −−− v1 −−− v2 −−− v3 −−− v0, with
v0 > v1 > v3 and v0 > v2; the corresponding endomorphism changes any solution for
which v0v1 = v2v3 = 1 by setting v0v1 ← v2v3 ← 0 and v1v2 ← v3v0 ← 1. Prove that
every perfect matching leads to a fixed point of all these transformations.

471. [16] Find all fixed points of the mappings in exercise 470 when the graph is K2n.

472. [M25] Prove that even-odd endomorphisms such as () in the domino covering
problem can be regarded as instances of the endomorphisms in exercise 470.

x 473. [M23] Generalize exercise 470 to endomorphisms for the unsatisfiable clauses of
Tseytin’s graph parity problems in exercise 245.

474. [M20] A signed permutation is a symmetry of f(x) if and only if f(x) = f(xσ)
for all x, and it is an antisymmetry if and only if we have f(x) = f̄(xσ) for all x.

a) How many signed permutations of n elements are possible?

b) Write 751̄4̄2̄63̄ in cycle form, as an unsigned permutation of {1, . . . , 7, 1̄, . . . , 7̄}.
c) For how many functions f of four variables is 4̄132̄ a symmetry?

d) For how many functions f of four variables is 4̄132̄ an antisymmetry?
e) For how many f(x1, . . . , x7) is 751̄4̄2̄63̄ a symmetry or antisymmetry?

475. [M22] Continuing exercise 474, a Boolean function is called asymmetric if the
identity is its only symmetry; it is totally asymmetric if it is asymmetric and has no
antisymmetries.

a) If f is totally asymmetric, how many functions are equivalent to f under the op-
erations of permuting variables, complementing variables, and/or complementing
the function?

b) According to (a) and 7.1.1–(), the function (x ∨ y) ∧ (x ⊕ z) is not totally
asymmetric. What is its nontrivial symmetry?

c) Prove that if f is not asymmetric, it has an automorphism of prime order p.

d) Show that if (uvw)(ūv̄w̄) is a symmetry of f , so is (uv)(ūv̄).
e) Make a similar statement if f has a symmetry of the form (uvwxy)(ūv̄w̄x̄ȳ).

f) Conclude that, if n ≤ 5, the Boolean function f(x1, . . . , xn) is totally asymmetric
if and only if no signed involution is a symmetry or antisymmetry of f .

g) However, exhibit a counterexample to that statement when n = 6.

476. [M23] For n ≤ 5, find Boolean functions of n variables that are (a) asymmetric
but not totally asymmetric; (b) totally asymmetric. Furthermore, your functions should
be the easiest to evaluate (in the sense of having a smallest possible Boolean chain),
among all functions that qualify. Hint: Combine exercises 475 and 477.

x 477. [23] (Optimum Boolean evaluation.) Construct clauses that are satisfiable if and
only if there is an r-step normal Boolean chain that computes m given functions g1,

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 179

full adder
truth tables
break symmetry
symmetric functions
Mod 4 parity
minterms
binary decoder
encoding of ternary data
representing three states with two bits
mapping three items into two-bit codes
Mod 3 parity
sideways sum
Erdős discrepancy patterns
strongly balanced
Symmetry between colors
coloring problems
clique
encode
restricted growth string
book graphs
Stanford GraphBase
Graph quenching
quenchable
model-checking problem

. . . , gm on n variables. (For example, if n = 3 and g1 = 〈x1x2x3〉, g2 = x1 ⊕ x2 ⊕ x3,
such clauses with r = 4 and 5 enable a SAT solver to discover a “full adder” of minimum
cost; see 7.1.2–() and 7.1.2–().) Hint: Represent each bit of the truth tables.

x 478. [23] Suggest ways to break symmetry in the clauses of exercise 477.

x 479. [25] Use SAT technology to find optimum circuits for the following problems:

a) Compute z2, z1, and z0, when x1 + x2 + x3 + x4 = (z2z1z0)2 (see 7.1.2–()).

b) Compute z2, z1, and z0, when x1 + x2 + x3 + x4 + x5 = (z2z1z0)2.

c) Compute all four symmetric functions S0, S1, S2, S3 of {x1, x2, x3}.
d) Compute all five symmetric functions S0, S1, S2, S3, S4 of {x1, x2, x3, x4}.
e) Compute the symmetric function S3(x1, x2, x3, x4, x5, x6).

f) Compute the symmetric function S0,4(x1, . . . , x6) = [(x1 + · · ·+ x6) mod 4 = 0].
g) Compute all eight minterms of {x1, x2, x3} (see 7.1.2–()).

480. [25] Suppose the values 0, 1, 2 are encoded by the two-bit codes xlxr = 00, 01,
and 1∗, respectively, where 10 and 11 both represent 2. (See Eq. 7.1.3–().)

a) Find an optimum circuit for mod 3 addition: zlzr = (xlxr + ylyr) mod 3.

b) Find an optimum circuit that computes zlzr = (x1 + x2 + x3 + ylyr) mod 3.

c) Conclude that [x1 + · · ·+ xn ≡ a (modulo 3)] can be computed in < 3n steps.

x 481. [28] An ordered bit pair xy can be encoded by another ordered bit pair [[xy]] =
(x⊕y)y without loss of information, because [[xy]] = uv implies [[uv]] = xy.

a) Find an optimum circuit that computes ([[zz ′]])2 = x1 + x2 + x3.

b) Let ν[[uv]] = (u ⊕ v) + v, and note that ν[[00]] = 0, ν[[01]] = 2, ν[[1∗]] = 1. Find
an optimum circuit that, given x1 . . . x5, computes z1z2z3 such that we have
ν[[x1x2]] + ν[[x3x4]] + x5 = 2ν[[z1z2]] + z3.

c) Use that circuit to prove by induction that the “sideways sum” (z⌊lgn⌋ . . . z1z0)2 =
x1 + x2 + · · ·+ xn can always be computed with fewer than 4.5n gates.

x 482. [26] (Erdős discrepancy patterns.) The binary sequence y1 . . . yt is called strongly

balanced if we have |∑k
j=1(2yj − 1)| ≤ 2 for 1 ≤ k ≤ t.

a) Show that this balance condition needs to be checked only for odd k ≥ 3.

b) Describe clauses that efficiently characterize a strongly balanced sequence.

c) Construct clauses that are satisfied by x1x2 . . . xn if and only if xdx2d . . . x⌊n/d⌋d
is strongly balanced for 1 ≤ d ≤ n.

483. [21] Symmetry between colors was broken in the coloring problems of Table 6
by assigning fixed colors to a large clique in each graph. But many graphs have no
large clique, so a different strategy is necessary. Explain how to encode the “restricted
growth string” principle (see Section 7.2.1.5) with appropriate clauses, given an ordering
v1v2 . . . vn of the vertices: The color of vj must be at most one greater than the largest
color assigned to {v1, . . . , vj−1}. (In particular, v1 always has color 1.)

Experiment with this scheme by applying it to the book graphs anna, david,
homer, huck, and jean of the Stanford GraphBase.

484. [22] (Graph quenching.) A graph with vertices (v1, . . . , vn) is called “quenchable”
if either (i) n = 1; or (ii) there’s a k such that vk −−− vk+1 and the graph on
(v1, . . . , vk−1, vk+1, . . . , vn) can be quenched; or (iii) there’s an l such that vl −−− vl+3

and the graph on (v1, . . . , vl−1, vl+3, vl+1, vl+2, vl+4, . . . , vn) can be quenched.

a) Find a 4-element graph that is quenchable although v3 /−−−v4.
b) Construct clauses that are satisfiable if and only if a given graph is quenchable.

Hint: Use the following three kinds of variables for this model-checking problem:

September 23, 2015

180 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

commutative
break symmetry
Late Binding solitaire
solitaire
patience
playing cards
Idle Year
Dick
queens
chessboard
Turton
Ball
boundary sets
queen graph
armies of queens
queens
symmetry breaking
coexisting armies of queens
signed involutions
signed
automorphism
signed mapping
tautology

xt,i,j = [vi−−−vj at time t], for 1 ≤ i < j ≤ n−t; qt,k = [a quenching move of type
(ii) leads to time t+1]; st,l = [a quenching move of type (iii) leads to time t+1].

x 485. [23] Sometimes successive transitions in the previous exercise are commutative:
For example, the effect of qt,k and qt+1,k+1 is the same as qt,k+2 and qt+1,k. Explain
how to break symmetry in such cases, by allowing only one of the two possibilities.

486. [21] (Late Binding solitaire.) Shuffle a deck and deal out 18 cards; then try to
reduce these 18 piles to a single pile, using a sequence of “captures” in which one pile is
placed on top of another pile. A pile can capture only the pile to its immediate left, or
the pile found by skipping left over two other piles. Furthermore a capture is permitted
only if the top card in the capturing pile has the same suit or the same rank as the top
card in the captured pile. For example, consider the following deal:

J♥ 5♥10♣ 8♦ J♣ A♣ K♠ A♥ 4♣ 8♠ 5♠ 5♦ 2♦ 10♠ A♠ 6♥ 3♥10♦

Ten captures are initially possible, including 5♥×J♥, A♣××10♣, and 5♦×5♠. Some
captures then make others possible, as in 8♠×× K♠×× 8♦.

If captures must be made “greedily” from left to right as soon as possible, this
game is the same as the first 18 steps of a classic one-player game called “Idle Year,”
and we wind up with five piles [see Dick’s Games of Patience (1883), 50–52]. But if we
cleverly hold back until all 18 cards have been dealt, we can do much better.

Show that one can win from this position, but not if the first move is A♣× J♣.
x 487. [27] There are

(
64
8

)
= 4426165368 ways to place eight queens on a chessboard.

Long ago, W. H. Turton asked which of them causes the maximum number of vacant
squares to remain unattacked. [See W. W. Rouse Ball, Mathematical Recreations and

Problems, third edition (London: Macmillan, 1896), 109–110.]

Every subset S of the vertices of a graph has three boundary sets defined thus:

∂S = the set of all edges with exactly one endpoint ∈ S;
∂outS = the set of all vertices /∈ S with at least one neighbor ∈ S;
∂inS = the set of all vertices ∈ S with at least one neighbor /∈ S.

Find the minimum and maximum sizes of ∂S, ∂outS, and ∂inS, over all 8-element sets S
in the queen graph Q8 (exercise 7.1.4–241). Which set answers Turton’s question?

x 488. [24] (Peaceable armies of queens.) Prove that armies of nine white queens and
nine black queens can coexist on a chessboard without attacking each other, but armies
of size 10 cannot, by devising appropriate sets of clauses and applying Algorithm C.
Also examine the effects of symmetry breaking. (This problem has sixteen symmetries,
because we can swap colors and/or rotate and/or reflect the board.) How large can
coexisting armies of queens be on n× n boards, for n ≤ 11?

489. [M21] Find a recurrence for Tn, the number of signed involutions on n elements.

x 490. [15] Does Theorem E hold also when p1p2 . . . pn is any signed permutation?

x 491. [22] The unsatisfiable clauses R in () have the signed permutation 2341̄ as an
automorphism. How can this fact help us to verify their unsatisfiability?

492. [M20] Let τ be a signed mapping of the variables {x1, . . . , xn}; for example,
the signed mapping ‘4̄133̄’ stands for the operation (x1, x2, x3, x4) 7→ (x4̄, x1, x3, x3̄) =
(x̄4, x1, x3, x̄3). When a signed mapping is applied to a clause, some of the resulting lit-
erals might coincide; or two literals might become complementary, making a tautology.
When τ = 4̄133̄, for instance, we have (123)τ = 4̄13, (134̄)τ = 4̄3, (13̄4̄)τ = ℘.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 181

subsumed
waerden
Dull
pigeonhole
BDD
lexicographic order
Quick
monkey wrench principle
Gardner
queen placement
Closest strings
binary strings
noisy data
Covering strings
NP-complete

A family F of clauses is said to be “closed” under a signed mapping τ if Cτ is
subsumed by some clause of F whenever C ∈ F . Prove that τ is an endomorphism
of F in such a case.

493. [20] The problem waerden (3, 3; 9) has four symmetries, because we can reflect
and/or complement all the variables. How can we speed up the proof of unsatisfiability
by adding clauses to break those symmetries?

494. [21] Show that if (uvw)(ūv̄w̄) is a symmetry of some clauses F , we’re allowed to
break symmetries as if (uv)(ūv̄), (uw)(ūw̄), and (vw)(v̄w̄) were also symmetries. For
example, if i < j < k and if (ijk)(̄ij̄k̄) is a symmetry, we can assert (x̄i∨xj)∧ (x̄j ∨xk)
with respect to the global ordering p1 . . . pn = 1 . . . n. What are the corresponding
binary clauses when the symmetry is (i) (ijk̄)(̄ij̄k)? (ii) (ij̄k)(̄ijk̄)? (iii) (ij̄k̄)(̄ij̄k)?

495. [M22] Spell out the details of how we can justify appending clauses to assert ()
and (), using Corollary E, whenever we have an m×n problem whose variables xij

possess both row and column symmetry. (In other words we assume that xij 7→ x(iπ)(jρ)

is an automorphism for all permutations π of {1, . . . ,m} and ρ of {1, . . . , n}.)
x 496. [M20] B. C. Dull reasoned as follows: “The pigeonhole clauses have row and col-

umn symmetry. Therefore we can assume that the rows are lexicographically increasing
from top to bottom, and the columns are lexicographically increasing from right to left.
Consequently the problem is easily seen to be unsatisfiable.” Was he correct?

497. [22] Use BDD methods to determine the number of 8 × 8 binary matrices that
have both rows and columns in nondecreasing lexicographic order. How many of them
have exactly r 1s, for r = 24, r = 25, r = 64− 25 = 39, and r = 64− 24 = 40?

498. [22] Justify adding the symmetry-breakers () to the pigeonhole clauses.

499. [21] In the pigeonhole problem, is it legitimate to include the clauses ()
together with clauses that enforce lexicographic row and column order?

500. [16] The precocious student J. H. Quick decided to extend the monkey wrench
principle, arguing that if F0 ∪S ⊢ l then the original clauses F can be replaced by F | l.
But he soon realized his mistake. What was it?

501. [22] Martin Gardner introduced an interesting queen placement problem in Sci-

entific American 235, 4 (October 1976), 134–137: “Place r queens on an m× n chess-
board so that (i) no three are in the same row, column, or diagonal; (ii) no empty square
can be occupied without breaking rule (i); and (iii) r is as small as possible.” Construct
clauses that are satisfiable if and only if there’s a solution to conditions (i) and (ii) with
at most r queens. (A similar problem was considered in exercise 7.1.4–242.)

502. [16] (Closest strings.) Given binary strings s1, . . . , sm of length n, and threshold
parameters r1, . . . , rm, construct clauses that are satisfiable by x = x1 . . . xn if and
only if x differs from sj in at most rj positions, for 1 ≤ j ≤ m.

503. [M20] (Covering strings.) Given sj and rj as in exercise 502, show that every

string of length n is within rj bits of some sj if and only if the closest string problem
has no solution with parameters r′j = n− 1− rj .

x 504. [M21] The problem in exercise 502 can be proved NP-complete as follows:
a) Let wj be the string of length 2n that is entirely 0 except for 1s in positions 2j−1

and 2j, and let wn+j = w̄j , for 1 ≤ j ≤ n. Describe all binary strings of length 2n
that differ from each of w1, . . . , w2n in at most n bit positions.

b) Given a clause (l1∨ l2∨ l3) with strictly distinct literals l1, l2, l3 ∈ {x1, . . . , xn,
x̄1, . . . , x̄n}, let y be the string of length 2n that is entirely zero except that it has

September 23, 2015

182 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

3SAT
closest string
Rivest’s clauses
nondeterministic
randomizing
variable interaction graph
Heule
windfalls
miter problems
purging
training set
tuning
overfitting
preprocessing
lookahead solver versus conflict driven
WalkSAT
Erdős discrepancy pattern
discrepancy
rand
WalkSAT

1 in position 2k − 1 when some li is x̄k, and 1 in position 2k when some li is xk.
In how many bit positions does a string that satisfies (a) differ from y?

c) Given a 3SAT problem F with m clauses and n variables, use (a) and (b) to
construct strings s1, . . . , sm+2n of length 2n such that F is satisfiable if and only
if the closest string problem is satisfiable with rj = n+ [j > 2n].

d) Illustrate your construction in (c) by exhibiting the closest string problems that
correspond to the simple 3SAT problems R and R′ in () and ().

505. [21] Experiment with making Algorithm L nondeterministic, by randomizing the
initial order of VAR in step L1 just as HEAP is initialized randomly in step C1. How does
the modified algorithm perform on, say, problems D3, K0, and W2 of Table 6?

506. [22] The weighted variable interaction graph of a family of clauses has one vertex
for each variable and the weight

∑
2/(|c|(|c| − 1)) between vertices u and v, where the

sum is over all clauses c that contain both ±u and ±v. Figure 52 indicates these weights
indirectly, by making the heavier edges darker.

a) True or false: The sum of all edge weights is the total number of clauses.
b) Explain why the graph for test case B2 has exactly 6 edges of weight 2. What

are the weights of the other edges in that graph?

x 507. [21] (Marijn Heule.) Explain why “windfalls” (see ()) help Algorithm L to
deal with miter problems such as D5.

508. [M20] According to Table 7, Algorithm C proved problem T3 to be unsatisfiable
after learning about 323 thousand clauses. About how many times did it enter a purging
phase in step C7?

509. [20] Several of the “training set” tasks used when tuning Algorithm C’s param-
eters were taken from the 100 test cases of Table 6. Why didn’t this lead to a problem
of “overfitting” (namely, of choosing parameters that are too closely associated with
the trainees)?

510. [18] When the data points A1, A2, . . . , X8 were plotted in Fig. 55, one by one,
they sometimes covered parts of previously plotted points, because of overlaps. What
test cases are partially hidden by (a) T2? (b) X6? (c) X7?

511. [22] Problem P4 in Table 6 is a strange set of clauses that lead to extreme behav-
ior of Algorithm C in Figs. 54 and 55; and it causes Algorithm L to “time out” in Fig. 53.

a) The preprocessing algorithm of the text needs about 1.5 megamems to convert
those 2509 clauses in 400 variables into just 2414 clauses in 339 variables. Show
empirically that Algorithm L makes short work of the resulting 2414 clauses.

b) How efficient is Algorithm C on those preprocessed clauses?
c) What is the behavior of WalkSAT on P4, with and without preprocessing?

512. [29] Find parameters for Algorithm C that will find an Erdős discrepancy pattern
x1x2 . . . xn rapidly when n = 500. (This is problem E0 in Table 6.) Then compare
the running times of nine random runs with your parameters versus nine random runs
with (), when n = 400, 500, 600, . . . , 1100, 1160, and 1161.

513. [24] Find parameters for Algorithm L that tune it for rand (3, m, n, seed).

514. [24] The timings quoted in the text for Algorithm W, for problems in Table 6,
are based on the median of nine runs using the parameters p = .4 and N = 50n,
restarting from scratch if necessary until a solution is found. Those parameters worked
fine in most cases, unless Algorithm W was unsuited to the task. But problem C9 was
solved more quickly with p = .6 and N = 2500n (943Mµ versus 9.1Gµ).

Find values of p and N/n that give near-optimum performance for problem C9.

September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 183

Hard sudoku
sudoku
exact cover problem
strong exponential time hypothesis
kSAT
one-per-clause
NP-complete
3SAT
one-in-three
ternary
permanent
gadget

x 515. [23] (Hard sudoku.) Specify SAT clauses with which a designer of sudoku puzzles
can meet the following specifications: (i) If cell (i, j) of the puzzle is blank, so is
cell (10−i, 10−j), for 1 ≤ i, j ≤ 9. (ii) Every row, every column, and every box contains
at least one blank. (Here “box” means one of sudoku’s nine special 3 × 3 subarrays.)
(iii) No box contains an all-blank row or an all-blank column. (iv) There are at least
two ways to fill every blank cell, without conflicting with nonblank entries in the same
row, column, or box. (v) If a row, column, or box doesn’t already contain k, there are
at least two places to put k into that row, column, or box, without conflict. (vi) If the
solution has a 2× 2 subarray of the form k l

l k
, those four cells must not all be blank.

(Condition (i) is a feature of “classic” sudoku puzzles. Conditions (iv) and (v)
ensure that the corresponding exact cover problem has no forced moves; see Section
7.2.2.1. Condition (vi) rules out common cases with non-unique solutions.)

516. [M49] Prove or disprove the strong exponential time hypothesis: “If τ < 2, there
is an integer k such that no randomized algorithm can solve every kSAT problem in
fewer than τn steps, where n is the number of variables.”

517. [25] Given clauses C1, . . . , Cm, the one-per-clause satisfiability problem asks if
there is a Boolean assignment x1 . . . xn such that every clause is satisfied by a unique

literal. In other words, we want to solve the simultaneous equations ΣCj = 1 for
1 ≤ j ≤ m, where ΣC is the sum of the literals of clause C.

a) Prove that this problem is NP-complete, by reducing 3SAT to it.
b) Prove that this problem, in turn, can be reduced to its special case “one-in-three

satisfiability,” where every given clause is required to be ternary.

518. [M32] Given a 3SAT problem with m clauses and
n variables, we shall construct a (6m + n) × (6m + n)
matrix M of integers such that the permanent, perM ,
is zero if and only if the clauses are unsatisfiable. For
example, the solvable problem () corresponds to the
46 × 46 matrix indicated here; each shaded box stands
for a fixed 6× 6 matrix A that corresponds to a clause.

Each A has three “inputs” in columns 1, 3, 5 and
three “outputs” in rows 2, 4, 6. The first n rows and the
last n columns correspond to variables. Outside of the
As, all entries are either 0 or 2; and the 2s link variables
to clauses, according to a scheme much like the data
structures in several of the algorithms in this section:
Let Iij andOij denote the jth input and output of clause i, for 1 ≤ i ≤ m and 1 ≤ j ≤ 3.
Then, if literal l appears in t ≥ 0 clauses i1 < · · · < it, as element j1, . . . , jt, we put ‘2’
in column Iik+1jk+1

of row Oikjk for 0 ≤ k ≤ t (Oi0j is row |l|, Iit+1j is column 6m+|l|).

2000000000000000000020000000000000000000000000
0020000000000000000000000020000000000000000000
0000200020000000000000000000000000000000000000
0000000000200020000000000000000000000000000000

00
0000000000200000000000000000000000000000
00
2000000000000000000000000000000000000000
00
0000000000000000000000000020000000000000

000000 0000000000000000000000000000000000
000000 0000000000200000000000000000000000
000000 0000000000000000000000000000000000
000000 2000000000000000000000000000000000
000000 0000000000000000000000000000000000
000000 0000000000000000000000000000000000
000000000000 0000000000000000000000000000
000000000000 0000000000200000000000000000
000000000000 0000000000000000000000000000
000000000000 2000000000000000000000000000
000000000000 0000000000000000000000000000
000000000000 0000000000000000000000002000
000000000000000000 0000000000000000000000
000000000000000000 0000000000200000000000
000000000000000000 0000000000000000000000
000000000000000000 2000000000000000000000
000000000000000000 0000000000000000000000
000000000000000000 0000000000000000000200
000000000000000000000000 0000000000000000
000000000000000000000000 0000000000200000
000000000000000000000000 0000000000000000
000000000000000000000000 2000000000000000
000000000000000000000000 0000000000000000
000000000000000000000000 0000000000000020
000000000000000000000000000000 0000000000
000000000000000000000000000000 0000000200
000000000000000000000000000000 0000000000
000000000000000000000000000000 2000000000
000000000000000000000000000000 0000000000
000000000000000000000000000000 0000000002
000000000000000000000000000000000000 0000
000000000000000000000000000000000000 0020
000000000000000000000000000000000000 0000
000000000000000000000000000000000000 0002
000000000000000000000000000000000000 0000
000000000000000000000000000000000000 2000

123̄

234̄

341

41̄2

1̄2̄3

2̄3̄4

3̄4̄1̄

a) Find a 6× 6 matrix A = (aij), whose elements are either 0, 1, or −1, such that

per

a11 a12 a13 a14 a15 a16
a21+2r a22 a23+2s a24 a25+2t a26
a31 a32 a33 a34 a35 a36

a41+2u a42 a43+2v a44 a45+2w a46
a51 a52 a53 a54 a55 a56

a61+2x a62 a63+2y a64 a65+2z a66

= 16

(
per

r+1 s t
u v+1 w
x y z+1

 − 1

)
.

Hint: There’s a solution with lots of symmetry.
b) In which of the rows and columns of M does ‘2’ occur twice? once? not at all?
c) Conclude that perM = 24m+ns, when the 3SAT problem has exactly s solutions.

September 23, 2015

184 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 @ 1959) 7.2.2.2

factor fifo
factor lifo
factor rand
integer programming
linear inequalities
IP solvers
cutting planes
100 sets of clauses
purging
Loopless shadows
shadows
projected
Hamiltonian paths
difficult
3SAT
Johnson
MAXSAT lower bound

519. [20] Table 7 shows inconclusive results in a race for factoring between factor fifo

and factor lifo . What is the comparable performance of factor rand (m,n, z, 314159)?

x 520. [24] Every instance of SAT corresponds in a natural way to an integer program-

ming feasility problem: To find, if possible, integers x1, . . . , xn that satisfy the linear
inequalities 0 ≤ xj ≤ 1 for 1 ≤ j ≤ n and

l1 + l2 + · · ·+ lk ≥ 1 for each clause C = (l1 ∨ l2 ∨ · · · ∨ lk).
For example, the inequality that corresponds to the clause (x1 ∨ x̄3 ∨ x̄4 ∨ x7) is
x1 + (1−x3) + (1−x4) + x7 ≥ 1; i.e., x1 − x3 − x4 + x7 ≥ −1.

Sophisticated “IP solvers” have been developed by numerous researchers for solv-
ing general systems of integer linear inequalities, based on techniques of “cutting
planes” in high-dimensional geometry. Thus we can solve any satisfiability problem
by using such general-purpose software, as an alternative to trying a SAT solver.

Study the performance of the best available IP solvers, with respect to the 100
sets of clauses in Table 6, and compare it to the performance of Algorithm C in Table 7.

521. [30] Experiment with the following idea, which is much simpler than the clause-
purging method described in the text: “Forget a learned clause of length k with
probability pk,” where p1 ≥ p2 ≥ p3 ≥ · · · is a tunable sequence of probabilities.

x 522. [26] (Loopless shadows.) A cyclic path within the
cube P3 P3 P3 is shown here, together with the three
“shadows” that appear when it is projected onto each co-
ordinate plane. Notice that the shadow at the bottom
contains a loop, but the other two shadows do not. Does
this cube contain a cycle whose three shadows are entirely
without loops? Use SAT technology to find out.

523. [30] Prove that, for any m or n, no cycle of
the graph Pm Pn P2 has loopless shadows.

x 524. [22] Find all Hamiltonian paths of the cube
P3 P3 P3 that have loopless shadows.

x 525. [40] Find the most difficult 3SAT problem you can that has at most 100 variables.

526. [M25] (David S. Johnson, 1974.) If F has m clauses, all of size ≥ k, prove that
some assignment leaves at most m/2k clauses unsatisfied.

999. [M00] this is a temporary exercise (for dummies)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 185

∅
empty clause
nullary clause
empty sets
unsatisfiable core
Graham
Bloom
lopsidependency graph
Brown
Landman
Robertson
Chvátal
Kouril
Landman
Robertson
Culver
resolving
not-all-equal SAT
hypergraph 2-colorability
2-colorability of hypergraphs
Lovász
Kleine Büning
Lettmann

SECTION 7.2.2.2

1. (a) ∅ (no clauses). (b) {ǫ} (one clause, which is empty).

2. Letting 1 ↔ lazy, 2 ↔ happy, 3 ↔ unhealthy, 4 ↔ dancer, we’re given the
respective clauses {314, 1̄42, 34̄2, 2̄43̄, 1̄32̄, 23̄1, 1̄4̄3̄}, matching R′ in (). So all known
Pincusians dance happily, and none are lazy. But we know nothing about their health.
[And we might wonder why travelers have bothered to describe so many empty sets.]

3. f(j − 1, n) + f(k − 1, n), where f(p, n) =
∑q

d=1(n − pd) = p
(
q
2

)
+ q(nmod p) ≈

n2/(2p), if we set q = ⌊n/p⌋.
4. Those constraints are unsatisfiable if and only if we remove a subset of either
{357, 456, 3̄5̄7̄, 4̄5̄6̄}, {246, 468, 2̄4̄6̄, 4̄6̄8̄}, {246, 357, 468, 4̄5̄6̄}, or {456, 2̄4̄6̄, 3̄5̄7̄, 4̄6̄8̄}.
5. No polynomial upper bound for W (3, k) is currently known. Clearly W (3, k) is

less than W (3, k), the minimum n that guarantees either three equally spaced 0s or k
consecutive 1s. An analysis by R. L. Graham in Integers 6 (2006), A29:1–A29:5, beefed
up by a subsequent theorem of T. H. Bloom in arXiv:1405.5800 [math.NT] (2014),
22 pages, shows that W (3, k) = expO(k(log k)4).

6. Let each xi be 0 with probability p = (2 ln k)/k, and let n be at most k2/(ln k)3.
There are two kinds of “bad events”: Ai, a set of three equally spaced 0s, occurs
with probability P = p3; and A′j , a set of k equally spaced 1s, occurs with probability
P ′ = (1 − p)k ≤ exp(−kp) = 1/k2. In the lopsidependency graph, which is bipartite,
each Ai is adjacent to at most D = 3k3/((k − 1)(ln k)3) nodes A′j ; each A

′
j is adjacent

to at most d = 3
2
k3/(ln k)3 nodes Ai. By Theorem J, we want to show that, for all

sufficiently large values of k, P ≤ y(1− x)D and P ′ ≤ x(1− y)d, for some x and y.

Choose x and y so that (1−x)D = 1/2 and y = 2P . Then x = Θ((log k)3/k2) and
y = Θ((log k)3/k3); hence (1−y)d = exp(−yd+O(y2d)) = O(1). [See T. Brown, B. M.
Landman, and A. Robertson, J. Combinatorial Theory A115 (2008), 1304–1309.]

7. Yes, for all n, when x1x2x3 . . . = 001001001

8. For example, let xi,a signify that xi = a, for 1 ≤ i ≤ n and 0 ≤ a < b. The relevant
clauses are then xi,0 ∨ · · · ∨ xi,b−1 for 1 ≤ i ≤ n; and x̄i,a ∨ x̄i+d,a ∨ · · · ∨ x̄i+(ka−1)d,a,
for 1 ≤ i ≤ n − (ka − 1)d and d ≥ 1. Optionally include the clauses x̄i,a ∨ x̄i,a′ for
0 ≤ a < a′ < b. (Whenever the relevant clauses are satisfiable, we can also satisfy the
optional ones by falsifying some variables if necessary.)

[V. Chvátal found W (3, 3, 3) = 27. Kouril’s paper shows that W (2, 4, 8) = 157,
W (2, 3, 14) = 202, W (2, 5, 6) = 246, W (4, 4, 4) = 293, and lists many smaller values.]

9. W (2, 2, k) = 3k − (2, 0, 2, 2, 1, 0) when k mod 6 = (0, 1, 2, 3, 4, 5). The sequence
2k−102k−112k−1 is maximal when k ⊥ 6; also 2k−102k−112k−3 when kmod 6 = 3;
also 2k−102k−212k−1 when k mod 6 = 4; otherwise 2k−102k−212k−2. [See B. Landman,
A. Robertson, and C. Culver, Integers 5 (2005), A10:1–A10:11, where many other
values of W (2, . . . , 2, k) are also established.]

10. If the original variables are {1, . . . , n}, let the new ones be {1, . . . , n}∪{1′, . . . , n′}.
The new problem has positive clauses {11′, . . . , nn′}. Its negative clauses are, for
example, 2̄′6̄7̄9̄′ if 26̄7̄9 was an original clause. The original problem is equivalent
because it can be obtained from the new one by resolving away the primed variables.

[One can in fact construct an equivalent monotonic problem of size O(m + n) in
which (x1 ∨ · · · ∨ xk) is a positive clause if and only if (x̄1 ∨ · · · ∨ x̄k) is a negative
clause. Such a problem, “not-all-equal SAT,” is equivalent to 2-colorability of hyper-
graphs. See L. Lovász, Congressus Numerantium 8 (1973), 3–12; H. Kleine Büning and
T. Lettmann, Propositional Logic (Cambridge Univ. Press, 1999), §3.2, Problems 4–8.]

September 23, 2015

186 ANSWERS TO EXERCISES 7.2.2.2

auxiliary variables
Langford’s problem
exact cover problem
nonprimary columns
Heule
complete graph
pigeons
kernel
maximal planar graph

11. For each variable i, the only way to match vertices of the forms ij ′ and ij′′ is to
choose all of its true triples or all of its false triples.

For each clause j, the vertex pairs {j′2, j′3}, {j′4, j′5}, {j′6, j′7} define three
“slots”; hence two of the vertices {wj, xj, yj, zj} must be matched into the same slot.
Furthermore we can’t have two in one slot and two in another, because the remaining
slot would then be unmatched. Thus two of the l̄j vertices are matched in their slot,
while the other is matched with j′1, whenever we have a perfect matching.

Conversely, if all clauses are satisfied, with lk true in clause j, there always are
exactly two ways to match l̄kj with j′1 while matching wj, xj, yj, zj, and the other
two l̄j vertices with j′2, . . . , j′7. (It’s a beautiful construction! Notice that no vertex
appears in more than three triples.)

12. Equation () says S1(y1, . . . , yp) = S≥1(y1, . . . , yp) ∧ S≤1(y1, . . . , yp). If p ≤ 4,
use

∧
1≤j<k≤p(ȳj ∨ ȳk) for S≤1(y1, . . . , yp); otherwise S≤1(y1, . . . , yp) can be encoded

recursively via the clauses S≤1(y1, y2, y3, t)∧S≤1(t̄, y4, . . . , yp), where t is a new variable.
[This method saves half of the auxiliary variables in the answer to exercise 7.1.1–55(b).]

Note: Langford’s problem involves primary columns only; in an exact cover prob-
lem with nonprimary columns, such columns only need the constraint S≤1(y1, . . . , yp).

13. (a) S1(x1, x2, x3, x4, x5, x6) ∧ S1(x7, x8, x9, x10, x11) ∧ S1(x12, x13) ∧ S1(x14, x15,
x16)∧S1(x1, x7, x12, x14)∧S1(x2, x8, x13, x15)∧S1(x1, x3, x9, x16)∧S1(x2, x4, x7, x10)∧
S1(x3, x5, x8, x11, x12) ∧ S1(x4, x6, x9, x13, x14) ∧ S1(x5, x10, x15) ∧ S1(x6, x11, x16).

(b) Duplicate clauses occur when rows intersect more than once. We avoid them
if we simply generate clauses x̄i ∨ x̄j for every pair (i, j) of intersecting rows.

(c) When langford (4) is generated in this way, it has 85 distinct clauses in 16 vari-
ables, namely (x1∨x2∨x3∨x4∨x5∨x6)∧(x7∨x8∨x9∨x10∨x11)∧· · ·∧(x6∨x11∨x16)∧
(x̄1∨x̄2) ∧ (x̄1∨x̄3) ∧ · · · ∧ (x̄15∨x̄16).

But langford ′(4) cannot use the trick of (b). It has 85 (nondistinct) clauses in 20
variables, beginning with 123456, 1̄2̄, 1̄3̄, 1̄1̄′, 2̄3̄, 2̄1̄′, 3̄1̄′, 1′4̄, 1′5̄, 1′6̄, 4̄5̄, 4̄6̄, 5̄6̄, . . . ,
if we denote the auxiliary variables by 1′, 2′, Two of those clauses (1̄3̄ and 4̄6̄) are
repeated. (Incidentally, langford ′(12) has 1548 clauses, 417 variables, 3600 cells.)

14. (Answer by M. Heule.) Those clauses sometimes help to focus the search. For
example, if we’re trying to color the complete graph Kn with n colors (or pigeons), we
don’t want to waste time trying v2 = 1 when v1 is already 1.

On the other hand, other instances of SAT often run slower when redundant clauses
are present, because more updates to the data structures are needed.

We might also take an opposite approach, and replace () by nd clauses that
force every color class to be a kernel. (See exercise 21.) Such clauses sometimes speed
up a proof of uncolorability.

15. There are N = n(n+1) vertices (j, k) for 0 ≤ j ≤ n and 0 ≤ k < n. If (j, k) = (1, 0)
we define (j, k) −−− (n, i) for x ≤ i < n, where x = ⌊n/2⌋. Otherwise we define the
following edges: (j, k)−−− (j + 1, k + 1) if j < n and k < n − 1; (j, k)−−− (j + 1, k) if
j < n and j 6= k; (j, k)−−− (j, k + 1) if k < n − 1 and j 6= k + 1; (j, k)−−− (n, n− 1) if
j = 0; (j, k)−−− (n − j, 0) if k < n − 1 and j = k; (j, k)−−− (n + 1 − j, 0) if j > 0 and
j = k; (j, k)−−−(n− j, n− j − 1) if k = n− 1 and 0 < j < k; (j, k)−−−(n+ 1− j, n− j)
if k = n− 1 and 0 < j < n. Finally, (0, 0)−−− (1, 0), and (0, 0)−−− (n, i) for 1 ≤ i ≤ x.
That makes a grand total of 3N − 6 edges (as it should in a maximal planar graph,
according to exercise 7–46).

16. There’s a unique 4-clique when n ≥ 5, namely {(0, n − 2), (0, n − 1), (1, n − 1),
(n, n − 1)}. All other vertices, except (0, 0) and (1, 0), are surrounded by neighbors

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 187

Laurier
mcgregor (n)
symmetric threshold functions
symmetry breaking
Binary search
maximum independent set
Bryant
maximum independent set

that form an induced cycle of length 4 or more (usually 6). [See J.-L. Laurier, Artificial

Intelligence 14 (1978), 117.]

17. Let mcgregor (n) be the clauses () and () for the graph. Add clauses (), for
symmetric threshold functions to bound the number of variables v1 for color 1; the kth
vertex xk can be specified by the ordering in answer 20. Then if, for instance, we can sat-
isfy those clauses together with the unit clause sNr , where N = n(n+1), we have proved
that f(n) < r. Similarly, if we can satisfy them together with s̄Nr , we have proved that
g(n) ≥ r. Additional unit clauses that specify the colors of the four clique vertices will
speed up the computation: Four cases should be run, one with each clique vertex receiv-
ing color 1. If all four cases are unsatisfiable, we’ve proved that f(n) ≥ r or g(n) < r,
respectively. Binary search with different values of r will identify the optimum.

For speedier g(n), first find a maximum independent set instead of a complete
4-coloring; then notice that the colorings for f(n) already achieve this maximum.

The results turn out to be f(n) = (2, 2, 3, 4, 5, 7, 7, 7, 8, 9, 10, 12, 12, 12) for
n = (3, 4, . . . , 16), and g(n) = (4, 6, 10, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88).

18. Assuming that n ≥ 4, first assign to vertex (j, k) the following “default color”:
1 + (j + k) mod 3 if j ≤ k; 1 + (j + k + 1 − n) mod 3 if k < j/2; otherwise 1 + (j +
k + 2 − n) mod 3. Then make the following changes to exceptional vertices: Vertex
(1, 0) is colored 2 if nmod 6 = 0 or 5, otherwise 3. Vertex (n, n− 1) is colored 4. For
k ← 0 up to n − 2, change the color of vertex (n, k) to 4, if its default color matches
vertex (0, 0) when k ≤ n/2 or vertex (1, 0) when k > n/2. And make final touchups
for 1 ≤ j < n/2, depending again on nmod 6:

Case 0: Give color 4 to vertex (2j, j − 1) and color 1 to vertex (2j + 1, j).
Case 1: Give color 4 to vertex (2j, j) and color 2 to vertex (2j + 1, j).
Case 2: Give color 4 to vertex (2j, j) and color 1 to vertex (2j + 1, j). Also give

(n, n− 2) the color 1 and (n− 1, n− 3) the color 4.
Cases 3, 4, 5: Give color 4 to vertex (2j + 1, j).

For example, the coloring for the case n = 10 (found by Bryant) is shown in Fig. A–5(a).

(a) (b) (c)

Fig. A–5. Colorings and kernels of McGregor’s graph.

The color distribution is (⌊n2/3⌋, ⌊n2/3⌋, ⌊n2/3⌋, 5k) + ((0, 1, k,−1), (1, k, 1, 0),
(−1, k+1, 1, 2), (0, k, 1, 2), (1, k+1, 1, 2), (0, 2, k+1, 3)), for nmod 6 = (0, 1, 2, 3, 4, 5),
k = ⌊n/6⌋. Since this construction achieves all of the optimum values for f(n) and g(n),
when n ≤ 16, it probably is optimum for all n. Moreover, the value of g(n) agrees with
the size of the maximum independent set in all known cases. A further conjecture is
that the maximum independent set is unique, whenever nmod 6 = 0 and n > 6.

September 23, 2015

188 ANSWERS TO EXERCISES 7.2.2.2

symmetry breaking
kernel
McGregor
Biere
Bernhart
Gardner
frontier
gigamems
BDD
QDD
symmetric threshold function
BDD
generating function

19. Use the clauses of mcgregor (n), together with (v1∨v2∨v3∨ v̄x)∧(v1∨v2∨v4∨ v̄x)∧
(v1 ∨ v3 ∨ v4 ∨ v̄x)∧ (v2 ∨ v3 ∨ v4 ∨ v̄x) for each vertex, together with clauses from ()
and () that require at least r of the vertices vx to be true. Also assign unique colors
to the four clique vertices. (One assignment, not four, is sufficient to break symmetry
here, because h(n) is a more symmetrical property than f(n) or g(n).) These clauses
are satisfiable if and only if h(n) ≥ r. The SAT computation goes faster if we also
provide clauses that require each color class to be a kernel (see exercise 21).

The values h(n) = (1, 3, 4, 8, 9, 13) for n = (3, 4, . . . , 8)
are readily obtained in this way. Furthermore, if we extend
color class 4 in the construction of answer 18 to a suitable ker-
nel, we find h(9) ≥ 17 and h(10) ≥ 23. The resulting diagram
for n=10, illustrated in Fig. A–5(b), nicely exhibits 223 so-
lutions to McGregor’s original coloring problem, all at once.

A good SAT solver also shows that h(9) ≤ 18 and h(10) ≤
23, thus proving that h(10) = 23. And Armin Biere’s solver
proved in 2013 that h(9) = 18, by discovering the surprising
solution shown here. (This exercise was inspired by Frank Bernhart, who sent a diagram
like Fig. A–5(b) to Martin Gardner in 1975; his diagram achieved 221 solutions.)

20. Arrange the vertices (j, k) of answer 15 in the following order v0, v1, . . . : (n, n−1);
(0, n − 1), (0, n − 2), . . . , (0, 0); (1, n − 1), (1, n − 2), . . . , (1, 1); . . . ; (n − 2, n − 1),
(n− 2, n− 2); (n− 1, n− 2), (n− 2, n− 3), . . . , (2, 1); (n− 1, n− 1); (2, 0), (3, 1), . . . ,
(n, n−2); (3, 0), (4, 1), . . . , (n, n−3); (1, 0); (4, 0), . . . , (n, n−4); . . . ; (n−1, 0), (n, 1);
(n, 0). Then if Vt = {v0, . . . , vt−1}, let the “frontier” Ft consist of all vertices ∈ Vt that
have at least one neighbor /∈ Vt. We can assume that (v0, v1, v2) are colored (0, 1, 2),
because they are part of the 4-clique.

All 4-colorings of Vt that have a given sequence of colors on Ft can be enumerated
if we know the corresponding counts for Ft−1. The stated ordering ensures that Ft

never will contain more than 2n−1 elements; in fact, at most 32n−2 sequences of colors
are feasible, for any given t. Since 318 is less than 400 million, it’s quite feasible to do
these incremental calculations. The total (obtained with about 6 gigabytes of memory
and after about 500 gigamems of computation) turns out to be 898,431,907,970,211.

This problem is too large to be handled efficiently by BDD methods when n = 10,
but BDD calculations for n ≤ 8 can be used to check the algorithm. The frontiers essen-
tially represent level-by-level slices of a QDD for this problem. The 4-coloring counts
for 3 ≤ n ≤ 9 are respectively 6, 99, 1814, 107907, 9351764, 2035931737, 847019915170.

21. With one Boolean variable v for every vertex of a graph G, the kernels are
characterized by the clauses (i) ū ∨ v̄ whenever u −−− v; (ii) v ∨ ∨

u−−v u for all v.
Adding to these the clauses for the symmetric threshold function S≤r(x1, . . . , xN), we
can find the least r for which all clauses are satisfiable. The graph of Fig. 33 yields
satisfiability for r = 17; and one of its 46 kernels of size 17 is shown in Fig. A–5(c).

[BDD methods are slower for this problem; but they enumerate all 520,428,275,749
of the kernels, as well as the generating function 46z17+47180z18+ · · ·+317z34+2z35.]

22. Eight colors are needed. The coloring
12771
22788
33668
34655
14451

is “balanced,” with each color used
at least thrice.

23. Writing k for xk and k
j for skj , the clauses from ()–() are 1̄

1
1
2 ,

1̄
2

1
3 ,

2̄
1

2
2 ,

2̄
2

2
3 ,

3̄
1

3
2 ,

3̄
2

3
3 ,

4̄
1

4
2 ,

4̄
2

4
3 ; 1̄

1
1 , 2̄

1
2 , 3̄

1
3 , 2̄

1̄
1

2
1 , 3̄

1̄
2

2
2 , 4̄

1̄
3

2
3 , 3̄

2̄
1

3
1 , 4̄

2̄
2

3
2 , 5̄

2̄
3

3
3 , 4̄

3̄
1

4
1 , 5̄

3̄
2

4
2 , 6̄

3̄
3

4
3 , 5̄

4̄
1 , 6̄

4̄
2 , 7̄

4̄
3 .

Similarly, () and () define the clauses 7̄ 6
1 , 6̄

6
1 , 6̄7̄

6
2 ; 5̄

5
1 , 4̄

5
1 , 4̄5̄

5
2 ; 3̄

4
1 , 2̄

4
1 , 2̄3̄

4
2 ;

1̄ 3
1 ,

6̄
1

3
1 ,

6̄
1 1̄

3
2 ,

6̄
2

3
2 ,

6̄
2 1̄

3
3 ;

5̄
1

2
1 ,

4̄
1

2
1 ,

5̄
2

2
2 ,

4̄
2

2
2 ,

4̄
1

5̄
1

2
2 ,

4̄
1

5̄
2

2
3 ,

4̄
2

5̄
1

2
3 ,

4̄
2

5̄
2

2
4 ;

2̄
4

3̄
1 ,

2̄
3

3̄
2 ,

2̄
2

3̄
3 . So

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 189

binary recurrence relations
recurrence relations
Sinz

this tree-based method apparently needs one more variable and two more clauses when
(n, r) = (7, 4). But the next exercise shows that () and () don’t really win!

24. (a) The clause (b̄21 ∨ b̄3r) appears only if t3 = r; and t3 ≤ n/2.
(b) For example, t3 = min(r, 4) < r when n = 11 and r = 5.
(c) In this case tk is the number of leaves below node k, and the only auxiliary

variables that survive pure literal elimination are bktk . We’re left with just n−1 surviving
clauses, namely (b̄2kt2k ∨ b̄

2k+1
t2k+1

∨ bktk) for 1 < k < n, plus (b̄2t2 ∨ b̄3t3).
(d) If 2k ≤ n ≤ 2k + 2k−1 we have (n′, n′′) = (n− 2k−1, 2k−1); on the other hand

if 2k + 2k−1 ≤ n ≤ 2k+1 we have (n′, n′′) = (2k, n− 2k). (Notice that n′′ ≤ n′ ≤ 2n′′.)
(e) No pure literals are removed in this completely balanced case (which is the

easiest to analyze). We find a(2k, 2k−1) = (k−1)2k and c(2k, 2k−1) = (2k−2+k−1)2k.
(f) One can show that a(n, r) = (r ≤ n′′? b(n′, r) + b(n′′, r): r ≤ n′? b(n′, n′′) +

b(n′′, n′′): b(n′, n−r)+b(n′′, n−r)), where b(1, 1) = 0 and b(n, r) = r+b(n′,min(r, n′))+
b(n′′,min(r, n′′)) for n ≥ 2. Similarly, c(n, r) = (r ≤ n′′? r + f(n′, 0, r) + f(n′′, 0, r):
r ≤ n′? n′′+ f(n′, r−n′′, r)+ f(n′′, 0, n′′): n− r+ f(n′, r−n′′, n′)+ f(n′′, r−n′, n′′)),
where f(n, l, r)=

∑r
k=l+1min(k+1, n′′+1, n+1−k)+(r ≤ n′′? r+f(n′, 0, r)+f(n′′, 0, r):

r ≤ n′? n′′ + f(n′, 0, r) + f(n′′, 0, n′′): r < n? n − r + f(n′, 0, n′) + f(n′′, 0, n′′):
r− l < n′′? f(n′, n′− r+ l, n′) + f(n′′, n′′ − r+ l, n′′): r− l < n′? f(n′, n′ − r+ l, n′) +
f(n′′, 0, n′′): f(n′, 0, n′)+ f(n′′, 0, n′′)) for n ≥ 2 and f(1, 0, 1) = 0. The desired results
follow by induction from these recurrence relations.

Incidentally, ternary branching can give further savings. We can, for example,
handle the case n = 6, r = 3 with 17 clauses in the 6 variables b21, b

2
2, b

2
3, b

3
1, b

3
2, b

3
3.

25. From () and () we obtain 5n − 12 clauses in 2n − 4 variables, with a simple
lattice-like structure. But () and () produce a more complex tree-like pattern, with
2n− 4 variables and with ⌊n/2⌋ nodes covering just two leaves. So we get ⌊n/2⌋ nodes
with 3 clauses, nmod 2 nodes with 5 clauses, ⌈n/2⌉ nodes with 7 clauses, and 2 clauses
from (), totalling 5n − 12 as before (assuming that n > 3). In fact, all but n − 2 of
the clauses are binary in both cases.

26. Imagine the boundary conditions s0j = 1, sr+1
j = 0, sk0 = 0, for 1 ≤ j ≤ n− r and

1 ≤ k ≤ r. The clauses say that sk1 ≤ · · · ≤ skn−r and that xj+ks
k
j ≤ sk+1

j ; so the hint
follows by induction on j and k.

Setting j = n−r and k = r+1 shows that we cannot satisfy the new clauses when
x1 + · · · + xn ≥ r + 1. Conversely, if we can satisfy F with x1 + · · ·+ xn ≤ r then we
can satisfy () and () by setting skj ← [x1 + · · ·+ xj+k−1≥ k].
27. Argue as in the previous answer, but imagine that bk0 = 1, b1r+1 = 0; prove the
hint by induction on j and n−k (beginning with k = n−1, then k = n−2, and so on).

28. For example, the clauses for x̄1 + · · · + x̄n ≤ n − 1 when n = 5 are (x1 ∨ s11),
(x2 ∨ s̄11 ∨ s21), (x3 ∨ s̄21 ∨ s31), (x4 ∨ s̄31 ∨ s41), (x5 ∨ s̄41). We may assume that n ≥ 4;
then the first two clauses can be replaced by (x1 ∨ x2 ∨ s21), and the last two by
(xn−1 ∨ xn ∨ s̄n−2

1), yielding n− 2 clauses of length 3 in n− 3 auxiliary variables.

29. We can assume that 1 ≤ r1 ≤ · · · ≤ rn = r < n. Sinz’s clauses () and () actu-
ally do the job nicely if we also assert that skj is false whenever k = ri+1 and j = i−ri.
30. The clauses now are (s̄kj ∨ skj+1), (x̄j+k ∨ s̄kj ∨ sk+1

j), (skj ∨ s̄k+1
j), (xj+k ∨ skj ∨ s̄kj+1),

hence they define the quantities skj = [x1 + · · ·+ xj+k−1≥ k]; implicitly sk0 = sr+1
j = 0

and s0j = skn−r+1 = 1. The new clauses in answer 23 are 1
1

2̄
1 ,

2
1

3̄
1 ,

3
1

4̄
1 ,

1
2

2̄
2 ,

2
2

3̄
2 ,

3
2

4̄
2 ,

1
3

2̄
3 ,

2
3

3̄
3 ,

3
3

4̄
3 ; 1

1̄
1 , 2

2̄
1 , 3

3̄
1 , 4

4̄
1 , 2

1
1

1̄
2 , 3

2
1

2̄
2 , 4

3
1

3̄
2 , 5

4
1

4̄
2 , 3

1
2

1̄
3 , 4

2
2

2̄
3 , 5

3
2

3̄
3 , 6

4
2

4̄
3 , 4

1
3 , 5

2
3 , 6

3
3 , 7

4
3 .

September 23, 2015

190 ANSWERS TO EXERCISES 7.2.2.2

unary encoding
cardinality constraints, intervals
subinterval constraints
cardinality constraints, subintervals
symmetry
benchmark
backtrack
Theobald
Niborski
Erdös
Turán
Wagstaff
clique

With () and () we can identify b′kj with b̄klk+1−j , when lk > 1 leaves are below

node k. Then bkj is true if and only if the leaves below k have j or more 1s. For

example, answer 23 gets the new clauses 7 6̄
2 , 6

6̄
2 , 67

6̄
1 ; 5

5̄
2 , 4

5̄
2 , 45

5̄
1 ; 3

4̄
2 , 2

4̄
2 , 23

4̄
1 ; 1

3̄
3 ,

6
2

3̄
3 , 1

6
2

3̄
2 ,

6
1

3̄
2 , 1

6
1

3̄
1 ;

4
2

2̄
4 ,

5
2

2̄
4 ,

4
1

2̄
3 ,

4
2

5
2

2̄
3 ,

5
1

2̄
3 ,

4
1

5
2

2̄
2 ,

4
2

5
1

2̄
2 ,

4
1

5
1 ;

2
4

3
1 ,

2
3

3
2 ,

2
2

3
3 .

Furthermore, () and () can be unified in the same way with the weaker
constraints r′ ≤ x1+ · · ·+xn ≤ r. If we want, say, 2 ≤ x1+ · · ·+x7 ≤ 4, we can simply
replace the final four clauses of the previous paragraph by 4

1
5
1

2̄
1 ,

2
2

3
1 ,

2
1

3
2 . Under the con-

ventions of () and (), by contrast, these weaker constraints would generate a compa-
rable number of new clauses, namely 1

1
2̄
1 ,

1
2

2̄
2 ,

1
3

2̄
3 ,

1
4

2̄
4 ,

1
5

2̄
5 and 1 1̄

1 , 2
2̄
1 , 3

2
1

2̄
2 , 3

1
2

1̄
3 , 4

2
2

2̄
3 ,

4 1
3

1̄
4 , 5

2
3

2̄
4 , 5

1
4

1̄
5 , 6

2
4

2̄
5 , 6

1
5 , 7

2
5 ; but those clauses involve the new variables 1

4 ,
1
5 ,

2
4 ,

2
5 .

31. We can use the constraints on the second line of (), together with the constraints
of exercise 30 that force x1 + · · ·+ xn = r. Then we seek n for which this problem is
satisfiable, while the same problem with xn = 0 is not. The following small values can
be used to check the calculations:

r = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

F3(r) = 1 2 4 5 9 11 13 14 20 24 26 30 32 36 40 41 51 54 58 63 71 74 82 84 92 95100
F4(r) = 1 2 3 5 6 8 9 10 13 15 17 19 21 23 25 27 28 30 33 34 37 40 43 45 48 50 53
F5(r) = 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 24 25 27 28 29 31 33 34 36 37 38
F6(r) = 1 2 3 4 5 7 8 9 10 12 13 14 15 17 18 19 20 22 23 24 25 26 29 32 33 35 36

Furthermore, significant speedup is possible if we also make use of previously
computed values Ft(1), . . . , Ft(r−1). For example, when t = 3 and r ≥ 5 we must have
xa+1+· · ·+xa+8 ≤ 4 for 0 ≤ a ≤ n−8, because F3(5) = 9. These additional subinterval
constraints blend beautifully with those of exercise 30, because xa+1 + · · ·+ xa+p ≤ q
for 0 ≤ a ≤ n− p implies s̄kb+p−q ∨ sk−q

b for 0 ≤ b ≤ n+ 1− p+ q − r and q < k ≤ r.
We can also take advantage of left-right symmetry by appending the unit clause

s̄
⌈r/2⌉
⌈(n−r)/2⌉ when r is odd; s

r/2
n/2−r/2+1 when n and r are both even.

Suitable benchmark examples arise when computing, say, F3(27) or F4(36). But for
large cases, general SAT-based methods do not seem to compete with the best special-
purpose backtrack routines. For example, Gavin Theobald and Rodolfo Niborski have
obtained the value F3(41) = 194, which seems well beyond the reach of these ideas.

[See P. Erdös and P. Turán, J. London Math. Soc. (2) 11 (1936), 261–264; errata,
34 (1959), 480; S. S. Wagstaff, Jr., Math. Comp. 26 (1972), 767–771.]

32. Use () and (), and optionally (), but omit variable vj unless j ∈ L(v).
33. To double-color a graph with k colors, change () to the set of k clauses v1 ∨· · ·∨
vj−1 ∨ vj+1 ∨ vk, for 1 ≤ j ≤ k; similarly,

(
k
2

)
clauses of length k − 2 will yield a triple

coloring. Small examples reveal that C2l+1 for l ≥ 2 can be double-colored with five

colors: {1, 2}({3, 4}{5, 1})l−1{2, 3}{4, 5}; furthermore, seven colors suffice for triple

coloring when l ≥ 3: {1, 2, 3}({4, 5, 6}{7, 1, 2})l−2{3, 4, 5}{6, 7, 1}{2, 3, 4}{5, 6, 7}. The
following exercise proves that those colorings are in fact optimum.

34. (a) We can obviously find a q-tuple coloring with qχ(G) colors. And McGregor’s
graph has a four-clique, hence χ∗(G) ≥ 4.

(b) Any q-tuple coloring with p colors yields a solution to the fractional exact cover
problem, if we let λj =

∑p
i=1[Sj is the set of vertices colored i]/q. Conversely, the

theory of linear equalities tells us that there is always an optimum solution with rational
{λ1, . . . , λN}; such a solution yields a q-tuple coloring when each qλj is an integer.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 191

Johnson
Lovász
Hilton
Rado
Scott
wheel
degree
WalkSAT
symmetry

(c) χ∗(Cn) = χ(Cn) = 2 when n is even; and χ∗(C2l+1) ≤ 2 + 1/l = n/α(C2l+1),
because there’s an l-tuple coloring with n colors as in the previous exercise. Also
χ∗(G) ≥ n/α(G) in general: n =

∑
v

∑
j λj [v ∈Sj] =

∑
j λj |Sj | ≤ α(G)

∑
j λj .

(d) For the hint, let S = {v1, . . . , vl} where vertices are sorted by their colors.
Since vertex vj belongs to Ci with |Ci| ≥ |{vj , . . . , vl}|, we have tvj ≤ 1/(l + 1− j).

So χ(G) ≤ k =
∑

v tv =
∑

v tv
∑

jλj [v ∈Sj] =
∑

jλj

∑
v tv[v ∈Sj] ≤

∑
jλjHα(G).

[See David S. Johnson, J. Computer and System Sci. 9 (1974), 264–269; L. Lovász,
Discrete Math. 13 (1975), 383–390. The concept of fractional covering is due to A. J. W.
Hilton, R. Rado, and S. H. Scott, Bull. London Math. Soc. 5 (1973), 302–306.]

35. (a) The double coloring below proves that χ∗(G) ≥ 7/2; and it is optimum because
NV and its neighbors induce the wheel W6. (Notice that χ∗(Wn) = 1 + χ∗(Cn−1).)

(b) By part (c) of the previous exercise, χ∗(G) ≥ 25/4. Furthermore there is a
quadruple coloring with 25 colors:

AEUY ABUV BCVW CDWX DEXY
AEFJ ABFG BCGH CDHI DEIJ
FJKO FGKL GHLM HIMN IJNO
KOPT KLPQ LMQR MNRS NOST
PTUY PQUV QRVW RSWX STXY

45

46

35 47

26 16

67

26

25

17

36 23 5717

47 14

26

13

13

451223

15

56

12

23

17

27

35

47

12

45

57

36

23

45 47 13

26

46

23

15

24

36

67

12

25

46

57

[Is C5×C5 the smallest graph for which χ∗(G) < χ(G)− 1?]

36. A few more binary color constraints analogous to () yield the corresponding SAT

problem. We can also assume that the upper right corner is colored 0, because that
region touches n + 4 = 14 others; at least n + 6 colors are needed. The constraints
elsewhere aren’t very tight (see exercise 38(b)); thus we readily obtain an optimum
radio coloring with n + 6 colors for the McGregor graphs of all orders n > 4, such as
the one below. An (n+ 7)th color is necessary and sufficient when n = 3 or 4.

f 3 8 4 9 d b 6 e 2

d a e 1 f 5 8 4 c

6 c 5 b 3 1 f 7

1 7 0 8 d 9 0

d 3 f 4 2 c

8 1 6 0 f

c 9 d 7

0 4 a

8 2

d

1 9

3 5 0

7 b 8 e

2 4 d 3 9

5 e 6 f 5 1

9 7 0 a 2 d a

4 b 3 5 e 4 6 e

0 8 e 1 9 0 f 2 5

9 5 2 a 4 b 3 d a 0

7

2

1

8 2

5 9

4

3

8

6

6 8 25

3 4

7

3

5

609

5

0

8

7

2

1

7

1

0

3

0

6

6

9 9 9

0

2

9

4

0

8

7

1

1

3

4

37. The 10-coloring shown here is optimum, because Missouri (MO) has degree 8.

38. By looking at solutions for n = 10, say, which can be obtained quickly via Algo-
rithm W (WalkSAT), it’s easy to discover patterns that work in general: (a) Let (x, y)
have color (2x + 4y) mod 7. (Seven colors are clearly necessary when n ≥ 3.) (b) Let
(x, y, z) have color (2x+ 6y) mod 9. (Nine colors are clearly necessary when n ≥ 4.)

39. Let f(n) denote the fewest consecutive colors. SAT solvers readily verify that
f(n) = (1, 3, 5, 7, 8, 9) for n = (0, 1, 2, 3, 4, 5). Furthermore we can exploit symmetry to
show that f(6) > 10: One can assume that 000000 is colored 0, and that the colors of
000001, . . . , 100000 are increasing; that leaves only three possibilities for each of the

September 23, 2015

192 ANSWERS TO EXERCISES 7.2.2.2

Griggs
Yeh
Whittlesey
Georges
Mauro
carries
full adders
half adder
Tseytin encoding, half
Knuth
Symmetry was broken
factorization
unit clause
SAT solvers
number theory
Simmons
Schoenfield

latter. Finally, we can verify that f(6) = 11 by finding a solution that uses only the
colors {0, 1, 3, 4, 6, 7, 9, 10}.

But f(7) is known only to be ≥ 11 and ≤ 15.
[L(2, 1) labelings were named by J. R. Griggs and R. K. Yeh, who initiated the

theory in SIAM J. Discrete Math. 5 (1992), 586–595. The best known upper bounds,
including the fact that f(2k − k − 1) ≤ 2k, were obtained by M. A. Whittlesey, J. P.
Georges, and D. W. Mauro, who also solved exercise 38(a); see SIAM J. Discrete Math.

8 (1995), 499–506.]

40. No; the satisfiable cases are z = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 21. [The
statement would have been true if we’d also required (xm∨ · · · ∨x2) ∧ (yn∨ · · · ∨y2).]
41. First there are mn ANDs to form xiyj . A bin that contains t bits initially will
generate ⌊t/2⌋ carries for the next bin, using (t− 1)/2 adders. (For example, t = 6 will
invoke 2 full adders and one half adder.) The respective values of t for bin [2], bin [3],
. . . , bin [m + n+ 1] are (1, 2, 4, 6, . . . , 2m − 2, 2m− 1, . . . , 2m− 1, 2m − 2, 2m − 3,
. . . , 5, 3, 1), with n−m occurrences of 2m − 1. That makes a total mn−m− n full
adders and m half adders; altogether we get mn + 2(mn − m − n) + m instances of
AND, mn−m− n instances of OR, and 2(mn−m− n) +m instances of XOR.

42. Ternary XOR requires quaternary clauses, but ternary clauses suffice for median:

(t ∨ u ∨ v ∨ x̄)
(t ∨ ū ∨ v̄ ∨ x̄)
(t̄ ∨ u ∨ v̄ ∨ x̄)
(t̄ ∨ ū ∨ v ∨ x̄)

(t ∨ u ∨ v̄ ∨ x)
(t ∨ ū ∨ v ∨ x)
(t̄ ∨ u ∨ v ∨ x)
(t̄ ∨ ū ∨ v̄ ∨ x)

(t ∨ u ∨ ȳ)
(t ∨ v ∨ ȳ)
(u ∨ v ∨ ȳ)

(t̄ ∨ ū ∨ y)
(t̄ ∨ v̄ ∨ y)
(ū ∨ v̄ ∨ y)

These clauses specify respectively that x ≤ t⊕u⊕v, x ≥ t⊕u⊕v, y ≤ 〈tuv〉, y ≥ 〈tuv〉.
43. x = y = 3 works when n = 2, but the cases 3 ≤ n ≤ 7 are unsatisfiable. We can
use x = 3(2n−2 + 1), y = 7(2n−3 + 1) for all n ≥ 8. (Such solutions seem to be quite
rare. Another is x = 3227518467, y = 3758194695 when n = 32.)

44. First scout the territory quickly by looking at all
(
N+1

2

)
≈ 660 billion cases with at

most six zeros in x or y; here N =
(
32
26

)
+
(
32
27

)
+ · · ·+

(
32
32

)
. This uncovers the remarkable

pair x = 232−226−222−211−28−24−1, y = 232−211+28−24+1, whose product is
264 − 258 − 254 − 244 − 233 − 28 − 1. Now a SAT solver finishes the job by showing that
the clauses for 32×32 bit multiplication are unsatisfiable in the presence of the further
constraint x̄1+ · · ·+ x̄32+ ȳ1+ · · ·+ ȳ32+ z̄1 + · · ·+ z̄64 ≤ 15. (The LIFO version of the
clauses worked much faster than FIFO in the author’s experiments with Algorithm L.
Symmetry was broken by separate runs with xk . . . x1 = 01k−1, yk . . . y1 = 1k.)

45. Use the clauses for xy = z in the factorization problem, with m = ⌊t/2⌋, n = ⌈t/2⌉,
and xj = yj for 1 ≤ j ≤ m; append the unit clause (ȳn) if m < n.

46. The two largest, 2850002886173752 and 3014295893299492 , have 97 bits; the next
square binary palindrome, 11784487448816572 , has 101. [This problem is not easy for
SAT solvers; number theory does much better. Indeed, there’s a nice way to find all
n-bit examples by considering approximately 2n/3 cases, because the rightmost n/3
bits of an n/2-bit number x force the other n/6 bits, if x2 is palindromic. The first
eight square binary palindromes were found by G. J. Simmons, J. Recreational Math.

5 (1972), 11–19; all 31 solutions up to 295 were found by J. Schoenfield in 2009.]

47. Each wire has a “top” and a “bottom.” There are n + g + 2h tops of wires, and
m+2g+h bottoms of wires. Hence the total number of wires is n+g+2h = m+2g+h,
and we must have n+ h = m+ g.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 193

CNF
minimum covers
BDD
cardinality constraints
tarnished wires
Knuth
carries
pi, as source
e, as source
magic

48. The wires compute q1 ← q, q2 ← q, x ← p ⊕ q1, y ← q2 ⊕ r, z ← x ⊕ y. Let p
denote “p stuck at 1” while p̄ denotes “p stuck at 0”. The pattern pqr = 000 detects
p, q1, q2, r, x, y, z; 001 detects p, q1, q2, r̄, x, ȳ, z̄; 010 detects p, q̄1, q̄2, r, x̄, ȳ, z; 011
detects p, q̄1, q̄2, r̄, x̄, y, z̄; 100 detects p̄, q1, q2, r, x̄, y, z̄; 101 detects p̄, q1, q2, r̄, x̄,
ȳ, z; 110 detects p̄, q̄1, q̄2, r, x, ȳ, z̄; 111 detects p̄, q̄1, q̄2, r̄, x, y, z. Notice that the
stuck-at faults for q aren’t detectable (because z = (p⊕ q) ⊕ (q ⊕ r) = p ⊕ r); but we
can detect faults on its clones q1, q2. (In Fig. 34 the opposite happens.)

Three patterns such as {100, 010, 001} suffice for all of the detectable faults.

49. One finds, for example, that the faults b23, c̄
2
1, s̄

2, and q̄ are detected only by the
pattern y3y2y1x2x1 = 01111; ā22, ā

2
3, b̄

2
3, p̄, c̄

2
2, z̄5 are detected only by 11011 or 11111.

All covering sets can be found by setting up a CNF with 99 positive clauses, one
for each detectable fault; for example, the clause for z̄5 is x27 ∨ x31, while the clause
for x2

2 is x4 ∨ x5 ∨ x12 ∨ x13 ∨ x20 ∨ x21 ∨ x28 ∨ x29. We can find minimum covers from
a BDD for these clauses, or by using a SAT solver with additional clauses such as ()
and () to limit the number of positive literals. Exactly fourteen sets of five patterns
suffice, the most memorable being {01111, 10111, 11011, 11101, 11110}. (Indeed, every
minimum set includes at least three of these five patterns.)

50. Primed variables for tarnished wires are x′2, b
′
2, b
′
3, s
′, p′, q′, z′3, c

′
2, z
′
4, z
′
5. Those

wires also have sharped variables x♯
2, b

♯
2, . . . , z

♯
5; and we need sharped variables x1♯

2 , x3♯
2 ,

x4♯
2 , b1♯2 , b2♯2 , b1♯3 , b2♯3 , s1♯, s2♯, c1♯2 , c2♯2 for fanout wires. The primed variables are defined

by clauses such as (p̄′∨a3)∧ (p̄′∨ b′2)∧ (p′∨ ā3∨ b̄′2), which corresponds to p′ ← a3∧ b′2.
Those clauses are appended to the 49 clauses listed after () in the text. Then there
are two clauses () for nine of the ten primed-and-sharped variables; however, in the
case of x2 we use the unit clauses (x′2) ∧ (x̄2) instead, because the variable x♯

2 doesn’t

exist. There are five fanout clauses (), namely (x̄1♯
2 ∨x3♯

2 ∨x4♯
2)∧ (b̄♯2∨b1♯2 ∨b2♯2)∧· · ·∧

(c̄♯2∨c1♯2 ∨c2♯2). There are eleven clauses (x̄3♯
2 ∨b♯2)∧(x̄4♯

2 ∨b♯3)∧(b̄1♯2 ∨s♯)∧· · ·∧(b̄2♯3 ∨z♯5)∧
(c̄2♯2 ∨ z♯5) for tarnished inputs to gates. And finally there’s (x1♯

2) ∧ (z♯3 ∨ z♯4 ∨ z5).
51. (The complete set of 196 patterns found by the author in 2013 included the inputs
(x, y) = (232 − 1, 231 + 1) and (⌈263/2⌉, ⌈263/2⌉) as well as the two number-theoretic
patterns mentioned in the text. Long runs of carries are needed in the products.)

52. (z1,2∨z2,2∨ · · · ∨zM,2) ∧ (z̄i,2∨ q̄i,1) ∧ (z̄i,2∨ p̄i,2) ∧ (z̄i,2∨ q̄i,3) ∧ (z̄i,2∨ p̄i,4) ∧ · · · ∧
(z̄i,2∨ q̄i,20), for 1 ≤ i ≤M . The second subscript of z is k in the kth case, 1 ≤ k ≤ P .

53. On the left is the binary expansion of π, and on the right is the binary expansion
of e, 20 bits at a time (see Appendix A).

One way to define f(x) for all 20-bit x is to write π/4 =
∑∞

k=1 uk/2
20k and

e/4 =
∑∞

l=1 vl/2
20l, where each uk and vl is a 20-bit number. Let k and l be smallest

such that x = uk and x = vl. Then f(x) = [k≤ l].
Equation () has actually been contrived to sustain an illusion of magic: Many

simple Boolean functions are consistent with the data in Table 2, even if we require four-
term DNFs of three literals each. But only two of them, like (), have the additional
property that they actually agree with the definition of f(x) in the previous paragraph
for ten more cases, using uk up to k = 22 and vl up to l = 20! One might almost begin
to suspect that a SAT solver has discovered a deep new connection between π and e.

54. (a) The function x̄1x9x11x̄18 ∨ x̄6x̄10x̄12 ∨ x̄4x10x̄12 matches all 16 rows of Table 2;
but adding the 17th row makes a 3-term DNF impossible.

(b) 21 rows are impossible, but () satisfies 20 rows.

September 23, 2015

194 ANSWERS TO EXERCISES 7.2.2.2

cardinality constr
covering problem
BDD
generating function
don’t-cares
evaluation of Boolean functions
truth tables

(c) x̄1x̄5x̄12x17∨ x̄4x8x̄13x̄15∨ x̄6x̄9x̄12x16∨ x̄6x̄13x̄16x20∨x13x14x̄16 does 28, which
is max. (Incidentally, this problem makes no sense for sufficiently large M , because the
equation f(x) = 1 probably does not have exactly 219 solutions.)

55. Using ()–() with pi,j = 0 for all i and j, and also introducing clauses like ()
and () to ensure that qi,1 + · · ·+ qi,20 ≤ 3, leads to solutions such as

f(x1, . . . , x20) = x̄1x̄7x̄8 ∨ x̄2x̄3x̄4 ∨ x̄4x̄13x̄14 ∨ x̄6x̄10x̄12.

(There are no monotone increasing solutions with ≤ 4 terms of any length.)

56. We can define f consistently from only a subset of the variables if and only if no
entry on the left agrees with any entry on the right, when restricted to those coordinate
positions. For example, the first 10 coordinates do not suffice, because the top entry on
the left begins with the same 10 bits as the 14th entry on the right. The first 11 coordi-
nates do suffice (although two entries on the right actually agree in their first 12 bits).

Let the vectors on the left be uk and vl as in answer 53, and form the 256 × 20
matrix whose rows are uk ⊕ vl for 1 ≤ k, l ≤ 16. We can solve the stated problem if
and only if we can find five columns for which that matrix isn’t 00000 in any row. This
is the classical covering problem (but with rows and columns interchanged): We want
to find five columns that cover every row.

In general, such an m × n covering problem corresponds to an instance of SAT

with m clauses and n variables xj , where xj means “select column j.” The clause for
a particular row is the OR of the xj for each column j in which that row contains 1.
For example, in Table 2 we have u1 ⊕ v1 = 01100100111101111000, so the first clause
is x2 ∨ x3 ∨ x6 ∨ · · · ∨ x17. To cover with at most five columns, we add suitable clauses
according to () and (); this gives 396 clauses of total length 2894, in 75 variables.

(Of course
(
20
5

)
is only 15504; we don’t need a SAT solver for this simple task!

Yet Algorithm D needs only 578 kilomems, and Algorithm C finds an answer in 353 Kµ.)
There are 12 solutions: We can restrict to coordinates xj for j in {1, 4, 15, 17, 20},

{1, 10, 15, 17, 20}, {1, 15, 17, 18, 20}, {4, 6, 7, 10, 12}, {4, 6, 9, 10, 12}, {4, 6, 10, 12, 19},
{4, 10, 12, 15, 19}, {5, 7, 11, 12, 15}, {6, 7, 8, 10, 12}, {6, 8, 9, 10, 12}, {7, 10, 12, 15, 20}, or
{8, 15, 17, 18, 20}. (Incidentally, BDD methods show that the number of solutions to the
covering problem has the generating function 12z5+994z6+13503z7+ · · ·+20z19+z20,
counting by the size of the covering set.)

57. Table 2 specifies a partially defined function of 20 Boolean variables, having 220−32
“don’t-cares.” Exercise 56 shows how to embed it in a partially defined function of only
5 Boolean variables, in twelve different ways. So we have twelve different truth tables:

11110110 0∗1∗010∗ 10000111 10∗0∗1∗0
011∗011∗ 1∗110100 10∗001∗1 1000∗∗10
011∗1∗11 010∗100∗ 10∗0∗000 ∗101∗011
10101110 0∗100∗1∗ 1∗001∗00 1∗∗00∗∗∗
10101110 0∗1∗0∗10 1∗0∗1∗00 0∗∗01∗∗∗
1∗01110∗ 00∗∗110∗ 11∗∗0∗00 10∗∗∗∗∗0

00100101 11110∗0∗ 1011∗∗∗∗ ∗∗0∗∗00∗
100∗1∗∗0 11∗00010 1100∗∗0∗ ∗0∗∗0101
∗∗1∗1000 1∗101100 1∗100∗10 0∗∗∗∗∗1∗
1∗1∗1∗10 10001100 0∗101∗1∗ ∗∗1∗0∗10
1∗01∗00∗ 1101∗0∗0 0011∗11∗ 1∗100∗0∗
001∗1001 ∗1∗∗1∗1∗ 11∗0∗010 01011001

And the tenth of these yields f(x) = ((x8 ⊕ (x9 ∨ x10)) ∨ ((x6 ∨ x12)⊕ x̄10))⊕ x12.

58. These clauses are satisfiable whenever the other clauses are satisfiable (except in
the trivial case when f(x) = 0 for all x), because we don’t need to include both xj and
x̄j in the same term. Furthermore they reduce the space of possibilities by a factor of
(3/4)N . So they seem worthwhile. (On the other hand, their effect on the running time
appears to be negligible, at least with respect to Algorithm C in small-scale trials.)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 195

DNF
Tseytin encoding
author
Tseytin encoding
sideways sum

59. f(x)⊕ f̂(x) = x2x̄3x̄6x̄10x̄12(x̄8∨x8(x13∨x15)) is a function of eight variables that
has 7 solutions. Thus the probability is 7/256 = .02734375.

60. A typical example with 32 given values of f(x), chosen randomly, yielded

f̂(x1, . . . , x20) = x4x̄7x̄12 ∨ x̄6x8x̄11x14x20 ∨ x̄9x̄12x18x̄19 ∨ x̄13x̄16x̄17x19,

which of course is way off; it differs from f(x) with probability 102752/218 ≈ .39. With
64 training values, however,

f̂(x1, . . . , x20) = x2x̄13x̄15x19 ∨ x̄3x̄9x̄19x̄20 ∨ x̄6x̄10x̄12 ∨ x̄8x10x̄12

comes closer, disagreeing only with probability 404/211 ≈ .197.
61. We can add 24 clauses (pa,1 ∨ qa,1 ∨ pa,2 ∨ q̄a,2 ∨ pa,3 ∨ q̄a,3 ∨ · · · ∨ pb,1 ∨ qb,1 ∨ · · · ∨
pc,1∨qc,1∨· · ·∨pd,1∨qd,1∨· · ·∨ p̄d,10∨qd,10∨· · ·∨pd,20∨qd,20), one for each permutation
abcd of {1, 2, 3, 4}; the resulting clauses are satisfiable only by other functions f(x).

But the situation is more complicated in larger examples, because a function can
have many equivalent representations as a short DNF. A general scheme, to decide
whether the function described by a particular setting p′i,j and q′i,j of the ps and qs is
unique, would be to add more complicated clauses, which state that pi,j and qi,j give
a different solution. Those clauses can be generated by the Tseytin encoding of

M∨

i=1

N∧

j=1

((p̄i,j∧x̄j) ∨ (q̄i,j∧xj)) ⊕
M∨

i=1

N∧

j=1

((p̄′i,j∧x̄j) ∨ (q̄′i,j∧xj)).

62. Preliminary experiments by the author, with N = 20 and p = 1/8, seem to
indicate that more data points are needed to get convergence by this method, but the
SAT solver tends to run about 10 times faster. Thus, locally biased data points appear
to be preferable unless the cost of observing the hidden function is relatively large.

Incidentally, the chance that x(k) = x(k−1) was relatively high in these experiments
((7/8)20 ≈ .069); so cases with y(k) = 0 were bypassed.

63. With Tseytin encoding (), it’s easy to construct 6r+2n−1 clauses in 2r+2n−1
variables that are satisfiable if and only if α fails to sort the binary sequence x1 . . . xn.
For example, the clauses when α = [1:2][3 :4][1 :3][2 :4][2 :3] are (x1∨ l̄1) ∧ (x2∨ l̄1) ∧
(x̄1∨x̄2∨l1)∧ (x̄1∨h1)∧ (x̄2∨h1)∧ (x1∨x2∨h̄1)∧· · ·∧ (l4∨ l̄5)∧ (h3∨ l̄5)∧ (l̄4∨h̄3∨l5)∧
(l̄4∨h5)∧ (h̄3∨h5)∧ (l4∨h3∨h̄5)∧ (g1∨g2∨g3)∧ (ḡ1∨l3)∧ (ḡ1∨ l̄5)∧ (ḡ2∨l5)∧ (ḡ2∨h̄5)∧
(ḡ3∨h5) ∧ (ḡ3∨h̄4). They’re unsatisfiable, so α always sorts properly.

64. Here we reverse the policy of the previous answer, and construct clauses that are
satisfiable when they describe a sorting network: Let the variable Ct

i,j stand for the
existence of comparator [i :j] at time t, for 1 ≤ i < j ≤ n and 1 ≤ t ≤ T . Also, adapting
() and (), let variables Bt

j,k be defined for 1 ≤ j ≤ n−2 and 1 ≤ k ≤ n, with clauses

(B
t
2j,k∨B

t
2j+1,k) ∧ (B

t
2j,k∨Bt

j,k) ∧ (B
t
2j+1,k∨Bt

j,k) ∧ (Bt
2j,k∨Bt

2j+1,k∨B
t
j,k); (∗)

in this formula we substitute {Ct
1,k, . . . , C

t
k−1,k, C

t
k,k+1, . . . , C

t
k,n} for the n − 1 “leaf

nodes” {Bt
n−1,k , . . . , B

t
2n−3,k}. These clauses prohibit comparators from clashing at

time t, and they make Bt
1,k false if and only if line k remains unused.

If x = x1 . . . xn is any binary vector, let y1 . . . yn be the result of sorting x (so that
(y1 . . . yn)2 = 2νx−1). The following clauses F (x) encode the fact that comparators Ct

i,j

transform x 7→ y: (C
t
i,j∨V

t
x,i∨V t−1

x,i) ∧ (C
t
i,j∨V

t
x,i∨V t−1

x,j) ∧ (C
t
i,j∨V t

x,i∨V
t−1
x,i ∨V

t−1
x,j) ∧

(C
t
i,j∨V

t
x,j∨V t−1

x,i ∨V t−1
x,j)∧(C t

i,j∨V t
x,j∨V

t−1
x,i)∧(C t

i,j∨V t
x,j∨V

t−1
x,j)∧(Bt

1,i∨V
t
x,i∨V t−1

x,i)∧

September 23, 2015

196 ANSWERS TO EXERCISES 7.2.2.2

Bundala
Závodný
Ehlers
Müller
CNF
cardinality constraints
elegant

(Bt
1,i∨V t

x,i∨V
t−1
x,i), for 1 ≤ i < j ≤ n and 1 ≤ t ≤ T ; here we substitute xj for V 0

x,j and
also substitute yj for V T

x,j , thereby simplifying the boundary conditions.
Furthermore, we can remove all variables V t

x,i when x has i leading 0s and V t
x,j

when x has j trailing 1s, replacing them by 0 and 1 respectively and simplifying further.
Finally, given any sequence α = [i1 :j1] . . . [ir :jr] of initial comparators, T further

parallel stages will yield a sorting network if and only if the clauses (∗), together with∧
x F (x) over all x producible by α, are simultaneously satisfiable.

Setting n = 9, α = [1:6][2 :7][3 :8][4 :9], and T = 5, we obtain 85768 clauses
in 5175 variables, if we leave out the ten vectors x that are already sorted. Al-
gorithm C finds them unsatisfiable after spending
roughly 200 megamems; therefore T̂ (9) > 6. (Algo-
rithm L fails spectacularly on these clauses, how-
ever.) Setting T ← 6 quickly yields T̂ (9) ≤ 7.
D. Bundala and J. Závodný [LNCS 8370 (2014),
236–247] used this approach to prove in fact that
T̂ (11) = 8 and T̂ (13) = 9. Then T. Ehlers and
M. Müller extended it [arXiv:1410.2736 [cs.DS]
(2014), 10 pages], to prove that T̂ (17) = 10, with
the surprising optimum network shown here.

65. (a) The goal is to express the transition equation in CNF. There are
(
8
4

)
clauses like

(x̄′∨ x̄a∨ x̄b∨ x̄c∨ x̄d), one for each choice of four neighbors {a, b, c, d} ⊆ {NW,N, ..., SE}.
Also

(
8
7

)
clauses like (x̄′ ∨ xa ∨ · · · ∨ xg), one for each choice of seven. Also

(
8
6

)
like

(x̄′∨x∨xa∨· · ·∨xf), for each choice of six. Also
(
8
3

)
like (x′∨ x̄a∨ x̄b∨ x̄c∨xd∨· · ·∨xh),

complementing just three. And finally
(
8
2

)
like (x′ ∨ x̄ ∨ x̄a ∨ x̄b ∨ xc ∨ · · · ∨ xg),

complementing just two and omitting any one of the others. Altogether 70 + 8 + 28 +
56+28 = 190 clauses of average length (70 · 5+8 · 8+28 · 8+56 · 9+28 · 9)/190 ≈ 7.34.

(b) Here we let x = xij , xNW = x(i−1)(j−1), . . . , xSE = x(i+1)(j+1), x
′ = x′ij . There

are seven classes of auxiliary variables aijk , . . . , gijk , each of which has two children;
the meaning is that the sum of the descendants is ≥ k. We have k ∈ {2, 3, 4} for the
a variables, k ∈ {1, 2, 3, 4} for the b and c variables, and k ∈ {1, 2} for d, e, f, g.

The children of aij are b(i|1)j and cij . The children of bij are di(j−(j&2)) and
ei(j+(j&2)). The children of cij are f i′j′ and gij , where i′ = i+2 and j′ = (j−1) | 1 if i is
odd, otherwise i′ = i and j′ = j−(j&1). The children of dij are x(i−1)(j+1) and xi(j+1).
The children of eij are x(i−1)(j−1) and xi(j−1). The children of f ij are x(i−1)j and
x(i−1)(j+1). Finally, the children of gij are xi′j and xi′′j′′ , where i

′ = i+1−((i&1)≪1);
and (i′′, j′′) = (i+1, j⊕ 1) if i is odd, otherwise (i′′, j′′) = (i− 1, j− 1+ ((j&1)≪ 1)).
(OK—this isn’t elegant. But hey, it works!)

If the children of p are q and r, the clauses that define pk are (pk ∨ q̄k′ ∨ r̄k′′) for
k′ + k′′ = k and (p̄k ∨ qk′ ∨ rk′′) for k′ + k′′ = k + 1. In these clauses we omit q̄0 or r̄0;
we also omit qm or rm when q or r has fewer than m descendants.

For example, these rules define d35
1 and d35

2 by the following six clauses:

(d35
1 ∨ x̄26), (d35

1 ∨ x̄36), (d35
2 ∨ x̄26 ∨ x̄36), (d̄35

1 ∨ x26 ∨ x36), (d̄35
2 ∨ x26), (d̄35

2 ∨x36).

The variables bijk are defined only when i is odd; dij
k and eijk only when i is odd and

j mod 4 < 2; f ij
k only when i+ j is even. Thus the total number of auxiliary variables

per cell (i, j), ignoring small corrections at boundary points, is 3+4/2+4+2/4+2/4+
2/2+2 = 13 of types a through g, not 19, because of the sharing; and the total number
of clauses per cell to define them is 21 + 16/2 + 16 + 6/4 + 6/4 + 6/2 + 6 = 57, not 77.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 197

BDD
author
stable
Schroeppel
Buckingham
Wainwright
automorphisms

Finally we define x′ij from aij2 , aij3 , aij4 , by means of six clauses

(x̄′ij∨āij4), (x̄′ij∨aij2), (x̄′ij∨xij∨aij3), (x′ij∨aij4 ∨āij3), (x′ij∨x̄ij∨ȳij), (yij∨aij4 ∨āij2),

where yij is another auxiliary variable (introduced only to avoid clauses of size 4).

66. All solutions to (a) can be characterized by a BDD of 8852 nodes, from which we
can obtain the generating function 38z28 +550z29 + · · ·+150z41 that enumerates them
(with a total computation time of only 150 megamems or so). Part (b), however, is
best suited to SAT, and X0 must have at least 38 live cells. Typical answers are

→ ← ← .

67. Either or at lower left will produce the X0 of () at time 1. But length 22
is impossible: With r = 4 we can verify that all the live cells in X4 lie in some 3 × 3
subarray. Then with r = 22 we need to rule out only (

(
9
3

)
+

(
9
4

)
+

(
9
5

)
) × 6 = 2016

possibilities, one for each viable X4 within each essentially different 3× 3 subarray.

68. The author believes that r = 12 is impossible, but his SAT solvers have not yet
been able to verify this conjecture. Certainly r = 11 is achievable, because we can
continue with the text’s fifth example after prepending

→ → → .

69. Since only 8548 essentially different 4× 4 bitmaps are possible (see Section 7.2.3),
an exhaustive enumeration is no sweat. The small stable patterns arise frequently, so
they’ve all been named:

(a) block tub boat ship snake
bee-
hive carrier barge loaf eater

long
boat

long
ship pond

(b) blinker clock toad beacon

↔ ↔ ↔ ↔
(A glider is also considered to be stable, although it’s not an oscillator.)

70. (a) A cell with three live neighbors in the stator will stay alive.
(b) A 4× n board doesn’t work; Fig. A–6 shows the 5× 8 examples.
(c) Again, the smallest-weight solutions with smallest rectangles are shown in

Fig. A–6. Oscillators with these rotors are plentiful on larger boards; the first examples
of each kind were found respectively by Richard Schroeppel (1970), David Buckingham
(1972), Robert Wainwright (1985).

71. Let the variables Xt = xijt characterize the configuration at time t, and suppose
we require Xr = X0. There are q = 8r automorphisms σ that take Xt 7→ X(t+p) mod rτ ,
where 0 ≤ p < r and τ is one of the eight symmetries of a square grid.

Any global permutation of the N = n2r variables leads via Theorem E to a
canonical form, where we require the solution to be lexicographically less than or equal
to the q − 1 solutions that are equivalent to it under automorphisms.

Such lexicographic tests can be enforced by introducing (q−1)(3N−2) new clauses
of length ≤ 3, as in ()—and often greatly simplified using Corollary E.

These additional clauses can significantly speed up a proof of unsatisfiability. On
the other hand they can also slow down the search, if a problem has abundant solutions.

September 23, 2015

198 ANSWERS TO EXERCISES 7.2.2.2

Wainwright
Flammenkamp
eightfold symmetry
encoding
Gosper
phoenix
quilt patterns

In practice it’s usually better to insist only on solutions that are partially canonical,
by using only some of the automorphisms and by requiring lexicographic order only on
some of the variables.

72. (a) The two 7× 7s, shown in Fig. A–6, were found by R. Wainwright (trice tongs,
1972) and A. Flammenkamp (jam, 1988).

Omega
Van de
Graaff J3 genie copter

trice
tongs jam spinners infinity

Fig. A–6. Noteworthy minimal oscillators of periods 2 and 3.

(b) Here the smallest examples are 9×13 and 10×15; the former has four L-rotors
surrounding long stable lines. Readers will also enjoy discovering 10× 10 and 13× 13
instances that have full eightfold symmetry. (When encoding such symmetrical prob-
lems by using exercise 65(b), we need only compute the transitions between variables
xtij for 1 ≤ i ≤ ⌈m/2⌉ and 1 ≤ j ≤ ⌈n/2⌉; every other variable is identical to one of
these. However, the auxiliary variables aij , . . . , gij shouldn’t be coalesced in this way.)

(c,d) Champion heavyweights have small rotors. What a cool four-way snake dance!

120/225 ≈ .53 130/240 ≈ .54 132/256 ≈ .52 120/225 ≈ .53 136/256 ≈ .53

73. (a) They don’t have three A neighbors; and they don’t have three B neighbors.
(b) Two examples appear in Fig. A–7, where they are packed as snugly as possible

into a 12 × 15 box. This pattern, found by R. W. Gosper about 1971, is called the
phoenix, since its living cells repeatedly die and rise again. It is the smallest mobile
flipflop; the same idea yields the next smallest (also seen in Fig. A–7), which is 10×12.

(c) The nonblank one comes from a 1× 4 torus; the checkerboard from an 8× 8.
Here are some amazing m× n ways to satisfy the constraints for small m and n:

AABBAABB
AABBAABB
AABBAABB
AABBAABB
AABBAABB
AABBAABB
AABBAABB
AABBAABB
AABBAABB
AABBAABB
AABBAABB
AABBAABB

A BA B
BA BA
AB AB

B AB A
A BA B

BA BA
AB AB

B AB A
A BA B

BA BA
AB AB

B AB A

BAB BAB
A AA A
B BB B
A AA A

BA BA
BAB BAB

A AA A
B BB B
A AA A

BA BA

AA AA
B BB B

A A A A
B B B B

AA AA
B B B B

AA AA
B BB B

A A A A
B B B B

AA AA
B B B B

AA AA
BB BB

AA AA
BB BB

AA AA
B BB B

AA AA
BB BB

AA AA
BB BB

AA AA
B BB B

ABA ABA
BAB BAB

A A
BB BB
AA AA

B B
ABA ABA

BAB BAB
A A
BB BB
AA AA

B B

B A B A
A AB BA AB B

B A B A
A B A B

B BA AB BA A
A B A B
B A B A

A AB BA AB B
B A B A
A B A B

B BA AB BA A
A B A B

BA AB BA AB
A B AA B A
B A BB A B

AB BA AB BA
B A BB A B
A B AA B A

BA AB BA AB
BA AB BA AB

A B AA B A
B A BB A B

AB BA AB BA
B A BB A B
A B AA B A

BA AB BA AB

A A B B A A B B
B B A A B B A A

B A A B B A A B
A B B A A B B A

B B A A B B A A
A A B B A A B B

A B B A A B B A
B A A B B A A B

A A B B A A B B
B B A A B B A A

B A A B B A A B
A B B A A B B A

B B A A B B A A
A A B B A A B B

A B B A A B B A
B A A B B A A B

B BABAB B BABAB
A BA A BA

B B
A A A A

AB B BABAB B BAB
A AB A AB

B B
A A A A

B BABAB B BABAB
A BA A BA

B B
A A A A

AB B BABAB B BAB
A AB A AB

B B
A A A A

AA A AA A
B B B B
A A A A A A

B B B B B B B B
A A A A A A

B B B B
A AA A AA

BB BB BB BB
AA A AA A

B B B B
A A A A A A

B B B B B B B B
A A A A A A

B B B B
A AA A AA

BB BB BB BB

BABA BABA
A B A B

BABA BABA
A B A B

BABA BABA
B A B A
BA BABA BA

B A B A
BABA BABA

A B A B
BABA BABA

A B A B
BABA BABA

B A B A
BA BABA BA

B A B A

AA BB
B B A A

AA BB
B B A A

AA BB
A B B A
B AA B

A B B A
BB AA
A A B B

BB AA
A A B B

BB AA
B A A B
A BB A

B A A B

AA AA
BB BB

AA AA
BB BB

A AA A
BB BB

A AA A
BB BB

AA AA
BB BB

AA AA
B BB B

AA AA
B BB B

B A B
ABAB BABA

BA AB

AB BA
BABA ABAB

A B A
B A B

ABAB BABA
BA AB

AB BA
BABA ABAB

A B A

Notice that infinite one-dimensional examples are implied by several of these motifs;

the checkerboard, in fact, can be fabricated by placing
A A

B B
A A

B B

diagonals together.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 199

AB
BA BA BABA

ABAB ABAB A B
BAB A B A BB AA

ABA BB AA BB AA BB
B AA AB BA BB AA AB AB BA A

AB AA B BABA ABAB A B BABA BAB BAB BAB
AB BABA BB ABA A B B A BABA A BABA AA A ABA

BABA ABA B A BAB BB AA AA BB AB BB AB BB BB B
ABA B BAB AA BABA AA BB BB AA AA A AA AA

BAB AA BB AB B A A B BA AB B BAB BA BB
A B B A ABABAB BABA ABAB BABA ABA AB BAB A

BB AA BAB AB B AB A AB AB B AA B BAB AA A B
AA B B ABA BABA A A B B BABA AA BB AA ABA BA BB BB AA

B AA BAB A B B B A A A B BB A BB BAB ABAB A AA BB
A B B ABA BA BB A A AB B B AA BA ABAB A AB AB B A
BB AA B ABAB AA BB B A AA BB ABA AB A AB BABABA A B
AA B B AA B ABA B AA A B BB A B BB B B BAB A B BB AA

B AA BB AA BAB ABA B B BA A A BAB AA AA A A A A BA BA AA BB
AB B A BB B A BABA A A B B BABA BB B B B B BB ABAB AB B A
BA A BA A AA BB B B A A A A A A AA AA B ABAB A A B

ABA BB AB B BB AA A BA B BAB B B BB B AA BA BB BB AA
BAB A ABAB AA A B BABABA BA A BA ABA BB A AA AA A BB

A B BA BB ABA A B A BABA AB A BB B B B BB A
BB AA A BAB BB AA BB A BB B AA A A A AA B
AA BB BABA AA BB AA BB AA AA B BB BB B AA

B A AB B A B AA B BB AB AA AA BB
ABAB ABAB ABAB BABA A BABA B B A

BA BA BA AB BABA BABA ABAB
AB AB BA

Fig. A–7. Mobile flipflops: An ideal way to tile the floor of a workspace for hackers.

74. Call a cell tainted if it is A with more than one A neighbor or B with more than
one B neighbor. Consider the topmost row with a tainted cell, and the leftmost tainted
cell in that row. We can assume that this cell is an A, and that its neighbors are S, T,
U, V, W, X, Y, Z in the pattern

STU
VAW
XYZ

. Three of those eight neighbors are type B, and
at least four are type A; several cases need to be considered.

Case 1: W = X = Y = Z = A. Then we must have S = U = V = B and T = 0
(blank), because S, T, U, V aren’t tainted. The three left neighbors of V can’t be
type A, since V already has three A neighbors; nor can they be type B, since V isn’t
tainted. Hence the tainted X, which must have two B neighbors in the three cells below
it, cannot also have two or more A neighbors there.

Case 2: T = A or V = A. If, say, T = A then X = Y = Z = A, and neither V
nor W can be type B.

Case 3: S 6= A, U = A. Then W can’t be type B, and S must be tainted.

Case 4: S = A, U 6= A. At least one of W, X, Y, Z is B; at least three are A; so
exactly three are A. The B can’t be Y, which has four A neighbors. Nor can it be W
or Z: That would force V to be blank, hence T = U = B; consequently W = A, Z = B.
Since W is tainted, at least two of its right neighbors must be A, contradicting Z = B.

Thus X = B in Case 4. Either T or V is also B, while the other is blank; say
T is blank. The three left neighbors of V cannot be A. So they must either all be B
(tainting the cell left of S) or all blank. In the latter case the upper neighbors of T must
be BBA in that order, since T is blank. But that taints the B above T. A symmetric
argument applies if V is blank.

Case 5: S = U = A. Then W 6= A, and at least two of {X,Y,Z} are A. Now
Y = Z = A forces T = V = X = B and W blank, tarnishing V.

Similarly, X = Y = A forces T = W = Z = B and V blank; this case is more
difficult. The three lower neighbors of Y must be AAB, in that order, lest a B be
surrounded by four A’s. But then the left neighbors of X are BBB; hence so are the
left neighbors of V, tarnishing the middle one.

Finally, therefore, Case 5 implies that X = Z = A. Either T, V, W, or Y is blank;
the other three are B. The blank can’t be T, since T’s upper three neighbors can’t
be A. It can’t be W or Y, since V and T aren’t tainted. So T = W = Y = B and V is
blank. The left neighbors of S cannot be A, because S isn’t tainted. So the cell left of X
must be A. Therefore X must have at least four A neighbors; but that’s impossible,
because Y already has three.

September 23, 2015

200 ANSWERS TO EXERCISES 7.2.2.2

Summers
torus
Rokicki
still life
symeater
blocks
carriers
Buckingham
Silver
pixels
glider’s symmetry

Diagonally adjacent A’s are rare. (In fact, they cannot occur in rectangular grids
of size less than 16 × 18.) But diligent readers will be able to spot them in Fig. A–7,
which exhibits an astonishing variety of different motifs that are possible in large grids.

75. Let the cells alive at times p − 2, p − 1, p be of types X, Y, Z, and consider the
topmost row in which a live cell ever appears. Without loss of generality, the leftmost
cell in that row is type Z. The cell below that Z can’t be of type Y, because that Y
would have three X neighbors and four Y neighbors besides Z and the blank to its left.

Thus the picture must look like ZYX
YXYX

, where the three predecessors of Z and the
topmost Y are filled in. But there’s no room for the three predecessors of the topmost X.

76. The smallest known example, a 28×33 pattern found
by Jason Summers in 2012, is illustrated here using the
letters {F,A,B}, {B,C,D}, {D,E,F} for cells that are
alive when tmod 3 = 0, 1, 2. His ingenious construction
leads in particular to an infinite solution based on a 7×24
torus. An amazing infinite 7 × 7 toroidal pattern also
exists, but little else is yet known.

A ACDDC
CDDCA A
CA ACDD
ACDDCA
DCA ACD

ACDDCA
DDCA AC

F F F F
DBD FE EF DBD DBD FE EF DBD
CB CDDDF FDDDC BC CB CDDDF FDDDC BC
DB FA AF BD DB FA AF BD DB FA AF BD DB FA AF BD

FDDDC BC CB CDDDF FDDDC BC CB CDDDF
EF DBD DBD FE EF DBD DBD FE

F F F F

F A F F A F
BDDEF DBD DBD FEDDB

FEDDC BC CB CDDEF
FA AF BD DB FA AF
C CDDDF FDDDC C

CF FE EF FC
FDF FDF
D D

DBE DBE
BB BB

DBE DBE
FC F FC F

B C BEDC B C BEDC
DFFAB AFEFAB DFFAB AFEFAB

BAFEFA BAFFD BAFEFA BAFFD
CDEB C B CDEB C B
F CF F CF
EBD EBD
BB BB

EBD EBD
D D

FDF FDF
CF FE EF FC

C CDDDF FDDDC C
FA AF BD DB FA AF

FEDDC BC CB CDDEF
BDDEF DBD DBD FEDDB

F A F F A F

77. If the first four cells in row 4 of X0 (and of X5) contain a, b, c, d, we need a+b 6= 1,
a+ b+ c 6= 1, b+ c+d 6= 2. In clause form this becomes ā∨ b, a∨ b̄, b∨ c̄, c̄∨d, b̄∨ c∨ d̄.

Similarly, let the last four elements of column 5 be (f, g, h, i); then we want f +
g+h 6= 2, g+h+ i 6= 2, h+ i 6= 2. These conditions simplify to f̄ ∨ ḡ, f̄ ∨ h̄, ḡ∨ ı̄, h̄∨ ı̄.
78. The “92 phage” in Fig. A–8 is a minimal example.

79. (Solution by T. G. Rokicki.) A tremendous battle flares up, raging wildly on all
fronts. When the dust finally settles at time 1900, 11 gliders are escaping the scene
(1 going in the original NE direction, 3 going NW, 5 going SW, and 2 going SE), leaving
behind 16 blocks, 1 tub, 2 loaves, 3 boats, 4 ships, 8 beehives, 1 pond, 15 blinkers, and
1 toad. (One should really watch this with a suitable applet.)

80. Paydirt is hit on 10 × 10 and 11 × 11 boards, with X8 = X9; see Fig. A–8. The
minimal example, “symeater19,” has a close relative, “symeater20,” which consists
simply of two blocks and two carriers, strategically placed. (The first of these, also
called “eater 2,” was discovered by D. Buckingham in the early 1970s; the other by
S. Silver in 1998.) They both have the additional ability to eat the glider if it is moved
one or two cells to the right of the position shown, or one cell to the left.

It is important to realize that the diagonal track of a glider does not pass through
the corners of pixels, bisecting them; the axis of a glider’s symmetry actually passes
through the midpoints of pixel edges, thereby cutting off small triangles whose area is
1/8 of a full pixel. Consequently, any eater that is symmetric about a diagonal will
eat gliders in two adjacent tracks. The two in Fig. A–8 are exceptional because they’re
quadruply effective. Furthermore symeater20 will eat from the opposite direction; and
either of its carriers can be swapped to another position next to the blocks.

81. Two eaters make “ssymeater14” (Fig. A–8); and “ssymeater22” is narrower.

82. (a) If X → X ′, then x′ij = 1 only if we have
∑i+1

i′=i−1

∑j+1
j′=j−1 xi′j′ ≥ 3.

(b) Use the same inequality, and induction on j.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 201

Conway
glider
spaceship
Coe
symmetrical
Mµ
Kµ
Gray code

92-phage

sym-
eater19

sym-
eater20

ssym-
eater14

ssym-
eater22

Fig. A–8. Various examples of minimal still lifes that eat gliders and spaceships.

(c) (Proof of the hint by John Conway, 1970.) In the transitions

X = ?
? ?
? ? ?

→ ?
? ?
? ? ?
? ? ? ?

→
?
? ?
? ?
? ? ? ?
? ? ? ? ?

= X ′′,

we must have in the center of X ′; hence we must have
?

at the lower left of X.
But then the center of X ′ is .

83. Work with (2r + 1 − 2t) × (2r + 1 − 2t) grids xtij centered at cell (i0, j0), for
0 ≤ t ≤ r = f(i0, j0); and assume that xtij = 0 whenever f(i, j) > t. For example,
if (i0, j0) = (1, 2), only 14 of the x3ij can be alive, namely when (i, j) = (−2 . .−1, 2),
(−2 . . 0, 1), (−2 . . 1, 0), (−2 . . 2,−1). The case (i0, j0) = (1, 2) leads to 5031 readily
satisfiable clauses on 1316 variables, including the unit clause x612, when the state
transitions are encoded as in answer 65; all but 106 of those variables are auxiliary.

84. (a) Use a glider, positioned properly with its tip at (0, 0).

(b) Similarly, a spaceship reaches these cells in the minimum possible time.

(c) Consider patterns An = and Bn = of width 2n + 1, illustrated
here for n = 3. Then Bj works when j mod 4 ∈ {1, 2}; Aj and Bj−1 work when
j mod 4 ∈ {2, 3}; Aj−1 works when j mod 4 ∈ {0, 3}.

(d) The pattern assembles a suitable glider at time 3.

(e) A SAT solver found the pattern shown here, which launches an appro-
priate spaceship (plus some construction debris that vanishes at t = 5).

[It appears likely that f∗(i, j) = f(i, j) for all i and j. But the best general
result at present, based on space-filling constructions such as Tim Coe’s “Max,” is that
f∗(i, j) = f(i, j) + O(1). There’s no known way to prove even the special cases that,
say, f∗(j, 2j) = 6j or that f∗(−j, 2j) = 3j for all j ≥ 0.]

85. (a) Let X be a 12 × 12 bitmap. We must show that the clauses T (X,X ′) of
exercise 65, together with 92 unary clauses x′23, x̄

′
24, x

′
25, . . . from the given pattern, are

unsatisfiable. (The pattern is symmetrical; but Life’s rules often produce symmetrical
states from unsymmetrical ones.) Thus 2144−8 different conceivable predecessor states
need to be ruled out. Fortunately Algorithm C needs fewer than 100 Mµ to do that.

(b) Most states have thousands of predecessors (see the following exercise); so
Algorithm C can almost always find one in, say, 500 Kµ. Therefore one can prove, for
example, that no 6×6 Gardens of Eden exist, by rapidly finding a predecessor for each
of the 236 patterns. (Only about 236/8 patterns actually need to be tried, by symmetry.)
Furthermore, if we run through those patterns in Gray code order, changing the polarity
of just one assumed unary clause ±x′ij at each step, the mechanism of Algorithm C
goes even faster, because it tends to find nearby solutions to nearby problems. Thus
thousands of patterns can be satisfied per second, and the task is feasible.

September 23, 2015

202 ANSWERS TO EXERCISES 7.2.2.2

90◦-rotational symmetry
Hartman
Heule
Kwekkeboom
Noels
cellular automata
nonconstructively
Moore
BDD
transition clauses
initial state
Knuth
Dijkstra
encode

Such an approach is out of the question for 10× 10 bitmaps, because 2100 ≫ 236.
But we can find all 10×10 Gardens of Eden for which there is 90◦-rotational symmetry,
by trying only about 225/2 patterns, again using Gray code. Aha: Eight such patterns
have no predecessor, and four of them correspond to the given orphan.

[See C. Hartman, M. J. H. Heule, K. Kwekkeboom, and A. Noels, Electronic J.

Combinatorics 20, 3 (August 2013), #P16. The existence of Gardens of Eden with
respect to many kinds of cellular automata was first proved nonconstructively by E. F.
Moore, Proc. Symp. Applied Math. 14 (1962), 17–33.]

86. The 80 cells outside the inner 8× 8 can be chosen in N = 11,984,516,506,952,898
ways. (A BDD of size 53464 proves this.) So the answer is N/2100−64 ≈ 174,398.

87. Instead of using subscripts t and t + 1, we can write the transition clauses for
X → X ′ in the form (@ ∨ A0 ∨ A0′), etc. Let Alice’s states be {α1, . . . , αp} and let
Bob’s be {β1, . . . , βq}. The clauses (@ ∨ ᾱi ∨ α′i) and (@ ∨ β̄i ∨ β′i) say that your state
doesn’t change unless you are bumped. If state α corresponds to the command ‘Maybe
go to s’, the clause (@∨ ᾱ∨α′∨ s′) defines the next possible states after bumping. The
analogous clause for ‘Critical, go to s’ or ‘Set v ← b, go to s’ is simply (@ ∨ ᾱ ∨ s′);
and the latter also generates the clause (@∨ ᾱ∨ v′) if b = 1, (@∨ ᾱ∨ v̄′) if b = 0. The
command ‘If v go to s1, else to s0’ generates (@ ∨ ᾱ ∨ v̄ ∨ s′1) ∧ (@ ∨ ᾱ ∨ v ∨ s′0). And
for each variable v, if the states whose commands set v are αi1 , . . . , αih , the clauses

(@ ∨ v ∨ αi1 ∨ · · · ∨ αih ∨ v̄′) ∧ (@ ∨ v̄ ∨ αi1 ∨ · · · ∨ αih ∨ v′)

encode the fact that v isn’t changed by other commands.

Bob’s program generates similar clauses—but they use @, not @, and β, not α.

Incidentally, when other protocols are considered in place of (), the initial
state X0 analogous to () is constructed by putting Alice and Bob into their smallest
possible states, and by setting all shared variables to 0.

88. For example, let all variables be false except A00, B00, @0, A11, B01, A12, B12,
A13, B23, @3, A24, B24, @4, A35, B25, l5, A36, B36, l6.

89. No; we can find a counterexample to the corresponding clauses as in the previous
exercise: A00, B00, A01, B11, A02, B22, b2, @2, A13, B23, b3, A14, B34, b4, A15, B45,
b5, @5, A26, B46, a6, b6, @6, A57, B47, a7, b7, A58, B28, a8, b8, l8, A59, B59, a9, b9, l9.

(This protocol was the author’s original introduction to the fascinating problem of
mutual exclusion [see CACM 9 (1966), 321–322, 878], about which Dijkstra had said
“Quite a collection of trial solutions have been shown to be incorrect.”)

90. Alice starves in () with p = 1 and r = 3 in (), if she moves to A1 and then
Bob remains in B0 whenever he is bumped. The A2 ∧ B2 deadlock mentioned in the
text for () corresponds to () with p = 4 and r = 6. And in (), successive moves
to B1, (B2, A1, A2, B3, B1, A4, A5, A0)∞ will starve poor Bob.

91. A cycle () with no maybe/critical states for Alice can certainly starve her.
Conversely, given (i), (ii), (iii), suppose Alice is in no maybe/critical state when t ≥ t0;
and let t0 < t1 < t2 < · · · be times with @ti = 1 but with @t = 0 for at least one t
between ti and ti+1. Then we must have Xti = Xtj for some i < j, because the number
of states is finite. Hence there’s a starvation cycle with p = ti and r = tj .

92. For 0 ≤ i < j ≤ r we want clauses that encode the condition Xi 6= Xj . Introduce
new variables σij for each state σ of Alice or Bob, and vij for each shared variable v.
Assert that at least one of these new variables is true. (For the protocol () this clause

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 203

sorting networks
Kroening
Strichman
Eén
Sörensson
k-induction
induction
Sheeran
Singh
St̊almarck
longest simple path

would be (A0ij ∨· · ·∨A4ij ∨B0ij ∨· · ·∨B4ij ∨ lij).) Also assert the binary clauses (σ̄ij ∨
σi)∧(σ̄ij∨σ̄j) for each σ, and the ternary clauses (v̄ij∨vi∨vj)∧(v̄ij∨ v̄i∨ v̄j) for each v.

The transition clauses can also be streamlined, because we needn’t allow cases
where Xt+1 = Xt. Thus, for example, we can omit B0t+1 from the clause (@t ∨ B0t ∨
B0t+1 ∨ B1t+1) of (); and we can omit the clause (@t ∨ B1t ∨ l̄t ∨ B1t+1) entirely.

[If r is large, encodings with O(r(log r)2) clauses are possible via sorting networks,
as suggested by D. Kroening and O. Strichman, LNCS 2575 (2003), 298–309. The
most practical scheme, however, seems to be to add the ij constraints one by one
as needed; see N. Eén and N. Sörensson, Electronic Notes in Theoretical Computer

Science 89 (2003), 543–560.]

93. For the Φ in (), for example, we can use (x1 ∨ x2 ∨ · · · ∨ x16)∧ (x̄1 ∨A0′)∧ · · · ∧
(x̄1∨A6′)∧(x̄2∨B0′)∧· · ·∧(x̄2∨B6′)∧(x̄3∨A0′)∧(x̄3∨a′)∧· · ·∧(x̄16∨B6′)∧(x̄16∨ b̄′).
94. (X → X ′ → · · · → X(r)) ∧ Φ(X) ∧ Φ(X ′) ∧ · · · ∧ Φ(X(r−1)) ∧ ¬Φ(X(r)). [This
important technique is called “k-induction”; see Mary Sheeran, Satnam Singh, and
Gunnar St̊almarck, LNCS 1954 (2000), 108–125. One can, for example, add the clause
(A5 ∨ B5) to () and prove the resulting formula Φ by 3-induction.]

95. The critical steps have a = b = 1, by the invariants, so they have no predecessor.

96. The only predecessor of A52 ∧B52 ∧ a2 ∧ b2 ∧ l̄2 is A51 ∧B41 ∧ a1 ∧ b1 ∧ l̄1; and the
only predecessor of that is A50 ∧ B30 ∧ a0 ∧ b0 ∧ l̄0. The case l2 is similar.

But without the invariants, we could find arbitrarily long paths to A5r ∧ B5r. In
fact the longest such simple path has r = 33: Starting with A20 ∧B20 ∧ ā0 ∧ b̄0 ∧ l0, we
could successively bump Alice and Bob into states A3, A5, A6, A0, A1, A2, A3, B3,
B4, A5, B3, A6, B4, A0, B3, A1, A2, A3, A5, A6, A0, A1, A2, B4, A3, A5, A6, A0,
B5, A1, A2, A3, A5, never repeating a previous state. (Of course all of these states are
unreachable from the real X0, because none of them satisfy Φ.)

97. No. Removing each person’s final step in a path to A6∧B6 gives a path to A5∧B5.

98. (a) Suppose X0 → · · · → Xr = X0 is impure and Xi = Xj for some 0 ≤ i < j < r.
We may assume that i = 0. If either of the two cycles X0 → · · · → Xj = X0 or
Xj → · · · → Xr = Xj is impure, it is shorter.

(b) In those states she would have had to be previously in A0 or A5.

(c) Generate clauses (ḡ0), (ḡt ∨ gt−1 ∨ @t−1), (h̄0), (h̄t ∨ ht−1 ∨ @t−1), (f̄t ∨ gt),
(f̄t ∨ ht), (f̄t ∨ α0 ∨ ᾱt), (f̄t ∨ ᾱ0 ∨ αt), (f̄t ∨ v0 ∨ v̄t), (f̄t ∨ v̄0 ∨ vt), for 1 ≤ t ≤ r; and
(f1 ∨ f2 ∨ · · · ∨ fr). Here v runs through all shared variables, and α runs through all
states that can occur in a starvation cycle. (For example, Alice’s states with respect
to protocol () would be restricted to A3 and A4, but Bob’s are unrestricted.)

(d) With exercise 92 we can determine that the longest simple path, using only
states that can occur in a starvation cycle for (), is 15. And the clauses of (c) are
unsatisfiable when r = 15 and invariant () is used. Thus the only possible starvation
cycle is made from two simple pure cycles; and those are easy to rule out.

99. Invariant assertions define the values of a and b at each state. Hence mutual
exclusion follows as in exercise 95. For starvation-freedom, we can exclude states A0,
A6, A7, A8 from any cycle that starves Alice. But we need also to show that the state
A5t ∧ B0t ∧ lt is impossible; otherwise she could starve while Bob is maybe-ing. For
that purpose we can add ¬((A6∨A7∨A8)∧ (B6∨B7∨B8)) ∧ ¬(A8∧ l̄) ∧ ¬(B8∧ l) ∧
¬((A3 ∨ A4 ∨ A5) ∧ B0 ∧ l) ∧ ¬(A0 ∧ (B3 ∨ B4 ∨ B5) ∧ l̄) to the invariant Φ(X). The
longest simple path through allowable states has length 42; and the clauses of exercise

September 23, 2015

204 ANSWERS TO EXERCISES 7.2.2.2

Dijkstra
Burns
Lamport
Peterson
SIAM
Berghammer
cardinality constraints
backtracking

98(c) are unsatisfiable when r = 42. Notice that Alice and Bob never compete when
setting the common variable l, because states A7 and B7 cannot occur together.

(See Dijkstra’s Cooperating Sequential Processes, cited in the text.)

100. Bob is starved by the moves B1, (A1, A2, A3, B2, A4, B3, A0, B4, B1)∞. But
an argument similar to the previous answer shows that Alice cannot be.

[The protocol obviously provides mutual exclusion as in exercise 95. It was devised
independently in the late 1970s by J. E. Burns and L. Lamport, as a special case of an
N-player protocol using only N shared bits; see JACM 33 (1986), 337–339.]

101. The following solution is based on G. L. Peterson’s elegant protocol for N pro-
cesses in ACM Transactions on Programming Languages and Systems 5 (1983), 56–65:

A0. Maybe go to A1.
A1. Set a1 ← 1, go to A2.
A2. If b2 go to A2, else to A3.
A3. Set a2 ← 1, go to A4.
A4. Set a1 ← 0, go to A5.
A5. If b1 go to A5, else to A6.
A6. Set a1 ← 1, go to A7.
A7. If b1 go to A8, else to A9.
A8. If b2 go to A7, else to A9.
A9. Critical, go to A10.
A10. Set a1 ← 0, go to A11.
A11. Set a2 ← 0, go to A0.

(Alice and Bob might need an
app to help them deal with this.)

B0. Maybe go to B1.
B1. Set b1 ← 1, go to B2.
B2. If a1 go to B2, else to B3.
B3. Set b2 ← 1, go to B4.
B4. Set b1 ← 0, go to B5.
B5. If a2 go to B5, else to B6.
B6. Set b1 ← 1, go to B7.
B7. If a1 go to B8, else to B12.
B8. If a2 go to B9, else to B12.
B9. Set b1 ← 0, go to B10.
B10. If a1 go to B11, else to B6.
B11. If a2 go to B10, else to B6.
B12. Critical, go to B13.
B13. Set b1 ← 0, go to B14.
B14. Set b2 ← 0, go to B0.

102. The clauses for, say, ‘B5. If a go to B6, else to B7.’ should be (@∨B5∨ ā∨α1 ∨
· · · ∨ αp ∨ B6′) ∧ (@ ∨ B5 ∨ a ∨ α1 ∨ · · · ∨ αp ∨ B7′) ∧ (@ ∨ B5 ∨ B6′ ∨ B7′), where α1,
. . . , αp are the states in which Alice sets a.

103. See, for example, any front cover of SICOMP, or of SIAM Review since 1970.

104. Assume that m ≤ n. The case m = n is clearly impossible, because all four
corners must be occupied. When m is odd and n = m + k + 1, put m bishops in the
first and last columns, then k in the middle columns of the middle row. Whenm is even
and n = m+ 2k + 1, put m in the first and last columns, and two in the middle rows
of columns m/2 + 2j for 1 ≤ j ≤ k. There’s no solution when m and n are both even,
because the maximum number of independent bishops of each color is (m + n− 2)/2.
[R. Berghammer, LNCS 6663 (2011), 103–106.]

105. (a) We must have (xij , x
′
ij) = (1, 0) for t pairs ij, and (0, 1) for t other pairs;

otherwise xij = x′ij . Hence there are 2mn−2t solutions.
(b) Use 2mn variables yij , y

′
ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n, with binary clauses

(ȳij ∨ ȳ′ij), together with m+ n+ 2(m+ n− 1) sets of cardinality constraints such as
() and () to enforce the balance condition

∑{yij + ȳ′ij | ij ∈ L} = |L| for each row,
column, and diagonal line L.

(c) T (m,n) = 1 when min(m,n) < 4,
because only the zero matrix qualifies in
such cases. Other values can be enumerated
by backtracking, if they are small enough.
(The asymptotic behavior is unknown.)

n = 4 5 6 7 8

T (4, n) = 3 7 17 35 77
T (5, n) = 7 31 109 365 1367
T (6, n) = 17 109 877 6315 47607
T (7, n) = 35 365 6315 107637 1703883
T (8, n) = 77 1367 47607 1703883 66291089

(d) Supposem ≤ n. Any solution with
nonzero top row, bottom row, left column, and right column has all entries zero except

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 205

Gerdes
unit clauses

that y1t = −yt1 = y(m+1−t)1 = −ymt = ym(n+1−t) = −y(m+1−t)n = ytn = −y1(n+1−t),
for some t with 1 < t ≤ m/2. So the answer is 2

∑m
k=3⌊(k−1)/2⌋(m−k)(n−k), which

simplifies to q(q−1)(4q(n−q)−5n+2q+3+(mmod 2)(6n−8q−5))/3 when q = ⌊m/2⌋.
[The answer in the case (m,n) = (25, 30) is 36080; hence a random 25×30 image

will have an average of 36080/256 ≈ 140.9 tomographically equivalent “neighbors” that
differ from it in exactly eight pixel positions. Figure 36 has five such neighbors, one of
which is shown in answer 111 below.]

(e) We can make all entries nonzero except on the main diagonals (see below).
This is optimum, because the diagonal lines for a1, a3, . . . , a4n−1, b1, b3, . . . , b4n−1

must each contain a different 0. So the answer is 2n(n − 1). (But the maximum for
odd sized boards is unknown; for n = (5, 7, 9) it turns out to be (6, 18, 33).)

0+++−−−0
−0++−−0+

−−0+−0++

−−−00+++

+++00−−−

++0−+0−−

+0−−++0−

0−−−+++0

0+++0−−−0
−−−−+++0+

0−+−+−−++

++−++0−−−

−+−+−−0++

+0−0+0+−−

−−+−−+++0
++++−0−−−

0−0−−+++0

0++−−00
−−++000
0+−−00+

−00+0−+

+0−0+0−

+0+0−0−

0−−0++0

0++−−00
−−++000
0+−0−0+

−0−+00+

+000+−−

+0+−00−

0−−0++0

(f) The smallest counterexamples are 7× 7 (see above).

106. In an m × n problem we must have 0 ≤ ri ≤ n, 0 ≤ cj ≤ m, and 0 ≤ ad, bd ≤
min{d,m, n,m+n−d}. So the total number B of possibilities, assuming thatm ≤ n, is
(n+1)m(m+1)n((m+1)! (m+1)n−mm!)2, which is ≈ 3 ·10197 when (m,n) = (25, 30).
Since 2750/B ≈ 2 · 1028, we conclude that a “random” 25 × 30 digital tomography
problem usually has more than 1028 solutions. (Of course there are other constraints
too; for example, the fact that

∑
ri =

∑
cj =

∑
ad =

∑
bd reduces B by at least a

factor of (n+ 1)(m+ 1)2.)

107. (a) (r1, . . . , r6) = (11,11,11,9,9,10); (c1, . . . , c13) = (6,5,6,2,4,4,6,5,4,2,6,5,6);
(a1, . . . , a6) = (11,10,9,9,11,11); (b1, . . . , b12) = (6,1,6,5,7,5,6,2,6,5,7,5).

(b) There are two others, namely the following one and its left-right reversal:

· · · · · ·

[Reference: P. Gerdes, Sipatsi (Maputo: U. Pedagógica, 2009), page 62, pattern #122.]

108. Here are four of the many possibilities:

109. F1. [Initialize.] Find one solution y1 . . . yn, or terminate if the problem is unsat-
isfiable. Then set yn+1 ← 1 and d← 0.

F2. [Advance d.] Set d to the smallest j > d such that yj = 1.

F3. [Done?] If d > n, terminate with y1 . . . yn as the answer.

F4. [Try for smaller.] Try to find a solution with additional unit clauses to force
xj = yj for 1 ≤ j < d and xd = 0. If successful, set y1 . . . yn ← x1 . . . xn.
Return to F2.

Even better is to incorporate a similar procedure into the solver itself; see exercise 275.

September 23, 2015

206 ANSWERS TO EXERCISES 7.2.2.2

benchmark tests
rook path
spiral
cutting plane
Balas
Fischetti
Zanette
Brunetti
Del Lungo
Gritzmann
de Vries

110. Algorithm B actually gives these directly:

001111111011101111100101111101111011111110111011011111111100101111101111011111100111011111110111
111111111011111111001100111111001111011111111010111111110111101111111001100111110110111101111111

111. This family of problems appears to provide an excellent (though sometimes formi-
dable) series of benchmark tests for SAT solvers. The suggested example has solutions

(a) colexicographically first; (b) minimally different; (c) colexicographically last;

and several of the entries in (a) were by no means easy. An even more difficult case
arises if we base lexicographic order on a rook path that spirals out from the center
(thus favoring solutions that are mostly 0 or mostly 1 in the middle):

(a) spiral rook path; (b) “spirographically” first; (c) “spirographically” last.

Here many of the entries have never yet been solved by a SAT solver, as of 2013, although
again IP solvers have no great difficulty. In fact, the “lexicographic pure cutting plane”
procedure of E. Balas, M. Fischetti, and A. Zanette [Math. Programming A130 (2011),
153–176; A135 (2012), 509–514] turns out to be particularly effective on such problems.

112. Reasonably tight upper and lower bounds would also be interesting.

113. Given an N ×N ×N contingency problem with binary constraints CJK = X∗JK ,
RIK = XI∗K , PIJ = XIJ∗, we can construct an equivalent n × n digital tomography
problem with n = N2 +N3 +N4 as follows: First construct a four-dimensional tensor
YIJKL = X(I⊕L)JK , where I ⊕ L = 1 + (I + L − 1) modN , and notice that Y∗JKL =
YIJK∗ = X∗JK , YI∗KL = X(I⊕L)∗K , YIJ∗L = X(I⊕L)J∗. Then define xij for 1 ≤
i, j ≤ n by the rule xij = YIJKL when i = I −N2K +N3L, j = NJ +N2K + N3L,
otherwise xij = 0. This rule makes sense; for if 1 ≤ I, I ′, J, J ′, K,K′, L, L′ ≤ N and
I −N2K +N3L = I ′−N2K′ +N3L′ and NJ +N2K +N3L = NJ ′ +N2K′ +N3L′,
we have I ≡ I ′ (modulo N); hence I = I ′ and K ≡ K′; hence K = K′, L = L′, J = J ′.

Under this correspondence the marginal sums are ri = YI∗KL when i = I−N2K+
N3L, cj = Y∗JKL when j = NJ+N2K+N3L, ad = YIJ∗L when d+1 = I+NJ+2N3L,
bd = YIJK∗ when d − n = I − NJ − 2N2K, otherwise zero. [See S. Brunetti, A. Del
Lungo, P. Gritzmann, and S. de Vries, Theoretical Comp. Sci. 406 (2008), 63–71.]

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 207

symmetric function
polarities
smile
NP-complete
coNP-complete
Kaye
Scott
Stege
van Rooij
phoenix

114. (a) From x7,23 + x7,24 = x7,23 + x7,24 + x7,25 = x7,24 + x7,25 = 1 we deduce
x7,23 = x7,25 = 0 and x7,24 = 1, revealing n7,23 = n7,25 = 5. Now x6,23 + x6,24 =
x6,24 + x6,25 = x4,24 + x5,24 + x6,24 + x6,25 = 1; hence x4,24 = x5,24 = 0, revealing
n4,24 = n5,24 = 2. So x6,23 = x6,25 = 0, and the rest is easy.

(b) Let yi,j mean “cell (i, j) has been probed safely, revealing ni,j .” Consider
the clauses C obtained by appending ȳi,j to each clause of the symmetric function
[
∑i+1

i′=i−1

∑j+1
j′=j−1 xi′,j′ =ni,j], for all i, j with xi,j = 0. Also include (x̄i,j∨ ȳi,j), as well

as clauses for the symmetric function SN (x) if we’re told the total number N of mines.
Given any subset F of mine-free cells, the clauses CF = C ∧∧{yi,j | (i, j) ∈ F}

are satisfiable precisely by the configurations of mines that are consistent with the data
{ni,j | (i, j) ∈ F}. Therefore cell (i, j) is safe if and only if CF ∧ xi,j is unsatisfiable.

A simple modification of Algorithm C can be used to “grow” F until no further
safe cells can be added: Given a solution to CF for which neither xi,j nor x̄i,j was
obtained at root level (level 0), we can try to find a “flipped” solution by using the
complemented value as the decision at level 1. Such a solution will be found if and only
if the flipped value is consistent; otherwise the unflipped value will have been forced at
level 0. By changing default polarities we can favor solutions that flip many variables
at once. Whenever a literal x̄i,j is newly deduced at root level, we can force yi,j to be
true, thus adding (i, j) to F . We reach an impasse when a set of solutions has been
obtained for CF that covers both settings of every unforced xi,j .

For problem (i) we start with F = {(1, 1)}, etc. Case (iv) by itself uncovers only
56 cells in the lower right corner. The other results, each obtained in < 6 Gµ, are:

(i), (ii)
00012321000000000000013X200000
0002XXX310000000000012XX310000
0013X5XX3101233333212X44X20000
002X434XX433XXXXXXX35X32X31000
003X5X34XXXX3333333XXX424X2000
003X6X33X532100000125X5X5X3000
003X5X22X200000000003X5X5X3000
003X41111100000000002X424X3000
002X310000000000000012X23X3100
0012X2100000000000000112X4X200
00013X21232100000123210114X300
00003X42XXX2100012XXX21003X300
22113X4X6 5X20002X6 5X2002X310
XX34X34XX 6X30002XX 5X20013X20
23XXX43XXXXX312123XXX210003X30
245 XX2233323X4X21232100014X52
XXX 653100013X5X3000012333XXXX

XXXX10001X45X200001XXXX5
42222112XX21000135
211XX43443100001XX

2X334XXXXX433333444
X 4 XXXXXXXXX2

(iii)
00012321000000000000013X200000
0002XXX310000000000012XX310000
0013X5XX3101233333212X44X20000
002X434XX433XXXXXXX35X32X31000
003X5X34XXXX3333333XXX424X2000
003X6X33X532100000125X5X5X3000
003X5X22X200000000003X5X5X3000
003X41111100000000002X424X3000
002X310000000000000012X23X3100
0012X2100000000000000112X4X200
00013X21232100000123210114X300
00003X42XXX2100012XXX21003X300
22113X4X6 5X20002X6 5X2002X310
XX34X34XX 6X30002XX 5X20013X20
23XXX43XXXXX312123XXX210003X30
2456XX2233323X4X21232100014X52
XXXX653100013X5X3000012333XXXX
235XXXX10001X45X200001XXXX5
002X542222112XX21000135
0012X211XX43443100001XX
00012X334XXXXX433333444
000012XX445 XXXXXXXXX2
00000123XX3
0000000123
0000000001

(v)
00012321000000000000013X200000
0002XXX310000000000012XX310000
0013X5XX3101233333212X44X20000
002X434XX433XXXXXXX35X32X31000
003X5X34XXXX3333333XXX424X2000
003X6X33X532100000125X5X5X3000
003X5X22X200000000003X5X5X3000
003X41111100000000002X424X3000
002X310000000000000012X23X3100
0012X2100000000000000112X4X200
00013X21232100000123210114X300
00003X42XXX2100012XXX21003X300
22113X4X6 5X20002X6 5X2002X310
XX34X34XX 6X30002XX 5X20013X20
23XXX43XXXXX312123XXX210003X30
2456XX2233323X4X21232100014X52
XXXX653100013X5X3000012333XXXX
235XXXX10001X45X200001XXXX5X
002X542222112XX210001356656X
0012X211XX43443100001XXXXXXXXX
00012X334XXXXX433333444345X432
000012XX445 XXXXXXXXX223X2100
00000123XX3 5554XX21000
0000000123 5XXX3210000
0000000001 XXX421000000

Notice that the Cheshire cat’s famous smile defies logic and requires much guesswork!
[For aspects of Minesweeper that are NP-complete and coNP-complete, see Kaye,

Scott, Stege, and van Rooij, Math. Intelligencer 22, 2 (2000), 9–15; 33, 4 (2011), 5–17.]

115. Several thousand runs of the algorithm in the previous exercise, given that the
total number of mines is 10, indicate success probabilities .490 ± .007, .414 ± .004,
.279± .003, when the first guess is respectively in a corner, in the center of an edge, or
in the center.

116. The smallest is the “clock” in answer 69(b). Other noteworthy possibilities are

↔

↔
↔

as well as the “phoenix” in Fig. A–7.

September 23, 2015

208 ANSWERS TO EXERCISES 7.2.2.2

partial backtracking
links dance
Pure literals

117. (a) Set x0 = xn+1 = 0, and let (a, b, c) be respectively the number of occurrences
of (01, 10, 11) as a substring of x0x1 . . . xn+1. Then a+ c = b + c = νx and c = ν(2)x;
hence a = b = νx− ν(2)x is the number of runs.

(b) In this case the complete binary tree will have only n−1 leaves, corresponding
to {x1x2, . . . , xn−1xn}; therefore we want to replace n by n− 1 in () and ().

The clauses of () remain unchanged unless tk ≤ 3. When tk = 2 they become
(x̄2k−n+1∨x̄2k−n+2∨bk1)∧(x̄2k−n+2∨x̄2k−n+3∨bk1)∧(x̄2k−n+1∨x̄2k−n+2∨x̄2k−n+3∨bk2).
When tk = 3 we have 2k = n−1, and they become (b̄2k1 ∨bk1)∧(x̄1∨ x̄2∨bk1)∧(b̄2k2 ∨bk2)∧
(b̄2k1 ∨ x̄1 ∨ x̄2 ∨ bk2) ∧ (b̄2k2 ∨ x̄1 ∨ x̄2 ∨ bk3).

The clauses of () remain unchanged except in simple cases when n ≤ 3.
(c) Now the leaves represent xixi+1 = x̄i∨ x̄i+1. So we change (), when tk = 2,

to (x2k−n+1 ∨ bk1) ∧ (x2k−n+2 ∨ bk1) ∧ (x2k−n+3 ∨ bk1) ∧ (x2k−n+2 ∨ bk2) ∧ (x2k−n+1 ∨
x2k−n+3 ∨ bk2). And there are eight clauses when tk = 3: (b̄2k1 ∨ bk1) ∧ (x1 ∨ bk1) ∧ (x2 ∨
bk1) ∧ (b̄2k2 ∨ bk2) ∧ (b̄2k1 ∨ x1 ∨ bk2) ∧ (b̄2k1 ∨ x2 ∨ bk2) ∧ (b̄2k2 ∨ x1 ∨ bk3) ∧ (b̄2k2 ∨ x2 ∨ bk3).
118. Let pi,j = [the pixel in row i and column j should be covered], and introduce
variables hi,j when pi,j = pi,j+1 = 1, vi,j when pi,j = pi+1,j = 1. The clauses are
(i) (hi,j ∨ hi,j−1 ∨ vi,j ∨ vi−1,j), whenever pi,j = 1, omitting variables that don’t exist;

(ii) (h̄i,j∨h̄i,j−1), (h̄i,j∨v̄i,j), (h̄i,j∨v̄i−1,j), (h̄i,j−1∨v̄i,j), (h̄i,j−1∨v̄i−1,j), (v̄i,j∨v̄i−1,j),
whenever pi,j = 1, omitting clauses whose variables don’t both exist; and (iii) (hi,j ∨
hi+1,j∨vi,j∨vi,j+1), whenever pi,j+pi,j+1+pi+1,j+pi+1,j+1 ≥ 3, omitting variables that
don’t exist. (The example has 10527 clauses in 2874 variables, but it’s quickly solved.)

119. There’s symmetry between l and l̄, also between l and 10− l; so we need consider
only l = (1, 2, 3, 4, 5), with respectively (4, 4, 6, 6, 8) occurrences. The smallest result is
F |5 = {123, 234, 678, 789, 246, 468, 147, 369, 1̄2̄3̄, 2̄3̄4̄, 3̄4̄, 4̄6̄, 6̄7̄, 6̄7̄8̄, 7̄8̄9̄, 1̄3̄, 2̄4̄6̄,
3̄7̄, 4̄6̄8̄, 7̄9̄, 1̄4̄7̄, 2̄8̄, 3̄6̄9̄, 1̄9̄}.
120. True.

121. The main point of interest is that an empty clause is typically discovered in the
midst of step A3; partial backtracking must be done when taking back the changes
that were made before this interruption.

A3. [Remove l̄.] Set p ← F(l̄) (which is F(l ⊕ 1), see ()). While p ≥ 2n + 2,
set j ← C(p), i← SIZE(j), and if i > 1 set SIZE(j)← i− 1, p← F(p). But
if i = 1, interrupt that loop and set p ← B(p); then while p ≥ 2n + 2, set
j ← C(p), i← SIZE(j), SIZE(j)← i+ 1, p← B(p); and finally go to A5.

A4. [Deactivate l’s clauses.] Set p ← F(l). While p ≥ 2n + 2, set j ← C(p),
i ← START(j), p ← F(p), and for i ≤ s < i + SIZE(j) − 1 set q ← F(s),
r ← B(s), B(q) ← r, F(r) ← q, and C(L(s)) ← C(L(s)) − 1. Then set
a← a− C(l), d← d+ 1, and return to A2.

A7. [Reactivate l’s clauses.] Set a ← a + C(l) and p← B(l). While p ≥ 2n + 2,
set j ← C(p), i← START(j), p← B(p), and for i ≤ s < i+ SIZE(j) − 1 set
q ← F(s), r ← B(s), B(q) ← F(r) ← s, and C(L(s)) ← C(L(s)) + 1. (The
links dance a little here.)

A8. [Unremove l̄.] Set p← F(l̄). While p ≥ 2n + 2, set j ← C(p), i← SIZE(j),
SIZE(j)← i+ 1, p← F(p). Then go to A5.

122. Pure literals are problematic when we want all solutions, so we don’t take advan-
tage of them here. Indeed, things get simpler; only the move codes 1 and 2 are needed.

A1∗. [Initialize.] Set d← 1.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 209

A2∗. [Visit or choose.] If d > n, visit the solution defined by m1 . . .mn and go to
A6∗. Otherwise set l ← 2d+ 1 and md ← 1.

A3∗. [Remove l̄.] Delete l̄ from all active clauses; but go to A5∗ if that would
make a clause empty.

A4∗. [Deactivate l’s clauses.] Suppress all clauses that contain l. Then set d ←
d+ 1 and return to A2∗.

A5∗. [Try again.] If md = 1, set md ← 2, l← 2d, and go to A3∗.

A6∗. [Backtrack.] Terminate if d = 1. Otherwise set d ← d − 1 and l ← 2d +
(md & 1).

A7∗. [Reactivate l’s clauses.] Unsuppress all clauses that contain l.

A8∗. [Unremove l̄.] Reinstate l̄ in all the active clauses that contain it. Then go
back to A5∗.

It’s no longer necessary to update the values C(k) for k < 2n+2 in steps A4∗ and A7∗.

123. For example, we might have

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L(p) = 3 9 7 8 7 5 6 5 3 4 3 8 2 8 6 9 6 4 7 4 2

and START(j) = 21 − 3j for 0 ≤ j ≤ 7; W2 = 3, W3 = 7, W4 = 4, W5 = 0, W6 = 5,
W7 = 1, W8 = 6, W9 = 2. Also LINK(j) = 0 for 1 ≤ j ≤ 7 in this case.

124. Set j ←Wl̄. While j 6= 0, a literal other than l̄ should be watched in clause j, so
we do the following: Set i ← START(j), i′ ← START(j − 1), j′ ← LINK(j), k ← i + 1.
While k < i′, set l′ ← L(k); if l′ isn’t false (that is, if |l′| > d or l′ + m|l′| is even,
see ()), set L(i)← l′, L(k)← l̄, LINK(j) ← Wl′ , Wl′ ← j, j ← j′, and exit the loop
on k; otherwise set k ← k + 1 and continue that loop. If k reaches i′, however, we
cannot stop watching l̄; so we set Wl̄ ← j, exit the loop on j, and go on to step B5.

125. Change steps B2 and B4 to be like A2∗ and A4∗ in answer 122.

126. Starting with active ring (6 9 7 8), the unit clause 9 will be found (because 9
appears before 8); the clause 9̄3̄6̄ will become 6̄3̄9̄; the active ring will become (7 8 6).

127. Before: 11414545; after: 1142. (And then 11425, etc.)

128. Active ring x1x2x3x4 Units Choice Changed clauses

(1 2 3 4) - - - - 1̄ 413
(2 3 4) 0 - - - 2̄ 1̄24
(3 4) 0 0 - - 3̄ 3̄
(4) 0 0 0 - 4, 4̄ Backtrack
(3 4) 0 - - - 2 32̄1̄, 4̄2̄1
(3 4) 0 1 - - 4̄ 4̄ 314, 3̄42
(3) 0 1 - 0 3, 3̄ Backtrack
(4 3) - - - - 1 21̄4, 4̄1̄3̄
(2 4 3) 1 - - - 2
(4 3) 1 1 - - 3 3 43̄2̄, 23̄1
(4) 1 1 1 - 4, 4̄ Backtrack
(3 4) 1 - - - 2̄ 3̄21, 41̄2
(3 4) 1 0 - - 4 4 3̄1̄4̄, 12̄4̄, 34̄2
(3) 1 0 - 1 3, 3̄ Backtrack

September 23, 2015

210 ANSWERS TO EXERCISES 7.2.2.2

empty list
Knuth
move codes
randomly
asymptotics
unit clause
Resizing

129. Set j ← Wl, then do the following steps while j 6= 0: (i) Set p ← START(j) + 1;
(ii) if p = START(j − 1), return 1; (iii) if L(p) is false (that is, if x|L(p)| = L(p) & 1),
set p← p+ 1 and repeat (ii); (iv) set j ← LINK(j). If j becomes zero, return 0.

130. Set l ← 2k + b, j ← Wl, Wl ← 0, and do the following steps while j 6= 0: (i) Set
j′ ← LINK(j), i ← START(j), p ← i + 1; (ii) while L(p) is false, set p ← p + 1 (see
answer 129; this loop will end before p = START(j − 1)); (iii) set l′ ← L(p), L(p)← l,
L(i) ← l′; (iv) set p ← Wl′ and q ← Wl̄′ , and go to (vi) if p 6= 0 or q 6= 0 or x|l′| ≥ 0;
(v) if t = 0, set t ← h ← |l′| and NEXT(t) ← h, otherwise set NEXT(|l′|) ← h, h← |l′|,
NEXT(t) ← h (thus inserting |l′| = l′ ≫ 1 into the ring as its new head); (vi) set
LINK(j)← p, Wl′ ← j (thus inserting j into the watch list of l′); (vii) set j ← j′.

[The tricky part here is to remember that t can be zero in step (v).]

131. For example, the author tried selecting a variable xk for which s2k · s2k+1 is
maximum, where s l is the length of l’s watch list plus ε, and the parameter ε was 0.1.
This reduced the runtime for waerden (3, 10; 97) to 139.8 gigamems, with 8.6 mega-
nodes. Less dramatic effects occurred with langford (13): 56.2 gigamems, with 10.8
meganodes, versus 99.0 gigamems if the minimum s2k · s2k+1 was chosen instead.

132. The unsatisfiable clauses (x̄1∨x2), (x1∨x̄2), (x̄3∨x4), (x3∨x̄4), . . . , (x̄2n−1∨x2n),
(x2n−1 ∨ x̄2n), (x̄2n−1 ∨ x̄2n), (x2n−1 ∨ x2n) cause it to investigate all 2n settings of x1,
x3, . . . , x2n−1 before encountering a contradiction and repeatedly backtracking.

(Incidentally, the successive move codes make a pretty pattern. If the stated
clauses are ordered randomly, the algorithm runs significantly faster, but it still appar-
ently needs nonpolynomial time. What is the growth rate?)

133. (a) Optimum backtrack trees for n-variable SAT problems can be calculated with
Θ(n3n) time and Θ(3n) space by considering all 3n partial assignments, “bottom up.”
In this 9-variable problem we obtain a tree with 67 nodes (the minimum) if we branch
first on x3 and x5, then on x6 if x3 6= x5; unit clauses arise at all other nodes.

(b) Similarly, the worst tree turns out to have 471 nodes. But if we require the
algorithm to branch on a unit clause whenever possible, the worst size is 187. (Branch
first on x1, then x4, then x7; avoid opportunities for unit clauses.)

134. Let each BIMP list be accessed by ADDR, BSIZE, CAP, and K fields, where ADDR is the
starting address in MEM of a block that’s able to store CAP items, and CAP = 2K; ADDR is
a multiple of CAP, and BSIZE is the number of items currently in use. Initially CAP = 4,
K = 2, BSIZE = 0, and ADDR is a convenient multiple of 4. The 2n BIMP tables therefore
occupy 8n slots initially. If MEM has room for 2M items, those tables can be allocated
so that the doubly linked lists AVAIL[k] initially contain ak = (0 or 1) available blocks
of size 2k for each k, where 2M − 8n = (aM−1 . . . a1a0)2.

Resizing is necessary when BSIZE = CAP and we need to increase BSIZE. Set
a← ADDR, k ← K, CAP← 2k+1, and let b ← a ⊕ 2k be the address of a’s buddy. If b is
a free block of size 2k, we’re in luck: We remove b from AVAIL[k]; then if a & 2k = 0,
nothing needs to be done, otherwise we copy BSIZE items from a to b and set ADDR← b.

In the unlucky case when b is either reserved or free of size < 2k, we set p to the
address of the first block in AVAIL[k′], where AVAIL[t] is empty for k < t < k′ (or
we panic if MEM’s capacity is exceeded). After removing p from AVAIL[k′], we split off
new free blocks of sizes 2k+1, . . . , 2k

′−1 if k′ > k + 1. Finally we copy BSIZE items
from block a to block p, set ADDR ← p, and put a into AVAIL[k]. (We needn’t try to
“collapse” a with its buddy, since the buddy isn’t free.)

135. They’re the complements of the literals in BIMP(l̄).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 211

swap
virtual unswapping
BSTAMP
BST(l)
stamping

136. Before, {(1, 2), (4, 2), (4, 5), (5, 1), (5, 7), (6, 9)}; after, {(1, 2), (4, 2), (6, 9)}.
137. If p in a TIMP list points to the pair (u, v), let’s write u = U(p) and v = V(p).

(a) Set N ← n − G, x ← VAR[N], j ← INX[X], VAR[j] ← x, INX[x] ← j,
VAR[N] ← X, INX[X] ← N . Then do the following for l = 2X and l = 2X + 1,
and for all p in TIMP(l): u ← U(p), v ← V(p), p′ ← LINK(p), p′′ ← LINK(p′);
s← TSIZE(ū)−1, TSIZE(ū)← s, t← pair s of TIMP(ū); if p′ 6= t, swap pairs by setting
u′ ← U(t), v′ ← V(t), q ← LINK(t), q′ ← LINK(q), LINK(q′) ← p′, LINK(p) ← t,
U(p′) ← u′, V(p′) ← v′, LINK(p′) ← q, U(t) ← v, V(t) ← l̄, LINK(t) ← p′′. Then set
s← TSIZE(v̄)−1, TSIZE(v̄)← s, t← pair s of TIMP(v̄); if p′′ 6= t, swap pairs by setting
u′ ← U(t), v′ ← V(t), q ← LINK(t), q′ ← LINK(q), LINK(q′) ← p′′, LINK(p′) ← t,
U(p′′)← u′, V(p′′)← v′, LINK(p′′)← q, U(t)← l̄, V(t)← u, LINK(t)← p.

Notice that we do not make the current pairs of TIMP(l) inactive. They won’t be
accessed by the algorithm until it needs to undo the swaps just made.

(b) In VAR and in each TIMP list, the active entries appear first. The inactive entries
follow, in the same order as they were swapped out, because inactive entries never
participate in swaps. Therefore we can reactivate the most-recently-swapped-out entry
by simply increasing the count of active entries. We must, however, be careful to do this
“virtual unswapping” in precisely the reverse order from which we did the swapping.

Thus, for l = 2X + 1 and l = 2X, and for all p in TIMP(l), proceeding in the
reverse order from (a), we set u ← U(p), v ← V(p), TSIZE(v̄) ← TSIZE(v̄) + 1, and
TSIZE(ū)← TSIZE(ū)+ 1.

(The number N of free variables increases implicitly, because N + E = n in
step L12. Thus nothing needs to be done to VAR or INX.)

138. Because v̄ ∈ BIMP(ū), () will be used to make u nearly true. That loop will
also make v nearly true, because v ∈ BIMP(u) is equivalent to ū ∈ BIMP(v̄).

139. Introduce a new variable BSTAMP analogous to ISTAMP, and a new field BST(l)
analogous to IST(l) in the data for each literal l. At the beginning of step L9, set
BSTAMP ← BSTAMP + 1, then set BST(l) ← BSTAMP for l = ū and all l ∈ BIMP(ū). Now,
if BST(v̄) 6= BSTAMP and BST(v) 6= BSTAMP, do the following for all w ∈ BIMP(v): If w
is fixed in context NT (it must be fixed true, since w̄ implies v̄), do nothing. Otherwise
if BST(w̄) = BSTAMP, perform () with l ← u and exit the loop on w (because ū
implies both w and w̄). Otherwise, if BST(w) 6= BSTAMP, append w to BIMP(ū) and u
to BIMP(w̄). (Of course () must be invoked when needed.)

Then increase BSTAMP again, and do the same thing with u and v reversed.

140. Unfortunately, no: We might have Ω(n) changes to BSIZE on each of Ω(n) levels
of the search tree. However, the ISTACK will never have more entries than the total
number of cells in all BIMP tables (namely 2M in answer 134).

141. Suppose ISTAMP ← (ISTAMP + 1) mod 2e in step L5. If ISTAMP = 0 after that
operation, we can safely set ISTAMP← 1 and IST(l)← 0 for 2 ≤ l ≤ 2n+1. (A similar
remark applies to BSTAMP and BST(l) in answer 139.)

142. (The following operations, performed after BRANCH[d] is set in step L2, will also
output ‘|’ to mark levels of the search where no decision was made.) Set BACKL[d]← F ,
r ← k ← 0, and do the following while k < d: While r < BACKF[k], output ‘6+(Rr&1)’
and set r ← r+1. If BRANCH[k] < 0, output ‘|’; otherwise output ‘2BRANCH[k]+(Rr&1)’
and set r ← r + 1. While r < BACKL[k + 1], output ‘4 + (Rr & 1)’ and set r ← r + 1.
Then set k ← k + 1.

September 23, 2015

212 ANSWERS TO EXERCISES 7.2.2.2

Knuth
undoing

143. The following solution treats KINX and KSIZE as the unmodified algorithm treats
TIMP and TSIZE. It deals in a somewhat more subtle way with CINX and CSIZE: If
clause c originally had size k, and if j of its literals have become false while none have
yet become true, CSIZE(c) will be k − j, but the nonfalse literals will not necessarily
appear at the beginning of list CINX(c). As soon as j reaches k−2, or one of the literals
becomes true, clause c becomes inactive and it disappears from the KINX tables of all
free literals. The algorithm won’t look at CINX(c) or CSIZE(c) again until it unfixes the
literal that deactivated c. Thus a big clause is inactive if and only if it has been satisfied
(contains a true literal) or has become binary (has at most two nonfalse literals).

We need to modify only the three steps that involve TIMP. The modified step L1,
call it L1′, inputs the big clauses in a straightforward way.

Step L7′ removes the formerly free variable X from the data structures by first
deactivating all of the active big clauses that contain L: For each of the KSIZE(L)
numbers c in KINX(L), and for each of the CSIZE(c) free literals u in CINX(c), we swap
c out of u’s clause list as follows: Set s← KSIZE(u)−1, KSIZE(u)← s; find t ≤ s with
KINX(u)[t] = c; if t 6= s set KINX(u)[t] ← KINX(u)[s] and KINX(u)[s] ← c. [Heuristic:

If the number of free literals remaining in c is small compared to c’s original size,
for example if say 15 or 20 original literals have become false, the remaining nonfalse
literals can usefully be swapped into the first CSIZE(c) positions of CINX(c) when c is
being deactivated. The author’s experimental implementation does this when CSIZE(c)
is at most θ times the original size, where the parameter θ is normally 25/64.]

Then step L7′ updates clauses for which L has become false: For each of the
KSIZE(L) numbers c in KINX(L), set s ← CSIZE(c) − 1 and CSIZE(c) ← s; if s = 2,
find the two free literals (u, v) in CINX(c), swap them into the first positions of that list,
put them on a temporary stack, and swap c out of the clause lists of u and v as above.

Finally, step L7′ does step L8′ = L8 for all (u, v) on the temporary stack. [The
maximum size of that stack will be the maximum of KSIZE(l) over all l, after step L1 ′;
so we allocate memory for that stack as part of step L1′.]

In step L12′ we set L← RE , X ← |L|, and reactivate the clauses that involve X
as follows: For each of the KSIZE(L) numbers c in KINX(L), proceeding in reverse order
from the order used in L7′, set s← CSIZE(c), CSIZE(c)← s+ 1; if s = 2, swap c back
into the clause lists of v and u, where u = CINX(c)[0] and v = CINX(c)[1]. For each
of the KSIZE(L) numbers c in KINX(L), and for each of the CSIZE(c) free literals u
in CINX(c), again proceeding in reverse order from the order used in L7′, swap c back
into the clause list of u. The latter operation simply increases KSIZE(u) by 1.

144. False; h′(l) = 0.1 if and only if the complement, l̄, doesn’t appear in any clause.

145. By symmetry we know that h(l) = h(l̄) = h(10 − l) for 1 ≤ l ≤ 9 at depth 0,
and the BIMP tables are empty. The first five rounds of refinement respectively give
(h(1), . . . , h(5)) = (4.10, 4.10, 6.10, 6.10, 8.10), (5.01, 4.59, 6.84, 6.84, 7.98), (4.80, 4.58,
6.57, 6.57, 8.32), (4.88, 4.54, 6.72, 6.67, 8.06), and (4.85, 4.56, 6.63, 6.62, 8.23), slowly con-
verging to the limiting values

(4.85810213, 4.55160111, 6.66761920, 6.63699698, 8.16778057).

When d = 1, however, the successively refined values of (h(1), h(1̄), . . . , h(4), h(4̄)) are
erratic and divergent: (2.10, 8.70, 3.10, 6.40, 3.10, 13.00, 3.10, 10.70), (5.53, 3.33, 9.05,
2.58, 5.40, 5.57, 8.24, 4.83), (1.43, 9.60, 2.32, 10.06, 1.30, 16.96, 1.97, 15.54), (8.04, 1.42,
12.31, 1.29, 7.45, 2.39, 11.91, 1.81), (0.32, 14.19, 0.42, 15.63, 0.30, 25.67, 0.43, 24.17).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 213

survey propagation
Mijnders
de Wilde
Heule
threshold parameter
partial orderings of dimension ≤ 2
permutation posets
inversions
partially ordered sets

They eventually oscillate between limits that favor either positive or negative literals:

(0.1012, 17.4178, 0.1019, 19.7351, 0.1015, 31.6345, 0.1021, 30.4902) and
(10.3331, 0.1538, 15.8485, 0.1272, 9.6098, 0.1809, 15.4207, 0.1542).

[Equations () and (), which were inspired by survey propagation, first appeared
in unpublished work of S. Mijnders, B. de Wilde, and M. J. H. Heule in 2010. The
calculations above indicate that we needn’t take h(l) too seriously, although it does seem
to yield good results in practice. The author’s implementation also sets h′(l) ← Θ if
the right-hand side of () exceeds a threshold parameter Θ, which is 20.0 by default.]

146. Good results have been obtained with the simple formula h(l) = ε+ KSIZE(l̄)+∑
u∈BIMP(l), u free KSIZE(ū), which estimates the potential number of big-clause reduc-

tions that occur when l becomes true. The parameter ε is typically set to 0.001.

147. ∞, 600, 60, 30, 30.

148. If a problem is easy, we don’t care if we solve it in 2 seconds or in .000002 seconds.
On the other hand if a problem is so difficult that it can be solved only by looking ahead
more than we can accomplish in a reasonable time, we might as well face the fact that
we won’t solve it anyway. There’s no point in looking ahead at 60 variables when
d = 60, because we won’t be able to deal with more than 250 or so nodes in any
reasonable search tree.

149. The idea is to maintain a binary string SIG(x) for each variable x, representing the
highest node of the search tree in which x has participated. Let bj = [BRANCH[j]=1],
and set σ ← b0 . . . bd−1 at the beginning of step L2, σ ← b0 . . . bd at the beginning of
step L4. Then x will be a participant in step X3 if and only if SIG(x) is a prefix of σ.

We update SIG(x) when x = |u| or x = |v| in step L9, by setting SIG(x) ← σ
unless SIG(x) is a prefix of σ. The initial value of SIG(x) is chosen so that it is never
a prefix of any possible σ.

(Notice that SIG(x) needn’t change when backtracking. In practice we can safely
maintain only the first 32 bits of σ and of each string SIG(x), together with their exact
lengths, because lookahead computations need not be precise. In answer 143, updates
occur not in step L9 but in step L7′; they are done for all literals u 6= L that appear in
any big clause containing L that is being shortened for the first time.)

150. Asserting 7 at level 22 will also 22fix 1̄, because of the clause 147. Then 1̄ will
22fix 3 and 9, which will 22fix 2̄ and 6̄, then 8̄; and clause 258 becomes false. Therefore
7̄ becomes proto true; and () makes 3, 6, 9 all proto true, contradicting 369.

151. For example, one such arrangement is

l: 2 8̄ 9 3 1̄ 6 7̄ 4̄ 4 7 6̄ 1 3̄ 9̄ 8 2̄

o(l): 4 2 10 14 6 16 8 12 22 26 18 28 20 24 32 30
.

[Digraphs that are obtainable in this way are called “partial orderings of dimension
≤ 2,” or permutation posets. We’ve actually seen them in exercise 5.1.1–11, where the
set of arcs was represented as a set of inversions. Permutation posets have many nice
properties, which we shall study in Section 7.4.2. For example, if we reverse the order
of the list and complement the offsets, we reverse the directions on the arrows. All but
two of the 238 connected partially ordered sets on six elements are permutation posets.
Unfortunately, however, permutation posets don’t work well with lookahead when they
aren’t also forests. For example, after 10fixing ‘9’ and its consequences, we would want
to remove those literals from the R stack when 14fixing ‘3’; see (). But then we’d
want them back when 6fixing ‘1̄’.]

September 23, 2015

214 ANSWERS TO EXERCISES 7.2.2.2

autarky test
autarky
heap
heuristics
Tarjan
SGB
height
sink
sink: a vertex with no successor
double order
preorder
postorder
satisfying assignment
candidates
multiset

152. A single clause such as ‘12’ or ‘123’ would be an example, except that the autarky
test in step X9 would solve the problem before we ever get to step X3. The clauses
{123̄, 12̄3, 1̄23̄, 1̄2̄3, 245, 34̄5̄} do, however, work: Level 0 branches on x1, and level 1
discovers an autarky with b and c both true but returns l = 0. Then level 2 finds all
clauses satisfied, although both of the free variables x4 and x5 are newbies.

[Indeed, the absence of free participants means that the fixed-true literals form
an autarky. If TSIZE(l) is nonzero for any free literal l, some clause is unsatisfied.
Otherwise all clauses are satisfied unless some free l has an unfixed literal l′ ∈ BIMP(l).]

153. Make the CAND array into a heap, with an element x of least rating r(x) at the top
(see Section 5.2.3). Then, while C > Cmax, delete the top of the heap (namely CAND[0]).

154. The child−−→parent relations in the subforest will be d−−→c−−→a, b−−→a, c̄−−→ d̄,
and either ā−−→ b̄ or ā−−→ c̄. Here’s one suitable sequence, using the latter:

preorder b̄ a b c d d̄ c̄ ā

2·postorder 2 10 4 8 6 16 14 12

155. First construct the dependency graph on the 2C candidate literals, by extracting
a subset of arcs from the BIMP tables. (This computation needn’t be exact, because
we’re only calculating heuristics; an upper bound can be placed on the number of arcs
considered, so that we don’t spend too much time here. However, it is important to
have the arc u−−→v if and only if v̄−−→ ū is also present.)

Then apply Tarjan’s algorithm [see Section 7.4.1, or SGB pages 512–519]. If a
strong component contains both l and l̄ for some l, terminate with a contradiction.
Otherwise, if a strong component contains more than one literal, choose a representa-
tive l with maximum h(l); the other literals of that component regard l as their parent.
Be careful to ensure that l is a representative if and only if l̄ is also a representative.

The result will be a sequence of candidate literals l1l2 . . . lS in topological order,
with li−−→ lj only if i > j. Compute the “height” of each lj , namely the length of the
longest path from lj to a sink. Then every literal of height h > 0 has a predecessor
of height h− 1, and we let one such predecessor be its parent in the subforest. Every
literal of height 0 (a sink) has a null parent. Traversal of this subforest in double order
(exercise 2.3.1–18) now makes it easy to build the LL table in preorder while filling the
LO table in postorder.

156. If l̄ doesn’t appear in any clause of F , then A = {l} is clearly an autarky.

157. Well, any satisfying assignment is an autarky. But more to the point is the
autarky {1, 2} for F = {12̄3, 1̄24, 3̄4̄}.
158. BIMP(l) and TIMP(l) will be empty, so w will be zero when Algorithm X looks
ahead on l. Thus l will be forced true, at depth d = 0. (But pure literals that arise
in subproblems for d > 0 won’t be detected unless they’re among the preselected
candidates.)

159. (a) False (consider A = {1}, F = {1, 2, 1̄2}); but true if we assume that F |A is
computed as a multiset (so that F |A would be {2, 2} 6⊆ F in that example).

(b) True: Suppose A = A′ ∪ A′′, A′ ∩ A′′ = ∅, and A′′ or A′′ touches C ∈ F |A′.
Then C ∩A′ = ∅ and C ∪ C′ ∈ F , where C′ ⊆ A′. Since A or A touches C ∪ C′, some
a ∈ C ∪ C′ is in A; hence a ∈ A′′.
160. (a) If the gray clauses are satisfiable, let all black literals be true. [Notice,
incidentally, that the suggested example coloring works like a charm in ().]

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 215

Hirsch
conditional autarky
lookahead autarky clauses, see black and blue
Tseytin
extended resolution
Jeannicot
Oxusoff
Rauzy
Kullmann
blocked clauses
tautologies
resolved
blocking digraph
pure literal
dependency digraph
strong component
recurrence relations
Fibonacci numbers
Monien
Speckenmeyer
autarky
Bulnes

(b) Given any set A of strictly distinct literals, color l black if l ∈ A, white if
l̄ ∈ A, otherwise gray. Then A is an autarky if and only if condition (a) holds.

[E. A. Hirsch, Journal of Automated Reasoning 24 (2000), 397–420.]

161. (a) If F ′ is satisfiable, so is F . If F is satisfiable with at least one blue literal false,
so is F ′. If F is satisfiable with all the blue literals true, make all the black literals true
(but keep gray literals unchanged). Then F ′ is satisfied, because every clause of F ′ that
contains a black or blue literal is true, hence every clause that contains a white literal
is true; the remaining clauses, whose literals are only orange and gray, each contain at
least one true gray literal. [The black-and-blue condition is equivalent to saying that
A is a conditional autarky, namely an autarky of F |L. Tseytin’s notion of “extended
resolution” is a special case, because the literals of A and L need not appear in F . See
S. Jeannicot, L. Oxusoff, and A. Rauzy, Revue d’intelligence artificielle 2 (1988), 41–60,
Section 6; O. Kullmann, Theoretical Comp. Sci. 223 (1999), 1–72, Sections 3, 4, and 14.]

(b) Without affecting satisfiability, we are allowed to add or delete any clause
C = (a ∨ l̄1 ∨ · · · ∨ l̄q) for which all clauses containing ā also contain l1 or · · · or lq.
(Such a clause is said to be “blocked” with respect to a, because C produces nothing
but tautologies when it is resolved with clauses that contain ā.)

(c) Without affecting satisfiability, we are allowed to add or delete any or all of
the clauses (l̄∨a1), . . . , (l̄∨ap), if A is an autarky of F | l; that is, we can do this if A is
almost an autarky, in the sense that every clause that touches A but not A contains l.

(d) Without affecting satisfiability, we are allowed to add or delete the clause
(l̄ ∨ a) whenever every clause that contains ā also contains l.

162. Construct a “blocking digraph” with l′ →֒ l when every clause that contains
literal l̄ also contains l′. (If l is a pure literal, we’ll have l′ →֒ l for all l′; this case can
be handled separately. Otherwise all in-degrees will be less than k in a kSAT problem,
and the blocking digraph can be constructed in O(k2m) steps if there are m clauses.)

(a) Then (l ∨ l′) is a blocked binary clause if and only if l̄ →֒ l′ or l̄′ →֒ l. (Hence
we’re allowed in such cases to add both l̄−−→ l′ and l̄ ′−−→ l to the dependency digraph.)

(b) Also A = {a, a′} is an autarky if and only if a →֒ a′ →֒ a. (Moreover, any
strong component {a1, . . . , at} with t > 1 is an autarky of size t.)

163. Consider the recurrence relations Tn = 1 + max(Tn−1, Tn−2, 2Un−1), Un = 1 +
max(Tn−1, Tn−2, Un−1+Vn−1), Vn = 1+Un−1 for n > 0, with T−1 = T0 = U0 = V0 = 0.
We can prove that Tn, Un, Vn are upper bounds on the step counts, where Un refers to
cases where F is known to have a nonternary clause, and Vn refers to cases when s = 1
and R2 was entered from R3: The terms Tn−1 and Tn−2 represent autarky reductions
in step R2; otherwise the recursive call in R3 costs Un−1, not Tn−1, because at least one
clause contains l̄s. We also have Vn = 1 + Un−1, not 1 + Tn−1, because the preceding
step R3 either had a clause containing l2 not l1 or a clause containing l̄1 not l̄2.

Fibonacci numbers provide the solution: Tn = 2Fn+2−3+[n=0], Un = Fn+3−2,
Vn = Fn+2−1. [Algorithm R is a simplification of a procedure devised by B. Monien and
E. Speckenmeyer, Discrete Applied Mathematics 10 (1985), 287–295, who introduced
the term “autarky” in that paper. A Stanford student, Juan Bulnes, had discovered
a Fibonacci-bounded algorithm for 3SAT already in 1976; his method was, however,
unattractive, because it also required Ω(φn) space.]

164. If k < 3, Tn = n is an upper bound; so we may assume that k ≥ 3. Let
Un = 1 + max(Tn−1, Tn−2, Un−1 + Vn−1,1, . . . , Un−1 + Vn−1,k−2), Vn,1 = 1 + Un−1,
and Vn,s = 1 + max(Un−1, Tn−2, Un−1 + Vn−1,s−1) for s > 1, where Vn,s refers to an
entry at R2 from R3. The use of Un−1 in the formula for Vn,s is justified, because the

September 23, 2015

216 ANSWERS TO EXERCISES 7.2.2.2

Tribonacci numbers
Horn clauses
core
Kullmann
Marek
Truszczyński
black and blue principle
author
truth degree
VAL
invariant relation
march
convex
Newton’s method

previous R3 either had a clause containing ls+1 not ls or one containing l̄s not l̄s+1. One
can show by induction that Vn,s = s+Un−1+ · · ·+Un−s, Un = Vn,k−1; and Tn = Un+
Un−k+1 = 2Un−1+1 if n ≥ k. For example, the running time when k = 4 is bounded by
Tribonacci numbers, whose growth rate 1.83929n comes from the root of x3 = x2+x+1.

165. Clause 1̄3̄4̄ in the example tells us that 1, 3, 4 /∈ A. Then 136̄ implies 6 /∈ A. But
A = {2, 5} works, so it is maximum. There always is a maximum (not just maximal)
positive autarky, because the union of positive autarkies is a positive autarky.

Each clause (v1 ∨ · · · ∨ vs ∨ v̄s+1 ∨ · · · ∨ v̄s+t) of F , where the v’s are positive, tells
us that v1 /∈ A and · · · and vs /∈ A implies vs+j /∈ A, for 1 ≤ j ≤ t. Thus it essentially
generates t Horn clauses, whose core is the set of all positive literals not in any positive
autarky. A simple variant of Algorithm 7.1.1C will find this core in linear time; namely,
we can modify steps C1 and C5 in order to get t Horn clauses from a single clause of F .

[By complementing a subset of variables, and prohibiting another subset, we can
find the largest autarky A contained in any given set of strictly distinct literals. This ex-
ercise is due to unpublished work of O. Kullmann, V. W. Marek, and M. Truszczyński.]

166. Assume first that PARENT(l0) = Λ, so that H(l0) = 0 at the beginning of X9
(see X6). Since l0 = LL[j] is not fixed in context T , we have RF = l0 by ().
And A = {RF , RF+1, . . . , RE−1} is an autarky, because no clause touched by A or A
is entirely false or contains two unfixed literals. Thus we’re allowed to force l0 true
(which is what “do step X12 with l ← l0” means).

On the other hand if w = 0 and PARENT(l0) = p, so that H(l0) = H(p) > 0 in X6,
the set A = {RF , . . . , RE−1} is an autarky with respect to the clauses of F |p. Hence
the additional clause (l0 ∨ p̄) doesn’t make the clauses any less satisfiable, by the black
and blue principle. (Notice that (l̄0 ∨ p) is already a known clause; so in this case l0 is
essentially being made equal to its parent.)

[The author’s implementation therefore goes further and includes the step

VAL[|l0|] ← VAL[|p|] ⊕ ((l0 ⊕ p) & 1), (∗)

which promotes the truth degree of l0 to that of p. This step violates the invariant
relation (), but Algorithm X doesn’t rely on ().]

167. If a literal l is fixed in context T during the lookahead, it is implied by l0. In
step X11 we have a case where l is also implied by l̄0; hence we’re allowed to force its
truth, if l isn’t already proto true. In step X6, l̄0 is implied by l0, so l0 must be false.

168. The following method works well in march: Terminate happily if F = n. (At
this point in Algorithm L, F is the number of fixed variables, all of which are really
true or really false.) Otherwise find l ∈ {LL[0], . . . , LL[S − 1]} with lmod 2 = 0
and maximum (H(l) + .1)(H(l+1) + .1). If l is fixed, set l ← 0. (In that case,
Algorithm X found at least one forced literal, although U is now zero; we want to do
another lookahead before branching again.) Otherwise, if H(l) > H(l+1), set l← l+1.
(A subproblem that is less reduced will tend to be more satisfiable.)

169. When a and b are positive, the function f(x) = e−ax + e−bx − 1 is convex and
decreasing, and it has the unique root ln τ (a, b). Newton’s method for solving this
equation refines an approximation x by computing x′ = x + f(x)/(ae−ax + be−bx).
Notice that x is less than the root if and only if f(x) > 0; furthermore f(x) > 0 implies
f(x′) > 0, because f(x′) > f(x)+(x′−x)f ′(x) when f is convex. In particular we have
f(1/(a + b)) > 0, because f(0) = 1 and 0′ = 1/(a + b), and we can proceed as follows:

K1. [Initialize.] Set j ← k ← 1, x← 1/(a1 + b1).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 217

floating point
Tarjan
autarkies
invariant
windfall
undone

K2. [Done?] (At this point (aj , bj) is the best of (a1, b1), . . . , (ak, bk), and e
−ajx+

e−bjx ≥ 1.) Terminate if k = s. Otherwise set k ← k + 1, x′ ← 1/(ak + bk).

K3. [Find α, β.] If x′ < x, swap j ↔ k and x ↔ x′. Then set α ← e−ajx
′

and

β ← e−bjx
′

. Go to K2 if α+ β ≤ 1.

K4. [Newtonize.] Set x← x′+(α+β−1)/(ajα+bjβ), α
′ ← e−akx

′

, β′ ← e−bkx
′

,
x′ ← x′ + (α′ + β′ − 1)/(akα

′ + bkβ
′), and return to K3.

(The floating point calculations should satisfy eu ≤ ev and u+w ≤ v+w when u < v.)

170. If the problem is unsatisfiable, Tarjan’s algorithm discovers l and l̄ in the same
strong component. If it’s satisfiable, Algorithm X finds autarkies (because w is always
zero), thus forcing the value of all literals at depth 0.

171. It prevents double-looking on the same literal twice at the same search tree node.

172. When Algorithm Y concludes normally, we’ll have T = BASE+LO[j], even though
BASE has changed. This relation is assumed to be invariant in Algorithm X.

173. The run reported in the text, using nonoptimized parameters (see exercise 513),
did 29,194,670 double-looks (that is, executions of step Y2), and exited 23,245,231
times to X13 in step Y8 (thus successfully forcing l0 false in about 80% of those cases).
Disabling Algorithm Y (i) increased the running time from 0.68 teramems to 1.13
teramems, with 24.3 million nodes. Disabling wraparound (ii) increased the time to 0.85
teramems, with 13.3 million nodes. Setting Y = 1, which disabled wraparound only in
Algorithm Y, yielded 0.72 teramems, 11.3 meganodes. (Incidentally, the loops of Algo-
rithm X wrapped around 40% of the time in the regular run, with a mean of 0.62 and
maximum of 12; those of Algorithm Y had 20% wraparound, with a mean of 0.25; the
maximum Y = 8 was reached only 28 times.) Disabling the lookahead forest (iii) gave
surprisingly good results: 0.70 teramems, 8.5 meganodes; there were fewer nodes [hence
a more discriminating lookahead], but more time spent per node because of duplicated
effort, although strong components were not computed. (Structured problems that
have numerous binary clauses tend to generate more helpful forests than random 3SAT

problems do.) Disabling compensation resolvents (iv) made very little difference: 0.70
teramems, 9.9 meganodes. But disabling windfalls (v) raised the cost to 0.89 teramems
and 13.5 meganodes. And branching on a random l ∈ LL (vi) made the running
time soar to 40.20 teramems, with 594.7 meganodes. Finally, disabling Algorithm X
altogether (vii) was a disaster, leading to an estimated run time of well over 1020 mems.

The weaker heuristics of exercise 175 yield 3.09 teramems and 35.9 meganodes.

174. Setting Y to a huge value such as PT will never get to step Y2. (But for (ii), (iii),
. . . , (vii) one must change the programs, not the parameters as they stand.)

175. Precompute the weights, by setting K2 = 1 and Ks ← γKs−1+ .01, for s between
3 and the maximum clause size. (The extra .01 keeps this from being zero.) The third
line of () must change to “take account of c for all c in KINX(L),” where that means
“set s ← CSIZE(c) − 1; if s ≥ 2, set CSIZE(c) ← s and w ← w +Ks; otherwise if all
literals of c are fixed false, set a flag; otherwise if some literal u of c isn’t fixed (there
will be just one), put it on a temporary stack.” Before performing the last line of (),
go to CONFLICT if the flag is set; otherwise, for each unfixed u on the temporary stack,
setWi ← u and i← i+1 and perform () with l ← u; go to CONFLICT if some u on the
temporary stack is fixed false. (A “windfall” in this more general setting is a clause for
which all but one literal has been fixed false as a consequence of l0 being fixed true.)

Of course those changes to CSIZE need to be undone; a simulated false literal that
has been “virtually” removed from a clause must be virtually put back. Fortunately,

September 23, 2015

218 ANSWERS TO EXERCISES 7.2.2.2

Kullmann
odd permutation
Isaacs
Grinberg
transition matrix
trace of a matrix: The sum of its diagonal elemen
kernels
kernels
comparison of SAT solvers

the invariant relation () makes this task fairly easy: We set G← F in step X5, and
insert the following restoration loop at the very beginning of (): “While G > F , set
u ← RG−1; stop if u is fixed in context T ; otherwise set G ← G − 1, and increase
CSIZE(c) by 1 for all c ∈ KINX(ū).” The restoration loop should also be performed,
with T ← NT, just before terminating Algorithm X in steps X7 or X13.

[The additional step (∗) in answer 166 can’t be used, because () is now crucial.]

Algorithm Y should change in essentially the same way as Algorithm X.

[See O. Kullmann, Report CSR 23-2002 (Swansea: Univ. of Wales, 2002), §4.2.]
176. (a) aj −−− aj+1, aj −−− bj , aj −−− bj+1, bj −−− cj , bj −−− dj , cj −−− dj , cj −−− ej ,
dj−−−fj , ej−−−dj+1, ej−−−fj+1, fj−−−cj+1, fj−−−ej+1.

(b) Let (tj , uj , vj , wj , aj , bj , cj , dj , ej , fj) have colors (1, 2, 1, 1, 1, 2, 1, 3, 3, 2) when
j is even, (2, 1, 2, 2, 3, 2, 3, 1, 1, 2) when j is odd. The lower bounds are obvious.

(c) Vertices aj , ej , fj can’t all have the same color, because bj , cj , dj have distinct
colors. Let αj denote the colors of ajejfj . Then αj = 112 implies αj+1 = 332 or 233;
αj = 121 implies αj+1 = 233 or 323; αj = 211 implies αj+1 = 323 or 332; αj = 123
implies αj+1 = 213 or 321. Since α1 = αq+1, the colors of α1 must be distinct, and we
can assume that α1 = 123. But then αj will be an odd permutation whenever j is even.

[See Rufus Isaacs, AMM 82 (1975), 233–234. Unpublished notes of E. Grinberg
show that he had independently investigated the graph J5 in 1972.]

177. There are 20 independent subsets of Vj = {aj , bj , cj , dj , ej , fj} when q > 1; eight
of them contain none of {bj , cj , dj} while four contain bj . Let A be a 20× 20 transition
matrix, which indicates when R∪C is independent for each independent subset R ⊆ Vj

and C ⊆ Vj+1. Then Iq is trace(Aq); and the first eight values are 8, 126, 1052,
11170, 112828, 1159416, 11869768, 121668290. The characteristic polynomial of A,
x12(x2 − 2x− 1)(x2 + 2x− 1)(x4 − 8x3 − 25x2 + 20x+ 1), has nonzero roots ±1±

√
2

and ≈ −2.91, −0.05, +0.71, +10.25; hence Iq = Θ(rq), where r ≈ 10.24811166 is the
dominant root. Note: The number of kernels of L(Jq) is respectively 2, 32, 140, 536,
2957, 14336, 70093, 348872, for 1 ≤ q ≤ 8, and its growth rate is ≈ 4.93q .

178. With the first ordering, the top 18k levels of the search tree essentially represent
all of the ways to 3-color the subgraph {aj , bj , cj , dj , ej , fj | 1 ≤ j ≤ k}; and there are
Θ(2k) ways to do that, by answer 176. But with the second ordering, the top 6kq levels
essentially represent all of the independent sets of the graph; and there are Ω(10.2k) of
those, by answer 177.

Empirically, Algorithm B needs respectively 1.54 megamems, 1.57 gigamems, and
1.61 teramems to prove unsatisfiability when q = 9, 19, and 29, using the first ordering;
but it needs 158 gigamems already for q = 5 with the second! Additional clauses, which
require color classes to be kernels (see answer 14), reduce that time to 492 megamems.

Algorithm D does badly on this sequence of problems: When q = 19, it consumes
37.6 gigamems, even with the “good” ordering. And when q = 29, its cyclic method
of working somehow transforms the good ordering into a bad ordering on many of the
variables at depths 200 or more. It shows no sign of being anywhere near completion
even after spending a petamem on that problem!

Algorithm L, which is insensitive to the ordering, needs 2.42 megamems, 2.01
gigamems, and 1.73 teramems when q = 9, 19, and 29. Thus it appears to take Θ(2q)
steps, and to be slightly slower than Algorithm B as q grows, although exercise 232
shows that a clairvoyant lookahead procedure could theoretically do much better.

Algorithm C triumphs here, as shown in Fig. 49.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 219

exact cover
sifting
backtracking
generating function
BDD base
symmetric Boolean functions
mux
if-then-else, see mux
uniquely
Aldous

179. This is a straightforward exact cover problem. If we classify the solutions accord-
ing to how many asterisks occur in each coordinate, it turns out that exactly (10, 240,
180, 360, 720, 480, 1440, 270, 200, 480) of them are respectively of type (00088, 00268,
00448, 00466, 02248, 02266, 02446, 04444, 22228, 22246).

By complementation, we see that 4380 choices of 8 clauses are unsatisfiable; hence
q8 = 1− 4380/

(
80
8

)
= 1− 4380/28987537150 ≈ 0.9999998.

180. With N variables yj , one for each possible clause Cj , the function f(y1, . . . , yN) =
[
∧{Cj | yj = 1} is satisfiable] is

∨
x fx(y), where fx(y) = [x satisfies

∧{Cj | yj = 1}]
is simply

∧{ȳj | x makes Cj false}. For instance if k = 2 and n = 3, and if C1, C7, C11

are the clauses (x1 ∨ x2), (x1 ∨ x̄3), (x2 ∨ x̄3), then f001(y1, . . . , y12) = ȳ1 ∧ ȳ7 ∧ ȳ11.
Each function fx has a very simple BDD, but of course the OR of 2n of them will

not be simple. This problem is an excellent example where no natural ordering of the
clause variables is evident, but the method of sifting is able to reduce the BDD size
substantially. In fact, the clauses for k = 3 and n = 4 can be ordered cleverly so that
the corresponding 32-variable BDD for satisfiability has only 1362 nodes! The author’s
best result for k = 3 and n = 5, however, was a BDD of size 2,155,458. The coefficients
of its generating function (exercise 7.1.4–25) are the desired numbers Qm.

The largest such count, Q35 = 3,449,494,339,791,376,514,416, is so enormous that
we could not hope to enumerate the relevant sets of 35 clauses by backtracking.

181. The previous exercise essentially computed the generating function
∑

mQmz
m;

now we want the double generating function
∑

l,m Tl,mw
lzm, where Tl,m is the number

of ways to choose m different k-clauses in such a way that these clauses are satisfied by
exactly l vectors x1 . . . xn. To do this, instead of taking the OR of the simple functions
fx, we compute the BDD base that contains all of the symmetric Boolean functions
Sl(f0...0, . . . , f1...1) for 0 ≤ l ≤ 2n, as follows (see exercise 7.1.4–49): Consider the
subscript x to be a binary integer, so that the functions are fx for 0 ≤ x < 2n. Start
with Sl = 0 for −1 ≤ l ≤ 2n, except that S0 = 1. Then do the following for x = 0, . . . ,
2n − 1 (in that order): Set Sl = fx?Sl−1:Sl for l = x+ 1, . . . , 0 (in that order).

After this computation, the generating function for Sl will be
∑

m Tl,mz
m. In

the author’s experiments, the sifting algorithm found an ordering of the 80 clauses for
k = 3 and n = 5 so that only about 6 million nodes were needed when x had reached
24; afterwards, however, sifting took too long, so it was turned off. The final BDD base
had approximately 87 million nodes, with many nodes shared between the individual
functions Sl. The total running time was about 22 gigamems.

182. T0 = 32 and T1 = 28 and Tm = 0 for 71 ≤ m ≤ 80. Otherwise minTm < maxTm.

183. Let tm = Pr(Tm = 1), and suppose that we obtain clauses one by one until
reaching an unsatisfiable set. The fact that tm gets reasonably large suggests that we
probably have accumulated a uniquely satisfiable set just before stopping. (That proba-
bility is 2−kN

∑
m tm/(N−m), which turns out to be ≈ 0.8853 when k = 3 and n = 5.)

However, except for the fact that both Figs. 42 and 43 are bell-shaped curves with
roughly the same tendency to be relatively large or small at particular values of m,
there is apparently no strong mathematical connection. The probabilities in Fig. 43
sum to 1; but the sum of probabilities in Fig. 42 has no obvious significance.

When n is large, uniquely satisfiable sets are encountered only rarely. The final
set before stopping a.s. has at most f(n) solutions, for certain functions f ; but how
fast does the smallest such f grow? [See D. J. Aldous, J. Theoretical Probability 4

(1991), 197–211, for related ideas.]

September 23, 2015

220 ANSWERS TO EXERCISES 7.2.2.2

set partitions
Stirling subset numbers
coupon collector’s test
autosifting
sifting
symmetric Boolean functions
symmetric threshold functions
truth table
Boolean functions in kCNF
BDD
Bollobás

184. The probability q̂m is Q̂m/N
m, where Q̂m counts the choices (C1, . . . , Cm) for

which C1 ∧ · · · ∧ Cm is satisfiable. The number of such choices that involve t distinct
clauses is t!

{
m
t

}
times Qt, because

{
m
t

}
enumerates set partitions; see Eq. 3.3.2–().

185. q̂m =
∑N

t=0

{
m
t

}
t! qt

(
N
t

)
/Nm ≥ qm

∑N
t=0

{
m
t

}
t!
(
N
t

)
/Nm = qm.

186.
∑

m

∑
t

{
m
t

}
t! qt

(
N
t

)
N−m can be summed onm, since

∑
m

{
m
t

}
N−m = 1/(N−1)t

by Eq. 1.2.9–(). Similarly, the derivative of 1.2.9–() shows that
∑

mm
{
m
t

}
N−m =

(N/(N − 1) + · · ·+N/(N − t))/(N − 1)t .

187. In this special case, qm = [0≤m<N] and pm = [m=N]; hence Sn,n = N = 2n

(and the variance is zero). By (), we also have Ŝn,n = NHN ; indeed, the coupon
collector’s test (exercise 3.3.2–8) is an equivalent way to view this situation.

188. Now qm = 2mnm/(2n)m. It follows by () that Ŝ1,n =
∑n

m=0 2
mnm/(2n− 1)m,

because N = 2n. The identity 2mnm/(2n−1)m = 2qm−qm+1 yields the surprising fact

that Ŝ1,n = (2q0−q1)+(2q1−q2)+· · · = 1+S1,n; and we also have Ŝ1,n−1 = 2n
2n−1

S1,n−1.
Hence, by induction, we obtain the (even more surprising) closed forms

S1,n = 4n
/ (

2n

n

)
, Ŝ1,n = 4n

/ (
2n

n

)
+ 1.

So random 1SAT problems become unsatisfiable after
√
πn+O(1) clauses, on average.

189. With the autosifting method in the author’s experimental BDD implementation,
the number of BDD nodes, given a sequence of m distinct clauses when k = 3 and
n = 50, increased past 1000 when m increased from 1 to about 30, and it tended to
peak at about 500,000 when m was slightly more than 100. Then the typical BDD size
fell to about 50,000 when m = 150, and to only about 500 when m = 200.

BDD methods break down when n is too large, but when they apply we can count
the total number of solutions remaining after m steps. In the author’s tests with k = 3,
n = 50, and m = 200, this number varied from about 25 to about 2000.

190. For example, S1(x1, . . . , xn) can’t be expressed in (n − 1)CNF: All clauses of
length n− 1 that are implied by S1(x1, . . . , xn) are also implied by S≤1(x1, . . . , xn).

191. Let f(x0, . . . , x2n−1) = 1 if and only if x0 . . . x2n−1 is the truth table of a Boolean
function of n variables that is expressible in kCNF. This function f is the conjunction
of 2n constraints c(t), for 0 ≤ t = (t0 . . . t2n−1)2 < 2n, where c(t) is the following
condition: If xt = 0, then

∨{xy | 0 ≤ y < 2n, (y ⊕ t) & m = 0} is 0 for some n-bit
pattern m that has νm = k. By combining these constraints we can compute the BDD
for f when n = 4 and k = 3; it has 880 nodes, and 43,146 solutions.

Similarly we have the following results, analogous to those in Section 7.1.1:

n=0 n=1 n=2 n=3 n=4 n=5 n=6

1CNF 2 4 10 28 82 244 730
2CNF 2 4 16 166 4,170 224,716 24,445,368
3CNF 2 4 16 256 43,146 120,510,132 4,977,694,100,656

And if we consider equivalence under complementation and permutation, the counts are:

1CNF 2 3 4 5 6 7 8
2CNF 2 3 6 14 45 196 1,360
3CNF 2 3 6 22 253 37,098 109,873,815

192. (a) S(p) =
∑N

m=0 p
m(1− p)N−mQm. (b) We have

∫ N

0
(t/N)m(1− t/N)N−m dt =

NB(m + 1, N − m + 1) = N
N+1

/
(
N
m

)
, by exercises 1.2.6–40 and 41; hence Sk,n =

N
N+1

∑N
m=0 qm = N

N+1
Sk,n. [See B. Bollobás, Random Graphs (1985), Theorem II.4.]

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 221

Achlioptas
Peres
second moment principle
covering assignments
Coja-Oghlan
Panagiotou
inclusion and exclusion
Chebyshev’s inequality
Stirling’s approximation
balls and urns
urns and balls
Wilson
threshold phenomena

194. A similar question, about proofs of unsatisfiability when α > lim supn→∞ S3,n/n,
is also wide open.

195. EX = 2n Pr(0 . . . 0 satisfies all) = 2n(1− 2−k)m = exp(n ln 2 +m ln(1− 2−k)) <
2 exp(−2−k−1n ln 2). Thus Sk(⌊(2k ln 2)n⌋, n) = Pr(X > 0) ≤ exp(−Ω(n)). [Discrete

Applied Math. 5 (1983), 77–87. Conversely, in J. Amer. Math. Soc. 17 (2004), 947–973,
D. Achlioptas and Y. Peres use the second moment principle to show that (2k ln 2 −
O(k))n random kSAT clauses are almost always satisfiable by vectors x with νx ≈ n/2.
Careful study of “covering assignments” (see exercise 364) leads to the sharp bounds

2k ln 2− 1+ ln 2

2
−O(2−

k
3) ≤ lim inf

n→∞
αk(n) ≤ lim sup

n→∞
αk(n) ≤ 2k ln 2− 1+ ln 2

2
+O(2−

k
3);

see A. Coja-Oghlan and K. Panagiotou, arXiv:1310.2728 [math.CO] (2013), 48 pages.]

196. The probability is ((n − t)k/nk)
αn+O(1)

= e−ktα(1 + O(1/n)) that αn + O(1)
random kSAT clauses omit t given letters. Let p = 1− (1− e−kα)k. By inclusion and
exclusion, the first clause will be easy with probability p(1+O(1/n)), and the first two
will both be easy with probability p2(1+O(1/n)). Thus if X =

∑m
j=1[clause j is easy],

we have EX = pm+O(1) and EX2 = p2m2+O(m). Hence, by Chebyshev’s inequality,
Pr(|X − pm| ≥ r√m) = O(1/r2).

197. By Stirling’s approximation, ln q(a, b, A,B, n) = nf(a, b, A,B) + g(a, b, A,B) −
1
2
ln 2πn − (δan − δ(a+b)n) − (δbn − δ(b+B)n) − (δAn − δ(a+A)n) − (δBn − δ(A+B)n) −

δ(a+b+A+B)n, where δn is positive and decreasing. And we must have f(a, b, A,B) ≤ 0,
since q(a, b, A,B, n) ≤ 1. The O estimate is uniform when 0 < δ ≤ a, b, A,B ≤ M .

198. Consider one of the NM possible sequences of M 3SAT clauses, where N = 8
(
n
3

)

and M = 5n. By exercise 196 it contains g = 5(1 − (1 − e−15)3)n + O(n3/4) easy
clauses, except with probability O(n−1/2). Those clauses, though rare, don’t affect the
satisfiability; and all

(
M
g

)
of the ways to insert them among the r = M − g others are

equally likely, so they tend to dampen the transition.

Let l ≤ r be maximum so that the first l noneasy clauses are satisfiable, and let
p(l, r, g,m) be the probability that, when drawing m balls from an urn that contains g
green balls and r red balls, at most l balls are red. Then S3(m,n) =

∑
p(l, r, g,m)/NM

and S3(m
′, n) =

∑
p(l, r, g,m′)/NM , summed over all NM sequences.

To complete the proof we shall show that

p(l, r, g,m+ 1) = p(l, r, g,m)−O(n−1/2) when 3.5n < m < 4.5n;

hence S3(m+1, n) = S3(m,n)−O(n−1/2), S3(m,n)−S3(m
′, n) = O((m′−m)n−1/2).

Notice that p(l, r, g,m) = p(l, r, g,m+1) when m < l or m > l+g ; thus we may assume
that l lies between 3.4n and 4.6n. Furthermore the difference

dm = p(l, r, g,m)− p(l, r, g,m+ 1) =

(
m
l

)(
r+g−m−1

r−l−1

)
(
r+g
r

) =

(
m
l

)(
r+g−m

r−l

)
(
r+g
r

) r − l
r + g −m

has a decreasing ratio dm/dm−1 = (m/(m− l))((l + g + 1−m)/(r + g −m)) when m
increases from l to l+ g. So maxdm occurs at m ≈ l(r+ g)/r, where this ratio is ≈ 1.
Now exercise 197 applies with a = l/n, b = ρg/n, A = (r−l)/n, B = (1−ρ)g/n, ρ = l/r.

[D. B. Wilson, in Random Structures & Algorithms 21 (2002), 182–195, showed
that similar methods apply to many other threshold phenomena.]

September 23, 2015

222 ANSWERS TO EXERCISES 7.2.2.2

inclusion and exclusion
second moment principle

199. (a) Given the required letters {a1, . . . , at}, there are m ways to place the left-
most a1, then m − 1 ways to place the leftmost a2, and so on; then there are at most
N ways to fill in each of the remaining m− t slots.

(b) By inclusion and exclusion: There are (N−k)mwords that omit k of the letters.
(c) N−m ∑

k

(
t
k

)
(−1)k ∑j

(
m
j

)
Nm−j(−k)j =

∑
j

(
m
j

)
(−1)j+tN−jAj , where Aj =∑

k

(
t
k

)
(−1)t−kkj =

{
j
t

}
t! by Eq. 1.2.6–().

200. (a) The unsatisfiable digraph must contain a strong component with a path

l̄t−−→ l1−−→ · · · −−→ lt−−→ lt+1−−→ · · · −−→ ll = l̄t,

where l1, . . . , lt are strictly distinct. This path yields an s-snare (C; t, u) if we set s to
the smallest index such that |ls+1| = |lu| for some u with 1 ≤ u < s.

(b) No: (x∨y)∧ (ȳ∨x)∧ (x̄∨y) and (x∨y)∧ (ȳ∨x)∧ (x̄∨ ȳ) are both satisfiable.
(c) Apply exercise 199(a) with t = s+1, N = 2n(n−1); note that ms+1 ≤ ms+1.

201. (a) Set (li, li+1)← (x1, x2) or (x̄2, x̄1), where 0 ≤ i < 2t (thus 4t ways).
(b) Set (li, li+1, li+2) ← (x1, x2, x3) or (x̄3, x̄2, x̄1), where 0 ≤ i < 2t; also

(l̄1, lt, lt+1) or (lt−1, lt, l̄2t−1)← (x1, x2, x3) or (x̄3, x̄2, x̄1) (total 4t+ 4 ways, if t>2).
(c) (l1, lt−1, lt) or (l̄2t−1, l̄t+1, l̄t)← (x1, xt−1, xt) or (x̄t−1, x̄1, xt) (4 ways).
(d) li or l̄2t−i←xi or x̄t−i, for 1≤ i≤ t (4 ways, if you understand this notation).
(e) By part (a), it is 2t× 4t = 8t2.
(f) Parts (b) and (c) combine to give N(3, 2) = (2t + 2) × (4t + 4) + 2 × 4 =

8(t2 + 2t + 2) when t > 2. From part (d), N(t, t) = 8. Also N(2t − 1, 2t) = 8; this is
the number of snakes that specify the same 2t clauses. (Incidentally, when t = 5 the
generating function

∑
q,rN(q, r)wqzr is 1+200w2z1+(296w3 +7688w4)z2+(440w4 +

12800w5 +55488w6)z3 +(640w5+12592w6 +66560w7 +31104w8)z4 +(8w5+736w6+
8960w7 + 32064w8 + 6528w9)z5 + (32w6 + 704w7 + 4904w8 + 4512w9)z6 + (48w7 +
704w8 + 1232w9)z7 + (64w8 + 376w9)z8 + 80w9z9 + 8w9z10.)

(g) The other l’s can be set in at most 22t−1−q(n− q)2t−1−q = R/(2qnq) ways.
(h) We may assume that r < 2t. The r chosen clauses divide into connected

components, which are either paths or a “central” component that contains either
(x̄0 ∨ x1) and (x̄t−1 ∨ xt) or (x̄t ∨ xt+1) and (x̄2t−1 ∨ x0). Thus q equals r plus the
number of components, minus 1 if the central component includes a cycle. If the
central component is present, we must set lt ← xt or x̄t, and there are at most 8 ways
to complete the mapping of that component. And N(r, r) = 16(r+1−t) for t < r < 2t.

Cases with k > 0 paths can be chosen in at most
(
2t+2
2k

)
ways, because we choose

the starting and ending points, and they can be mapped in at most 2kk!
(
2t+2
2k

)
ways;

so they contribute
∑

k>0 O(t4kk/(k!3nk)) = O(t4/n) to (2n)rpr. The noncyclic central
components, which can be chosen in Θ(t4) ways, also contribute O(t4/n).

202. (a)m(m−1) . . . (m−r+1)/mr ≥ (1−
(
r
2

)
/m); (2n(n−1)−r)m−r

/(2n(n−1))m−r ≥
1− (m− r)r/(2n(n− 1)) when r ≤ m < 2n(n− 1); and both factors are ≤ 1.

(b) The term of () for r = 0 is 1 plus a negligible error. The contribution of
O(t4/n) for r > 0 is O(n4/5+1/6−1), because

∑
r≥0 (1 + n−1/6)−r = n1/6 + 1. And

the contributions of () to () for r ≥ t are exponentially small, because in that
range we have (1+n−1/6)−t = exp(−t ln(1+n−1/6)) = exp(−Ω(n1/30)). Finally, then,
by the second moment principle MPR–(), S2(⌊n + n5/6⌋, n) ≤ 1 − Pr(X > 0) ≤
1− (EX)2/(EX2) = 1− 1/((EX2)/(EX)2) = 1− 1/(1 +O(n−1/30)) = O(n−1/30).

203. (a) EX = dn EX(1, . . . , 1), by symmetry; and EX(1, . . . , 1) = (1− p)m, because
each set of q clauses is falsified with probability p. So EX = exp((r ln(1−p)+1)n ln d)
is exponentially small when r ln(1− p) + 1 < 0; and we know that Pr(X > 0) ≤ EX.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 223

Tovey(b) Let θs =
(
s
2

)
/
(
n
2

)
= s(s−1)

n(n−1)
, and consider a random constraint set, given

that X(1, . . . , 1) = 1. With probability θs, both u and v have color 1 and the
constraint is known to be satisfied. But with probability 1−θs, it holds with probability(
d2−2

q

)
/
(
d2−1

q

)
. Thus ps = (θs + (1− θs)(d2 − pd2 − 1)/(d2 − 1))

m
.

(c) We have Pr(X > 0) ≥ dn(1−p)m/E(X |X(1, . . . , 1) = 1), from the inequality
and symmetry; and the denominator is

∑n
s=0

(
n
s

)
(d − 1)n−sps. We can replace ps by

the simpler value p′s = (1 − p + ps2/n2)m, because ps < (θs + (1 − θs)(1 − p))m =
(1− p+ θsp)

m < p′s. And we can divide the simplified sum by dn(1− p)m.

(d) We have
∑3n/d

s=0 ts = eO(m/d2) ∑3n/d
s=0

(
n
s

)
(1
d
)
s
(1 − 1

d
)
n−s

, because s2/n2 =

O(1/d2) when s ≤ 3n/d. This sum is ≥ 1 − (e2/27)n/d by exercise 1.2.10–22; and the
crucial assumption that α > 1

2
makes m/d2 → 0.

(e) Transition between increase and decrease occurs when xs ≈ 1; and we have

xs =
n− s
s+ 1

1

d− 1

(
1 +

(2s+ 1)p

(1− p)n2 + ps2

)m
≈ exp

(
ln

1− σ
σ

+
(

2prσ

1− p+ pσ2
− 1
)
ln d
)

when s = σn. Let f(σ) = 2prσ/(1 − p + pσ2) − 1, and notice that f ′(σ) > 0 for
0 ≤ σ < 1 because p ≤ 1

2
. Furthermore our choice of r makes f(1

2
) < 0 < f(1).

Setting g(σ) = f(σ)/ ln σ
1−σ

, we seek values of σ with g(σ) = 1/ ln d. There are three

such roots, because g(1/N) ≈ −f(0)/ lnN ≥ 1/ lnN ; g(1
2
± 1/N) ≈ ∓f(1

2
)N/4; and

g(1− 1/N) ≈ f(1)/ lnN .
(f) At the second peak, where s = n− n/df(1), we have (see exercise 1.2.6–67)

ts <
(
ned

n− s
)n−s(1

d

)n(
1 +

p

1− p
)m

= exp((−ǫ+O(1/df(1)))n ln d),

which is exponentially small. And when s = 3n/d, ts < (ne
sd
)seO(m/d2) = O((e/3)3n/d)

is also exponentially small. Consequently
∑n

s=3n/d ts is exponentially small.

[This derivation holds also when the random constraints are k-ary instead of
binary, with q = pdk and α > 1/k. See J. Artificial Intelligence Res. 12 (2000), 93–103.]

204. (a) If the original literals ±xj that involve variable xj correspond to σ1Xi(1), . . . ,
σpXi(p), with signs σh, add the clauses (−σhXi(h)∨σh+Xi(h+)) for 1 ≤ h ≤ p to enforce

consistency, where h+ = 1+(hmod p). (This transformation, due to C. A. Tovey, works
even in degenerate cases. For example, if m = 1 and if the given clause is (x1∨x1∨ x̄2),
the transformed clauses are (X1 ∨X2 ∨X3), (X̄1 ∨X2), (X̄2 ∨X1), (X3 ∨ X̄3).)

(b) After F0 = {ǫ}, F1 = F0 ⊔ F0, F2 = F0 ⊔ F1, F3 = F0 ⊔ F2, F4 = F3 ⊔ F ′3,
F5 = F4 ⊔ F ′′4 , always putting the new variable into the four shortest possible clauses,
we get F5 = {345, 23̄4, 12̄3̄, 1̄2̄3̄, 3′4̄5, 2′3̄′4̄, 1′2̄′3̄′, 1̄′2̄′3̄′, 3′′4′′5̄, 2′′3̄′′4′′, 1′′2̄′′3̄′′,
1̄′′2̄′′3̄′′, 3′′′4̄′′5̄, 2′′′ 3̄′′′4̄′′, 1′′′2̄′′′3̄′′′, 1̄′′′2̄′′′ 3̄′′′}.

(c) If we delete 1̄2̄3̄ from F5 there are 288 solutions, namely 1∧ 2∧ 3∧ 4̄ ∧ 5̄∧ c′ ∧
(4′′? c′′ ∧ 3̄′′′: c′′′ ∧ 3̄′′), where c = 2̄ ∨ 3̄.

(d) Add ⌈m/2⌉ disjoint clones of the 15 clauses of (c) to the 4m clauses of (a),
giving m + 15⌈m/2⌉ 3-clauses and 3m 2-clauses that are satisfiable only if all literals
cloned from 1̄, 2̄, or 3̄ are false. Each clone provides six such false literals {1̄, 1̄, 1̄, 2̄, 2̄, 3̄}
without using any variable five times. So we can stick those literals into the 2-clauses,
obtaining ≈ 11.5m 3-clauses in N ≈ 10.5m variables. (The new clauses have 288⌈m/2⌉

times as many solutions as the original ones. Can the ratio N/m ≈ 10.5 be lowered?)

205. Let F0 = {ǫ}, F1 = F0 ⊔ F0, F2 = F0 ⊔ F1, F3 = F0 ⊔ F2, F4 = F0 ⊔ F3,
F5 = F1 ⊔ F4, F6 = F0 ⊔ F5, F7 = F0 ⊔ F6, F8 = F4 ⊔ F ′7, F9 = F0 ⊔ F8, F10 = F7 ⊔ F ′9,

September 23, 2015

224 ANSWERS TO EXERCISES 7.2.2.2

Sťŕıbrná
Hoory
Szeider
5SAT
resolution
Iwama
Takaki
marriage theorem
Berman
Karpinski
Scott
lopsidependency graph
Gebauer
Szabó
Tardos

F11 = F7 ⊔ F ′10, F12 = F0 ⊔ F11, F13 = F9 ⊔ F ′′12, F14 = F10 ⊔ F (3)
12 , F15 = F12 ⊔ F (4)

14 ,

F16 = F13 ⊔ F (6)
14 , F17 = F14 ⊔ F (7)

15 , F18 = F16 ⊔ F (13)
17 . (Here ‘x(3)’ stands for ‘x′′′’,

etc.) Then F18 consists of 257 unsatisfiable 4-clauses in 234 variables.

(Is there a shorter solution? This problem was first solved by J. Stř́ıbrná in her
M.S. thesis (Prague: Charles University, 1994), with 449 clauses. The ⊔ method was
introduced by S. Hoory and S. Szeider, Theoretical Computer Science 337 (2005), 347–
359, who presented an unsatisfiable 5SAT problem that uses each variable at most 7
times. It’s not known whether 7 can be decreased to 6 when every clause has size 5.)

206. Suppose F and F ′ are minimally unsatisfiable, and delete a clause of F ⊔F ′ that
arose from F ′; then we can satisfy F ⊔ F ′ with x true.

Conversely, if F⊔F ′ is minimally unsatisfiable, F and F ′ can’t both be satisfiable.
Suppose F is unsatisfiable but F ′ is satisfied by L′. Removing a clause of F ⊔ F ′
that arose from F ′ is satisfiable only with x true; but then we can use L′ to satisfy
F ⊔ F ′. Hence F and F ′ are both unsatisfiable. Finally, if F \ C is unsatisfiable, so is
(F ⊔ F ′) \ (C | x̄), because any solution would satisfy either F \ C or F ′.

207. The five clauses of C(x, y, z; a, b, c) = {xāb, yb̄c, zc̄a, abc, āb̄c̄} resolve to the single
clause xyz. Thus C(x, y, y; 1, 2, 3)∪C(x, ȳ, ȳ; 4, 5, 6)∪C(x̄, z, z; 7, 8, 9)∪C(x̄, z̄, z̄; a, b, c)
is a solution. [K. Iwama and K. Takaki, DIMACS 35 (1997), 315–333, noted that the
16 clauses {x̄ȳz̄} ∪ C(x, x, x; 1, 2, 3) ∪ C(y, y, y; 4, 5, 6) ∪ C(z, z, z; 7, 8, 9) involve each
variable exactly four times, and proved that no set of twelve clauses does so.]

208. Makem clones of all but one of the 20 clauses in answer 207, and put the other 3m
cloned literals into the 3m binary clauses of answer 204(a). This gives 23m 3-clauses
in which every literal occurs twice, except that the 3m literals X̄i occur only once.

To complete the solution, we “pad” them with additional clauses that are always
satisfiable. For example, we could introduce 3m more variables ui, with new clauses
X̄iuiūi+1 for 1 ≤ i ≤ 3m and {u′3ju′3j+1u

′
3j+2, ū

′
3j ū
′
3j+1ū

′
3j+2} for 1 ≤ j ≤ m (treating

subscripts mod 3m), where u′i denotes (i even? ui: ūi).

209. Since the multiset of kt literals in any t clauses contains at least t different vari-
ables, the “marriage theorem” (Theorem 7.5.1M) implies that we can choose a different
variable in each clause, easily satisfying it. [Discr. Applied Math. 8 (1984), 85–89.]

210. [P. Berman, M. Karpinski, A. D. Scott, Electronic Colloquium on Computational

Complexity (2003), TR22.] This answer uses the magic number ε = δ7 ≈ 1/58, where
δ is the smallest root of δ((1− δ7)6 + (1− δ7)7) = 1. We will assign random values to
each variable so that Pr[all clauses are satisfied] > 0.

Let ηj = (1 − ε)j/((1 − ε)j + (1 − ε)13−j), and observe that ηj ≤ δ(1 − ε)j for
0 ≤ j ≤ 13. If variable x occurs d+ times and x̄ occurs d− times, let x be true with
probability ηd− , false with probability 1− ηd− = η13−d− ≤ δ(1− ε)13−d− ≤ δ(1− ε)d+.

Let bad(C) = [clause C is falsified by the random assignment], and construct
the lopsidependency graph for these events as in exercise 351. Then, if the literals
of C = (l1 ∨ · · · ∨ l7) have contrary appearances in d1, . . . , d7 other clauses, we have

Pr(bad(C)) ≤ (δ(1−ε)d1) . . . (δ(1−ε)d7) = ε(1−ε)d1+···+d7 ≤ ε(1−ε)degree(C),

because C has at most d1 + · · ·+ d7 neighbors. Theorem L, with parameter θi = ε for
each event bad(C), now tells us that Pr[all m clauses are satisfied] ≥ (1− ε)m.

[See H. Gebauer, T. Szabó, and G. Tardos, SODA 22 (2011), 664–674, for
asymptotic results that apply to kSAT as k →∞.]

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 225

4-cycles
exact cover
3D matching
sudoku
headers
Poisson probability
Franco
Jacquet
Knessl
Szpankowski
Goldberg

211. If m clauses in n variables are given, so that 3m = 4n, let N = 8n. Consider N
“colors” named jk or jk, where 1 ≤ j ≤ n and k is one of the four clauses that contains
±xj . Let σ be a permutation on the colors, consisting of 4-cycles that involve the same
variable, with the properties that (i) (jk)σ = jk′ for some k′ and (ii) (jk)σ = (jk)σ.

There are 4n vertices of KN named jk, having the respective color lists

L(jk, 1) = {jk, jk}, L(jk, 2) = {jk, (jk)σ}, L(jk, 3) = {jk, (jk)σ}.

The other 3m vertices of KN are named ak, bk, ck for each clause k. If that clause is,
say, x2 ∨ x̄5 ∨ x6, the color lists are

L(ak, 1) = {2k, 5k, 6k}, L(bk, 1) = L(ck, 1) = {2k, 2k, 5k, 5k, 6k, 6k};
L(ak, 2) = {(2k)σ}, L(bk, 2) = {(5k)σ}, L(ck, 2) = {(6k)σ};

L(ak, 3) = {(2k)σ2, (2k)σ}, L(bk, 3) = {(5k)σ2, (5k)σ}, L(ck, 3) = {(6k)σ2, (6k)σ}.

Then KN K3 is list-colorable if and only if the clauses are satisfiable. (For example,
(jk, 1) is colored jk ⇐⇒ ((jk)σ, 1) is colored (jk)σ ⇐⇒ (ak, 1) is not colored jk.)

212. (a) Let xijk = 1 if and only if Xij = k. [Note: Another equivalent problem is to
find an exact cover of the rows { {Pij,Rik,Cjk} | pij = rik = cjk = 1}. This is a special
case of 3D matching; see the discussion of sudoku in Section 7.2.2.1. Incidentally, the
3D matching problem can be formulated as the problem of finding a binary tensor (xijk)
such that xijk ≤ yijk and xi∗∗ = x∗j∗ = x∗∗k = 1, given (yijk).]

(b) c31 = c32 = r13 = r14 =0 forces x13∗=0 6= p13 when r= c=

(
1100
0110
0011
1001

)
, p=

(
1010
1100
0101
0011

)
.

(c) Make L(I, J) = {1, . . . , N} for M < I ≤ N , 1 ≤ J ≤ N . It is well known
(Theorem 7.5.1L) that a latin rectangle can always be extended to a latin square.

(d) Index everything by the set {1, . . . , N} ∪⋃
I,J{(I, J,K) | K ∈ L(I, J)}. The

elements (I, J,K) where K = minL(I, J) are called headers. Set pij = 1 if and only
if (i) i = j = (I, J,K) is not a header; or (ii) i = (I, J,K) is a header, and j = J or
j = (I, J,K′) is not a header; or (iii) j = (I, J,K) is a header, and i = I or i = (I, J,K′)
is not a header. Set rik = cik = 1 if and only if (i) 1 ≤ i, k ≤ N ; or (ii) i = (I, J,K)
and k = (I, J,K′), and if i is not a header then (K′ = K or K′ is the largest element
< K in L(I, J)). [Reference: SICOMP 23 (1994), 170–184.]

213. The hinted probability is (1− (1− p)n′

(1− q)n−n′

)
m
, where n′ = b1 + · · ·+ bn.

Thus if p ≤ q, every x has probability at least (1 − (1 − p)n)m of satisfying every
clause. This is huge, unless n is small or m is large: If m is less than αn, where
α is any constant less than 1/(1 − p), then when n > −1/ lg(1 − p) the probability
(1− (1− p)n)m > exp(αn ln(1− (1− p)n)) > exp(−2(α(1− p))n) > 1− 2(α(1− p))n is
exponentially close to 1. Nobody needs a SAT solver for such an easy problem.

Even if, say, p = q = k/(2n), so that the average clause size is k, a clause is
empty—hence unsatisfiable—with probability e−k +O(n−1); and indeed a clause has
exactly r elements with the Poisson probability e−kkr/r! +O(n−1) for fixed r. So the
model isn’t very relevant. [See J. Franco, Information Proc. Letters 23 (1986), 103–106.]

214. (a) T (z) = zez + 2T (pz)(e(1−p)z − 1).

(b) If f(z) =
∏∞

m=1(1 − e(p−1)z/pm) and τ (z) = f(z)T (z)e−z, we have τ (z) =
zf(z) + 2τ (pz) = zf(z) + 2pzf(pz) + 4p2zf(p2z) + · · · .

(c) See P. Jacquet, C. Knessl, and W. Szpankowski, Combinatorics, Probability,

and Computing 23 (2014), 829–841. [The sequence 〈Tn〉 was first studied by A. T.
Goldberg, Courant Computer Science Report 16 (1979), 48–49.]

September 23, 2015

226 ANSWERS TO EXERCISES 7.2.2.2

Brown
Purdom
Bugrara
Stirling subset numbers
asymptotic
saddle point method
Méjean
Morel
Reynaud
tautological
generalization of resolution

215. Since any given x1 . . . xl is a partial solution in (8
(
n
3

)
−

(
l
3

)
)m of the (8

(
n
3

)
)m

possible cases, level l contains Pl = 2l(1− 1
8
l3/n3)m nodes on the average. When m =

4n and n = 50, the largest levels are (P31, P32, . . . , P36) ≈ (6.4, 6.9, 7.2, 7.2, 6.8, 6.2) ×
106, and the mean total tree size P0 + · · ·+ P50 is about 85.6 million.

If l = 2tn andm = αn we have Pl = 2f(t)n, where f(t) = 2t+α lg(1−t3)+O(1/n)
for 0 ≤ t ≤ 1/2. The maximum f(t) occurs when ln 4 = 3αt2/(1 − t3), at which point
t = tα = β− 1

2
β4+ 5

8
β7+O(β10), where β =

√
ln 4/(3α); for example, t4 ≈ 0.334. Now

PL+k = 2E , E = (2tα+α lg(1−t3α))n+1−2tα−γk
2

n
+O
(
1

n

)
+O
(
k3

n2

)
, γ =

α+tα ln 2

2αtα
,

when L = 2tαn; hence the expected total tree size is
√
πn/γPL(1 +O(1/

√
n)).

[This question was first studied by C. A. Brown and P. W. Purdom, Jr., SICOMP

10 (1981), 583–593; K. M. Bugrara and C. A. Brown, Inf. Sciences 40 (1986), 21–37.]

216. If the search tree has q two-way branches, it has fewer than 2nq nodes; we shall
find an upper bound on E q. Consider such branches after values have been assigned
to the first l variables x1, . . . , xl, and also to s additional variables y1, . . . , ys because
of unit-clause forcing; the branch therefore occurs on level t = l+ s. The values can be
assigned in 2t ways, and the y’s can be chosen in

(
n−1−l

s

)
ways. For 1 ≤ i ≤ s the m

given clauses must contain ji ≥ 1 clauses chosen (with replacement) from the F =
(
t−1
2

)

that force the value of yi from other known values. The other m − j1 − · · · − js must
be chosen from the R = 8

(
n
3

)
− sF −

(
t
3

)
− 2

(
t
2

)
(n − t) remaining clauses that aren’t

entirely false and don’t force anything further. Thus the expected number of two-way
branches is at most

Plt = 2t
(
n−l−1
s

) ∑

j1,...,js≥1

(
m

j1, . . . , js,m−j
)
F jRm−j

Nm
, j = j1 + · · ·+ js, N = 8

(
n

3

)
,

summed over 0 ≤ l ≤ t < n. Let b = F/N and c = R/N ; the sum on j1, . . . , js is

m! [zm] (ebz − 1)secz =
∑

r

(
s

r

)
(−1)s−r(c+ rb)m = s! cm

∑

q

(
m

q

){
q

s

}(
b

c

)q
.

These values Plt are almost all quite small when m = 200 and n = 50, rising above 100
only when l ≥ 45 and t = 49;

∑
Plt ≈ 4404.7.

If l = xn and t = yn, we have b ≈ 3
8
y2/n and c ≈ 1− 1

8
(3(y−x)y2+y3+6y2(1−y)).

The asymptotic value of [zαn] (eβz/n−1)δneγz can be found by the saddle point method:
Let ζ satisfy βδeζ/(eζ − 1) + γ = αβ/ζ, and let ρ2 = α/ζ2 − δeζ/(eζ − 1)2. Then the

answer is approximately (eζ − 1)δneγζn/β√n/(
√
2πρβ(ζn/β)αn+1).

[For exact formulas and lower bounds, see SICOMP 12 (1983), 717–733. The total
time to find all solutions grows approximately as (2(7

8
)α)n when α < 4.5, according to

H.-M. Méjean, H. Morel, and G. Reynaud, SICOMP 24 (1995), 621–649.]

217. True, unless both l and l̄ belong to A or to B (making A or B tautological). For
if L is a set of strictly distinct literals that covers both A and B, we know that neither
A nor B nor L contains both l and l̄; hence L\{l, l̄} covers (A\{l, l̄})∪(B \{l, l̄}) = C.

(This generalization of resolution is, however, useless if C ⊇ A or C ⊇ B, because
a large clause is easier to cover than any of its subsets. Thus we generally assume that
l ∈ A and l̄ ∈ B, and that C isn’t tautological, as in the text.)

218. x? B: A. [Hence (x ∨A) ∧ (x̄ ∨B) always implies A ∨ B.]

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 227

tautological
commutative
associative
McColl
refutation chain
pure literal
unnecessary branch
Knuth
Robinson
awkward

219. If C′ or C′′ is tautological (℘), we define ℘⋄C = C ⋄℘ = C. Otherwise, if there’s
a unique literal l such that C′ has the form l∨A′ and C′′ has the form l̄∨A′′, we define
C′⋄C ′′ = A′∨A′′ as in the text. If there are two or more such literals, strictly distinct,
we define C′ ⋄ C ′′ = ℘. And if there are no such literals, we define C′ ⋄C ′′ = C′ ∨C′′.

[This operation is obviously commutative but not associative. For example, we
have (x̄ ⋄ ȳ) ⋄ (x ∨ y) = ℘ while x̄ ⋄ (ȳ ⋄ (x ∨ y)) = ǫ.]

220. (a) True: If C ⊆ C′ and C′ ⊆ C′′ and C′′ 6= ℘ then C′ 6= ℘; hence every literal
of C appears in C′ and in C′′. [The notion of subsumption goes back to a paper by
Hugh McColl, Proc. London Math. Soc. 10 (1878), 16–28.]

(b) True: Otherwise we’d necessarily have (C ⋄C ′) ∨ α ∨ α′ 6= ℘ and C 6= ℘ and
C′ 6= ℘ and C ⋄ C ′ 6= C ∨ C′; hence there’s a literal l with C = l ∨A, C′ = l̄ ∨A′,
and the literals of A ∨ A′ ∨ α ∨ α′ are strictly distinct. So the result is easily checked,
whether or not α or α′ contains l or l̄. (Notice that we always have C ⋄ C ′ ⊆ C ∨ C′.)

(c) False: x̄y ⊆ ℘ but x⋄ x̄y = y 6⊆ x = x⋄℘. Also ǫ ⊆ x̄ but x⋄ ǫ = x 6⊆ ǫ = x⋄ x̄.
(d) Such examples are possible if C 6= ǫ: We have x, x̄ ⊢ y (and also x, x̄ ⊢ ℘),

although the only clauses obtainable from x and x̄ by resolution are x, x̄, and ǫ. (On
the other hand we do have F ⊢ ǫ if and only if there’s a refutation chain () for F .)

(e) Given a resolution chain C′1, . . . , C
′
m+r, we can construct another chain

C1, . . . , Cm+r in which Ci ⊆ C′i for 1 ≤ i ≤ m+ r. Indeed, if i > m and C′i = C′j ⋄C ′k,
it’s easy to see that either Cj ⋄ Cj or Ck ⋄ Ck or Cj ⋄Ck will subsume C ′i.

(f) It suffices by (e) to prove this when α1 = · · · = αm = α; and by induction
we may assume that α = l is a single literal. Given a resolution chain C1, . . . , Cm+r

we can construct another one C′1, . . . , C
′
m+r such that C′i = Ci ∨ l for 1 ≤ i ≤ m and

C′i ⊆ Ci∨l for m+1 ≤ i ≤ m+r, with C′i = C′j or C
′
k or C′j ⋄C ′k whenever Ci = Cj ⋄Ck.

221. Algorithm A recognizes ‘1’ as a pure literal, but then finds a
contradiction because the other two clauses are unsatisfiable. The
resolution refutation uses only the other two clauses. (This is an
example of an unnecessary branch. Indeed, a pure literal never appears
in a refutation tree, because it can’t be canceled; see the next exercise.)

1

2

2 2̄

1

0 1

222. If A is an autarky that satisfies C, it also satisfies every clause on the path to ǫ
from a source vertex labeled C, because all of the satisfied literals cannot simultaneously
vanish. For the converse, see Discrete Appl. Math. 107 (2000), 99–137, Theorem 3.16.

223. (The author has convinced himself of this statement, but he has not been able to
construct a formal proof.)

224. At every leaf labeled by an axiom A of F | x̄ that is not an axiom of F , change
the label to A ∪ x; also include x in the labels of all this leaf’s ancestors. We obtain a
resolution tree in which the leaves are labeled by axioms of F . The root is labeled x,
if any labels have changed; otherwise it is still labeled ǫ.

[See J. A. Robinson, Machine Intelligence 3 (1968), 77–94.]

225. Let’s say that a regular resolution tree for clause A is awkward if at least one of
its nodes resolves on one of the variables in A. An awkward tree T for A can always be
transformed into a regular non-awkward tree T ′ for some clause A′ ⊆ A, where T ′ is
smaller than T . Proof: Suppose T is awkward, but none of its subtrees are. Without
loss of generality we can find a sequence of subtrees T0, . . . , Tp, T

′
1, . . . , T

′
p, where

T0 = T and Tj−1 for 1 ≤ j ≤ p is obtained from Tj and T ′j by resolving on the variable
xj ; furthermore xp ∈ A. We can assume that the labels of Tj and T ′j are Aj and A′j ,
where Aj = xj ∪ Rj and A′j = x̄j ∪ R′j ; hence Aj−1 = Rj ∪ R′j . Let Bp = Ap; and for

September 23, 2015

228 ANSWERS TO EXERCISES 7.2.2.2

Kullmann
tautological
transitive law
hyperresolution

j = p− 1, p − 2, . . . , 1, let Bj = Bj+1 if xj /∈ Bj+1, otherwise obtain Bj by resolving
Bj+1 with A′j . It follows by induction that Bj ⊆ xp ∪ Aj−1. Thus B1 ⊆ xp ∪ A0 = A,
and we’ve derived B1 with a non-awkward tree smaller than T .

Now we can prove more than was asked: If T is any resolution tree that derives
clause A, and if A ∪ B is any clause that contains A, there’s a non-awkward regular
resolution tree Tr no larger than T that derives some clause C ⊆ A ∪ B. The proof
is by induction on the size of T : Suppose A = A′ ∪ A′′ is obtained at the root of T
by resolving the clauses x ∪ A′ with x̄ ∪ A′′ that label the subtrees T ′ and T ′′. Find
non-awkward regular trees T ′r and T ′′r that derive C′ and C′′, where C′ ⊆ x∪A′∪B and
C′′ ⊆ x̄ ∪A′′ ∪B. If x ∈ C′ and x̄ ∈ C′′, we obtain the desired Tr by resolving T ′r and
T ′′r on x. Otherwise we can either let C = C′ and Tr = T ′r, or C = C′′ and Tr = T ′′r .
[It’s interesting to apply this construction to the highly irregular resolutions in ().]

226. Initially α is the root, C(α) = ǫ, ‖α‖ = N , and s = 0. If α isn’t a leaf, we
have C(α) = C(α′) ⋄ C(α′′) where x ∈ C(α′) and x̄ ∈ C(α′′) for some variable x. The
Prover names x, and changes α ← α′ or α ← α′′ if the Delayer sets x ← 0 or x ← 1,
respectively. Otherwise min(‖α′‖, ‖α′′‖) ≤ ‖α‖/2, and the Prover can keep going.

227. The proof is by induction on the number of variables, n: If F contains the empty
clause, the game is over, the Delayer has scored 0, and the root is labeled 0. Otherwise
the Prover names x, and the Delayer considers the smallest possible labels (m,m′) on
the roots of refutations for F | x and F | x̄. If m > m′, the reply x ← 0 guarantees
m points; and the reply x ← ∗ is no better, because m′ + 1 ≤ m. If m < m′, the
reply x ← 1 guarantees m′; and if m = m′, the reply x ← ∗ guarantees m + 1. Thus
an optimum Delayer can always score at least as many points as the root label of any
branch of a refutation tree constructed by the Prover. Conversely, if the Prover always
names an optimal x, the Delayer can’t do better.

(This exercise was suggested by O. Kullmann. One can compute the optimum
score “bottom up” by considering all 3n possible partial assignments as in answer 133.)

228. We need only assume the transitivity clauses Tijk of () when i < j and k < j.
[Notice further that Tijk is tautological when i = j or k = j, thus useless for resolution.]

229. Using the binary-relation interpretation, these clauses say that j 6≺ j, that the
transitive law “i ≺ j and j ≺ k implies i ≺ k” holds whenever i ≤ k and j < k, and
that every j has a successor such that j ≺ k. The latter axiom combines with the
finiteness of m to imply that there must be a cycle j0 ≺ j1 ≺ · · · ≺ jp−1 ≺ jp = j0.

Consider the shortest such cycle, and renumber the subscripts so that jp =
max{j0, . . . , jp}. We cannot have p ≥ 2, because (′) implies jp−2 ≺ jp, yielding
a shorter cycle. Hence p = 1; but that contradicts ().

230. Call the axioms Ij , Tijk, andMjm as in the text. If Ij0 is omitted, let xij = [j= j0]
for all i and j. If Ti0j0k0

is omitted, let xij = [j ∈A] for all i /∈ A = {i0, j0, k0}; also
let xi0j = [j= j0], xj0j = [j= k0], and (if i0 6= k0) xk0j = [j= i0]. Finally, if Mj0m

is omitted, let xij = [pi<pj], where p1 . . . pm = 1 . . . (j0−1)(j0+1) . . . mj0. (The same
construction shows that the clauses of answer 228 are minimally unsatisfiable.)

231. Since G11 =M1m, we can assume that j > 1. Then G(j−1)j = G(j−1)(j−1) ⋄ Ij−1.
And if 1 ≤ i < j− 1 we have Gij = (· · · ((G(j−1)j ⋄Aijj) ⋄Aij(j+1)) ⋄ · · ·) ⋄Aijm, where
Aijk = Gi(j−1) ⋄ Ti(j−1)k = Gij ∨ x̄(j−1)k. These clauses make it possible to derive
Bij = (· · · ((Gij ⋄Tjij) ⋄Tji(j+1)) ⋄ · · ·) ⋄Tjim = Gjj ∨ x̄ji for 1 ≤ i < j, from which we
obtain Gjj = (· · · ((Mjm ⋄B1j) ⋄B2j) ⋄ · · ·) ⋄B(j−1)j . Finally Gmm ⋄ Imm = ǫ.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 229

Cook
Cook

232. It suffices to exhibit a backtrack tree of depth 6 lg q +O(1). By branching on at
most 6 variables we can find the color-triplet α1 in answer 176(c).

Suppose we know that αj = α and αj+p = α′, where α′ cannot be obtained
from α in p steps; this is initially true with j = 1, α = α′ = α1, and p = q. If
p = 1, a few more branches will find a contradiction. Otherwise at most 6 branches
will determine αl, where l = j + ⌊p/2⌋; and either αl will be unreachable from α in
⌊p/2⌋ steps, or α′ will be unreachable from αl in ⌈p/2⌉ steps, or both. Recurse.

233. C9 = C4 ⋄ C8, C10 = C1 ⋄ C9, C11 = C5 ⋄ C10, C12 = C6 ⋄ C10, C13 = C7 ⋄ C11,
C14 = C3 ⋄ C12, C15 = C13 ⋄ C14, C16 = C2 ⋄ C15, C17 = C4 ⋄ C15, C18 = C8 ⋄ C15,
C19 = C12 ⋄ C17, C20 = C11 ⋄C18, C21 = C16 ⋄C19, C22 = C20 ⋄ C21.

234. Reply xjk ← ∗ to any query that doesn’t allow the Prover to violate (). Then
the Prover can violate () only after every hole has been queried.

235. Let C(k,A) = (
∨k

j=0

∨
a∈A xja), so that C(0, {1, . . . ,m}) = (x01 ∨ · · · ∨x0m) and

C(m, ∅) = ǫ. The chain consists of k stages for k = 1, . . . , m, where stage k begins by
deriving the clauses x̄ka ∨ C(k − 1, A) from the clauses of stage k − 1, for all (m− k)-
element subsets A of {1, . . . ,m}\a; every such clause requires k resolutions with ().
Stage k concludes by deriving C(k,A) for all (m− k)-element subsets A of {1, . . . ,m},
each using one resolution from () and k − 1 resolutions from the beginning of the
stage. (See ().) Thus stage k involves a total of

(
m

m−k

)
(k2 + k) resolutions.

For example, the resolutions when m = 3 successively yield 11 02 03, 12 01 03,
13 01 02; 01 02 11 12, 01 03 11 13, 02 03 12 13 (stage 1); 21 02 11 12, 21 02 12, 21 03 11 13,
21 03 13, 22 01 12 11, 22 01 11, 22 03 12 13, 22 03 13, 23 01 13 11, 23 01 11, 23 02 13 12,
23 02 12; 01 11 21 22, 01 11 21, 02 12 22 23, 02 12 22, 03 13 23 22, 03 13 23 (stage 2); and
31 11 21, 31 21, 31, 32 12 22, 32 22, 32, 33 13 23, 33 23, 33; 32 33, 33, ǫ (stage 3).

[Stephen A. Cook constructed such chains in 1972 (unpublished).]

236. The symmetry of the axioms should allow exhaustive verification by computer
for m = 2, possibly also for m = 3. The construction certainly seems hard to beat.
Cook conjectured in 1972 that any minimum-length resolution proof would include, for
every subset S of {1, . . . ,m}, at least one clause C such that

⋃
±xjk∈C{k} = S.

237. The idea is to define yjk = xjk ∨ (xjm ∧xmk) for 0 ≤ j < m and 1 ≤ k < m, thus
reducing from m pigeons to m− 1. First we append 6(m− 1)(m− 2) new clauses

(xjm∨zjk) ∧ (xmk∨zjk) ∧ (x̄jm∨x̄mk∨z̄jk) ∧ (x̄jk∨yjk) ∧ (yjk∨zjk) ∧ (xjk∨ȳjk∨z̄jk),
involving 2(m− 1)(m− 2) new variables yjk and zjk. Call these clauses Ajk, . . . , Fjk.

Now if Pj stands for () and Hijk for (), we want to use resolution to derive
P ′j = (yj1 ∨ · · · ∨ yj(m−1)) and H ′ijk = (ȳik ∨ ȳjk). First, Pj can be resolved with Dj1,
. . . , Dj(m−1) to get P ′j ∨ xjm. Next, Pm ⋄Hjmm = xm1 ∨ · · · ∨ xm(m−1) ∨ x̄jm can be
resolved with Gjk = Cjk ⋄Ejk = x̄jm ∨ x̄mk ∨ yjk for 1 ≤ k < m to get P ′j ∨ x̄jm. One
more step yields P ′j . (The intuitive “meaning” guides these maneuvers.)

From Bjk ⋄ Fjk = xjk ∨ xmk ∨ ȳjk, we obtain Qijk = x̄ik ∨ ȳjk after resolving
with Hijk and Himk. Then (Qijk ⋄ Fik) ⋄ Aik = xim ∨ ȳik ∨ ȳjk = Rijk, say. Finally,
(Rjik ⋄Hijm) ⋄Rijk = H ′ijk as desired. (When forming Rjik we need Qjik with j > i.)

We’ve done 5m3 − 6m2 + 3m resolutions to reduce m to m− 1. Repeating until
m = 0, with fresh y and z variables each time, yields ǫ after about 5

4
m4 steps.

[See Stephen A. Cook, SIGACT News 8, 4 (October 1976), 28–32.]

238. The function (1 − cx)−x = exp(cx2 + c2x3/2 + · · ·) is increasing and > ecx
2

.
Setting c = 1

2n
, W =

√
2n ln r, and b = ⌈W ⌉ makes f ≤ r < ρ−b. Also W ≥ w(α0)

September 23, 2015

230 ANSWERS TO EXERCISES 7.2.2.2

asymptotic methods
generating functions
tree function
complete binary tree
matching
boundary

when n ≥ w(α0)
2 and r ≥ 2; hence w(α0 ⊢ ǫ) ≤W + b ≤

√
8n ln r + 1 as desired. The

‘−2’ in the lemma handles the trivial cases that arise when r < 2.

(It is important to realize that we don’t change n or W in the induction proof.
Incidentally, the exact minimum of W + b, subject to r = (1−W/(2n))−b, occurs when

W = 2n(1− e−2T (z)) = 4nz +
2nz3

3
+ · · · , b =

ln r

2T (z)
= (ln r)

(
1

2z
− 1

2
− z

4
− · · ·

)
,

where z2 = (ln r)/(8n) and T (z) is the tree function. Thus it appears likely that the
proof of Lemma B supports the stronger result w(α0 ⊢ ǫ) <

√
8n ln r − 1

2
ln r + 1.)

239. Let α0 consist of all 2
n nontautological clauses of length n. The shortest refutation

is the complete binary tree with these leaves, because every nontautological clause must
appear. Algorithm A shows that 2n − 1 resolutions suffice to refute any clauses in n
variables; hence ‖α0 ⊢ ǫ‖ = 2n − 1, and this is the worst case.

240. If A′ has t elements and ∂A′ has fewer than t, the sequence of 5t integers fij
for its neighbors must include at least 2t repeats of values seen earlier. (In fact there
are at least 2t + 1 repeats, because 2t would leave at least t in the boundary; but the
calculations are simpler with 2t, and we need only a rather crude bound.)

The probability pt that some such A′ exists is therefore less than
(
m+1

t

)(
5t
2t

)
(3t
m
)2t,

because there are
(
m+1

t

)
ways to select A′,

(
5t
2t

)
to select the repeating slots, and at most

(3t)2t out ofm2t ways to fill those slots. Also
(
m+1

t

)
=

(
m
t

)
+
(

m
t−1

)
< 2

(
m
t

)
when t ≤ 1

2
m.

By exercise 1.2.6–67 we have pt ≤ 2(me
t
)t(5te

2t
)2t(3t

m
)2t = 2(ct/m)t, where c =

225e3/4 ≈ 1130. Also p0 = p1 = 0. Thus the sum of pt for t ≤ m/3000 is less than
2
∑∞

t=2(c/3000)
t ≈ .455; and the probability of strong expansion exceeds .544.

241. If 0 < |A′| ≤ m/3000, we can put one of its elements into a hole bk ∈ ∂A′. Then
we can place the other elements in the same way, since bk isn’t their neighbor.

242. The proof of Theorem B remains valid when these new axioms are added.

243. (a) The probability that F ′ has t elements and V (F ′) has fewer than t is at most(
αn
t

)(
n
t

)
(t
n
)3t ≤ (αe2t

n
)t. The sum of this quantity for 1 ≤ t ≤ lg n is O(n−1), and so is

the sum for lg n ≤ t ≤ n/(2αe2).
(b) If the condition in (a) holds, there’s a matching from F ′ into V (F ′), by

Theorem 7.5.1M; hence we can satisfy F ′ by assigning to its variables, one by one. If
F is unsatisfiable we’ll therefore need to invoke more than n/(2αe2) of its axioms.

(c) The probability pt that F ′ has t elements and 2|V (F ′)| − 3|F ′| < 1
2
|F ′| is at

most
(
αn
t

)(
n
λt

)
(λt
n
)3t≤ (αe1+λλ3−λ(t/n)1/4)t, where λ = 7

4
. We have (e1+λλ3−λ)4<106;

so pt < ct when t ≤ n′, where c < 1, and
∑n′

t=n′/2 pt is exponentially small.

(d) Since n′ < n/(2αe2), every refutation a.s. contains a clause C with n′/2 ≤
µ(C) < n′. The minimal axioms F ′ on which C depends have |F ′| = µ(C). Let k
be the number of “boundary” variables that occur in just one axiom of F ′. If v is
such a variable, we can falsify C and the axiom containing v, while the other axioms
of F ′ are true; hence V must contain v or v̄. We have |V (F ′)| = k + |nonboundary| ≤
k + 1

2
(3|F ′| − k), because each nonboundary variable occurs at least twice. Therefore

k ≥ 2|V (F ′)| − 3|F ′| ≥ n′/4, q.s. (Notice the similarities to the proof of Theorem B.)

244. We have [A ∪ B]0 = [A]0[B]0 ∪ [A]1[B]1 and [A ∪ B]1 = [A]0[B]1 ∪ [A]1[B]0,
where concatenation of sets has the obvious meaning. These relations hold also when
A = ∅ or B = ∅, because [∅]0 = {ǫ} and [∅]1 = ∅.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 231

3SAT
cubic
Tseytin
regular resolution
Urquhart
Ben-Sasson
Wigderson
linear equations
backtracking
Stanford GraphBase
raman
multigraphs
expander graphs
merge

245. (a) When conditioning on euv, simply delete the edge u −−− v from G. When
conditioning on ēuv, also complement l(u) and l(v). The graph might become discon-
nected; in that case, there will be exactly two components, one even and one odd, with
respect to the sums of their labels. The axioms for the even component are satisfiable
and may be discarded.

For example, α(G) | {b̄, e} corresponds to while α(G) | {b̄, ē} corresponds
to . We toss out the left component in the first case, the right one in the other.

(b) If C ∈ α(v) we may take V ′ = {v}. And we have µ(ǫ) = |V |, because the
axioms

⋃
v∈V \u α(v) are satisfiable for all u ∈ V .

(c) If u ∈ V ′ and v /∈ V ′, there’s an assignment that falsifies C and some axiom
of α(u) while satisfying all α(w) for w ∈ V ′ \ u, because |V ′| is minimum. Setting
euv ← ēuv will satisfy α(u) without affecting the axioms α(w) (which don’t contain euv).

(d) By (b), every refutation of α(G) must contain a clause C with 1
3
m ≤ µ(C) <

2
3
m. The corresponding V ′ has |V ′|/(|V ′|+ |∂V ′|) < (2

3
+ 8)/9, hence |∂V ′| > 1

26
|V ′|.

[Property (i) is interesting but irrelevant for this proof. Notice that α(G) has
exactly 8

3
n ≈ 2.67n 3SAT clauses in n = 3m/2 variables when G is cubic; every

literal occurs four times. G. Tseytin proved lower bounds for refutations of α(G) by
regular resolution in 1966, before graphs with property (iii) were known; A. Urquhart
obtained them for general resolution in JACM 34 (1987), 209–219, and the simplified
argument given here is due to Ben-Sasson and Wigderson. The fact that α(G) requires
exponentially long refutation chains, although the same axioms can be refuted easily
by working with linear equations mod 2, amounts to a proof that backtracking is a poor
way to deal with linear equations! Suitable Ramanujan graphs raman (2, q, 3, 0) are part
of the Stanford GraphBase for infinitely many prime numbers q. We can also obtain
the same lower bounds with the multigraphs raman (2, q, 1, 0) and raman (2, q, 2, 0).
Section 7.4.3 will explore expander graphs in detail.]

246. Let’s write [a1 . . . ak]
ℓ for what exercise 244 calls [{a1, . . . , ak}]ℓ. With new

variables x, y, z we can introduce {xa, xb̄, x̄āb, yā, yb, ȳab̄, zx, zy, z̄x̄ȳ} and resolve those
clauses to [zab]1, which means z = a ⊕ b. So we can assume that ‘z ← a ⊕ b’ is a
legal primitive operation of “extended resolution hardware,” when z is a new variable.
Furthermore we can compute a1 ⊕ · · · ⊕ ak in O(k) steps, using z0 ← 0 (which is the
clause [z0]

1, namely z̄0) and zk ← zk−1 ⊕ ak when k ≥ 1.

Let the edge variables E(v) be a1, . . . , ad, where d is the degree of v. We compute
sv ← a1 ⊕ · · · ⊕ ad by setting sv,0 ← 0, sv,k ← sv,k−1 ⊕ ak, and sv ← sv,d. We can
resolve sv with the axioms α(v) in O(2d) steps, to get the singleton clause [sv]

ℓ(v)⊕1,
meaning sv = ℓ(v). Summing over v, these operations therefore take O(N) steps.

On the other hand, we can also compute zn ←
⊕

v sv and get zero (namely ‘z̄n’).
Doing this cleverly, by omnisciently knowing G, we can in fact compute it in O(mn)
steps: Start with any vertex v and set z1 ← sv (more precisely, set z1,k ← sv,k for
0 ≤ v ≤ d). Given zj for 1 ≤ j < n, with all its subvariables zj,k, we then compute
zj+1 ← zj⊕su, where u is the unused vertex with su,1 = zj,1. We can arrange the edges
into an order so that if zj has p edge variables in common with su, then zj,k = su,k for
1 ≤ k ≤ p. Suppose the other variables of zj and su are respectively a1, . . . , aq and
b1, . . . , br; we want to merge them into the sequence c1, . . . , cq+r that will be needed
later when zj+1 is used. So we set zj+1,0 ← 0, zj+1,k ← zj+1,k−1⊕ ck, zj+1 ← zj+1,q+r.

From the clauses constructed in the previous paragraph, resolution can deduce
[zj,ksu,k]

1 for 1 ≤ k ≤ p, and hence [zj+1,0zj,psu,p]
1 (namely that zj+1,0 = zj,p ⊕ su,p).

Furthermore, if ck = ai, and if we know that zj+1,k−1 = zj,s ⊕ su,t where s = p+ i− 1

September 23, 2015

232 ANSWERS TO EXERCISES 7.2.2.2

St̊almarck
redundant

and t = p + k − i, resolution can deduce that zj+1,k = zj,s+1 ⊕ su,t; a similar formula
applies when ck = bi. Thus resolution yields zj+1 ← zj ⊕ su as desired. Ultimately we
deduce both zn and z̄n from the singleton clauses sv = ℓ(v).

247. Eliminating x2 from {12, 1̄2, 1̄2̄} gives {1̄}; eliminating x1 then gives ∅. So those
five clauses are satisfiable.

248. We have F (x1, . . . , xn) = (xn∨A′1)∧· · ·∧ (xn∨A′p)∧ (x̄n∨A′′1)∧· · ·∧ (x̄n∨A′′q)∧
A′′′1 ∧· · ·∧A′′′r = (xn∨G′)∧(x̄n∨G′′)∧G′′′, where G′ = A′1∧· · ·∧A′p, G′′ = A′′1∧· · ·∧A′′q ,
and G′′′ = A′′′1 ∧ · · · ∧A′′′r depend only on {x1, . . . , xn−1}. Hence F ′ = (G′ ∨G′′)∧G′′′;
and the clauses of G′ ∨G′′ = ∧p

i=1

∧q
j=1(A

′
i ∨A′′j) are the resolvents eliminating xn.

249. After learning C7 = 2̄3̄ as in the text, we set d ← 2, l2 ← 2̄, Cj = 23̄, learn
C8 = 3̄, and set d← 1, l1 ← 3̄. Then l2 ← 4̄ (say); and l3 ← 1̄, l4 ← 2̄. Now Ci = 1234
has been falsified; after l4 ← 2 and Cj = 12̄ we learn C9 = 134, set l3 ← 1, and learn
C10 = 134 ⋄ 1̄3 = 34. Finally l2 ← 4, we learn C11 = 3; l1 ← 3, and we learn C12 = ǫ.

250. l1 ← 1, l2 ← 3, l3 ← 2̄, l4 ← 4; learn 1̄23̄; l3 ← 2, l4 ← 4; learn 1̄2̄3̄ and 1̄3̄;
l2 ← 3̄, l3 ← 2̄, l4 ← 4; learn 1̄23; l3 ← 2, l4 ← 4; learn 1̄2̄3, 1̄3, 1̄; l1 ← 1̄, l2 ← 3,
l3 ← 4̄, l4 ← 2; learn 13̄4; l3 ← 4, l4 ← 2̄, l4 ← 2.

251. Algorithm I has the property that l̄i1 , . . . , l̄ik−1
, lik are on the stack whenever

the new clause li1 ∨ · · · ∨ lik has been learned, if i1 < · · · < ik = d and step I4 returns
to I2. These literals limit our ability to exploit the new clause; so it appears to be
impossible to solve this problem without doing more resolutions than St̊almarck did.

However, we can proceed as follows. LetM ′′imk be the clause xm1∨· · ·∨xm(k−1)∨
xik ∨ · · · ∨ xi(m−1) ∨ x̄im, for 1 ≤ i, k < m. Using ij to stand for xij , the process for
m = 3 begins by putting 11, 12, 13, 21, 22, 23, 31, 32, 33 on the stack. Then step I3
has Ci = I3, step I4 has Cj = M33; so step I5 learns I3 ⋄M33 = M32. Step I4 now
changes 32 to 32 and chooses Cj = T232; so I5 learns M32 ⋄ T232 = M ′′232. Step I4
changes 31 to 31 and chooses Cj = T231; now we learn M ′′232 ⋄ T231 = M ′′231. Next, we
learn M ′′231 ⋄M23 =M22; and after changing 22 to 22 we also learn M21.

The stack now contains 11, 12, 13, 21. We add 31, 32, and proceed to learn
M32 ⋄ T132 = M ′′132, M

′′
132 ⋄ T131 = M ′′131, M

′′
131 ⋄M13 = M12. The stack now contains

11, 12, and we’ve essentially reduced m from 3 to 2.

In a similar way, O(m2) resolutions will learn Mi(m−1) for i = m− 1, . . . , 1; and
they’ll leave x̄11, . . . , x̄1(m−2), x1(m−1) on the stack so that the process can continue.

252. No; large numbers of clauses such as x̄12 ∨ x̄23 ∨ · · · ∨ x̄89 ∨ x19 are generated by
the elimination process. Although these clauses are valid, they’re not really helpful.

Exercise 373 proves, however, that the proof is completed in polynomial time if
we restrict consideration to the transitivity clauses of exercise 228(!).

253. A conflict arises when we follow a chain of forced moves:

t Lt level reason

0 6̄ 1 Λ
1 4 1 46
2 5 2 Λ
3 3̄ 2 3̄4̄5̄
4 9 2 369

t Lt level reason

5 7̄ 2 5̄7̄9̄
6 1̄ 2 1̄5̄9̄
7 8 2 678
8 2 2 123
9 2̄ 2 2̄5̄8̄

Now 2̄5̄8̄→ 2̄5̄8̄ ⋄ 123 = 135̄8̄→ 135̄67→ 35̄679̄→ 35̄69̄→ 35̄6→ 4̄5̄6; so we learn 4̄5̄6
(which can be simplified to 5̄6, because 4̄ is “redundant” as explained in exercise 257).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 233

level 0
reasons
unique implication point
UIP
backjumping
memo cache
memoization technique
lev
recursive procedure
Van Gelder
watched literals
random permutation

Setting L2 ← 5̄, with reason 4̄5̄6 or 5̄6, now forces 7, 1̄, 3, 9, 2̄, 8̄, 8, all at level 1;
this conflict soon allows us to learn the unit clause 6. (Next we’ll inaugurate level 0,
setting L0 ← 6. No “reasons” need to be given at level 0.)

254. Deducing 3, 2, 4, 4̄ at level 1, it will find 2̄4̄ ⋄ 43̄ = 2̄3̄ and 2̄3̄ ⋄ 23̄ = 3̄, learning 3̄.
(Or it might learn 3̄ after deducing 2̄.) Then it will deduce 3̄, 1̄, 2, 4̄ at level 0.

255. For example, {1̄2̄4̄, 2̄3̄5̄, 456, 456̄}. [Since the clause c′ that is learned by the
procedure described in the text contains just one literal l from the conflict level d,
the trail position for l̄ has been called a “unique implication point” (UIP). If l isn’t
the decision literal for its level, we could resolve c′ with l’s reason and find another
UIP; but each new resolution potentially increases the b array and limits the amount
of backjumping. Therefore we stop at the first UIP.]

256. If it is false, literals 50, 26, . . . , 30 are true; hence also 25, 23, and 29, a conflict.
Consequently we can obtain ‘∗∗’ by starting with 23 26 . . . 50 and resolving with 23 25 27,
25 27 29, and 25 30 . . . 70. [Similarly, and more simply, one can learn () by resolving
11 16 . . . 56 with 31 61 91, 41 66 91, and 56 61 66.]

257. (a) Suppose l̄ ′ on level d′ > 0 is redundant. Then some l′′ in the reason for l′ is
also on level d′; and l′′ is either in c or redundant. Use induction on trail position.

(b) We can assume that the stamp value s used when resolving conflicts is a
multiple of 3, and that all stamps are ≤ s. Then we can stamp literal l with S(|l|) ←
s+ 1 if l̄ is known to be redundant, or s+ 2 if l̄ is known to be nonredundant and not
in c. (These stamps serve as a “memo cache” to avoid repeated work.) While building
c we can also stamp levels as well as literals, setting LS[d′]← s if level d′ has exactly
one of the bi, or s+ 1 if it has more than one.

Then for 1 ≤ j ≤ r, b̄j is redundant if and only if LS[lev (bj)] = s + 1 and
red (b̄j) is true, where lev (l) = VAL(|l|)≫ 1 and where red (l) is the following recursive
procedure: “If l is a decision literal, return false. Otherwise let (l∨ ā1 ∨ · · · ∨ āk) be l’s
reason. For 1 ≤ i ≤ k with lev (ai) > 0, if S(|ai|) = s + 2 return false; if S(|ai|) < s
and either LS[lev (ai)] < s or red (āi) is false, set S(|ai|)← s+2 and return false. But
if none of these conditions hold, set S(|l|)← s+ 1 and return true.”

[See Allen Van Gelder, LNCS 5584 (2009), 141–146.]

258. That statement is true in Table 3, but false in general. Indeed, consider the
sequel to Table 3: The decision L44 = 57 causes the watch list of 57 to be examined,
thus forcing 15, 78, and 87 (among other literals) in some order because of the clauses
15 57 36, 78 57 36, 87 57 27. Then 96 will be forced by the clause 96 87 . . . 15; and the
second literal of that clause at the time of forcing will be 15, regardless of trail order,
if the watched literals of that clause were 96 and 15 (making it invisible to 78 and 87).

259. 1 + ρ6 + ρ7 < ρ+ ρ2 when .7245 < ρ < .7548. (There can in fact be any number
of crossover points: Consider the polynomial (1− ρ− ρ2)(1− ρ3 − ρ6)(1− ρ9 − ρ18).)
260. First, to get a random permutation in the heap we can use a variant of Algo-
rithm 3.4.2P: For k ← 1, 2, . . . , n, let j be a random integer in [0 . . k − 1] and set
HEAP[k − 1]← HEAP[j], HEAP[j] ← k. Then set HLOC(HEAP[j]) ← j for 0 ≤ j < n.

Next, set F ← 0 and Wl ← 0 for 2 ≤ l ≤ 2n + 1 and c ← 3. Do the following
for each input clause l0l1 . . . lk−1: Terminate unsuccessfully if k = 0, or if k = 1 and
0 ≤ VAL(|l0|) 6= l0 &1. If k = 1 and VAL(|l0|) < 0, set VAL(|l0|)← l0 &1, TLOC(|l0|)←
F , F ← F + 1. If k > 1, set MEM[c+ j] ← lj for 0 ≤ j < k; also MEM[c− 1] ← k,
MEM[c− 2]←Wl0 , Wl0 ← c, MEM[c− 3]←Wl1 , Wl1 ← c, c← c+ k + 3.

September 23, 2015

234 ANSWERS TO EXERCISES 7.2.2.2

watched literals
lazy data structures
heap deletion
deletion from heap
siftup
heap insertion
insertion into a heap
blit
redundancies
watch a literal
flushed
restarted

Finally, set MINL← MAXL← c+2 (allowing two cells for extra data in the preamble
of the first learned clause). Of course we must also ensure that MEM is large enough.

261. (Throughout this answer, lj is an abbreviation for MEM[c+ j].) Set q ← 0 and
c ← Wl̄. While c 6= 0, do the following: Set l′ ← l0. If l′ 6= l̄ (hence l1 = l̄), set
c′ ← l−3; otherwise set l′ ← l1, l0 ← l′, l1 ← l̄, c′ ← l−2, l−2 ← l−3, and l−3 ← c′. If
VAL(|l0|) ≥ 0 and VAL(|l0|)+ l0 is even (that is, if l0 is true), perform the steps

if q 6= 0, set MEM[q − 3]← c, else set Wl̄ ← c; then set q ← c. (∗)

Otherwise set j ← 2; while j < l−1 and VAL(|lj |) ≥ 0 and VAL(|lj |) + lj is odd, set
j ← j+1. If now j < l−1, set l1 ← lj , lj ← l̄, l−3 ← Wl1 ,Wl1 ← c. But if j = l−1, do (∗)
above; jump to C7 if VAL(|l0|) ≥ 0; otherwise set LF ← l0, etc. (see step C4) and c← c′.

Finally, when c = 0, do (∗) above to terminate l̄’s new watch list.

262. To delete k = HEAP[0] in C6: Set h← h− 1 and HLOC(k) ← −1. Stop if h = 0.
Otherwise set i ← HEAP[h], α ← ACT(i), j ← 0, j′ ← 1, and do the following while
j′ < h: Set α′ ← ACT(HEAP[j′]); if j′ + 1 < h and ACT(HEAP[j′ + 1]) > α′, set j′ ←
j′+1 and α′ ← ACT(HEAP[j′]); if α ≥ α′, set j′ ← h, otherwise set HEAP[j]← HEAP[j′],
HLOC(HEAP[j′])← j, j ← j′, and j′ ← 2j+1. Then set HEAP[j]← i and HLOC(i)← j.

In C7, set k ← |l|, α ← ACT(k), ACT(k) ← α + DEL, j ← HLOC(k), and if
j > 0 perform the “siftup” operation: “Looping repeatedly, set j′ ← (j − 1)≫ 1 and
i ← HEAP[j′], exit if ACT(i) ≥ α, else set HEAP[j] ← i, HLOC(i) ← j, j ← j′, and exit
if j = 0. Then set HEAP[j]← k and HLOC(k)← j.”

To insert k in C8, set α← ACT(k), j ← h, h ← h+ 1; if j = 0 set HEAP[0] ← k
and HLOC(k)← 0; otherwise perform the siftup operation.

263. (This answer also sets the level stamps LS[d] needed in answer 257, assuming
that the LS array is initially zero.) Let “bump l” mean “increase ACT(|l|) by DEL” as
in answer 262. Also let blit (l) be the following subroutine: “If S(|l|) = s, do nothing.
Otherwise set S(|l|)← s, p← lev (l). If p > 0, bump l; then if p = d, set q ← q+1; else
set r ← r + 1, br ← l̄, d′ ← max(d′, p), and if LS[p] ≤ s set LS[p]← s+ [LS[p]= s].”

When step C7 is entered from C4, assuming that d > 0, set d′ ← q ← r ← 0,
s ← s + 3, S(|l0|) ← s, bump l0, and do blit (lj) for 1 ≤ j < k. Also set t ←
max(TLOC(|l1|), . . . , TLOC(|lk−1|)). Then, while q > 0, set l ← Lt, t ← t − 1; if
S(|l|) = s then set q ← q− 1, and if Rl 6= Λ let clause Rl be l0l1 . . . lk−1 and do blit (lj)
for 1 ≤ j < k. Finally set l′ ← Lt, and while S(|l′|) 6= s set t← t− 1 and l′ ← Lt.

The new clause can now be checked for redundancies as in answer 257. To install
it during step C9, there’s a subtle point: We must watch a literal that was defined

on level d′. Thus we set c ← MAXL, MEM[c] ← l̄ ′, k ← 0, j′ ← 1; and for 1 ≤
j ≤ r if S(|bj |) = s set k ← k + 1 and do this: If j′ = 0 or lev (|bj |) < d′, set
MEM[c+ k + j′] ← b̄j , otherwise set MEM[c+ 1] ← b̄j , j

′ ← 0, MEM[c− 2] ← Wl̄′ ,
Wl̄′ ← c, MEM[c−3]←Wb̄j

, Wb̄j
← c. Finally set MEM[c−1]← k+1, MAXL← c+k+6.

264. We can maintain a “history code” array, setting HF to 0, 2, 4, or 6 when LF

is set, and then using Ht + (Lt & 1) as the move code that represents trail location t
for 0 ≤ t < F . History codes 6, 4, and 0 are appropriate in steps C1, C4, and C6,
respectively; in C9, use code 2 if l′ was a decision literal, otherwise use code 6.

[These move codes do not increase lexicographically when the trail is flushed and
restarted; hence they don’t reveal progress as nicely as they do in the other algorithms.]

265. (1) A literal Lt on the trail with G ≤ t < F has become true, but the watch list
of Lt has not yet been examined. (2) If l0 is true, so that c is satisfied, step C4 doesn’t

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 235

full run
BIMP(l)
Knuth
buddy-system
breadth-first
flag
purging
watched literals

remove c from the watch list of l1 when l1 becomes false. (This behavior is justified,
because c won’t be examined again until l1 has become free during the backtracking
step C8.) (3) A clause that becomes a reason for l0 remains on the watch list of its
false l1. (4) During a full run, a clause that triggers a conflict is allowed to keep both
of its watched literals false.

In general, a false watched literal must be defined at the highest trail level of all
literals in its clause.

266. If U < p, where U is a uniform deviate between 0 and 1, do this: Set j to a
random integer with 0 ≤ j < h, and k ← HEAP[j]. If j = 0, or if VAL(k) ≥ 0, use the
normal C6. Otherwise branch on k (and don’t bother to remove k from the heap).

267. As in Algorithm L, let there be a sequential table BIMP(l) for each literal l,
containing all literals l′ such that l̄ ∨ l′ is a binary clause. Furthermore, when the
propagation algorithm sets LF ← l′ because l′ ∈ BIMP(l), we may set Rl′ ← −l,
instead of using a positive clause number as the “reason.” (Notice that a binary clause
therefore need not be represented explicitly in MEM, if it is represented implicitly in
the BIMP tables. The author’s implementation of Algorithm C uses BIMP tables only
to expedite binary clauses that appear in the original input. This has the advantage
of simplicity, since the exact amount of necessary space can be allocated permanently
for each table. Learned binary clauses are comparatively rare in practice; thus they
can usually be handled satisfactorily with watched literals, instead of by providing the
elaborate buddy-system scheme that was important in Algorithm L.)

Here, more precisely, is how the inner loop goes faster with BIMPs. We want to
carry out binary propagations as soon as possible, because of their speed; hence we
introduce a breadth-first exploration process analogous to ():

Set H ← F ; take account of l′ for all l′ ∈ BIMP(l0);
while H < F , set l0 ← RH , H ← H + 1, and

take account of l′ for all l′ ∈ BIMP(l0).

(∗∗)

Now “take account of l′” means “if l′ is true, do nothing; if l′ is false, go to C7
with conflict clause l̄ ∨ l′; otherwise set LF ← l′, TLOC(|l′|) ← F , VAL(|l′|) ← 2d +
(l′ & 1), Rl′ ← −l, F ← F + 1.” We do (∗∗) just before setting c← c′ in answer 261.
Furthermore, we set E ← F just after G← 0 in step C1 and just after F ← F + 1 in
steps C6 and C9; and if G ≤ E after G← G+ 1 in step C4, we do (∗∗) with l0 ← l̄.

Answer 263 is modified in straightforward ways so that “clause Rl” is treated as
if it were the binary clause (l ∨ l̄′) when Rl has the negative value −l′ .
268. If MEM[c− 1] = k ≥ 3 is the size of clause c, and if 1 < j < k, we can delete
the literal l in MEM[c+ j] by setting k ← k − 1, MEM[c− 1] ← k, l′ ← MEM[c + k],
MEM[c+ j] ← l′, and MEM[c+ k] ← l + f , where f is a flag (typically 231) that
distinguishes a deleted literal from a normal one. (This operation does not need to
be done when the current level d is zero; hence we can assume that k ≥ 3 and j > 1
before deletion. The flag is necessary so that global operations on the entire set of
clauses, such as the purging algorithm, can pass safely over deleted literals. The final
clause in MEM should be followed by 0, an element that’s known to be unflagged.)

269. (a) If the current clause contains a literal l = L̄t that is not in the trivial clause,
where t is maximum, resolve the current clause with Rl̄ and repeat.

(b) (ū1∨ bj) ∧ (lj∨ l̄j−1∨ b̄j) for 1 ≤ j ≤ 9, (l0 ∨ ū2 ∨ ū3) ∧ (l̄9 ∨ l̄8 ∨ b̄10); l′ = l0.
(c) If r ≥ d′ + τ , where τ is a positive parameter, learn the trivial clause instead

of (l̄ ′ ∨ b̄1 ∨ · · · ∨ b̄r). (The watched literals should be l̄′ and ūd′ .)

September 23, 2015

236 ANSWERS TO EXERCISES 7.2.2.2

backtrack
backjumping
blit
watched literal
Han
Somenzi
Hamadi
Jabbour
Säıs
trivial
stamp
trail
unit propagation
author
backjump

langford (n)
automorphism

Notice that this procedure will learn more than simple backtrack à la Algorithm D
does, even when the trivial clause is always substituted (that is, even when τ = −∞),
because it provides for backjumping when d′ < d+ 1.

270. (a) Consider the clauses 32̄, 43̄2̄, 54̄3̄1̄, 65̄4̄1̄, 6̄5̄4̄, with initial decisions L1 ← 1,
L2 ← 2. Then L3 ← 3 with reason R3 ← 32̄; similarly L4 ← 4, L5 ← 5. If L6 ← 6, the
conflict clause 6̄5̄4̄ allows us to strengthen R6 to 5̄4̄1̄; but if L6 ← 6̄, with R6̄ ← 6̄5̄4̄, we
don’t notice that 65̄4̄1̄ can be strengthened. In either case we can, however, strengthen
R5 to 4̄3̄1̄, before learning the clause 2̄1̄.

(b) After doing blit (lj) to the literals of Rl, we know that Rl \ l is contained
in {b̄1, . . . , b̄r} together with q + 1 unresolved false literals that have been stamped at
level d. (Exercise 268 ensures that p 6= 0 within each blit .) Thus we can subsume
clause Rl on the fly if q + r + 1 < k and q > 0.

In such cases the procedure of answer 268 can be used to delete l from c = Rl. But
there’s a complication, because l = l0 is a watched literal (j = 0 in that answer), and all
other literals are false. After l is deleted, it will be essential to watch a false literal l′ that
is defined at trail level d. So we find the largest j′ ≤ k such that VAL(MEM[c + j′]) ≥ 2d,
and we set l′ ← MEM[c + j′]. If j′ 6= k, we also set MEM[c+ j′] ← MEM[c + k]; we can
assume that j′ > 1. Finally, after setting MEM[c] ← l′ and MEM[c + k] ← l + f as in
answer 268, we also delete c from the watch list Wl, and insert it into Wl′ .

[This enhancement typically saves 1%–10% of the running time, but sometimes
it saves a lot more. It was discovered in 2009, independently by two different groups
of researchers: See H. Han and F. Somenzi, LNCS 5584 (2009), 209–222; Y. Hamadi,
S. Jabbour, and L. Säıs, Int. Conf. Tools with Artif. Int. (ICTAI) 21 (2009), 328–335.]

271. We shall check for discards only if the current clause Ci is not trivial (see exercise
269), and if the first literal of Ci−1 does not appear in the trail. (Indeed, experience
shows that almost every permissible discard falls into this category.) Thus, let Ci−1 be
l0l1 . . . lk−1 where VAL(|l0|) < 0; we want to decide if {l̄ ′, b̄1, . . . , b̄r} ⊆ {l1, . . . , lk−1}.

The secret is to use the stamp fields that have already been set up. Set j ← k−1,
q ← r+1, and do the following while q > 0 and j ≥ q: If lj = l̄ ′, or if VAL(|lj |) ≤ 2d′+1
and S(|lj |) = s, set q ← q − 1; in any case set j ← j − 1. Then discard if q = 0.

272. Reflection isn’t as easy to implement as it may seem, unless C is a unit clause,
because CR must be placed carefully in MEM and it must be consistent with the trail.
Furthermore, experience shows that it’s best not to learn the reflection of every learned
clause, because excess clauses make unit propagation slower. The author has obtained
encouraging results, however, by doing the following operations just before returning
to C3 in step C9, whenever the length of C doesn’t exceed a given parameter R:

Assign ranks to the literals of CR by letting rank(l) = ∞ if l is on the trail,
rank(l) = d′′ if l̄ is on the trail at level d′′ < d′, rank(l) = d otherwise. Let u and v
be two of the highest ranking literals, with rank(u) ≥ rank(v). Put them into the first
two positions of CR, so that they will be watched. Do nothing further if rank(v) > d′.
Otherwise, if rank(v) < d′, backjump to level rank(v) and set d′← rank(v). Then if
rank(u) = rank(v) = d′, treat CR as a conflict clause by going to step C7 with c← CR.
(That is a rare event, but it can happen.) Otherwise, if u doesn’t appear in the current
trail, set LF ← u, TLOC(|u|) ← F , Ru ← CR, F ← F + 1. (Possibly F = E + 2 now.)

(For example, this method with R ← 6 roughly halved the running time of
waerden (3, 10; 97) and waerden (3, 13; 160) with parameters () except for ρ← .995.)

A similar idea works with the clauses langford (n), and in general whenever the
input clauses have an automorphism of order 2.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 237

OVAL
polarities
author
Knuth
Van Gelder
dependency digraph
Cook

273. (a) We can convert Algorithm C into a “clause learning machine” by keeping the
process going after F reaches n in step C5: Instead of terminating, start over again by
essentially going back to step C1, except that the current collection of clauses should
be retained, and the OVAL polarities should be reset to random bits. Learned clauses of
size K or less, where K is a parameter, should be written to a file. Stop when you’ve
found a given number of short clauses, or when you’ve exceeded a given time limit.

For example, here’s what happened when the author first tried to find W (3, 13):
Applying this algorithm to waerden (3, 13; 158) with K = 3, and with a timeout limit of
30 Gµ (gigamems), yielded the five clauses 65 68 70, 68 78 81, 78 81 90, 78 79 81, 79 81 82.
So fifteen clauses 65 68 70, 66 69 71, . . . , 81 83 84 could be added to waerden (3, 13; 160),
as well as their fifteen reflections 96 93 91, 95 92 90, . . . , 80 78 77. Then the algorithm
“CR”of exercise 272 proved this augmented set unsatisfiable after an additional 107 Gµ.
In a second experiment, using K = 2 with waerden (3, 13; 159) led to three binary
clauses 76 84, 81 86, and 84 88. Shifting and reflecting gave twelve binary clauses, which
in company with waerden (3, 13; 160) were refuted by CR in another 80 Gµ. (For com-
parison, Algorithm CR refuted waerden (3, 13; 160) unaided in about 120 Gµ, compared
to about 270 Gµ for both Algorithm C and Algorithm L.) Optimum strategies for learn-
ing useful clauses from satisfiable subproblems are far from clear, especially because
running times are highly variable. But this method does show promise, especially on
more difficult problems—when more time can be devoted to the preliminary learning.

(b) Short clauses that can be learned from satisfiable instances of, say, X0 →
X1 → · · · → Xr−1, when X0 is not required to be an initial state, can be shifted and
used to help refute X0 → X1 → · · · → Xr.

274. With care, circular reasoning can (and must) be avoided. But the author’s
elaborate experiments with such ideas (and with the related notion of “better con-
flicts”) were disappointing; they didn’t beat the running time of the simpler algorithm.
However, an intriguing idea by Allen Van Gelder [Journal on Satisfiability, Boolean

Modeling and Computation 8 (2012), 117–122] shows promise.

275. When a solution has been found, let k be minimum such that xk = 1 and the
value of xk has not been assigned at level 0. If no such k exists, we stop. Otherwise
we are entitled to force variables x1 through xk−1 all to have their current values, at
level 0, because we know that this doesn’t produce an unsatisfiable problem. So we fix
those values, and we restart the solution process at level 1 with the tentative decision
‘xk = 0’. If a conflict occurs, we’ll know that xk = 1 at level 0; if not, we’ll have a
solution with xk = 0. In either case we can increase k. (This method is considerably
better than that of answer 109, because every learned clause remains valid.)

276. True. Unit propagation essentially transforms F ∧ L into F |L.
277. Otherwise F ∧ C1 ∧ · · · ∧ Ct−1 ⊢1 ǫ fails (unit propagation wouldn’t start).

278. For example, (46, 5̄6, 5̄4, 6, 4, ǫ). (Six steps are necessary.)

279. True, because the dependency digraph contains a literal l with l−−→∗ l̄−−→∗ l.
280. (a) They’re satisfied if and only if x1 . . . xn has at least j 0s and at least k 1s.
[The problem cook (k, k) was introduced by Stephen A. Cook (unpublished) in 1971.]

(b) Take all positive (j − t)-clauses on {1, . . . , n− 1− t} for t = 1, 2, . . . , j.
(c) Suppose the very first decision is L0 ← xn. The algorithm will proceed to act

as if the input were cook (j, k) | xn = cook (j, k − 1). Furthermore, with these clauses,
every clause that it learns initially will include x̄n. Therefore, by induction, the unit
clause (x̄n) will be learned clause number

(
n−2
j−1

)
. All previously learned clauses are

September 23, 2015

238 ANSWERS TO EXERCISES 7.2.2.2

St̊almarck
exclusion clauses
at-most-one
symmetry-breaking
unit clause
data structures

subsumed by this one, hence they’re no longer relevant. The remaining problem is
cook (j, k) | x̄n = cook (j − 1, k); so the algorithm will finish after learning

(
n−2
j−2

)
more.

Similarly, if the first decision is L0 ← x̄n, the
(
n−2
j−2

)
th learned clause will be (xn).

281. St̊almarck’s refutation corresponds to the sequence (M ′jk1, M
′
jk2, . . . , M

′
jk(k−1),

Mj(k−1)) for j = 1, . . . , k − 1, for k = m, m− 1, . . . , 1. (M ′jk(k−1) can be omitted.)

282. First learn the exclusion clauses (). In the next clauses we shall write aj , bj , . . . ,
as shorthand for aj,p, bj,p, . . . , where p is a particular color, 1 ≤ p ≤ 3. Notice that
the 12q edges appear in 4q triangles, namely {bj , cj , dj}, {aj , aj′ , bj′}, {fj , ej′ , cj′},
{ej , fj′ , dj′}, for 1 ≤ j ≤ q, where j′ is j + 1 (modulo q). For every such triangle
{u, v, w}, learn (ūp′ ∨ vp ∨ wp) and then (up ∨ vp ∨ wp), where p

′ is p+ 1 (modulo 3).

Now for j = 1, 2, . . . , q, learn (aj∨fj∨aj′∨ej′), (aj∨ej∨aj′∨fj′), (ej∨fj∨ej′∨fj′),
(āj ∨ ēj ∨ ēj′), (āj ∨ f̄j ∨ f̄j′), (ēj ∨ f̄j ∨ āj′), as well as eighteen more:

(ū1 ∨ v̄1 ∨ u′j ∨ v′j), (ū2 ∨ v̄2 ∨ u′j′ ∨ v′j′), if j ≥ 3 is odd;

(ū1 ∨ v̄1 ∨ ū′j), (ū2 ∨ v̄2 ∨ ū′j′), if j ≥ 3 is even;

here u, v ∈ {a, e, f} and u′, v′ ∈ {a, e, f} yield 3× 3 choices of (u, v, u′, v′). Then we’re
ready to learn (āj ∨ ēj), (āj ∨ f̄j), (ēj ∨ f̄j) for j ∈ {1, 2} and (aj ∨ ej ∨ fj ∨ aj′),
(aj ∨ ej ∨ fj) for j ∈ {1, q}. All of these clauses are to be learned for 1 ≤ p ≤ 3.

Next, for j = q, q − 1, . . . , 2, learn (āj ∨ ēj), (āj ∨ f̄j), (ēj ∨ f̄j) for 1 ≤ p ≤ 3
and then (aj−1 ∨ ej−1 ∨ fj−1 ∨ aj), (aj−1 ∨ ej−1 ∨ fj−1) for 1 ≤ p ≤ 3. We have now
established all clauses in the hint.

The endgame consists of the following for 1 ≤ p ≤ 3: For all choices of p′ and p′′

with {p, p′, p′′} = {1, 2, 3} (thus two choices), and for j = 2, 3, . . . , q, learn three clauses

(ā1,p ∨ ē1,p′ ∨ āj,p ∨ ej,p′′), (ā1,p ∨ ē1,p′ ∨ āj,p′ ∨ ej,p), (ā1,p ∨ ē1,p′ ∨ āj,p′′ ∨ ej,p′), j even;

(ā1,p ∨ ē1,p′ ∨ āj,p ∨ ej,p′), (ā1,p ∨ ē1,p′ ∨ āj,p′ ∨ ej,p′′), (ā1,p ∨ ē1,p′ ∨ āj,p′′ ∨ ej,p), j odd;

then learn (ā1,p ∨ ē1,p′). Finally learn ā1,p.
[Not all of these clauses are actually necessary. For example, the exclusion clauses

for b’s, c’s, and d’s aren’t used. This certificate doesn’t assume that the symmetry-
breaking unit clauses b1,1 ∧ c1,2 ∧ d1,3 of fsnark (q) are present; indeed, those clauses
don’t help it much. The actual clauses learned by Algorithm C are considerably longer
and somewhat chaotic (indeed mysterious); it’s hard to see just where an “aha” occurs!]

283. A related question is to ask whether the expected length of learned clauses is
O(1) as q →∞.

284. It’s convenient to represent each unit clause (l) in F ∪C1∪· · ·∪Ct as if it were the
binary clause (l∨ x̄0), where x0 is a new variable that is always true. We borrow some
of the data structures of Algorithm C, namely the trail array L, the reason array R,
and the fields TLOC, S, VAL associated with each variable. We set VAL(k) = 0, 1, or −1
when xk has been forced true, forced false, or not forced, respectively.

To verify the clause Ci = (a1∨· · ·∨ak), we begin with VAL(j)← 0 for 0 ≤ j ≤ n,
L0 ← 0, L1 ← ā1, . . . , Lk ← āk, E ← F ← k + 1, G← 0, and VAL(|Lp|)← Lp & 1 for
0 ≤ p < F ; then we carry out unit propagation as in Algorithm C, expecting to reach
a conflict before G = F . (Otherwise verification fails.)

A conflict arises when a clause c = l0 . . . lk−1 forces l0 at a time when l̄0 has already
been forced. Now we mimic step C7 (see exercise 263), but the operations are much
simpler: Mark c, stamp S(|lj |) ← i for 0 ≤ j < k, and set p ← max(TLOC(|l1|), . . . ,

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 239

Wetzler
Heule
Hunt
worst case
tie-breakers
clause activity
trivial
backjump
floating point

TLOC(|lk−1|)). Now, while p ≥ E, we set l ← Lp, p ← p − 1, and if S(|l|) = i we also
“resolve with the reason of l” as follows: Let clause Rl be l0l1 . . . lk−1, mark Rl, and
set S(|lj |)← i for 1 ≤ j < k.

[Wetzler, Heule, and Hunt have suggested an interesting improvement, which will
often mark significantly fewer clauses at the expense of a more complicated algorithm:
Give preference to already-marked clauses when doing the unit propagations, just as
Algorithm L prefers binary implications to the implications of longer clauses (see ()).]

285. (a) j = 77, s77 = 12 + 2827, m77 = 59, b77 = 710.
(b) j = 72, s72 = 12 + 2048, m72 = 99 + 243 + 404 + 536 = 1282, b72 =

3 + 40 + 57 + 86 = 186. (The RANGE statistic is rather coarse when α = 1
2
, because

many different signatures yield the same value.)
(c) j = 71, s71 = 12 + 3087, m71 = 243, b71 = 40.

286. The maximum, 738, is achieved uniquely by the RANGE-oriented solution with
α = 15

16
, except that we can optionally include also the signatures (6, 0) and (7, 0) for

which apq = 0. [This solution optimizes the worst case of clause selection, because the
stated problem implicitly assumes that the secondary heuristic is bad. If we assume,
however, that the choice of tie-breakers based on clause activity is at least as good as
a random choice, then the expected number 738 + 45 · 10

59
≈ 745.6 from α = 15

16
is not

as good as the expected number 710 + 287 · 57
404
≈ 750.5 from α = 9

16
.]

287. When a conflict is detected in step C7 (with d > 0), keep going as in step C3;
but remember the first clause Cd that detected a conflict at each level d.

Eventually step C5 will find F = n. That’s when clauses get their RANGE scores,
if we’re doing a full run because we want to purge some of them. (Sometimes, however,
it’s also useful to do a few full runs at the very beginning, or just after a restart, because
some valuable clauses might be learned.)

New clauses can be learned in the usual way from the remembered clauses Cd, in
decreasing order of d, except that “trivial” clauses (exercise 269) are considered only at
the lowest such level. We must keep track of the minimum backjump level d′, among all
of these conflicts. And if several new clauses have the same d′, we must remember all
of the literals that will be placed at the end of the trail after we eventually jump back.

288. Step C5 initiates a full run, then eventually finds F = n. At this point we’re
done, in the unlikely event that no conflicts have arisen. Otherwise we set LS[d] ← 0
for 0 ≤ d < n and mj ← 0 for 1 ≤ j < 256. The activity ACT(c) of each learned
clause c has been maintained in MEM[c− 5], as a 32-bit floating point number. The
following steps compute RANGE(c), which will be stored in MEM[c− 4] as an integer, for
all learned c in increasing order, assuming that c’s literals are l0l1 . . . ls−1:

If Rl0 = c, set RANGE(c) ← 0. Otherwise set p ← r ← 0, and do the following
for 0 ≤ k < s: If v < 2 and v + lk is even, set RANGE(c) ← 256 and exit the loop on k
(because c is permanently satisfied, hence useless). If v ≥ 2 and LS[lev (lk)] < c, set
LS[lev (lk)]← c and r ← r+1. Then if v ≥ 2 and LS[lev (lk)] = c and lk+v is even, set
LS[lev (lk)]← c+ 1 and p← p+ 1. After k reaches s, set r ← min(⌊16(p+α(r− p))⌋,
255), RANGE(c) ← r, and mr ← mr + 1.

Now resolve conflicts (see answer 287), giving ACT(c) ← 0 and RANGE(c) ← 0 to
all newly learned clauses c, and jump back to trail level 0. (A round of purging is a
major event, something like spring cleaning. It is possible that d′ = 0, in which case
one or more literals have been appended to trail level 0 and their consequences have not
yet been explored.) Find the median range j as defined in (), where T is half the
total current number of learned clauses. If j < 256 and T > sj , find h = T − sj clauses

September 23, 2015

240 ANSWERS TO EXERCISES 7.2.2.2

heap
OVAL
overflow
bug
author
standard deviation
Papadimitriou
variance

with RANGE(c) = j and ACT(c) as small as possible, and bump their range up to j + 1.
(This can be done by putting the first mj − h of them into a heap, then repeatedly
bumping the least active as the remaining h are encountered; see exercise 6.1–22.)

Finally, go again through all the learned clauses c, in order of increasing c, ignor-
ing c if RANGE(c) > j, otherwise copying it into a new location c′ ≤ c. (Permanently
false literals, which are currently defined at level 0, can also be removed at this time;
thus the clause’s size in MEM[c′ − 1] might be less than MEM[c− 1]. It is possible, but
unlikely, that a learned clause becomes reduced to a unit in this way, or even that it
becomes empty.) The activity score in MEM[c− 5] should be copied into MEM[c′ − 5];
but RANGE(c) and the watch links in MEM[c− 2] and MEM[c− 3] needn’t be copied.

When copying is complete, all the watch lists should be recomputed from scratch,
as in answer 260, including original clauses as well as the learned clauses that remain.

289. By induction, yk = (2− 21−k)∆ + (2(k − 2) + 22−k)δ for all k ≥ 0.

290. Set k ← HEAP[0]; then if VAL(k) ≥ 0, delete k from the heap as in answer 262,
and repeat this loop.

291. OVAL(49) will be the even number 36, because of the propagations on level 18
that led to ().

292. If AGILITY ≥ 232 − 213, then () either subtracts 219 − 1 or adds 1. Hence
there’s a minuscule chance that AGILITY will overflow by passing from 232 − 1 to 232

(zero). (But overflow won’t be a calamity even if—unbelievably— it happens. So this
is one “bug” in the author’s program that he will not try to fix.)

293. Maintain integers uf , vf , and θf , where θf has 64 bits. Initially uf = vf = Mf = 1.
WhenM ≥Mf is detected in step C5, do this: If uf&−uf = vf , set uf ← uf+1, vf ← 1,
θf ← 232ψ; otherwise set vf ← 2vf and θf ← θf + (θf ≫ 4). Flush if AGILITY ≤ θf .

294. We have, for example, g1100 = z
3
(g0100+g1000+g1110), and g01∗1 = 1. The solution

is g00∗1 = g01∗0 = g11∗1 = A/D, g00∗0 = g10∗1 = g11∗0 = B/D, g10∗0 = C/D, where
A = 3z− z2− z3, B = z2, C = z3, D = 9− 6z− 3z2 + z3. Hence the overall generating
function is g = (6A + 6B + 2C + 2D)/(16D); and we find g′(1) = 33/4, g′′(1) = 147.
Thus mean(g) = 8.25, var(g) = 87.1875, and the standard deviation is ≈ 9.3.

295. Consider all 3
(
n
3

)
clauses x̄i ∨ xj ∨ xk for distinct {i, j, k}, plus two additional

clauses (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄4 ∨ x̄5 ∨ x̄6) to make the solution 0 . . . 0 unique. Only the two
latter clauses cause the variables Xt and Yt in the proof of Theorem U to deviate from
each other. [C. Papadimitriou, Computational Complexity (1994), Problem 11.5.6.
These clauses spell trouble for a lot of other SAT algorithms too.]

296. The hinted ratio 2(2p+q+1)(2p+q)/(9(p+1)(p+q+1)) is ≈ 1 when p ≈ q (more
precisely when p = q − 7 + O(1/q)). And f(q + 1, q + 1)/f(q, q) = 2(n − q)(3q + 3)3/
(27(q+1)2(2q+2)2) is ≈ 1 when q ≈ n/3. Finally, f(n/3, n/3) = 3

4πn
(3/4)n(1+O(1/n))

by Stirling’s approximation, when n = 3q.

297. (a) Gq(z) = (z/3)qC(2z2/9)q = G(z)q where G(z) = (3 −
√
9− 8z2)/(4z), by

Eqs. 7.2.1.6–() and (). [See Algorithmica 32 (2002), 620–622.]
(b) Gq(1) = 2−q is the probability that Yt actually reaches 0, for some finite t.
(c) If the Y process does stop, Gq(z)/Gq(1) = (2G(z))q describes the distribution

of stopping times. HenceG′q(1)/Gq(1) = 2qG′(1) = 3q is the mean length of the random
walk, given that it terminates. (The variance, incidentally, is 24q. A random Y -walker
who doesn’t finish quickly is probably doomed to wander forever.)

(d) The generating function for T , the stopping time of the Y process, is T (z) =∑
q

(
n
q

)
2−nGq(z); and T is finite with probability T (1) = (3

4
)n by (b). If we restrict

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 241

Markov’s inequality
Papadimitriou
random number generator
biased random bits
random bits, biased

consideration to such scenarios, the mean T ′(1)/T (1) is n; and Markov’s inequality
tells us that Pr(T ≥ N) ≤ n/N .

(e) The algorithm succeeds with probability p > Pr(T < N) ≥ (1− n/N)(3/4)n,
when it is given satisfiable clauses. So it fails after K(4/3)n trials with probability less
than exp(K(4/3)n ln(1− p)) < exp(−K(4/3)np) < exp(−K/2) when N = 2n.

298. Change 1/3 and 2/3 in () to 1/k and (k − 1)/k. The effect is to change G(z)
to (z/k)C((k − 1)z2/k2), with G(1) = 1/(k − 1) and G′(1) = k/((k − 1)(k − 2)). As
before, T (1) = 2−n(1 + G(1))n and T ′(1)/T (1) = nG′(1)/(1 + G(1)). So the general-
ized Corollary W gives success probability > 1 − e−K/2 when we apply Algorithm P
K(2− 2/k)n times with N = ⌊2n/(k − 2)⌋.
299. In this case G(z) = (1−

√
1− z2)/z; thus G(1) = T (1) = 1. But G′(1) =∞, so

we must use a different method. The probability of failure if N = n2 is

1

2n

∑

p,q

(
n

q

)
q

2p+ q

(
2p+ q

p

)
[2p+ q >n2]

22p+q
=

∑

t>n2

2−n−t

t

∑

p

(
n

t− 2p

)(
t

p

)
(t− 2p)

≤
∑

t>n2

2−n−t

t

(
t

⌊t/2⌋
)∑

p

(
n

t− 2p

)
(t− 2p) =

n

4

∑

t>n2

2−t

t

(
t

⌊t/2⌋
)

<
n

4

∑

t>n2

√
2

πt3
=

n√
8π

∫ ∞

n2

dx

⌈x3/2⌉ <
n√
8π

∫ ∞

n2

dx

x3/2
=

1√
2π
.

[See C. Papadimitriou, Computational Complexity (1994), Theorem 11.1.]

300. In this algorithm, variables named with uppercase letters (except C and N) de-
note bit vectors of some fixed size (say 64); each bit position represents a separate trial.
The notation Ur stands for a vector of random bits, each of which is 1 with probability
1/r, independently of all other bits and all previous U ’s. The maximum number of
flips per bit position in this variant of Algorithm P is only approximately equal to N .

P1′. [Initialize.] Set Xi ← U2 for 1 ≤ i ≤ n. Also set t← 0.

P2′. [Begin pass.] Set Z←0 and j←0. (Flipped positions are remembered in Z.)

P3′. [Move to next clause.] If j = m, go to P5′. Otherwise set j ← j + 1.

P4′. [Flip.] Let Cj be the clause (l1 ∨ · · · ∨ lk). Set Y ← L̄1 & · · · & L̄k, where
Li denotes Xh if li = xh and Li denotes X̄h if li = x̄h. (Thus Y has 1s in
positions that violate clause Cj .) Set Z ← Z | Y and t← t+ (Y &1). Then
for r = k, k − 1, . . . , 2 set Y ′ ← Y & Ur, Lr ← Lr ⊕ Y ′, Y ← Y − Y ′.
Finally set L1 ← L1 ⊕ Y and return to P3′.

P5′. [Done?] If Z 6= −1, terminate successfully: One solution is given by the
bits (X1 & B) . . . (Xn & B), where B = Z̄ & (Z + 1). Otherwise, if t > N ,
terminate unsuccessfully. Otherwise return to P2′.

The shenanigans in step P4′ have the effect of flipping the offending bits of each literal
with probability 1/k, thus distributing the 1s of Y in an unbiased fashion.

301. In practice we can assume that all clauses have limited size, so that (say) k ≤ 4
in step P4′. The clauses can also be sorted by size.

A traditional random number generator produces bits U2; and one can use U2&U2

to get U4. The method of exercise 3.4.1–25 can be used for other cases; for example,

U2 & (U2 | (U2 & (U2 | (U2 & (U2 | (U2 & (U2 | (U2 & U2))))))))

September 23, 2015

242 ANSWERS TO EXERCISES 7.2.2.2

branchless computation
ZSEV
mone
swapping to the front
Knuth

is a sufficiently close approximation to U3. The random numbers needed in step P1′

must be of top quality; but those used in step P4′ don’t have to be especially accurate,
because most of their bits are irrelevant. We can precompute the latter, making tables
of 2d values for each of U2, U3, U4, and running through them cyclically by means of
table indices U2P, U3P, U4P as in the code below, where UMASK = 2d+3−1. The values of
U2P, U3P, and U4P should be initialized to (truly) random bits whenever step P2′ starts
a new pass over the clauses.

Here is sample code for the inner loop, step P4′, for clauses with k = 3. The
octabyte in memory location L+ 8(i−1) is the address in memory where Xh is stored,
plus 1 if it should be complemented; for example, if l2 is x̄3, the address X+3×8+1 will
be in location L+ 8, where L is a global register. Register mone holds the constant −1.
LDOU $1,L,0 addr(L1)
LDOU $4,$1,0 |L1|
LDOU $2,L,8 addr(L2)
LDOU $5,$2,0 |L2|
LDOU $3,L,16 addr(L3)
LDOU $6,$3,0 |L3|
ZSEV $0,$1,mone

XOR $7,$4,$0 L̄1

ZSEV $0,$2,mone

XOR $8,$5,$0 L̄2

ZSEV $0,$3,mone

XOR $9,$6,$0 L̄3

AND $7,$7,$8

AND $7,$7,$9 Y
OR Z,Z,$7 Z | Y
AND $0,$7,1 Y & 1
ADD T,T,$0 new t
LDOU $0,U3,U3P

ADD U3P,U3P,8

AND U3P,U3P,UMASK

AND $0,$0,$7 U3 & Y
XOR $6,$6,$0

STOU $6,$3,0 |L3| ⊕ Y ′
SUBU $7,$7,$0

LDOU $0,U2,U2P

ADD U2P,U2P,8

AND U2P,U2P,UMASK

AND $0,$0,$7 U2 & Y
XOR $5,$5,$0

STOU $5,$2,0 |L2| ⊕ Y ′
SUBU $7,$7,$0

XOR $4,$4,$7

STOU $4,$1,0 |L1| ⊕ Y
302. Assume that literals are represented internally as in Algorithm A, and that all
clauses have strictly distinct literals. An efficient implementation actually requires more
arrays than are stated in the text: We need to know exactly which clauses contain any
given literal, just as we need to know the literals of any given clause. And we also need
a (small) array b0 . . . bk−1 to list the best candidate literals in step W4:

W4. [Choose l.] Set c←∞, j ← 0, and do the following while j < k: Set j ← j+
1, l ← lj ; and if c|l| < c, set c← c|l|, b0 ← l, s← 1; or if c|l| = c, set bs ← l,
s ← s + 1. Then if c = 0, or if c ≥ 1 and U ≥ p, set l ← b⌊sU⌋; otherwise
set l ← l⌊kU⌋+1. (Each random fraction U is independent of the others.)

W5. [Flip l.] Set s← 0. For each j such that Cj contains l, make clause Cj hap-
pier as follows: Set q ← kj , kj ← q+1; and if q = 0, set s← s+1 and delete
Cj from the f array (see below); or if q = 1, decrease the cost of Cj ’s critical
variable (see below). Then set c|l| ← s and x|l| ← x̄|l|. For each j such that
Cj contains l̄, make clause Cj sadder as follows: Set q ← kj−1, kj ← q; and
if q = 0, insert Cj into the f array (see below); or if q = 1, increase the cost
of Cj ’s critical variable (see below). Set t← t+ 1 and return to W2.

To insert Cj into f , we set fr ← j, wj ← r, and r ← r + 1 (as in step W1). To
delete it, we set h← wj , r ← r − 1, fh ← fr, wfr ← h.

Whenever we want to update the cost of Cj ’s critical variable in step W5, we know
that Cj has exactly one true literal. Thus, if the literals of Cj appear sequentially
in a master array M, it’s easy to locate the critical variable x|Mi|: We simply set
i← START(j); then while Mi is false (namely while x|Mi| =Mi & 1), set i← i+ 1.

A slight refinement is advantageous when we will be increasing c|Mi|: If i 6=
START(j), swap MSTART(j) ↔ Mi. This change significantly shortens the search when
c|Mi| is subsequently decreased. (In fact, it reduced the total running time by more
than 5% in the author’s experiments with random 3SAT problems.)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 243

random walk303. In this case D = 3 − z − z2 = A/z, and we have g′(1) = 3, g′′(1) = 73/4. Thus
mean(g) = 3 and var(g) = 12.25 = 3.52.

304. If νx = x1 + · · ·+ xn = a, there are a(n− a) unsatisfied clauses; hence there are
two solutions, 0 . . . 0 and 1 . . . 1. If x1 . . . xn isn’t a solution, Algorithm P will change
a to a ± 1, each with probability 1

2
. Thus the probability generating function ga for

future flips is 1 when a = 0 or a = n, otherwise it is z(ga−1 + ga+1)/2. And the overall
generating function is g =

∑
a

(
n
a

)
ga/2

n. Clearly ga = gn−a.

Exercise MPR–105 determines ga and proves that the mean number of flips, g′a(1),
is a(n− a) for 0 ≤ a ≤ n. Thus g′(1) = 2−n ∑n

a=0

(
n
a

)
g′a(1) =

1
2

(
n
2

)
.

Turning now to Algorithm W, again with x1 + · · · + xn = a, the cost of xi is
a − 1 when xi = 1, n − a − 1 when xi = 0. Therefore g1 = gn−1 = z in this case.
And for 2 ≤ a ≤ n − 2, we will move closer to a solution with probability q and
farther from a solution with probability p, where p + q = 1 and p = p′/2 ≤ 1/2; here
p′ is the greed-avoidance parameter of Algorithm W. Thus for 2 ≤ a ≤ n/2 we have
ga = gn−a = z(qga−1 + pga+1).

If p′ = 0, so that the walk is 100% greedy, Algorithm W zooms in on the solution,
with ga = za. Exercise 1.2.6–68 with p = 1/2 tells us that g′(1) = n/2 −m

(
n
m

)
/2n =

n/2 −
√
n/2π + O(1) in that case. On the other hand if p′ = 1, so that the walk is

greedy only when a = 1 or a = n− 1, we’re almost in the situation of Algorithm P but
with n decreased by 2. Then g′(1) = 2−n ∑n−1

a=1

(
n
a

)
(1 + (a − 1)(n − 2) − (a − 1)2) =

n(n− 5)/4 + 2 + (2n− 4)/2n; greed triumphs.
What happens as p′ rises from 0 to 1? Let’s decrease n by 2 and use the rule ga =

z(qga−1 + pga+1) for 1 ≤ a ≤ n/2, so that the calculations are similar to those we did
for Algorithm P but with p now ≤ 1/2 instead of p = 1/2. Functions tm and um can be
defined as above; but ga = (qz)atm−a/tm, the new recurrence is tm+1 = tm−pqz2tm−1,
and t0 = 1/q, u0 = 1/(qz). These functions are polynomials in p, q, and z, whose coeffi-
cients are binomial coefficients: In the notation of exercise 1.2.9–15, for m > 0 we have
tm = Gm−1(−pqz2)−pz2Gm−2(−pqz2) and um = Gm−1(−pqz2)−pzGm−2(−pqz2), so

T (w) =
1− pw

q(1− w + pqz2w2)
; U(w) =

1− (1− qz)w
qz(1−w + pqz2w2)

.

Consequently t′m(1)/tm(1) = 2pq(1−(p/q)m)/(q−p)2−2pm/(q−p) and u′m(1)/um(1) =
(2p−(p/q)mq)/(q−p)2−2p(m− 1

2
)/(q−p); g′a(1) = a/(q−p)−2pq((q/p)a−1)/(q−p)2

for 0 ≤ a ≤ n/2 when n is even, a/(q− p)− q((q/p)a− 1)/(q− p)2 when n is odd. The
overall totals when n = 1000 and p′ = (.001, .01, .1, .5, .9, .99, .999) are respectively
≈ (487.9, 492.3, 541.4, 973.7, 4853.4, 44688.2, 183063.4).

305. That little additional clause reverses the picture! Now there’s only one solution,
and greediness fails badly when νx > n/2 because it keeps trying to move x away

from the solution. To analyze the new situation in detail, we need 3(n− 1) generating
functions gab, where a = x1 + x2 and b = x3 + · · ·+ xn. The expected number of flips
will be g′(1), where g = 2−n ∑2

a=0

∑n−2
b=0

(
2
a

)(
n−2
b

)
gab.

The behavior of Algorithm P is ambiguous, because the unsatisfied clause found
in step P2 depends on the clause ordering. The most favorable case arises when a = 2,
because we can decrease a to 1 by working on the special clause x̄1∨x̄2. Any other clause
is equally likely to increase or decrease a + b. So the best-case generating functions
maximize the chance of reaching a = 2: g00 = 1, g01 = z

2
(g00+ g11), g02 = z

2
(g01+ g12),

g10 = z
2
(g00+g20), g11 = z

2
(g10+g21), g12 = z

2
(g11+g22), and g2b = zg1b. The solution

has g1b = (z/(2− z2))b+1
; and we find mean(g) = 183/32 = 5.71875.

September 23, 2015

244 ANSWERS TO EXERCISES 7.2.2.2

infinite loop
geometric distribution
memoryless

The worst case arises whenever g20 6= zg10 and g21 6= zg11; for example we can
take g20 = z

2
(g10+g21), g21 = z

2
(g20+g22), together with the other seven equations from

the best case. Then g01 = g10 = z(4−3z2)/d, g02 = g11 = g20 = z2(2−z2)/d, and g12 =
g21 = z3/d, where d = 8−8z2+z4. Overall, g = (1+z)2(2−z2)/(4d) and mean(g) = 11.

(This analysis can be extended to larger n: The worst case turns out to have gab =
ga+b = (z/2)a+btn−a−b/tn, in the notation of the previous exercise, giving n(3n− 1)/4
flips on average. The best case has g1b as before; hence g

′
0b = 3b+2−21−b , g′1b = 3b+3,

and g′2b = 3b+ 4 when z = 1. The best average number of flips therefore turns out to
be linear , with mean(g) = 3

2
n− 8

9
(3/4)n.)

The analysis becomes more exciting, but trickier, when we use Algorithm W. Let
p = p′/2 and q = 1 − p as in the previous answer. Clearly g00 = 1, g01 = g10 = zg00,
g02 = z

2
(g01+g12), and g22 = zg12; but the other four cases need some thought. We have

g11 =
z

4
((1

2
+ q)(g01 + g10) + g12 + 2pg21),

since the costs for x1x2x3x4 = 1010 are 1211 and the unsatisfied clauses are (x̄1∨ x4),
(x̄3∨x4), (x̄1∨x2), (x̄3∨x2); in the former two clauses we flip each literal equally often,
but in the latter two we flip x2 with probability p and the other with probability q.
A similar but simpler analysis shows that g21 = z

4
(g11+3g22) and g20 = z

5
(3g10+2g21).

The most interesting case is g12 = z
3
(pg02 + 2pg11 + 3qg22), where the costs are

2122 and the problematic clauses are (x̄1∨x2), (x̄3∨x2), (x̄4∨x2). If p = 0, Algorithm W
will always decide to flip x2; but then we’ll be back in state 12 after the next flip.

Indeed, setting p = 0 yields g00 = 1, g01 = g10 = z, g02 = 1
2
z2, g11 = 3

4
z2,

g20 = 3
5
z2+ 3

40
z4, g21 = 3

16
z3, and g12 = g22 = 0. The weighted total therefore turns out

to be g = (40 + 160z + 164z2 + 15z3 + 3z4)/640. Notice that the greedy random walk
never succeeds after making more than 4 flips, in this case; so we should set N = 4 and
restart after each failure. The probability of success is g(1) = 191/320. (This strategy
is actually quite good: It succeeds after making an average of 1577/382 ≈ 4.13 flips
and choosing random starting values x1x2x3x4 about 320/191 times.)

If p is positive, no matter how tiny, the success probability for N =∞ is g(1) = 1.
But the denominator of g is 48 − 48z2 + 26pz2 + 6pz4 − 17p2z4, and we find that
mean(g) = (1548+2399p−255p2)/(1280p−680p2) = (6192+4798p′−255p′2)/(2560p′−
680p′

2
). Taking p′ = (.001, .01, .1, .5, .9, .99, .999) in this formula gives, respectively,

the approximate values (2421.3, 244.4, 26.8, 7.7, 5.9, 5.7, 5.7).
(Calculations for n = 12 show that g is a polynomial of degree 8 when p = 0,

with g(1) ≈ .51 and g′(1) ≈ 2.40. Thus, setting N = 8 yields success after about
16.1 flips and 1.95 initializations. When p > 0 we have g′(1) ≈ 1.635p−5 + O(p−4) as
p→ 0, and the seven values of p′ considered above yield respectively (5×1016, 5×1011,
5× 106, 1034.3, 91.1, 83.89, 83.95) flips—surprisingly not monotone decreasing in p′.
These WalkSAT statistics can be compared with 17.97 to 105 flips for Algorithm P.)

306. (a) Since l(N) = EN +(1− qN)(N + l(N)), we have qN l(N) = EN +N −NqN =
p1 + 2p2 + · · ·+NpN +NpN+1 + · · ·+Np∞ = N − (q1 + · · ·+ qN−1).

(b) If N = m+ k and k ≥ 0 we have EN = m2/n, q1 + · · ·+ qN−1 = km/n, and
qN = m/n; hence l(N) = n+ k(n−m)/m.

(c) If N≤n, l(N) = (N−
(
N
2

)
/n)/(N/n) = n− N−1

2
; otherwise l(N)= l(n)= n+1

2
.

(d) From qN = p1(N − q1 − · · · − qN−1) and qN+1 = p1(N + 1 − q1 − · · · − qN)
we deduce pN+1 = p1(1− qN), hence 1− qN+1 = (1− p1)(1− qN). So it’s a geometric
distribution, with pt = p(1− p)t−1 for t ≥ 1. (The fact that l(1) = l(2) = · · · is called
the “memoryless property” of the geometric distribution.)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 245

(e) Choose p1, . . . , pn arbitrarily, with qn = p1 + · · ·+ pn ≤ 1. Then, arguing as
in (d), pn+1, pn+2, . . . are defined by 1− qN = (1− 1/l(n))N−n(1− qn) for N ≥ n.

(f) Since l(n+1)− l(n) = (n−(q1+ · · ·+qn))(1−1/qn) ≤ 0, we must have qn = 1
and l(n) = l(n+ 1). (The case l(n) < l(n+ 1) is impossible.)

(g) Let x = p1 and y = p2. By part (f), the conditions are equivalent to
0 < x ≤ x+y < 1 and x(3−2x−y) > 1. Hence 0 < (2x−1)(1−x)−xy ≤ (2x−1)(1−x);
we get the general solution by first choosing 1

2
< x < 1, then 0 ≤ y < (2x−1)(1−x)/x.

(h) If N∗ =∞ and l(n) <∞, we can find n′ with qn′ l(n′) = p1+2p2+· · ·+n′pn′+
n′pn′+1 + · · ·+ n′p∞ > l(n). Hence l(N) ≥ qN l(N) ≥ qn′ l(n′) > l(n) for all N ≥ n′.

(i) We have qn+k = k/(k + 1) for k ≥ 0; hence l(n + k) = (k + 1)(n + Hk)/k.
The minimum occurs when l(n + k) ≈ l(n + k − 1), namely when n ≈ k − Hk; thus
k = n+ lnn+O(1). For example, the optimum cutoff value when n = 10 is N ∗ = 23.
(Notice that E∞ =∞, yet l = l(N∗) ≈ 14.194 in this case.)

(j) Let pt = [t > 1]/2t−1. Then l(N) = (3− 22−N)/(1− 21−N) decreases to 3.

(k) Clearly l ≤ L. For N ≤ L we have l(N) = (N − (q1 + · · · + qN−1))/qN ≥
(N−(1+ · · ·+(N−1))/L)/(N/L) = L−(N−1)/2 ≥ (L+1)/2. And for N = ⌊L⌋+k+1,
similarly, l(N) ≥ N − (1+ · · ·+⌊L⌋ + kL)/L = ⌊L+ 1⌋(1− ⌊L⌋/(2L)) ≥ (L+ 1)/2.

307. (a) EX = EN1 + (1− qN1)(N1 + EX ′), where X ′ is the number of steps for the
sequence (N2, N3, . . .). For numerical results, start with j ← 0, s ← 0, α ← 1; then,
while α > ǫ, set j ← j + 1, α← (1− qNj

)α, and s← s+ ENj
+ αNj . (Here ǫ is tiny.)

(b) Let Pj = (1 − qN1) . . . (1 − qNj−1
) = Pr(X > Tj), and note that Pj ≤

(1− pn)j−1 where n = min{t | pt > 0}. Since qN l(N) = EN + (1− qN)N , we have

EX = qN1 l(N1) + (1− qN1)(qN2 l(N2) + (1− qN2)(qN3 l(N3) + · · ·))

=

∞∑

j=1

PjqNj
l(Nj) =

∞∑

j=1

(Pj − Pj+1) l(Nj).

(c) EX ≥∑∞
j=1(Pj − Pj+1)l(N

∗) = l.

(d) We can assume that Nj ≤ n for all j; otherwise the strategy would do even
worse. For the hint, let {N1, . . . , Nr} contain rm occurrences of m, for 1 ≤ m ≤ n,
and suppose tm = rm + · · · + rn. If tm < n/(2m), the probability of failure would
be (1 − m/n)tm ≥ 1 − tmm/n > 1/2. Hence we have tm ≥ n/(2m) for all m, and
N1 + · · ·+Nr = t1 + · · ·+ tn ≥ nHn/2.

Now there’s some m such that the first r − 1 trials fail on p(m) with probability
> 1

2
. For this m we have EX > 1

2
(N1 + · · ·+Nr−1) ≥ 1

2
(N1 + · · ·+Nr − n).

308. (a) 2a+1 − 1; and we also have S2a+b = Sb+1 for 0 ≤ b < 2a − 1 (by induction).

(b) The sequence (un, vn) in () has 1 + ρk entries with un = k; and ρ1 +
· · · + ρn = n − νn by Eq. 7.1.3–(). From the double generating function g(w, z) =∑

n≥0 w
νnzn = (1+wz)(1+wz2)(1+wz4)(1+wz8) . . . we deduce that

∑
k≥0 z

2k+1−νk =

zg(z−1, z2).

(c) {n | Sn = 2a} = {2a+1k + 2a+1 − 1− νk | k ≥ 0}; hence ∑
n≥0 z

n[Sn =2a] =

z2
a+1−1g(z−1, z2

a+1

) = z2
a+1−1(1 + z2

a+1−1)(1 + z2
a+2−1)(1 + z2

a+3−1)

(d) When 2a occurs for the 2bth time, we’ve had 2a+b−c − [c>a] occurrences
of 2c, for 0 ≤ c ≤ a+ b. Consequently Σ(a, b, 1) = (a+ b− 1)2a+b + 2a+1.

(e) The exact value is
∑a+b

c=0 2
a+b−c2c +

∑ρk
c=1 2

a+b+c; and ρk ≤ λk = ⌊lg k⌋.
(f) The stated formula is Emink{Σ(a, b, k) | Σ(a, b, k) ≥ X}, if we penalize the

algorithm so that it never succeeds unless it is run with the particular cutoff N = 2a.

September 23, 2015

246 ANSWERS TO EXERCISES 7.2.2.2

flush
Fibonacci ruler function
ruler of Fibonaccis
Cohen

(g) We have Q ≤ (1− qt)2b ≤ (1− qt)1/qt < e−1; hence EX < (a+ b− 1)2a+b +
2a+1+

∑∞
k=1(a+ b+2k−1)2a+be−k = 2a+b((a+ b)e/(e−1)+e(3−e)/(e−1)2+21−b).

Furthermore we have 2a+b < 8l − 4l[b=0], by exercise 306(k).

309. No—far from it. If Algorithm C were to satisfy the hypotheses of exercise 306, it
would have to do complete restarts: It would not only have to flush every literal from
the trail, it would also have to forget all the clauses that it has learned, and reinitialize
the random heap. [But reluctant doubling appears to work well also outside of Vegas.]

310. A method analogous to () can be used: Let (u′1, v
′
1) = (1, 0); then define

(u′n+1, v
′
n+1) = (u′n & −u′n = 1≪ v′n? (succ(u′n), 0): (u

′
n, v
′
n + 1)). Here ‘succ’ is the

Fibonacci-code successor function that is defined by six bitwise operations in answer
7.1.3–158. Finally, let S′n = Fv′

n+2 for n ≥ 1. (This sequence 〈S′n〉, like 〈Sn〉, is “nicely
balanced”; hence it is universal as in exercise 308. For example, when Fa appears
for the first time, there have been exactly Fa+2−c occurrences of Fc, for 2 ≤ c ≤ a.)
311. Because 〈Rn〉 does surprisingly well in these tests, it seems desirable to consider
also its Fibonacci analog: If fn = succ(fn−1) is the binary Fibonacci code for n, we
can call 〈ρ′n〉 = 〈ρfn〉 = (0, 1, 2, 0, 3, 0, 1, 4, 0, . . .) the “Fibonacci ruler function,” and
let 〈R′n〉 = (1, 2, 3, 1, 5, 1, 2, 8, 1, . . .) be the “ruler of Fibonaccis,” where R′n = F2+ρ′n.

The results (ES, ES′ , ER, ER′) form = 1 andm = 2 are respectively (315.1, 357.8,
405.8, 502.5) and (322.8, 284.1, 404.9, 390.0); thus S beats S′ beats R beats R′ when
m = 1, while S′ beats S beats R′ beats R when m = 2. The situation is, however,
reversed for larger values of m: R beats R′ beats S beats S′ when m = 90, while R′

beats R beats S′ beats S when m = 89.
In general, the reluctant methods shine for small m, while the more “aggressive”

ruler methods forge ahead as m grows: When n = 100, S beats R if and only if m ≤ 13,
and S′ beats R′ if and only ifm ≤ 12. The doubling methods are best whenm is a power
of 2 or slightly less; the Fibonacci methods are best when m is a Fibonacci number or
slightly less. The worst cases occur at m = 65 = 26 + 1 for S and R (namely 1402.2
and 845.0); they occur at m = 90 = F11 + 1 for S′ and R′ (namely 1884.8 and 805.9).

312. T (m,n) = m + b2bh0(θ)/θ + 2bg(θ), where b = ⌈lgm⌉, θ = 1 − m/n, ha(z) =∑
n z

n[Sn =2a], and g(z) =
∑

n≥1 Snz
n =

∑
a≥0 2

aha(z).

313. If l is flipped, the number of unsatisfied clauses increases by the cost of |l| and
decreases by the number of unsatisfied clauses that contain l; and the latter is at least 1.

Consider the following interesting clauses, which have the unique solution 0000:

x1 ∨ x̄2, x̄1 ∨ x2, x2 ∨ x̄3, x̄2 ∨ x3, x3 ∨ x̄4, x̄3 ∨ x4, x̄1 ∨ x̄4.

“Uphill” moves 1011 7→ 1111 and 1101 7→ 1111 are forced; also 0110 7→ 1110 or 0111.

314. (Solution by Bram Cohen, 2012.) Consider the 10 clauses 1̄2̄345̄67, 1̄23̄45̄67,
1234̄5, 1234̄6, 1234̄7, 1̄2̄3̄4̄, 1̄2̄3̄5̄, 1̄2̄3̄6̄, 1̄2̄4̄5̄, 1̄2̄4̄6̄, and 60 more obtained by the cyclic
permutation (1234567). All binary x = x1 . . . x7 with weight νx = 2 have cost-free flips
leading to weight 3, but no such flips to weight 1. Since the only solution has weight 0,
Algorithm W loops forever whenever νx > 1. (Is there a smaller example?)

315. Any value with 0 ≤ p < 1/2 works, since each graph component is eitherK1 orK2.

316. No; max θ(1 − θ)d for 0 ≤ θ < 1 is dd/(d + 1)d+1, when θ = 1/(d + 1). [But
Theorem J for d > 2 is a consequence of the improved Theorem L in exercise 356(c).]

317. Number the vertices so that the neighbors of vertex 1 are 2, . . . , d′, and let
Gj = G \ {1, . . . , j}. Then α(G) = α(G1) − Pr(A1 ∩ A2 ∩ · · · ∩ Am), and the latter
probability is ≤ Pr(A1∩Ad′+1∩· · ·∩Am) = Pr(A1 | Ad′+1∩· · ·∩Am)α(Gd′) ≤ pα(Gd′).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 247

Möbius polynomial
Chebyshev polynomials
convex hull

Let ρ = (d − 1)/d. By induction we have α(Gj) > ρα(Gj+1) for 1 ≤ j < d′,
because vertex j + 1 has degree < d in Gj . If d′ = 1 then α(G) ≥ α(G1) − pα(G1) >
ρα(G1) > 0. Otherwise if d′ ≤ d, α(G) ≥ α(G1) − pα(Gd′) > α(G1) − pρ1−d′α(G1) ≥
α(G1)− pρ1−dα(G1) = ρα(G1) > 0. Otherwise we must have d′ = d+ 1, with vertex 1
of degree d, and α(G) > α(G1)− pρ−dα(G1) =

d−2
d−1

α(G1) ≥ 0.

318. Let fn = MG(p) where G is the graph of a complete t-ary tree with tn leaves;
thus G has tk vertices at distance k from the root, for 0 ≤ k ≤ n. Then

f0 = 1− p, f1 = (1− p)t − p, and fn+1 = f t
n − pf t2

n−1 for n > 1.

By Theorem S, it suffices to show that fn ≤ 0 for some n.

The key idea is to let g0 = 1− p and gn+1 = fn+1/f
t
n = 1− p/gtn. Assuming that

gn > 0 for all n, we have g1 < g0 and gn − gn+1 = p/gtn − p/gtn+1 > 0 when gn+1 < gn.
Hence limn→∞ gn = λ exists, with 0 < λ < 1. Furthermore λ = 1 − p/λt, so that
p = λt(1− λ). But then p ≤ tt/(t+ 1)t+1 (see answer 316 with θ = 1− λ).

[One must admit, however, that the limit is not often reached until n is extremely
large. For example, even if t = 2 and p = .149, we don’t have fn < 0 until n = 45.
Thus G must have at least 245 vertices before this value of p is too large for Lemma L.]

319. Let x = 1/(d − 1). Since ex > 1 + x = d/(d− 1), we have e > (d/(d− 1))d−1.

320. (a) Let fm(p) be the Möbius polynomial when p1 = · · · = pm = p. Then we have
fm(p) = fm−1(p) − pfm−2(p), and one can show by induction that fm(1/(4 cos2 θ)) =
sin((m+ 2)θ)/((2 cos θ)m+1 sin θ). The threshold decreases to 1/4 as m→∞.

(b) 1/(4 cos2 π
2m

); the Möbius polynomial gm(p) = fm−1(p) − pfm−3(p) satisfies
the same recurrence as fm(p), and equals 2 cosmθ/(2 cos θ)m when p = 1/(4 cos2 θ).

[In terms of the classical Chebyshev polynomials, gm(p) = 2pm/2Tm(1/(2
√
p))

and fm(p) = p(m+1)/2Um+1(1/(2
√
p)).]

321. Let θ = (2 −
√
2)/2, θ′ = θ(1 − θ) = (

√
2 − 1)/2, and c = (p − θ)/(1 − θ).

The method of answer 345 gives (Pr(ABCD), Pr(ABCD), Pr(ABCD), Pr(ABCD),
Pr(ABCD), Pr(ABCD)) = (0, θ′(1−c)3, 2θ′(1−c)2c, θ2(1−c)2+2θ′(1−c)3, θ2(1−c)c+
3θ′(1− c)c2, θ2c2 +4θ′c3). Other cases are symmetric to these six. When p = 3/10 the
six probabilities are ≈ (0, .20092, .00408, .08815, .00092, .00002).

322. (a) Let aj =
∑

i wi[ij ∈A], bj =
∑

k yk[jk ∈B], cl =
∑

k yk[kl∈C], and dl =∑
i wi[li∈D]. Then when X = j and Z = l, the best way to allocate the events is

AB AB

ABAB

Y

W

︷ ︸︸ ︷

āj
︷ ︸︸ ︷

aj

︷
︸
︸
︷

bj

︷
︸
︸

︷

b̄j CD CD

CDCD

Y

W

︷ ︸︸ ︷
cl

︷ ︸︸ ︷
c̄l

︷
︸
︸
︷

d̄l

︷
︸
︸
︷

dl

withinW and Y. Hence Pr(A∩B∩C∩D) =
∑

j,l xjzl((āj+d̄l)
.−1)((b̄j+ c̄l) .−1), which

is zero if and only if we have aj + dl ≥ 1 or bj + cl ≥ 1 for all j and l with xjzl > 0.

(b) Since
∑

j xj(aj , bj) = (p, p), the point (p, p) lies in the convex hull of the

points (aj , bj). So there must be points (a, b) = (aj , bj) and (a′, b′) = (aj′ , bj′) such
that the line from (a, b) to (a′, b′) intersects the region {(x, y) | 0 ≤ x, y ≤ p}; in other
words µa+ (1− µ)a′ ≤ p and µb+ (1− µ)b′ ≤ p. Similarly we can find c, d, c′, d′, ν.

September 23, 2015

248 ANSWERS TO EXERCISES 7.2.2.2

adjacent pairs of letters, avoiding
dependence graph
partial ordering
topological sortings
empilement
linear extensions, see Topological sorting
Gessel
canonical string

(c) Fact: If a ≥ 2
3
and b′ ≥ 2

3
, then µ = 1

2
; hence a = b′ = 2

3
and a′ = b = 0.

Notice also that there are 16 symmetries, generated by (i) a ↔ b, c ↔ d; (ii) a ↔ a′,
b↔ b′, µ↔ 1− µ; (iii) c↔ c′, d↔ d′, ν ↔ 1− ν; (iv) a↔ d, b↔ c, µ↔ ν.

If c ≤ c′ and d ≤ d′, or if c ≤ 1
3
and d ≤ 1

3
, we can assume (by symmetry) that

the Fact applies; this gives a solution to all the constraints, with c = d = c′ = d′ = 1
3
.

For the remaining solutions we may assume that a, b′ > 1
3
> a′, b. Suppose the line

from (a, b) to (a′, b′) intersects the line from (0, 0) to (1, 1) at the point (α, α); dividing
a, b, a′, b′ by 3α gives a solution in which µa+(1−µ)a′ = µb+(1−µ)b′ = 1

3
. Similarly,

we can assume that d, c′ > 1
3
> d′, c and that νc + (1 − ν)c′ = νd + (1 − ν)d′ = 1

3
.

Consequently a + d ≥ 1 and b′ + c′ ≥ 1. Symmetry also allows us to assume that
a+ d′ ≥ 1. In particular, a > 2

3
; and, by the Fact, b′ < 2

3
. So a′+ d ≥ 1, d > 2

3
, c′ < 2

3
.

Now extend the lines that connect (a, b) to (a′, b′) and (c, d) to (c′, d′), by increas-
ing a, b′, c′, d while decreasing a′, b, c, d′, until a′ = 1 − d and a = 1 − d′, and until
either a = 1 or b = 0, and either d = 1 or c = 0. The only solution of this kind with
b′ + c′ ≥ 1 occurs when a = d = 1, a′ = b = c = d′ = 0, b′ = c′ = 1/2, µ = 1

3
, ν = 2

3
.

(d) For the first solution, we can let W , X, Y, Z be uniform on {0, 1, 2}, {0, 1},
{0, 1, 2}, and {0}, respectively; and let A = {10, 20}, B = {11, 12}, C = {00},
D = {00}. (For example, WXY Z = 1110 gives event B.) The second solution turns
out to be the same, but with (X,Y, Z,W) in place of (W,X, Y, Z). Notice that the
solution applies also to P4, where the threshold is 1

3
. [See STOC 43 (2011), 242.]

323. cbc. In this simple case, we just eliminate all strings in which c is followed by a.

324. For 1 ≤ j ≤ n, and for each v such that v = xj or v−−−xj , let i ≺ j for each i < j
such that v = xi. (If several values of i qualify, it suffices to consider only the largest
one. Several authors have used the term “dependence graph” for this partial ordering.)
The traces equivalent to α correspond to the topological sortings with respect to ≺,
because those arrangements of the letters are precisely the permutations that preserve
the empilement.

In (), for example, with x1 . . . xn = bcebafdc, we have 1 ≺ 2, 1 ≺ 4, 2 ≺ 4,
4 ≺ 5, 3 ≺ 6, 2 ≺ 7, 3 ≺ 7, 2 ≺ 8, 4 ≺ 8, and 7 ≺ 8. Algorithm 7.2.1.2V produces 105
solutions, 12345678 (bcebafdc) through 36127485 (efbcdbca).

325. Every such trace α yields an acyclic orientation, if we let u−−→v when u appears
at a lower level in α’s empilement. Conversely, the topological sortings of any acyclic
orientation are all equivalent traces; so this correspondence is one-to-one. [See Ira M.
Gessel, Discrete Mathematics 232 (2001), 119–130.]

326. True: x commutes with y if and only if y commutes with x.

327. Each trace α is represented by its height h = h(α) ≥ 0, and by h linked lists
Lj = Lj(α) for 0 ≤ j < h. The elements of Lj are the letters on level j of α’s
empilement; these letters have disjoint territories, and we keep each list in alphabetic
order so that the representation is unique. The canonical string representing α is
then L0L1 . . . Lh−1. (For example, in () we have L0 = be, L1 = cf , L2 = bd ,
L3 = ac, and the canonical representation is becfbdac.) We also maintain the sets
Uj =

⋃{T (a) | a ∈ Lj} as bit vectors; in (), for example, they are U0 = #36,
U1 = #1b, U2 = #3c, U3 = #78.

To multiply α by β, do the following for k = 0, 1, . . . , h(β) − 1 (in that order),
and for each letter b ∈ Lk(β) (in any order): Set j ← h(α); then while j > 0 and
T (b) & Uj−1(α) = 0, set j ← j − 1. If j = h(α), set Lj(α) empty, Uj(α) ← 0, and
h(α)← h(α) + 1. Insert b into Lj(α), and set Uj(α)← Uj(α) + T (b).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 249

Viennot
starfish
line graph
claw
matchings
Möbius polynomial
matching polynomial
real roots of polynomials
cocomparability graph
Anisimov
Knuth

328. Do the following for k = h(β) − 1, . . . , 1, 0 (in that order), and for each letter
b ∈ Lk(β) (in any order): Set j ← h(α) − 1; while j > 0 and T (b) & Uj(α) = 0, set
j ← j − 1. Report failure if b isn’t in Lj(α). Otherwise remove b from that list and set
Uj(α)← Uj(α)− T (b); if Uj(α) is now zero, set h(α)← h(α)− 1.

If there was no failure, the resulting α is the answer.

329. Do the following for k = 0, 1, . . . , h(α) − 1 (in that order), and for each letter
a ∈ Lk(α) (in any order): Report failure if a isn’t in L0(β). Otherwise remove a from
that list, set U0(β)← U0(β)− T (a), and renormalize the representation of β.

Renormalization involves the following steps: Set j ← c← 1. While Uj−1(β) 6= 0
and c 6= 0, terminate if j = h(β); otherwise set c← 0, j ← j+1, and then, for each letter
b in Lj−1(β) such that T (b) & Uj−2(β) = 0, move b from Lj−1(β) to Lj−2(β) and set
Uj−2(β)← Uj−2(β)+T (b), Uj−1(β)← Uj−1(β)−T (b), c← 1. Finally, if Uj−1(β) = 0,
set Ui−1(β)← Ui(β) and Li−1(β)← Li(β) for j ≤ i < h(β), then set h(β)← h(β)− 1.

If there was no failure, the resulting β is the answer.

330. Let the territorial universe be V ∪E, the vertices plus edges of G, and let T (a) =
{a} ∪ {{a, b} | a −−− b}. [G. X. Viennot, in 1985, called this subgraph a starfish.]
Alternatively, we can get by with just two elements in each set T (a) if and only if
G = L(H) is the line graph of some other multigraph H. Then each vertex a of G
corresponds to an edge u−−−v in H, and we can let T (a) = {u, v}.

[Notes: The smallest graph G that isn’t a line graph is the “claw” K1,3. Since
sets of independent vertices in the line graph G are sets of disjoint edges in H, also
called matchings of H, the Möbius polynomial of G is also known as the “matching
polynomial” ofH. Such polynomials are important in theoretical chemistry and physics.
When all territories have |T (a)| ≤ 2, all roots of the polynomial M∗G(z) in () are
real and positive, by exercise 341. But Mclaw(z, z, z, z) = 1−4z+3z2−z3 has complex
roots ≈ 0.317672 and 1.34116 ± 1.16154i.]

331. If α is a string with k > 0 occurrences of the substring ac, there are 2k ways
to decompose α into factors {a, b, c, ac}, and the expansion includes +α and −α each
exactly 2k−1 times. Thus we’re left with the sum of all strings that don’t contain ‘ac’.

332. No: If b commutes with a and c, but ac 6= ca, we’re dealing with strings that
contain no adjacent pairs ba or cb; hence cab qualifies, but it’s equivalent to the smaller
string bca. [Certain graphs do define traces with the stated property, as we’ve seen in
() and (). Using the next exercise we can conclude that the property holds if
and only if no three letters a < b < c have a /−−− b, b /−−− c, and a−−− c in the graph G
of clashes. Thus the letters can be arranged into a suitable linear order if and only if
G is a cocomparability graph; see Section 7.4.2.]

333. To show that
∑

α∈A,β∈B(−1)|β|αβ = 1, let γ = a1 . . . an be any nonempty string.

If γ cannot be factored so that a1 . . . ak ∈ A and ak+1 . . . an ∈ B, then γ doesn’t appear.
Otherwise γ has exactly two such factorizations, one in which k has its smallest possible
value and the other in which k is one greater; these factorizations cancel each other in
the sum. [Manuscripta Math. 19 (1976), 239–241.]

334. Equivalently we want to generate all strings of length n on the alphabet {1, . . . ,m}
that satisfy the following criterion, which strengthens the adjacent-letter test of exer-
cise 332: If 1 ≤ i < j ≤ n, xi /−−−xj , xi+1 /−−− xj , . . . , xj−1 /−−− xj , then xi ≤ xj . [See
A. V. Anisimov and D. E. Knuth, Int. J. Comput. Inf. Sci. 8 (1979), 255–260.]

T1. [Initialize.] Set x0 ← 0 and xk ← 1 for 1 ≤ k ≤ n.
T2. [Visit.] Visit the trace x1 . . . xn.

September 23, 2015

250 ANSWERS TO EXERCISES 7.2.2.2

MacMahon’s Master Theorem
lexicographically smallest traces
multiset permutations
cocomparability graph
cograph
complete bipartite
complete k-partite graphs
convolution principle
binomial convolution
Bender
Goldman

T3. [Find k.] Set k ← n. While xk = m set k ← k − 1. Terminate if k = 0.

T4. [Advance xk.] Set xk←xk + 1 and j ← k − 1.

T5. [Is xk valid?] If xj > xk and xj /−−−xk, return to T4. If j > 0 and xj < xk

and xj /−−−xk, set j ← j − 1 and repeat this step.

T6. [Reset xk+1 . . . xn.] While k < n do the following: Set k ← k + 1, xk ← 1;
while xk−1 > xk and xk−1 /−−−xk, set xk ← xk + 1. Then go back to T2.

335. Given such an ordering, we have MG = det(I −A), where the entry in row u and
column v of A is v [u≥ v or u−−−v]. The determinant in the given example is

det

1 −b −c 0 0 0
0 1−b 0 −d 0 0
0 −b 1−c −d −e 0
0 −b −c 1−d 0 −f
0 −b −c −d 1−e −f
0 −b −c −d −e 1−f

+ det

−a −b −c 0 0 0
0 1 c −d 0 0
0 0 1 −d −e 0
0 0 0 1−d 0 −f
0 0 0 −d 1−e −f
0 0 0 −d −e 1−f

,

after expanding the first column, then subtracting the first row from all other rows in
the right-hand determinant. Therefore this rule satisfies recurrence ().

[The result also follows from MacMahon’s Master Theorem, exercise 5.1.2–20,
using the characterization of lexicographically smallest traces in answer 334. Accord-
ing to Theorem 5.1.2B, such traces are in one-to-one correspondence with multiset
permutations whose two-line representation does not contain v

u when v > u and v /−−−u.
Is there a similar determinantal expression when G is not a cocomparability graph?]

336. (a) If α is a trace for G and β is a trace for H, we have µG⊕H (αβ) = µG(α)µH(β).
HenceMG⊕H =MGMH . (b) In this case µG−−−H(αβ) = µG(α) if β = ǫ, µH(β) if α = ǫ;
otherwise it’s zero. Therefore MG−−−H =MG +MH − 1.

[These rules determine MG recursively whenever G is a cograph (see exercise 7–
90). In particular, complete bipartite and k-partite graphs have simple Möbius series,
exemplified byMG = (1−a)(1−b)(1−c)+(1−d)(1−e)+(1−f)−2 when G = K3,2,1.]

337. Substituting a1 + · · ·+ ak for a in MG gives MG′ . (Each trace for G′ is obtained
by putting subscripts on the a’s of the traces for G.)

338. The proof of Theorem F needs only minor changes: We limit α to traces that
contain no elements of A, and we define α′ and β′ by letting a be the smallest letter /∈ A
in the bottom level of γ’s empilement. If γ has no such letter, there’s only one factor-
ization, with α = ǫ. Otherwise we pair up cancelling factorizations. [Incidentally, the
sum of all traces whose sinks are in A must be written in the other order: M−1G MG\A.]

339. (a) “Push down” on piece xj and factor out what comes through the floor.
(b) Factor out the pyramid for the smallest label, and repeat on what’s left.
(c) This is a general convolution principle for labeled objects [see E. A. Bender

and J. R. Goldman, Indiana Univ. Math. J. 20 (1971), 753–765]. For example, when
l = 3 the number of ways to get a labeled trace of length n from three labeled pyramids
is
∑

i,j,k

(
n

i,j,k

)
PiPjPk/3! = n!

∑
i,j,k(Pi/i!)(Pj/j!)(Pk/k!)/3!, with i+j+k = n in both

of these sums. We divide by 3! so that the topmost pyramid labels will be increasing.
(d) Sum the identity in (c) for l = 0, 1, 2,
(e) T (z) =

∑
n≥0 tnz

n = 1/MG(z) by Theorem F, and P (z) =
∑

n≥1 pnz
n/n.

Note: If we retain the letter names, writing for exampleMG(z) = 1−(a+b+c)z+acz2

instead ofMG(z) = 1−3z+z2, the formal power series − lnMG(z) exhibits the pyramids
of length n in the coefficient of zn, but only in the sense of commutative algebra (not

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 251

permanent
Heilmann
Lieb
determinant
MacMahon’s Master Theorem
Scott
Sokal
slack

trace algebra). For example, the coefficient of z3 obtained from
∑

k≥1(1−MG(z))
k/k

with trace algebra includes the nonpyramidal term bac/6.

340. Let w((i1 . . . ik)) = (−1)k−1ai1i2ai2i3 . . . aiki1 ; thus w(π) = (−a13a34a42a21)
(−a57a75)(a66) in the given example. The permutation polynomial is then detA, by
definition of the determinant. (And we get the permanent, if we omit the (−1)k−1.)

341. The hint is true when n = 2, since the first involution polynomials are w11x and
w11w22x

2−w12. And there’s a recurrence: W (S) = wiixW (S \ i)−∑
j 6=iW (S \{i, j}).

So we can prove the existence of n+1 roots s1 < r1 < · · · < rn < sn+1 by induc-
tion: LetWn(x) be the polynomial for {1, . . . , n}. ThenWn+1(x) is w(n+1)(n+1)xWn(x)

minus n polynomials w(n+1)jW ({1, . . . , n} \ j), each with roots q
(j)
k that are nicely

sandwiched between the roots of Wn. Furthermore q
(j)
n−k = −q(j)k and rn+1−k = −rk,

for 1 ≤ k ≤ n/2. It follows that Wn+1(rn) < 0, Wn+1(rn−1) > 0, and so on, with
(−1)kWn+1(rn+1−k) > 0 for 1 ≤ k ≤ n/2. Moreover, Wn+1(0) = 0 when n is even;
(−1)kWn+1(0) > 0 when n = 2k − 1; and Wn+1(x) > 0 for all large x. Hence the
desired sk exist. [See Heilmann and Lieb, Physical Review Letters 24 (1970), 1412.]

342. If we replace (i1 . . . ik) by ai1i2ai2i3 . . . aiki1 (as in answer 340, but without the
(−1)k−1), thenMGn becomes det(I−A). Replacing aij by aijxj gives the determinant
in MacMahon’s Master Theorem. And if x1 = · · · = xn = x, we get the polynomial
det(I−xA), whose roots are the reciprocals of the roots of A’s characteristic polynomial.

343. The formulas in answer 336 show that MG(p1, . . . , pm) increases whenever any
pj decreases, with respect to a cograph G. The only graph on ≤ 4 vertices that isn’t
a cograph is P4 (see exercise 7–90); then MG(p1, p2, p3, p4) = 1 − p1 − p2 − p3 − p4 +
p1p3 + p1p4 + p2p4 = (1 − p1)(1 − p3 − p4) − p2(1 − p4). In this case also we can
conclude that MG(p1, . . . , p4) > 0 implies (p1, . . . , p4) ∈ R(G). But when G = P5, we
find MG(1− ǫ, 1− ǫ, ǫ, 1− ǫ, 1− ǫ) > 0 for 0 ≤ ǫ < φ−2; yet (1− ǫ, 1− ǫ, ǫ, 1− ǫ, 1− ǫ)
is never in R(G) because MG(0, 0, ǫ, 1− ǫ, 1− ǫ) = −(1− ǫ)2.
344. (a) If some minterm, say B1B2B3B4, has negative “probability,” then p1p4 ×
(1− π2 − π3 + π23) < 0; hence MG(0, p2, p3, 0) < 0 violates the definition of R(G).

(b) In fact, more is true: πI∪J = πIπJ when i /−−−j for i ∈ I , j ∈ J, and I ∩J = ∅.
(c) It’s MG(p1[1∈ J], . . . , pm[m∈ J]), by () and (). This important fact,

already implicit in the solution to part (a), implies that β(G | J) > 0 for all J .
(d) Writing just ‘J ’ for ‘G|J ’, we shall prove that α(i∪ J)/β(i∪ J) ≥ α(J)/β(J)

for i /∈ J , by induction on |J |. Let J ′ = {j ∈ J | i /−−−j}. Then we have

α(i ∪ J) = α(J)− Pr
(
Ai ∩

⋂

j∈J
Aj

)
≥ α(J)− Pr

(
Ai ∩

⋂

j∈J′

Aj

)
≥ α(J) − piα(J ′),

because of (). Also β(i∪J) = β(J)−piβ(J ′). Hence α(i∪J)β(J)−α(J)β(i∪J) ≥
(α(J) − piα(J ′))β(J) − α(J)(β(J) − piβ(J ′)) = pi(α(J)β(J

′) − α(J ′)β(J)), which is
≥ 0 by induction since J ′ ⊆ J .

[This argument proves that Lemma L holds whenever (p1, . . . , pm) leads to a le-
gitimate probability distribution with β(G) > 0; hence such probabilities are in R(G).]

(e) By induction, we have β(i ∪ J) = β(J) − θiβ(J
′)
∏

i−−−j(1 − θj) ≥ β(J) −
θiβ(J

′)
∏

j∈J\J′(1− θj) ≥ (1− θi)β(J), because β(J)/β(J ′) ≥
∏

j∈J\J′(1− θj).
345. (Solution by A. D. Scott and A. D. Sokal.) Set p′j = (1 + δ)pj where δ ≤ 0 is
the slack of (p1, . . . , pm). Then MG(p

′
1, . . . , p

′
m) = 0, but it becomes positive if any

p′j is decreased. Define events B′1, . . . , B
′
m by the construction in exercise 344. Let

C1, . . . , Cm be independent binary random variables such that Pr(Cj = 1) = qj ,

September 23, 2015

252 ANSWERS TO EXERCISES 7.2.2.2

traces
sources
top-down algs
bottom-up algs
Scott
Sokal

where (1 − p′j)(1 − qj) = 1 − pj . Then the events Bj = B′j ∨ Cj satisfy the desired

conditions: Pr(Bi | Bj1 ∩ · · · ∩ Bjk) = Pr(Bi | B ′j1 ∩ · · · ∩ B
′
jk
) = Pr(Bi) = pi; and

Pr(B1 ∨ · · · ∨Bm) ≥ Pr(B′1 ∨ · · · ∨B′m) = 1.

346. (a) By (), Ka,G is the sum of all traces on the probabilities of G \ a whose
sources are neighbors of a. Decreasing pj doesn’t decrease any trace.

(b) Suppose vertex a = 1 has neighbors 2, . . . , j. If we’ve recursively computed
MG\a∗ and MG\a, finding that (pj+1, . . . , pm) ∈ R(G\a∗) and (p2, . . . , pm) ∈ R(G\a),
then we know Ka,G; and the monotonicity property in (a) implies that (p1, . . . , pm) ∈
R(G) if and only if aKa,G < 1.

The graph G =
a b
c d
e f

in exercise 335 can, for example, be processed as follows:

Mabcdef =Mbcdef

(
1−a Mdef

Mbcdef

)
= (1−a′)(1−b′) . . . (1−f ′), a′ =

a

(1−b′)(1−c′) ,

Mbcdef =Mcdef

(
1−b Mcef

Mcdef

)
= (1−b′)(1−c′) . . . (1−f ′), b′ =

b(1−c′′)
(1−c′)(1−d′) ,

Mcdef =Mdef

(
1−c Mf

Mdef

)
= (1−c′)(1−d′)(1−e′)(1−f ′), c′ =

c

(1−d′)(1−e′) ,

Mcef =Mef

(
1−c Mf

Mef

)
= (1−c′′)(1−e′)(1−f ′), c′′ =

c

(1−e′) ,

Mdef =Mef

(
1−d Me

Mef

)
= (1−d′)(1−e′)(1−f ′), d′ =

d(1−e′′)
(1−e′)(1−f ′) ,

Mef =Mf

(
1−eMǫ

Mf

)
= (1−e′)(1−f ′), e′ =

e

(1−f ′) ,

Me =Mǫ

(
1−eMǫ

Mǫ

)
= (1−e′′), e′′ = e,

Mf =Mǫ

(
1−f Mǫ

Mǫ

)
= (1−f ′), f ′ = f,

with Mǫ = 1. (The equations on the left are derived top-down, then the equations on
the right are evaluated bottom-up. We have (a, b, . . . , f) ∈ R(G) if and only if f ′ < 1,
e′′ < 1, e′ < 1, . . . , a′ < 1.) Even better is to traverse this graph in another order,
using the rule MG⊕H =MGMH (exercise 336) when subgraphs aren’t connected:

Mcdabef =Mdabef

(
1−cMbMf

Mdabef

)
= (1−c′)(1−d′) . . . (1−f ′), c′ =

c

(1−a′)(1−d′)(1−e′) ,

Mdabef =MabMef

(
1−d MaMe

MabMef

)
= (1−d′)(1−a′)(1−b′)(1−e′)(1−f ′), (see below)

Mab =Mb

(
1−aMǫ

Mb

)
= (1−a′)(1−b′), a′ =

a

(1−b′) ,

Ma =Mǫ

(
1−aMǫ

Mǫ

)
= (1−a′′), a′′ = a,

Mb =Mǫ

(
1−bMǫ

Mǫ

)
= (1−b′), b′ = b,

where d′ = dMaMǫ/(MabMef) = d(1−a′′)(1−e′′)/((1−a′)(1−b′)(1−e′)(1−f ′)), and
Mef , Me, Mf , Mǫ are as before. In this way we can often solve the problem in linear
time. [See A. D. Scott and A. D. Sokal, J. Stat. Phys. 118 (2005), 1151–1261, §3.4.]

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 253

least common ancestor
Pegden

347. (a) Suppose v1−−−v2−−−· · ·−−−vk−−−v1 is an induced cycle. We can assume that
v1 ≻ v2. Then, by induction on j, we must have v1 ≻ · · · ≻ vj for 1 < j ≤ k; for if
vj+1 ≻ vj we would have vj+1−−−vj−1 by (∗). But now vk−−−v1 implies that k = 3.

(b) Let the vertices be {1, . . . ,m}, with territory sets T (a) ⊆ U for 1 ≤ a ≤ m;
and let U be a tree such that each U | T (a) is connected. Let Ua be the least common
ancestor of T (a) in U . (Thus the nodes of T (a) appear at the top of the subtree rooted
at Ua.) Since Ua ∈ T (a), we have a−−−b when Ua = Ub.

Writing s ≻U t for the ancestor relation in U, we now define a ≻ b if Ua ≻U Ub

or if Ua = Ub and a < b. Then (∗) is satisfied: If t ∈ T (a)∩ T (b), we have Ua ≻U t and
Ub ≻U t, hence Ua �U Ub or Ub �U Ua, hence a ≻ b or b ≻ a. And if a ≻ b ≻ c and
t ∈ T (a)∩ T (c), we have Ua �U Ub �U Uc; consequently Ub ∈ T (a)∩ T (b), because Ub

lies on the unique path between t and Ua in U and T (a) is connected.
(c) Processing the nodes in any order such that a is eliminated before b whenever

Ua is a proper ancestor of Ub will then lead only to subproblems in which the algorithm
needs no “double-primed” variables.

For example, using (a, b, . . . , g) instead of (1, 2, . . . , 7) in order to match the
notation in exercise 346, suppose U is the tree rooted at p having the edges p−−− q,
p −−− r, r −−− s, r −−− t, and let T (a) = {p, q, r, t}, T (b) = {p, r, s}, T (c) = {p, q},
T (d) = {q}, T (e) = {r, s}, T (f) = {s}, T (g) = {t}. Then a ≻ b ≻ c ≻ d, c ≻ e ≻ f ,
e ≻ g. The algorithm computes Mabcdefg = (1 − a′)Mbcdefg , Mbcdefg = (1 − b′)Mcdefg ,
etc., where a′ = aMf/Mbcdefg , b

′ = bMdfg/Mcdefg = b(MdMfMg)/(McdMefMg), etc.
In general, the tree ordering guarantees that no “double-primed” variables are

needed. Thus the formulas reduce to v′ = v/
∏

u−−v, v≻u(1− u′) for each vertex v.

(d) For example, we have p1 = a, . . . , p7 = g, θ1 = a′, . . . , θ7 = g′ in (c). The
values of the θ’s, which depend on the ordering ≻, are uniquely defined by the given
equations; and we haveMG(p1, . . . , pm) = (1−θ1) . . . (1−θm) in any case. [W. Pegden,
Random Structures & Algorithms 41 (2012), 546–556.]

348. There is at least one singularity at z = ρeiθ for some θ. If 0 < r < ρ, the power
series f(z) =

∑∞
n=0 f

(n)(reiθ)(z−reiθ)n/n! has radius of convergence ρ−r. If z = ρ isn’t

a singularity, the radius of convergence for θ = 0 would exceed ρ−r. But |f (n)(reiθ)| =
|∑∞m=0m

nan(re
iθ)m−n| ≤ f (n)(r). [Mathematische Annalen 44 (1894), 41–42.]

349. Typical generating functions are g0000001 = 1; g0110110 = z(g0100110 + g0101110 +
g0110110+g0111110)/4 (in Case 1) or g0110110 = z(g0000110+g0010110+g0100110+g0110110)/4
(in Case 2). These systems of 128 linear equations have solutions whose denominators
involve one or more of the polynomials 4−z, 2−z, 16−12z+z2 , 4−3z, 64−80z+24z2−z3,
8−8z+z2 in Case 1 (see exercise 320); the denominators in Case 2 are powers of 4−z.

Setting g(z) =
∑

x gx(z)/128 leads to g(z) = 1/((2 − z)(8− 8z + z2)) in Case 1,
with mean 7 and variance 42; g(z) = (1088−400z+42z2− z3)/(4− z)6 in Case 2, with
mean 1139/729 ≈ 1.56 and variance 1139726/7292 ≈ 2.14.

[The upper bound E1+ · · ·+E6 is achieved by the distribution of Case 1, because
it matches the extreme distribution () of the path graph P6. Incidentally, if Case 1
is generalized from n = 7 to arbitrary n, the mean is n(n − 1)/6 and the variance is
(n+ 3)(n+ 2)n(n− 1)/90.]

350. (a) The generating function for N is
∏n

k=1(1 − ξk)/(1 − ξkz); so the mean and
variance, in general, are

∑n
k=1 ξk/(1 − ξk) and

∑n
k=1 ξk/(1 − ξk)2. In particular, the

means are (i) n; (ii) n/(2n− 1); (iii) n/(2n − 1); (iv) H2n −Hn + 1
2n

= ln 2 +O(1/n);

(v) 1
2
(1
n+1

+ 1
2n
− 1

2n+1
) = 1

2n
+ O(1/n2). The variance in case (i) is 2; otherwise it’s

asymptotically the same as the mean, times 1 +O(1/n).

September 23, 2015

254 ANSWERS TO EXERCISES 7.2.2.2

complete bipartite graph
Moser
Tardos
Alon
Spencer
traces
Fibonacci numbers
consecutive ones
chain rule

(b) In this case the mean and variance are ξ/(1 − ξ) and ξ/(1 − ξ)2, where
ξ = Pr(Am) = 1− (1− ξ1) . . . (1− ξn). This value ξ is (i) 1− 2−n; (ii) 1− (1− 1

2n
)
n
=

1− e−1/2 + O(1/n); (iii) 1− (1− 2−n)n = n/2n + O(n2/4n); (iv) 1/2; (v) 1/(2n + 2).
Hence the respective means are (i) 2n−1; (ii) e1/2−1+O(1/n); (iii) n/2n +O(n2/4n);
(iv) 1; (v) 1/(2n + 1). And the variances are (i) 4n − 2n; (ii) e − e1/2 + O(1/n);
(iii) n/2n +O(n2/4n); (iv) 2; (v) 1/(2n+ 1) + 1/(2n + 1)2.

(c) Since G is Kn,1, exercises 336 and 343 imply that (ξ1, . . . , ξn, ξ) ∈ R(G) if
and only if ξ < 1

2
. This condition holds in cases (ii), (iii), and (v).

351. (Solution by Moser and Tardos.) We require i −−− j if there’s a setting of the
variables such that Ai is false and Aj is true, provided that some change to the variables
of Ξj might make Ai true. And vice versa with i↔ j.

(The Local Lemma can be proved also for directed lopsidependency graphs; see
Noga Alon and Joel H. Spencer, The Probabilistic Method (2008), §5.1. But the theory
of traces, which we use to analyze Algorithm M, is based on undirected graphs, and no
algorithmic extension to the directed case is presently known.)

352. Answer 344(e), withMG = β(i∪J),MG\i = β(J), proves thatMG\i/MG ≥ 1−θi.
353. (a) There are n+1 sorted strings in Case 1, namely 0k1n−k for 0 ≤ k ≤ n. There
are Fn+2 solutions in Case 2 (see, for example, exercise 7.2.1.1–91).

(b) At least 2nMG(1/4), where G is the path Pn−1. By exercise 320 we have
MG(1/4) = fn−1(1/4) = (n+ 1)/2n; so Case 1 matches the lower bound.

(c) There are no lopsidependencies. Hence the relevant G is the empty graph on
m = n−1 vertices;MG(1/4) = (3/4)n−1 by exercise 336; and indeed, Fn+2 ≥ 3n−122−n.

354. Differentiate () and set z ← 1.

355. If A = Aj is an isolated vertex of G, then 1 − pjz is a factor of the polynomial
M∗G(z) in (), hence 1 + δ ≤ 1/pj ; and Ej = pj/(1 − pj) ≤ 1/δ. Otherwise
MG(p1, . . . , pj−1, pj(1 + δ), pj+1, . . . , pm) = M∗G(1) − δpjM∗G\A∗ (1) > M∗G(1 + δ) = 0;
so Ej = pjM

∗
G\A∗(1)/M∗G(1) > 1/δ.

356. (a) We prove the hint by induction on |S|. It’s obvious when S = ∅; otherwise
let X = S ∩⋃

i∈Uj
Uj and Y = S \X. We have

Pr(Ai | AS) =
Pr(Ai ∩AX ∩AY)

Pr(AX ∩AY)
≤ Pr(Ai ∩ AY)

Pr(AX ∩AY)
≤ Pr(Ai) Pr(AY)

Pr(AX ∩AY)
=

Pr(Ai)

Pr(AX |AY)

by (). Suppose i belongs to the cliques Uj0 , . . . , Ujr where j = j0. Let X0 = ∅
and Xk = (S ∩ Ujk) \ Xk−1, Yk = Y ∪ X1 ∪ · · · ∪ Xk−1 for 1 ≤ k ≤ r. We have
Pr(Al |AYk

)≤θljk for all l ∈ Xk, since |Yk| < |S| when Xk 6= ∅; hence Pr(AXk
| AYk

) ≥
(1 + θijk − Σjk). Thus Pr(AX |AY) = Pr(AX1 |AY1) Pr(AX2 |AY2) . . . Pr(AXr |AYr) ≥∏

k 6=j,i∈Uk
(1 + θik −Σk), by the chain rule (exercise MPR-14); the hint follows.

Finally let Wk = U1 ∪ · · · ∪ Uk for 1 ≤ k ≤ t. The hint implies that

Pr(A1 ∩ · · · ∩Am) = Pr(AW1) Pr(AW2 | AW1) . . . Pr(AWt | AWt−1
)

≥ (1−Σ1)(1−Σ2) . . . (1−Σt) > 0.

(b) The extreme events B1, . . . , Bm of Theorem S satisfy the hint of (a). Thus
Pr(Bi |

⋂
k/∈Uj

Bk) ≤ θij for all i ∈ Uj ; hence qi = Pr(Bi |
⋂

k 6=iBk) ≤ θij/(1+θij−Σj).

Furthermore Ei = qi/(1− qi) in (), because qi = piMG\i∗/MG\i.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 255

Kolipaka
Szegedy
Xu
covering
invariant property
cufflink pattern
L7
lower semimodular
modular

(c) Let U1, . . . , Ut be the edges of G, with θik = θi when Uk = {i, j}. Then
Σk = θi+θj < 1, and the sufficient condition in (a) is that Pr(Ai) ≤ θi

∏
j 6=k,i−−−j(1−θj)

whenever i−−−k. (But notice that Theorem M does not hold for such larger pi.)

[K. Kolipaka, M. Szegedy, and Y. Xu, LNCS 7408 (2012), 603–614.]

357. If r > 0, we have x = r/(1−p), y = r/(1−q). But r = 0 is possible only on the axes
of Fig. 51: Either (p, q) = (0, 1), x = 0, 0 < y ≤ 1, or (p, q) = (1, 0), 0 < x ≤ 1, y = 1.

358. Suppose x ≥ y (hence p ≥ q and x > 0). Then p ≤ r if and only if 1− y ≤ y.
359. Instead of computing πl by formula (), represent it as two numbers (π+

l , π
′
l),

where π+
l is the product of the nonzero factors and π′l is the number of zero factors.

Then the quantity πl̄ needed in () is π+
l̄
[π′l̄ =0]; and the quantity πl/(1− ηC→l) is

π+
l [π′l =1] if ηC→l = 1, otherwise it’s π+

l [π′l =0]/(1− ηC→l). A similar method can be
used to separate out the zero factors of

∏
l∈C γl→C in ().

360. We may assume that η3 = 0. Since πl = 1 implies that ηC→l = γl̄→C = 0, we
have ηC→1 = ηC→2̄ = ηC→3 = ηC→4̄ = γ1̄→C = γ2→C = γ3̄→C = γ4→C = 0 for
all C. Consequently, as in (), all but three of the values ηC→l are zero; let x, y, z
denote the others. Also let η1̄ = a, η2 = b, η4 = c, η3̄ = d. Then π1̄ = (1−a)(1−x),
π2 = (1−b)(1−y), π4 = (1−c)(1−z), and π3̄ = 1 − d. A fixed point is obtained if
x = d(b+ cd(1−b) + ad2(1−b)(1−c))/(1− d3(1−a)(1−b)(1−c)), etc. If d is 0 or 1 then
x = y = z = d. [Are there any other fixed points, say with π1 6= 1?]

361. The π’s and γ’s will also be either 0 or 1, and we exclude the case πl = πl̄ = 0; thus
each variable v is either 1, 0, or ∗, depending on whether (πv, πv̄) is (0, 1), (1, 0), or (1, 1).

Any assignment of 1, 0, or ∗ to the variables is permissible, provided that every
clause has at least one literal that’s true or two that are ∗. (Such partial assignments
are called “covering,” and they’re usually possible even with unsatisfiable clauses; see
exercise 364.) All survey messages η′C→l = ηC→l are zero except when clause C has l
as its only non-false literal. The reinforcement message ηl can be either 0 or 1, except
that it must be 1 if l is true (πl = 0) and all messages ηC→l are 0.

If we also want η′l = ηl, we take κ = 1 in (), and ηl = 1− πl.

362. Create a linked list L, containing all literals that are to be forced true, including
all literals that are in 1-clauses of the original problem. Do the following steps while L
is nonempty: Remove a literal l from L; remove all clauses that contain l; and remove
l̄ from all the clauses that remain. If any of those clauses has thereby been reduced
to a single literal, (l′), check to see if l′ or l̄′ is already present in L. If l̄′ is present,
a contradiction has arisen; we must either terminate unsuccessfully or restart step S8
with increased ψ. But if l̄′ and l′ are both absent, put l′ into L.

363. (a) True; indeed, this is an important invariant property of Algorithm C.

(b) W (001) = 1, W (∗∗∗) = p1p2p3, otherwise W (x) = 0.

(c) Statements (i) and (iii) are true, but not (ii); consider x = 10∗, x′ = 00∗, and
the clause 123.

(d) All eight subsets of {1, 2̄, 3̄} are stable except {2̄, 3̄}, because x1 is
constrained in 100. The other seven are partially ordered as shown. (This
diagram illustrates L7, the smallest lattice that is lower semimodular but not modular.)

(e) x2x3 = 00 01 0∗ 10 11 1∗ ∗0 ∗1 ∗∗
x1 = 0 0 q1q2 0 q1q3 q1q2q3 q1q2p3 0 q1p2q3 q1p2p3
x1 = 1 q2q3 q1q2q3 q1q2p3 q1q2q3 q1q2q3 q1q2p3 q1p2q3 q1p2q3 q1p2p3
x1 = ∗ 0 p1q2q3 p1q2p3 p1q2q3 p1q2q3 p1q2p3 p1p2q3 p1p2q3 p1p2p3

September 23, 2015

256 ANSWERS TO EXERCISES 7.2.2.2

inclusion and exclusion
Ardila
semimodular lattice
Maneva
Sinclair
symmetric Boolean functions Sk
Braunstein
Zecchina
Eliminating
resolution
pure

(f) One solution is {1̄2̄34̄5̄, 1̄4, 2̄5, 3̄45̄, 3̄4̄5}. (For these clauses the partial assign-
ment {3} is stable, but it is “unreachable” below {1, 2, 3, 4, 5}.)

(g) If L = L′ \ l and L′ ∈ L but L /∈ L, introduce the clause (xl ∨
∨

k∈L′ x̄k).
(h) True, because L′ = L \ l′ and L′′ = L \ l′′, where |l′| and |l′′| are uncon-

strained with respect to L. A variable that’s unconstrained with respect to L is also
unconstrained with respect to any subset of L.

(i) Suppose L′ = L′(0) ≺ · · · ≺ L′(s) = {1, . . . , n} and L′′ = L′′(0) ≺ · · · ≺ L′′(t) =
{1, . . . , n}. Then L′(s−i) ∩ L′′(t−j) is stable for 0 ≤ i ≤ s and 0 ≤ j ≤ t, by induction
on i+ j using (h).

(j) It suffices to consider the case L = {1, . . . , n}. Suppose the unconstrained
variables are x1, x2, x3. Then, by induction, the sum is q1q2q3 + p1 + p2 + p3 −
(p1p2 + p1p3 + p2p3) + p1p2p3 = 1, using “inclusion and exclusion” to compensate for
terms that are counted more than once. A similar argument works with any number
of unconstrained variables.

Notes: See F. Ardila and E. Maneva, Discrete Mathematics 309 (2009), 3083–
3091. The sum in (j) is ≤ 1 when each pk+qk ≤ 1 for 1 ≤ k ≤ n, because it is monotone.
Because of (i), the stable sets below L form a lower semimodular lattice, with

L′ ∧ L′′ = L′ ∩ L′′ and L′ ∨ L′′ =
⋂
{L′′′ | L′′′ ⊇ L′ ∪ L′′ and L′′′ ⊑ L}.

E. Maneva and A. Sinclair noted in Theoretical Comp. Sci. 407 (2008), 359–369 that a
random satisfiability problem is satisfiable with probability ≤ E

∑
W (X), the expected

total weight of partial assignments having the given distribution, because of identity (j);
this led them to sharper bounds than had previously been known.

364. (a) True if and only if all clauses have length 2 or more.
(b) 001 and ∗∗∗ are covering; these are the partial assignments of nonzero weight,

when q1 = · · · = qn = 0 in the previous exercise. Only 001 is a core.
(c) ∗∗∗ is the only covering and the only core; W (0101) =W (0111) = q3.
(d) In fact, every stable partial assignment L′ has a unique covering assignment L

with L ⊑ L′, namely L =
⋂{L′′ | L′′ ⊑ L′, obtained by successively removing

unconstrained literals (in any order)}.
(e) If L′ and L′′ are adjacent we have L′ ∩ L′′ ⊑ L′ and L′ ∩ L′′ ⊑ L′′.
(f) Not necessarily. For example, the clauses {1̄2̄34, 1̄23̄4, 1̄234̄, 12̄3̄4, 12̄34̄, 123̄4̄}

define S2(x1, x2, x3, x4); there are two clusters but only an empty core.
[A. Braunstein and R. Zecchina introduced the notion of covering assignments in

J. Statistical Mechanics (June 2004), P06007:1–18.]

365. If L is any of the six solutions in (), and if q is odd, then qL−d is a covering assign-
ment for 0 ≤ d < q and 8q−d ≤ n < 9q−d. (For example, if L = {1̄, 2̄, 3, 4, 5̄, 6̄, 7, 8} the
partial assignment 3L− 1 = {2, 5, 8, 11, 14, 17, 20, 23} works for n ∈ [23 . . 25].) Thus all
n > 63 are “covered.” [Do all nonempty coverings of waerden (3, 3;n) have this form?]

366. Eliminating variable 1 (x1) by resolution yields the erp rule x̄1 ← (x2 ∨ x̄3) ∧
(x3 ∨ x4), and new clauses {23̄4, 23̄4̄, 234, 2̄34}. Then eliminating 2 (x2) yields x2 ←
(x3 ∨ x4) ∧ (x̄3 ∨ x4) and new clauses {34, 3̄4}. Now 4 (x4) is pure; so x4 ← 1, and
F ′ = ∅ is satisfiable. (Going backwards in the erp rules will then make x4 ← 1, x2 ← 1,
x1 ← 0, regardless of x3.)

367. (We can choose whichever of the two assignments is most convenient, for example
by picking the shortest, since either one is a valid erp rule.) Any solution will either
satisfy all the clauses on the right side of x̄ or all the clauses on the right side of x, or
both. For if a solution falsifies both Ci \ x and C′j \ x̄, it falsifies Ci ⋄C ′j .

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 257

hyperresolution
substitution
DNF
Two-level circuit minimization
irredundant
self-subsumptions
self-subsumes
exact cover
doubly linked
AVAIL

In either case the value of x will satisfy all of the clauses C1, . . . , Ca, C
′
1, . . . , C

′
b.

368. If (l) is a clause, subsumption removes all other clauses that contain l. Then
resolution (with p = 1) will remove l̄ from all q of its clauses, and (l) itself.

369. Let Ci = (l∨αi) and C
′
j = (l̄∨βj). Each omitted clause Ci ⋄C ′j = (αi∨βj), where

1 < i ≤ p and r < j ≤ q, is redundant, because it is a consequence of the non-omitted
clauses (αi ∨ l̄1), . . . , (αi ∨ l̄r), (l1 ∨ · · · ∨ lr ∨ βj) via hyperresolution. [This technique
is called “substitution,” because we essentially replace |l| by its definition.]

370. (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ c) = (a ∨ c̄) ∧ (b ∨ c). (See the discussion following
7.1.1–(). In general, advanced preprocessors use the theory of DNF minimization, in
its dual form, to find irredundant minimum forms for CNF. Such techniques are not
implemented, however, in the examples of preprocessing considered in this section.)

371. One scenario starts by eliminating variable 1, replacing eight clauses by eight new
ones: 234̄7̄, 2̄3̄47, 235̄9̄, 2̄3̄59, 34̄57̄, 3̄45̄7, 45̄79̄, 4̄57̄9. Then 8 is eliminated, replacing
another eight by eight: 24̄56̄, 2̄45̄6, 256̄7̄, 2̄5̄67, 257̄9̄, 2̄5̄79, 467̄9̄, 4̄6̄79. Then come
self-subsumptions: 234̄7̄ 7→ 237̄ (via 234), 34̄57̄ 7→ 357̄ (345), 357 7→ 35 (357̄); and
35 subsumes 345, 357̄. Further self-subsumptions yield 235̄9̄ 7→ 239̄, 2̄3̄59 7→ 2̄3̄9,
2̄5̄79 7→ 2̄79, 2̄45̄6 7→ 2̄46, 246 7→ 46; and 46 subsumes 456, 467̄9̄, 2̄46. Similarly,
2̄5̄67 7→ 2̄67, 4̄57̄9 7→ 4̄59, 2̄3̄47 7→ 2̄3̄7, 3̄45̄7 7→ 3̄5̄7, 3̄5̄7̄ 7→ 3̄5̄; and 3̄5̄ subsumes 3̄4̄5̄,
3̄5̄7. Then 24̄56̄ 7→ 24̄6̄, 2̄4̄6̄ 7→ 4̄6̄; and 4̄6̄ subsumes 4̄5̄6̄, 24̄6̄, 4̄6̄79. Also 256̄7̄ 7→ 26̄7̄,
45̄79̄ 7→ 45̄9̄, 257̄9̄ 7→ 27̄9̄.

Round 2 of variable elimination first gets rid of 4, replacing six clauses by just
four using exercise 369: 236̄, 2̄3̄6, 569, 5̄6̄9̄. Then variable 3 goes away; ten clauses
become eight, again via exercise 369: 25̄6̄, 2̄56, 25̄7̄, 2̄57, 25̄9̄, 2̄59, 56̄9̄, 5̄69. And the
ten clauses that now contain 2 or 2̄ resolve into just four: 567̄9̄, 56̄7̄9, 5̄679̄, 5̄6̄79.

After eliminating 7 and 9, only four clauses remain, namely 56, 56̄, 5̄6, 5̄6̄; and
they quickly produce a contradiction.

372. (This problem is surprisingly difficult.) Are the clauses {1̄5̄, 1̄6̄, 2̄5̄, 2̄6̄, 3̄7̄, 3̄8̄,
4̄7̄, 4̄8̄, 123, 124, 134, 234, 567, 568, 578, 678} as “small” as possible?

373. Using the notation of (), elimination of x1m, x2m, . . . , xmm produces new
clauses M ′imk for 1 ≤ i, k < m as well as Mm(m−1). Then elimination of xm(m−1)

gives (Mi(m−1)∨Mm(m−2)) for 1 ≤ i < m. This clause self-subsumes toMi(m−1), using
M ′im1, . . . ,M

′
im(m−2). AndMi(m−1) subsumes eachM ′imk, so we’ve reducedm tom−1.

374. As in (), variables are numbered 1 to n, and literals from 2 to 2n+ 1. But we
will now number the clauses from 2n+ 2 to m+ 2n+ 1. The literals of clauses will be
stored in cells, somewhat as in Algorithm A, but with additional links as in the exact
cover algorithms of Section 7.2.2.1: Each cell p contains not only a literal L(p), a clause
number C(p), and forward/backward pointers F(p) and B(p) to other cells with the
same literal, but also left/right pointers S(p) and D(p) to other cells in the same clause.
(Think “sinister” and “dexter.”) Cells 0 and 1 are reserved for special use; cell l, for
2 ≤ l < 2n + 2, serves as the head of the doubly linked list of cells that contain the
literal l; cell c, for 2n+2 ≤ c < m+2n+2, serves as the head of the doubly linked list
of cells that contain the elements of clause c; and cell p, for m+2n+2 ≤ p < M , either
is available for future use or holds literal and clause data for a currently active clause.

Free cells are accessed via a global pointer AVAIL. To get a new p⇐ AVAIL when
AVAIL 6= 0, we set p← AVAIL, AVAIL← S(AVAIL); but if AVAIL = 0, we set p←M and
M ←M +1 (assuming that M never gets too large). To free one or more cells from p′

to p′′ that are linked together via left links, we set S(p′)← AVAIL and AVAIL← p′′.

September 23, 2015

258 ANSWERS TO EXERCISES 7.2.2.2

signature
bitwise OR
Bloom
list merge
tautology
Biere
False hits
STAMP(l)
time stamp

The number of active clauses containing literal l, TALLY(l), can therefore be
computed as follows: Set t← 0, p← F(l); while not lit (p), set t← t+1 and p← F(p);
set TALLY(l)← t; here ‘lit (p)’ stands for ‘p < 2n+2’. The number of literals in clause c,
SIZE(c), can be computed by a similar loop, using ‘cls (p)’ to stand for ‘p < m+2n+2’:
Set t ← 0, p ← S(c); while not cls (p), set t ← t + 1 and p ← S(p); set SIZE(c) ← t.
After initialization, the TALLY and SIZE statistics can be updated dynamically as local
changes are made. (TALLY(l) and SIZE(c) can be maintained in L(l) and C(c).)

To facilitate resolution, the literals of each clause are required to increase from
left to right; in other words, we must have L(p) < L(q) whenever p = S(q) and
q = D(p), unless cls (p) or cls (q). But the clauses within literal lists need not appear
in any particular order. We might even have C(F(p)) > C(q) but C(F(p′)) < C(q′),
when C(p) = C(p′) and C(q) = C(q′).

To facilitate subsumption, each literal l is assigned a 64-bit signature SIG(l) =
(1≪U1) | (1≪ U2), where U1 and U2 are independently random 6-bit numbers. Then
each clause c is assigned a signature that is the bitwise OR of the signatures of its
literals: Set t ← 0, p ← S(c); while not cls (p), set t ← t | SIG(L(p)) and p ← S(p);
set SIG(c)← t. (See the discussion of Bloom’s superimposed coding in Section 6.5.)

(a) To resolve c with c′, where c contains l and c′ contains l̄, we essentially want
to do a list merge. Set p ← 1, q ← S(c), u ← L(q), q′ ← S(c′), u′ ← L(q′), and
do the following while u + u′ > 0: If u = u′, copy(u) and bump(q, q′); if u = ū′ = l,
bump(q, q′); if u = ū′ 6= l, terminate unsuccessfully; otherwise if u > u′, copy(u)
and bump(q); otherwise copy(u′) and bump(q′). Here ‘copy(u)’ means ‘set p′ ← p,
p⇐ AVAIL, S(p′)← p, L(p)← u’; ‘bump(q)’ means ‘set q ← S(q); if cls (q) set u← 0,
otherwise set u← L(q)’; ‘bump(q′)’ is similar, but it uses q′ and u′; and ‘bump(q, q′)’
means ‘bump(q) and bump(q ′)’. Unsuccessful termination occurs when clauses c and
c′ resolve to a tautology; we set p ← 0, after first returning cells p through S(1) to
free storage if p 6= 1. Successful termination with u = u′ = 0 means that the resolved
clause consists of the literals in cells from p through S(1), linked only via S pointers.

(b) Find a literal l with minimum TALLY(l). Set p← F(l), and do the following
while not lit (p): Set c′ ← C(p); if c′ 6= c and ∼SIG(c′)& SIG(c) = 0 and SIZE(c′) ≥
SIZE(c), do a detailed subsumption test; then set p ← F(p). The detailed test begins
with q ← S(c), u ← L(q), q′ ← S(c′), u′ ← L(q′), and does the following steps while
u′ ≥ u > 0: bump(q′) while u′ > u; then bump(q, q′) if u′ = u. When the loop
terminates, c subsumes c′ if and only if u ≤ u′.

(c) Use (b) but with (SIG(c) & ∼SIG(l)) in place of SIG(c). Also modify the
detailed test, by inserting ‘if u = l then u← l̄’ just after each occurrence of ‘u← L(q)’.

[The algorithm in (b) was introduced by A. Biere, LNCS 3542 (2005), 59–70, §4.2.
“False hits,” in which the detailed test is performed but no actual (self-)subsumption
is detected, tend to occur less than 1% of the time in practice.]

375. Let each literal l have another field STAMP(l), initially zero; and let s be a global
“time stamp” that is initially zero. To make the test, set s ← s + 1 and σ ← 0; then
set STAMP(u) ← s and σ ← σ | SIG(u) for all u such that (l̄ū) is a clause. If σ 6= 0,
set σ ← σ | SIG(l) and run through all clauses c that contain l, doing the following: If
SIG(c) & ∼σ = 0, and if each of c’s literals u 6= l has STAMP(u) = s, exit with C1 = c
and r = SIZE(c) − 1. If C1 has thereby been found, set s ← s + 1 and STAMP(ū)← s
for all u 6= l in c. Then a clause (l̄ ∨ βj) implicitly has j ≤ r in the notation of exercise
369 if and only if βj is a single literal u with STAMP(u) = s.

Given a variable x, test the condition first for l = x; if that fails, try l = x̄.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 259

unit conditioning
pure literal elimination
to-do stack
erp rule
doubly linked lists
Subsumption
strengthening
exploitation stack
sentinel value
touched

376. Highest priority is given to the common operations of unit conditioning and pure
literal elimination, which are “low-hanging fruit.” Give each variable x two new fields,
STATE(x) and LINK(x). A “to-do stack,” containing all such easy pickings, begins at
TODO and follows LINKs until reaching Λ. Variable x is on this stack only if STATE(x) is
nonzero; the nonzero states are called FF (forced false), FT (forced true), EQ (eliminated
quietly), and ER (eliminated by resolution).

Whenever a unit clause (l) is detected, with STATE(|l|) = 0, we set STATE(|l|)←
(l & 1? FF: FT), LINK(|l|) ← TODO, and TODO ← |l|. But if STATE(|l|) = (l & 1? FT: FF),
we terminate, because the clauses are unsatisfiable.

Whenever a literal with TALLY(l) = 0 is detected, we do the same thing if
STATE(|l|) = 0. But if STATE(|l|) = (l & 1? FT: FF), we simply set STATE(|l|) ← EQ

instead of terminating.
To clear the to-do stack, we do the following while TODO 6= Λ: Set x← TODO and

TODO← LINK(x); if STATE(x) = EQ, do nothing (no erp rule is needed to eliminate x);
otherwise set l ← (STATE(x) = FT?x: x̄), output the erp rule l← 1, and use the doubly
linked lists to delete all clauses containing l and to delete l̄ from all clauses. (Those
deletions update TALLY and SIZE fields, so they often contribute new entries to the to-
do stack. Notice that if clause c loses a literal, we must recompute SIG(c). If clause c
disappears, we set SIZE(c)← 0, and never use c again.)

Subsumption and strengthening are next in line. We give each clause c a new field
LINK(c), which is nonzero if and only if c appears on the “exploitation stack.” That
stack begins at EXP and follows LINKs until reaching the nonzero sentinel value Λ′. All
clauses are initially placed on the exploitation stack. Afterwards, whenever a literal l̄ is
deleted from a clause c, either during unit conditioning or self-subsumption, we test if
LINK(c) = 0; if so, we put c back on the stack by setting LINK(c)← EXP and EXP← c.

To clear the subsumption stack, we first clear the to-do stack. Then, while EXP 6=
Λ′, we set c ← EXP, EXP ← LINK(c), and do the following if SIZE(c) 6= 0: Remove
clauses subsumed by c; clear the to-do stack; and if SIZE(c) is still nonzero, strengthen
clauses that c can improve, clear the to-do stack, and set TIME(c)← T (see below).

All of this takes place before we even think about the elimination of variables. But
rounds of variable elimination form the “outer level” of computation. Each variable x
has yet another field, STABLE(x), which is nonzero if and only if we need not attempt to
eliminate x. This field is initially zero, but set nonzero when STATE(x)← EQ or when
an erp rule for x or x̄ is output. It is reset to zero whenever a variable is later “touched,”
namely when x or x̄ appears in a deleted or self-subsumed clause. (In particular, every
variable that appears in a new clause produced by resolution will be touched, because
it will appear in at least one of the clauses that were replaced by new ones.)

If a round has failed to eliminate any variables, or if it has eliminated them all,
we’re done. But otherwise there’s still work to do, because the new clauses can often
be subsumed or strengthened. (Indeed, some of them might actually be duplicates.)
Hence two more fields are introduced: TIME(l) for each literal and TIME(c) for each
clause, initially zero. Let T be the number of the current elimination round. We
set TIME(l) ← T for all literals l in all clauses that are replaced by resolution, and
TIME(c)← T is also set appropriately as mentioned above.

Introduce yet another field, EXTRA(c), initially zero. It is reset to zero whenever
TIME(c) ← T , and set to 1 whenever c is replaced by a new clause. For every literal
l such that STATE(|l|) = 0 and TIME(l) = T at the end of round T , set EXTRA(c) ←
EXTRA(c) + 4 for all clauses c that contain l, and EXTRA(c) ← EXTRA(c) | 2 for all
clauses c that contain l̄. Then run through all clauses c for which SIZE(c) > 0 and

September 23, 2015

260 ANSWERS TO EXERCISES 7.2.2.2

Eén
Biere
dependency digraph
walk
oriented cycle
cycle detection problem
Alon
Yuster
Zwick
matrix multiplication
Järvisalo
Biere
exclusion clauses
coloring
fault testing
author
Kullmann
elimination of x
certifiable
blocked
Heule
Järvisalo
Biere
asymmetric elimination
blocked
Heule
Järvisalo
Biere
Heule
Järvisalo
Biere

TIME(c) < T . If SIZE(c) = EXTRA(c)≫ 2, remove clauses subsumed by c and clear the
exploitation stack. Also, if EXTRA(c) & 3 6= 0, we may be able to use c to strengthen
other clauses—unless EXTRA(c) & 1 = 0 and EXTRA(c) ≫ 2 < SIZE(c) − 1. Self-
subsumption using l need not be attempted when EXTRA(c)&1 = 0 unless TIME(l̄) = T
and EXTRA(c)≫ 2 = SIZE(c) − [TIME(l)=T]. Finally, reset EXTRA(c) to zero (even if
TIME(c) = T). [See Niklas Eén and Armin Biere, LNCS 3569 (2005), 61–75.]

377. Each vertex v of G corresponds to variables v1, v2, v3 in F ; each edge u−−− v
corresponds to clauses (ū1 ∨ v2), (ū2 ∨ v3), (ū3 ∨ v̄1), (u2 ∨ v̄1), (u3 ∨ v̄2), (ū1 ∨ v̄3). The
longest paths in the dependency digraph for F have the form t1 → u2 → v3 → w̄1 or
t1 → ū3 → v̄2 → w̄1, where t−−−u−−−v−−−w is a walk in G.

[A similar method reduces the question of finding an oriented cycle of length r in a
given digraph to the question of finding a failed literal in some dependency digraph. The
cycle detection problem has a long history; see N. Alon, R. Yuster, and U. Zwick, Algo-

rithmica 17 (1997), 209–223. So any surprisingly fast algorithm to decide whether or
not failed literals exist—that is, faster than n2ω/(ω+1) whenm = O(n) and matrix mul-
tiplication takes O(nω)—would lead to surprisingly fast algorithms for other problems.]

378. The erp rule l ← l∨ (l̄1 ∧· · · ∧ l̄q) will change any solution of F \C into a solution
of F . [See M. Järvisalo, A. Biere, and M. Heule, LNCS 6015 (2010), 129–144.]

(In practice it’s sometimes possible to remove tens of thousands of blocked clauses.
For example, all of the exclusion clauses () in the coloring problem are blocked, as
are many of the clauses that arise in fault testing. Yet the author has yet to see
a single example where blocked clause elimination is actually helpful in combination
with transformations 1–4, which are already quite powerful by themselves.)

379. (Solution by O. Kullmann.) In general, any set F of clauses can be replaced by
another set F ′, whenever there’s a variable x such that the elimination of x from F
yields exactly the same clauses as the elimination of x from F ′. In this case the elimi-
nation of a has this property. The erp rule a← a∨(b̄∧ c̄∧d) is necessary and sufficient.

380. (a) Reverse self-subsumption weakens it to (a∨b∨c∨d), then to (a∨b∨c∨d∨e),
which is subsumed by (a∨d∨e). [In general one can show that reverse self-subsumption
from C leads to a subsumed clause if and only if C is certifiable from the other clauses.]

(b) Again we weaken to (a ∨ b ∨ c ∨ d ∨ e); but now we find this blocked by c.
(c) No erp rule is needed in (a), but we need c ← c ∨ (ā ∧ b̄) in (b). [Heule,

Järvisalo, and Biere, LNCS 6397 (2010), 357–371, call this “asymmetric elimination.”]

381. By symmetry, we’ll remove the final clause. (Without it, the given clauses state
that x1 ≤ x2 ≤ · · · ≤ xn; with it, they state that all variables are equal.) Assume more
generally that, for 1 ≤ j < n, every clause other than (x̄j ∨ xj+1) that contains x̄j

also contains either xn or x̄i for some i < j. For 1 ≤ j < n − 1 we can then weaken
(x1 ∨ · · · ∨ xj ∨ x̄n) to (x1 ∨ · · · ∨ xj+1 ∨ x̄n). Finally, (x1 ∨ · · · ∨ xn−1 ∨ x̄n) can be
eliminated because it is blocked by xn−1.

Although we’ve eliminated only one clause, n − 1 erp rules are actually needed
to undo the process: x1 ← x1 ∨ xn; x2 ← x2 ∨ (x̄1 ∧ xn); x3 ← x3 ∨ (x̄1 ∧ x̄2 ∧ xn); . . . ;
xn−1 ← xn−1∨(x̄1∧· · ·∧x̄n−2∧xn). (Those rules, applied in reverse order, can however
be simplified to xj ← xj ∨ xn for 1 ≤ j < n, because x1 ≤ · · · ≤ xn in any solution.)

[See Heule, Järvisalo, Biere, EasyChair Proc. in Computing 13 (2013), 41–46.]

382. See M. J. H. Heule, M. Järvisalo, and A. Biere, LNCS 6695 (2011), 201–215.

383. (a) In a learning step, let Φ′ = Φ and Ψ′ = Ψ∪C. In a forgetting step, let Φ′ = Φ
and Ψ = Ψ′ ∪ C. In a hardening step, let Φ′ = Φ ∪ C and Ψ = Ψ′ ∪ C. In a softening

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 261

invariant
Järvisalo
Heule
Biere
unit conditioning
resolution certifiable
Blocked clauses
RAT, see resolution certifiable clauses

step, let Φ = Φ′ ∪C and Ψ′ = Ψ ∪ C. In all four cases it is easy to verify that (sat(Φ)
⇐⇒ sat(Φ ∪Ψ)) implies (sat(Φ) ⇐⇒ sat(Φ′) ⇐⇒ sat(Φ′ ∪Ψ′)), where sat(G) means
“G is satisfiable,” because sat(G∪G′) =⇒ sat(G). Thus the assertions are invariant.

(b) Each erp rule allows us to go one step backward, until reaching F .

(c) The first (softening) step is fine, because both Φ = (x) and Φ \ (x) = 1 are
satisfiable, and because the erp rule unconditionally makes x true. But the second
(learning) step is flawed, because sat(Φ ∪ Ψ) does not imply sat(Φ ∪ Ψ ∪ C) when
Φ∪Ψ = (x) and C = (x̄). (This example explains why the criterion for learning is not
simply ‘sat(Φ) =⇒ sat(Φ ∪ C)’ as it essentially is for softening.)

(d) Yes, because C is also certifiable for Φ ∪Ψ.

(e) Yes, after softening it. No erp rule is needed, because Φ \ C ⊢ C.

(f) A soft clause can be discarded whether or not it is subsumed. To discard a
hard clause that is subsumed by a soft clause, first harden the soft one. To discard a
hard C that is subsumed by a hard C ′, weaken C and then discard it. (The weakening
step is clearly permissible, and no erp rule is needed.)

(g) If C contains x̄ and C′ contains x and C \ x̄ ⊆ C′ \ x, we can learn the soft
clause C ⋄C ′ = C′ \ x, then use it to subsume C ′ as in (f).

(h) Forget all soft clauses that contain x or x̄. Then let C1, . . . , Cp be the hard
clauses containing x, and C′1, . . . , C

′
q those containing x̄. Learn all the (soft) clauses

Ci ⋄C ′j , and harden them, noting that they don’t involve x. Weaken each Ci, with erp
rule x← x∨Ci, and forget it; also weaken and forget each C′j , with erp rule x← x∧C′j .
(One can show that either of the erp rules in () would also suffice.)

(i) Whenever Φ∪Ψ is satisfiable, so is Φ∪Ψ∪{(x∨z), (y∨z), (x̄∨ ȳ∨ z̄)}, because
we can always set z ← x̄ ∨ ȳ.

[Reference: M. Järvisalo, M. Heule, and A. Biere, LNCS 7364 (2012), 355–370.
Notice that, by exercise 368, parts (f) and (h) justify the use of unit conditioning.]

384. Whenever we have a solution to Φ \ C that falsifies C, we will show that Φ is
satisfied by making l true; hence softening C is permissible, with erp rule l← l ∨ C.

To prove that claim, notice that a problem could arise only in a hard clause C ′

that contains l̄. But if all other literals of C′ are false in the given solution, then all
literals of C ⋄C ′ are false, contradicting the assumption that (Φ \ C) ∧ C ⋄C ′ ⊢1 ǫ.

(Such clauses C are “resolution certifiable” with respect to Φ\C. Blocked clauses
are a very special case. Similarly, we can safely learn any clause that is resolution
certifiable with respect to Φ ∪Ψ.)

385. (a) True, because C ∧ l ⊢1 ǫ.
(b) 1̄ is implied, not certifiable; 1̄2 is certifiable, not absorbed; 1̄23 is absorbed.

(c,d) If C is any clause and l is any literal, then F ∧ C ⊢1 l implies F ′ ∧ C ⊢1 l,
because unit propagation in F carries over to unit propagation in F ′.

386. (a) The trail contained exactly score(F,C, l) literals when decision l̄ was made at
level d. The clause learned from the ensuing conflict causes at least one new literal to
be implied at level d′ < d.

(b) The score can’t decrease when F grows.

(c) Each l ∈ C needs at most n helpful rounds to make score(F,C, l) =∞.

(d) Suppose, for example, F = (a∨ d̄)∧ (a∨ b∨ e∨ l)∧ (ā∨ c)∧ (b̄)∧ (c∨d∨ ē∨ l)
and C = (a ∨ b ∨ c ∨ d ∨ l). The helpful sequences of decisions are (ā, c̄, l̄), (c̄, d̄, l̄),
(d̄, ā, c̄, l̄), (d̄, c̄, l̄), and they occur with probabilities 1

10
1
6

1
4
, 1

10
1
6

1
4
, 1

10
1
8

1
6

1
4
, 1

10
1
8

1
4
.

September 23, 2015

262 ANSWERS TO EXERCISES 7.2.2.2

geometric distribution
Pipatsrisawat
Darwiche
Atserias
Fichte
Thurley
isolated vertices
auxiliary variables
complete graph
complete k-partite graph
cycle
graph embedding

distance d(u, v) in a graph
induced graph
shortest path

In general if a decision is to be made and j elements of C are not yet in the trail,
the probability that a suitable decision will be made at random is at least

f(n, j) = min
(
j−1
2n

f(n−1, j−1), j−2
2(n−1) f(n−2, j−2), . . . ,

1

2(n−j+2)
f(n−j+1, 1),

1

2(n−j+1)

)
=

(j−1)!
2jnj

.

(e) The waiting time to absorb each clause Ci is a geometric distribution whose
mean is ≤ 4n|Ci|, repeated at most |Ci|n times.

References: K. Pipatsrisawat and A. Darwiche, Artif. Intell. 175 (2011), 512–525;
A. Atserias, J. K. Fichte, and M. Thurley, J. Artif. Intell. Research 40 (2011), 353–373.

387. We may assume that G and G′ have no isolated vertices. Letting variable vv′

mean that v corresponds to v′, we need the clauses (uv′ ∨vv′) for u < v and (vu′ ∨vv′)
for u′ < v′. Also, for each u < v with u−−− v in G, we introduce auxiliary variables
uu′vv′ for each edge u′ −−− v′ in G′, with clauses (uu′vv′ ∨ uu′) ∧ (uu′vv′ ∨ vv′) ∧
(
∨{uu′vv′ | u′−−−v′ in G′}). The variables vv′ and uu′vv′ can be restricted to cases
where degree(u) ≤ degree(u′) and degree(v) ≤ degree(v′).

388. (a) Can the complete graph Kk be embedded in G? (b) Can G be embedded in
the complete k-partite graph Kn,...,n, where G has n vertices? (c) Can the cycle Cn be
embedded in G?

389. This is a graph embedding problem, with G′ the 4× 4 (king ∪ knight) graph and
with G defined by edges T−−− H, H−−− E, . . . , N−−− G. The adjacent Ms can be avoided
by changing ‘PROGRAMMING’ to either ‘PROGRAMXING’ or ‘PROGRAXMING’.

Algorithm C needs less than 10 megamems to find the first solution below.
Furthermore, if the blank space can also be moved, the algorithm will rather quickly
also find solutions with just five knight moves (the minimum), or 17 of them (the max):

U P C F

M M O

I T R A

N G E H

M M I N

A P O G

H R F

U T E C

H N U F

E M O I

G T P

A R M C

390. Let d(u, v) be the distance between vertices u and v. Then d(v, v) = 0 and

d(u, v) ≤ j + 1 ⇐⇒ d(u, v) ≤ j or d(u,w) ≤ j for some w ∈ N(v) = {w | w−−−v}. (∗)

In parts (a), (d), we introduce variables vj for each vertex v and 0 ≤ j ≤ k. In part (c)
we do this for 0 ≤ j < n. But parts (b), (e), (f) use just n variables, {v | v ∈ V }.

(a) Clauses (s0) ∧
∨

v∈V \s(v̄0) ∧
∨

v∈V (v̄j+1∨ vj ∨
∨

w−−−v wj) are satisfied only if

vj ≤ [d(s, v)≤ j]; hence the additional clause (tk) is also satisfied only if d(s, t) ≤ k.
Conversely, if d(s, t) ≤ k, all clauses are satisfied by setting vj ← [d(s, v)≤ j].

(b) There’s a path from s to t if and only if there’s a subset H ⊆ V such that
s ∈ H , t ∈ H , and every other vertex of the induced graph G |H has degree 0 or 2.
[The vertices on a shortest path from s to t yield one such H . Conversely, given H , we
can find vertices vj ∈ H such that s = v0−−−v1−−−· · ·−−−vk = t.]

We can represent that criterion via clauses on the binary variables v = [v ∈H]
by asserting (s) ∧ (t), together with clauses to ensure that Σ(s) = Σ(t) = 1, and that
Σ(v) ∈ {0, 2} for all v ∈ H \{s, t}, where Σ(v) =

∑
w∈N(v) w is the degree of v in G |H .

The number of such clauses for each v is at most 6|N(v)|, because we can append v̄

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 263

digraphs
strong connectivity
Heule
renamed
Horn clauses
Van Gelder
Loyd
Dudeney
Grabarchuks’
odd-even transposition sort

to each clause of () and () when r = 2, and |N(v)| additional clauses will rule out
Σ(v) < 2. Altogether there are O(m) clauses, because

∑
v∈V |N(v)| = 2m.

[Similar but simpler alternatives, such as (i) to require Σ(v) ∈ {0, 2} for all v ∈
V \{s, t}, or (ii) to require Σ(v) ≥ 2 for all v ∈ H\{s, t}, do not work: Counterexamples
are (i) s t and (ii) s t. Another solution, more cumbersome, associates a Boolean
variable with each edge of G.]

(c) Let s be any vertex; use (a), plus (vn−1) for all v ∈ V \ s.
(d) Clauses (s0)∧

∨k−1
j=0

∨
v∈V

∨
w∈N(v)(v̄k∨wk+1) are satisfied only if we have vj ≥

[d(s, v)≤ j]; hence the additional clause (t̄k) cannot also be satisfied when d(s, t) ≤ k.
Conversely, if d(s, t) > k we can set vj ← [d(s, v)≤ j].

(e) (s) ∧ (∨v∈V
∨

w∈N(v)(v̄ ∨ w)) ∧ (t̄).

(f) Letting s be any vertex, use (s) ∧ (∨v∈V
∨

w∈N(v)(v̄ ∨ w)) ∧ (
∨

v∈V \s v̄).
[Similar constructions work with digraphs and strong connectivity. Parts (d)–(f)

of this exercise were suggested by Marijn Heule. Notice that parts (a) and (c)–(f)
construct renamed Horn clauses, which work very efficiently (see exercise 444).]

391. (a) Let d − 1 = (ql−1 . . . q0)2. To ensure that (xl−1 . . . x0)2 < d we need the
clauses (x̄i∨

∨{x̄j | j > i, qj = 1}) whenever qi = 0. The same holds for y.
To enforce x 6= y, introduce the clause (al−1 ∨ · · · ∨ a0) in auxiliary variables

al−1 . . . a0, together with (āj ∨ xj ∨ yj) ∧ (āj ∨ x̄j ∨ ȳj) for 0 ≤ j < l (see ()).
(b) Now x 6= y is enforced via clauses of length 2l, which state that we don’t have

x = y = k for 0 ≤ k < d. For example, the appropriate clause when l = 3 and k = 5 is
(x̄2 ∨ ȳ2 ∨ x1 ∨ y1 ∨ x̄0 ∨ ȳ0).

(c) Use the clauses of (b) for 0 ≤ k < 2d − 2l, plus clauses of length 2l − 2
for d ≤ k < 2l stating that we don’t have (xl−1 . . . x1)2 = (yl−1 . . . y1)2 = k. (The
encodings in (b) and (c) are identical when d = 2l.)

[See A. Van Gelder, Discrete Applied Mathematics 156 (2008), 230–243.]

392. (a) [Puzzle (ii) was introduced by Sam Loyd in the Boston Herald, 13 November
1904; page 27 of his Cyclopedia (1914) states that he’d created a puzzle like (i) at age 9!
Puzzle (iv) is by H. E. Dudeney, Strand 42 (1911), 108, slightly modified. Puzzle (iii)
is from the Grabarchuks’ Big, Big, Big Book of Brainteasers (2011), #196; puzzle (v)
was designed by Serhiy A. Grabarchuk in 2015.]

A A A A A
A B B B B
A A A A A

C C C C A

A A A A A

A A A A D D D D

A D D D D E E D

A A A A A A E D

C C C C C A E D

C A A A C A E D
C A B A A A E B
C A B B B E E B

C A A A B B B B

A A A B B B B B
A C A A A C C B

A C C C A C B B

A A D C C C B E
F A D D D E B E

F A A A D E B E

F D D D D E B E

F F F F F E E E

G G G G G H A A A A A A A C C C C C

G F F F G H A C C C C C C C E E E C

G F B F G H A C E E E E E E E D E C
G F B F G H A A E A A A A A A D E E
G F B F G H H A A A G H H H A D D D

G F B F G G H H H H H H G H A A A D

F F B F F G G G G G G G G H H H A D

F B B J F F F F F F F F F F F H A D

B B J J H H H H H H H H H H H A D

B I I I I H I I I I I I A A A A A D

B B B I I I D D D D D D D D D D D

E E E E E A A A A A A A A A A A A A

E D D D E E C C C C C C C C C C C A

E D B D C E C B B B B B B B B B C A

E D B D C E C B F F F F F F F B C A

E D B D C E C B F D D D D D F B C A

E D B B C E C B F D E E E D F B C A

E D F B C C C B F D E A E D F B C A

E D F B B B B B F D E A C B F B C A

E D F F F F F F F D E A C B B B C A

E D D D D D D D D D E A C C C C C A

E E E E E E E E E E E A A A A A A A

(i) (ii) (iii) (iv) (v)

(b) [Puzzle (vi) is an instance of the odd-even transposition sort, exercise 5.3.4–
37. Eight order-reversing connections would be impossible with only eight columns,
instead of the nine in (vii), because the permutation has too many inversions.]

A B B D D F F H H
B A D B F D H F G
C D A F B H D G F
D C F A H B G D E
E F C H A G B E D
F E H C G A E B C
G H E G C E A C B
H G G E E C C A A

A B B D D F

B A D B F D F G
C D A F B D G F
D C F A B G D E
E F C A G B E D
F E C G A E B C
G E G C E A C B

G E E C C A A

A B B C C D D A
D A C B D C A B
D C A B D A C B

C D B A A D B C
C B D B D A D B

B C C D B A B D

B A D C A B A D
A D A A C B A

(vi) (vii) (viii)

September 23, 2015

264 ANSWERS TO EXERCISES 7.2.2.2

Steiner tree packing
Grötschel
Martin
Weismantel

langford ′′′(n)
Prestwich
axiom clauses
Tamura
Taga
Kitagawa
Banbara
channeling
author
direct encoding
triangle

(c) Let dj =
∑j

i=1(|Ti| − 1) and d = dt. We introduce variables vi for 1 ≤ i ≤ d,
and the following clauses for 1 ≤ j ≤ t and dj−1 < i ≤ dj : (v̄i′∨ v̄i) for 1 ≤ i′ ≤ dj−1;
the clauses of answer 390(b) on variables vi, where s is the (i− dj−1)th element of Tj

and t is the last element. These clauses ensure that the sets Vj = {v | vdj−1+1∨· · ·∨vdj }
are disjoint, and that Vj contains a connected component Sj ⊇ Tj .

We also assert (v̄i) for 1 ≤ i ≤ d, whenever Tj is a singleton set {v}.
[For the more general “Steiner tree packing” problem, see M. Grötschel, A. Mar-

tin, and R. Weismantel, Math. Programming 78 (1997), 265–281.]

393. A construction somewhat like that of answer 392(c) can be used with
five different 8 × 8 graphs, one for the moves of each white-black pair Sj .
But we need to keep track of the edges used, not vertices, in order to
prohibit edges that cross each other. Additional clauses will rule that out.

bZ0Z0Z0Z

Z0Z0Z0a0

0Z0Z0Z0l

Z0m0Z0Z0

0Z0Z0Z0s

Z0L0ZNZ0

0Z0Z0Z0S

Z0Z0A0ZB

394. Call these clauses langford ′′′(n). [Steven Prestwich described a similar method
in Trends in Constraint Programming (Wiley, 2007), 269–274.] Typical results are:

variables clauses Algorithm D Algorithm L Algorithm C

langford ′′′(9) 206 1157 131Mµ 18Mµ 22Mµ (UNSAT)

langford ′′′(13) 403 2935 1425Gµ 44Gµ 483Gµ (UNSAT)

langford ′′′(16) 584 4859 713Kµ 42Mµ 343Kµ (SAT)

langford ′′′(64) 7352 120035 (huge) (big) 71Mµ (SAT)

395. The color of each vertex v gets binary axiom clauses (v̄j+1∨vj) for 1 ≤ j < d−1, as
in (). And for each edge u−−−v in the graph, we want d clauses (ūj−1∨uj∨v̄j−1∨vj)
for 1 ≤ j ≤ d, omitting ū0 and v̄0 when j = 1, ud and vd when j = d.

[The surprising usefulness of order encoding in graph coloring was first noticed by
N. Tamura, A. Taga, S. Kitagawa, and M. Banbara in Constraints 14 (2009), 254–272.]

396. First we have (x̄j+1∨xj) and (x̂j+1∨x̂j) for 1 ≤ j < d. Then we have “channeling”
clauses to ensure that j ≤ x < j + 1 ⇐⇒ jπ ≤ xπ < jπ + 1 for 0 ≤ j < d:

(x̄j ∨ xj+1 ∨ x̂jπ) ∧ (x̄j ∨ xj+1 ∨ x̂jπ+1) ∧ (x̂jπ ∨ x̂jπ+1 ∨ xj) ∧ (x̂jπ ∨ x̂jπ+1 ∨ x̄j+1).

(These clauses should be either shortened or omitted in boundary cases, because x0 and
x̂0 are always true, while xd and x̂d are always false. We obtain 6d−8 clauses for each x.)

With such clauses for every vertex of a graph, together with clauses based on
adjacent vertices and cliques, we obtain encodings for n-coloring the n×n queen graph
that involve 2(n3 − n2) variables and 5

3
n4 + 4n3 +O(n2) clauses, compared to n3 − n2

variables and 5
3
n4 − n3 + O(n2) clauses with single cliques and () alone. Typical

running times with Algorithm C and single cliques are 323Kµ, 13.1Mµ, 706Gµ for
n = 7, 8, 9; with double clique-ing they become 252Kµ, 1.97Mµ, 39.8Gµ, respectively.

The double clique hints turn out to be mysteriously ineffective when π is the stan-
dard organ-pipe permutation (0π, 1π, . . . , (d−1)π) = (0, 2, 4, . . . , 5, 3, 1) instead of its
inverse. Random choices of π when n = 8 yielded significant improvement almost half
the time, in the author’s experiments; but they had negligible effect in 1/3 of the cases.

Notice that the example π for d = 4 yields x1 = x̄0, x
3 = x3, x̂

1 = x̄2, x̂3 = x1.
Hence the direct encoding is essentially present as part of this redundant representation,
and the hints (ū3∨ v̄3)∧(u1∨v1)∨(û3∨ v̂3)∧(û1∨ v̂1) for 2-cliques {u, v} are equivalent
to (). But the hints (u2 ∨ v2 ∨w2) ∧ (ū2 ∨ v̄2 ∨ w̄2) ∧ (û2 ∨ v̂2 ∨ ŵ2) ∧ (û2 ∨ v̂2 ∨ ŵ2)
that apply when {u, v, w} is a triangle give additional logical power.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 265

pigeons
permutations
inverse permutation
direct encoding
Gent
Nightingale
at-most-one constraints
Golomb
Baumert
Gent
Kasif
WalkSAT
author

397. There are (p− 2)d binary clauses (ȳi+1
j ∨ yij) for 1 ≤ i < p− 1, together with the

(2p− 2)d clauses (x̄j
i ∨ xj+1

i ∨ yij) ∧ (x̄j
i−1 ∨ xj+1

i−1 ∨ ȳij) for 1 ≤ i < p, all for 0 ≤ j < d.

The hint clauses (xp−1
0 ∨ · · · ∨ xp−1

p−1) ∧ (x̄d−p+1
0 ∨ · · · ∨ x̄d−p+1

p−1) are also valid.

(This setup corresponds to putting p pigeons into d holes, so we can usually
assume that p ≤ d. If p ≤ 4 it is better to use

(
p
2

)
d clauses as in exercise 395. Notice

that we obtain an interesting representation of permutations when p = d. In that case
y is the inverse permutation; hence (2d−2)p additional clauses corresponding to yj = i
=⇒ xi = j are also valid, as well as two hint clauses for y.)

A related idea, but with direct encoding of the x’s, was presented by I. Gent
and P. Nightingale in Proceedings of the International Workshop on Modelling and

Reformulating Constraint Satisfaction Problems 3 (2004), 95–110.

398. We could construct (3p − 4)d binary clauses that involve yij , as in exercise 397.
But it’s better just to have (3p−6)d clauses for the at-most-one constraints x0k+x1k+
· · ·+ x(p−1)k ≤ 1, 0 ≤ k < d.

399. (a) d2−t preclusion clauses (binary); or 2d support clauses (total length 2(d+t)).

(b) If unit propagation derives v̄j from (ūi ∨ v̄j), we knew ui; hence () gives ūi′

for all i′ 6= i, and v̄j follows from the support clause that contains it.

(c) If unit propagation derives v̄j from its support clause, we knew ūi for all i 6= j;
hence () gives uj , and v̄j follows from (). Or if unit propagation derives ui from that
support clause, we knew vj and ūi′ for all i

′ /∈ {i, j}; hence ūj from (), ui from ().

(d) A trivial example has no legal pairs; then unit propagation never gets started
from binary preclusions, but the (unit) support clauses deduce all. A more realistic
example has d = 3 and all pairs legal except (1, 1) and (1, 2), say; then we have
() ∧ () ∧ (ū1 ∨ v̄1) ∧ (ū1 ∨ v̄2) ∧ (v̄3) 6⊢1 ū1 but () ∧ () ∧ (ū1 ∨ v3) ∧ (v̄3) ⊢1 ū1.

[Preclusion was introduced by S. W. Golomb and L. D. Baumert, JACM 12

(1965), 521–523. The support encoding was introduced by I. P. Gent, European Conf.

on Artificial Intelligence 15 (2002), 121–125, based on work of S. Kasif, Artificial

Intelligence 45 (1990), 275–286.]

400. This problem has n variables q1, . . . , qn with n values each; thus there are n2

Boolean values, with qij = [qi = j] = [there’s a queen in row i and column j]. The
constraint between qi and qj is that qi /∈ {qj , qj + i− j, qj − i+ j}; so it turns out that
there are n at-least-one clauses, plus (n3−n2)/2 at-most-one clauses, plus either n3−n2

support clauses or n3−n2+
(
n
3

)
preclusion clauses. In this problem each support clause

has at least n− 2 literals, so the support encoding is much larger.

Since the problem is easily satisfiable, it makes sense to try WalkSAT. When
n = 20, Algorithm W typically finds a solution from the preclusion clauses after making
fewer than 500 flips; its running time is about 500Kµ, including about 200Kµ just to
read the input. With the support clauses, however, it needs about 10 times as many
flips and consumes about 20 times as many mems, before succeeding.

Algorithm L is significantly worse: It consumes 50Mµ with preclusion clauses,
11Gµ with support clauses. Algorithm C is the winner, with about 400Kµ (preclusion)
versus 600Kµ (support).

Of course n = 20 is pretty tame; let’s consider n = 100 queens, when there are
10,000 variables and more than a million clauses. Algorithm L is out of the picture;
in the author’s experiments, it showed no indication of being even close to a solution
after 20Tµ! But Algorithm W solves that problem in 50Mµ, via preclusion, after
making only about 5000 flips. Algorithm C wins again, polishing it off in 29Mµ. With

September 23, 2015

266 ANSWERS TO EXERCISES 7.2.2.2

at-most-one
author
all solutions
2SAT
midpoint
Batcher
odd-even
merge network
Axiom clauses
complemented

the support clauses, nearly 100 million literals need to be input, and Algorithm W is
hopelessly inefficient; but Algorithm C is able to finish after about 200Mµ.

The preclusion clauses actually allow us to omit the at-most-one clauses in this
problem, because two queens in the same row will be ruled out anyway. This trick
improves the run time when n = 100 to 35Mµ for Algorithm W.

We can also append support clauses for the columns as well as the rows. This idea
roughly halves the search space, but it gives no improvement because twice as many
clauses must be handled. Bottom line: Support clauses don’t support n queens well.

(However, if we seek all solutions to the n queens problem instead of stopping
with the first one, using a straightforward extension of Algorithm D (see exercise 122),
the support clauses proved to be definitely better in the author’s experiments.)

401. (a) yj = x2j−1. (b) zj = x3j−1. In general w = ⌊(x+ a)/b⌋ ⇐⇒ wj = xbj−a.

402. (a)
∧⌊d/2⌋

j=1 (x̄2j−1 ∨ x2j); (b)
∧⌈d/2⌉

j=1 (x̄2j−2 ∨ x2j−1); omit x̄0 and xd.

403. (a)
∧d−1

j=1 (x̄
j∨ȳj∨zj); (b)∧d−1

j=1((x̄
j∨zj)∧(ȳj∨zj)); (c) ∧d−1

j=1((x
j∨z̄j)∧(yj∨z̄j));

(d)
∧d−1

j=1 (x
j ∨ yj ∨ z̄j).

404. (a)
∧d−1

j=0(x̄
j∨xj+1∨ȳj+1−a∨yj+a). (As usual, omit literals with superscripts ≤ 0

or ≥ d. If a > 1 this encoding is unsymmetrical, with one clause for each value of x.)
(b)

∧d−a
j=0 ((p ∨ x̄j ∨ yj+a) ∧ (p̄ ∨ xj+a ∨ ȳj)); p is the auxiliary variable.

405. (a) If a < 0 we can replace ax by (−a)x̄ and c by c + a − ad, where x̄ is given
by (). A similar reduction applies if b < 0. Cases with a, b, or c = 0 are trivial.

(b) We have 13x + 8ȳ ≤ 63 ⇐⇒ not 13x + 8ȳ ≥ 64 ⇐⇒ not (P0 or . . . or
Pd−1) ⇐⇒ not P0 and . . . and not Pd−1, where Pj = ‘x ≥ j and ȳ ≥ ⌈(64 − 13j)/8⌉’.
This approach yields

∧7
j=0(x̄

j ∨ y8−⌈(64−13j)/8⌉), which simplifies to (x̄1 ∨ y1) ∧ (x̄2 ∨
y3) ∧ (x̄3 ∨ y4) ∧ (x̄4 ∨ y6) ∧ (x̄5). (Notice that we could have defined Pj = ‘ȳ ≥ j
and x ≥ ⌈(64 − 8j)/13⌉’ instead, thereby obtaining the less efficient encoding (x̄5) ∧
(y7 ∨ x̄5)∧ (y6 ∨ x̄4)∧ (y5 ∨ x̄4)∧ (y4 ∨ x̄3)∧ (y3 ∨ x̄2)∧ (y2 ∨ x̄2)∧ (y1 ∨ x̄1); it’s better
to discriminate on the variable with the larger coefficient.)

(c) Similarly, 13x̄+8y ≤ 90 gives (x5∨ ȳ7)∧ (x4∨ ȳ5)∧ (x3∨ ȳ4)∧ (x2∨ ȳ2)∧ (x1).
(The (x, y) pairs legal for both (b) and (c) are (1, 1), (2, 3), (3, 4), (4, 6).)

(d)
∧min(d−1,⌈(c+1)/a⌉)

j=max(0,⌈(c+1−b(d−1))/a⌉)(x̄
j ∨ ȳ⌈(c+1−aj)/b⌉), when a ≥ b > 0 and c ≥ 0.

406. (a) (
∧⌊√a+1⌋

j=⌈(a+1)/(d−1)⌉(x̄
j ∨ ȳ⌈(a+1)/j⌉)) ∧ (∧⌈

√
a+1 ⌉−1

j=⌈(a+1)/(d−1)⌉(x̄
⌈(a+1)/j⌉ ∨ ȳj)).

(b) (
∧⌊√a−1⌋+1

j=l+1 (xj ∨ y⌊(a−1)/(j−1)⌋+1)) ∧ (
∧⌈√a−1 ⌉

j=l+1 (x⌊(a−1)/(j−1)⌋+1 ∨ yj)) ∧
(xl) ∧ (yl), where l = ⌊(a− 1)/(d − 1)⌋ + 1. [Both formulas belong to 2SAT.]

407. (a) We always have ⌊x/2⌋+ ⌈x/2⌉ = x, ⌊x/2⌋+ ⌊y/2⌋ ≤ x+y
2
≤ ⌊x/2⌋+ ⌊y/2⌋+1,

and ⌈x/2⌉+⌈y/2⌉−1 ≤ x+y
2
≤ ⌈x/2⌉+⌈y/2⌉. (Similar reasoning proves the correctness

of Batcher’s odd-even merge network; see Eq. 5.3.4–().)
(b) Axiom clauses like () needn’t be introduced for u and v, or even for z; so

they aren’t counted here, although they could be added if desired. Let ad = d2 − 1 be
the number of clauses in the original method; then the new method has fewer clauses
when a⌈d/2⌉ + a⌊d/2⌋+1 + 3(d − 2) < ad, namely when d ≥ 7. (The new method
for d = 7 involves 45 clauses, not 48; but it introduces 10 new auxiliary variables.)
Asymptotically, we can handle d = 2t + 1 with 3t2t + O(2t) = 3d lg d + O(d) clauses
and d lg d+O(d) auxiliary variables.

(c) x+ y ≥ z ⇐⇒ (d− 1−x)+ (d− 1− y) ≤ (2d− 2− z); so we can use the same
method, but complemented (namely with xj 7→ x̄d−j , yj 7→ ȳd−j , zj 7→ z̄2d−1−j).

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 267

Tamura
Taga
Kitagawa
Banbara
Aśın
Nieuwenhuis
Oliveras
Rodŕıguez-Carbonell
Shmoys
Stein
Wein
Tamura
Taga
Kitagawa
Banbara
symmetry breaking
Knuth
Guéret
Prins

[See N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, Constraints 14 (2009),
254–272; R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodŕıguez-Carbonell, Con-

straints 16 (2011), 195–221.]

408. (a) No; makespan 11 is best, achievable as follows (or via left-right reflection):

M1:

M2:

M3:

J1 J3

J2 J1J3

J3J2 J1

M1:

M2:

M3:

J1J3

J2 J1J3

J3 J2J1

(b) If j is the last job processed by machine i, that machine must finish at time
≤∑n

k=1 wik +
∑m

k=1 wkj −wij , because j uses some other machine whenever i is idle.
[See D. B. Shmoys, C. Stein, and J. Wein, SICOMP 23 (1994), 631.]

(c) Clearly 0 ≤ sij ≤ t − wij . And if ij 6= i′j′ but i = i′ or j = j′, we must have
either sij + wij ≤ si′j′ or si′j′ + wi′j′ ≤ sij whenever wijwi′j′ 6= 0.

(d) When wij > 0, introduce Boolean variables skij for 1 ≤ k ≤ t − wij , with
the axiom clauses (s̄k+1

ij ∨ skij) for 1 ≤ k < t− wij . Then include the following clauses
for all relevant i, j, i′, and j′ as in (c): For 0 ≤ k ≤ t + 1 − wij − wi′j′ , assert

(p̄iji′j′ ∨ s̄kij ∨ s
k+wij

i′j′) if ij < i′j′ or (pi′j′ij ∨ s̄kij ∨ s
k+wij

i′j′) if ij > i′j′, omitting s̄0ij in

the first of these ternary clauses and omitting s
t+1−wi′j′

i′j′ in the last.

[This method, introduced by N. Tamura, A. Taga, S. Kitagawa, and M. Banbara
in Constraints 14 (2009), 254–272, was able to solve several open shop scheduling
problems in 2008 that had resisted attacks by all other approaches.]

Since the left-right reflection of any valid schedule is also valid, we can also save
a factor of two by arbitrarily choosing one of the p variables and asserting (piji′j′).

(e) Any schedule for W and T yields a schedule for ⌊W/k⌋ and ⌈T/k⌉, if we
examine time slots 0, k, 2k, [With this observation we can narrow down the
search for an optimum makespan by first working with simpler problems; the number
of variables and clauses for ⌊W/k⌋ and T/k is about 1/k times the number for W
and T , and the running time also tends to obey this ratio. For example, the author
solved a nontrivial 8×8 problem by first working with ⌊W/8⌋ and getting the respective
results (U,S,U) for t = (128, 130, 129), where ‘U’ means “unsatisfiable” and ‘S’ means
“satisfiable”; running times were about (75, 10, 1250) megamems. Then with ⌊W/4⌋ it
was (S,U,U) with t = (262, 260, 261) and runtimes (425, 275, 325); with ⌊W/2⌋ it was
(U,S,U) with t = (526, 528, 527) and runtimes (975, 200, 900). Finally with the full W
it was (U,S,S) with t = (1058, 1060, 1059) and runtimes (2050, 775, 300), establishing
1059 as the optimum makespan while doing most of the work on small subproblems.]

Notes: Further savings are possible by noting that any clauses learned while
proving that t is satisfiable are valid also when t is decreased. Difficult random problems
can be generated by using the following method suggested by C. Guéret and C. Prins
in Annals of Operations Research 92 (1999), 165–183: Start with work times wij that
are as near equal as possible, having constant row and column sums s. Then choose
random rows i 6= i′ and random columns j 6= j ′, and transfer δ units of weight by
setting wij ← wij−δ, wi′j ← wi′j +δ, wij′ ← wij′ +δ, wi′j′ ← wi′j′ −δ, where δ ≥ wij

and δ ≥ wi′j′ ; this operation clearly preserves the row and column sums. Choose δ at
random between p ·min{wij , wi′j′} and min{wij , wi′j′}, where p is a parameter. The
final weights are obtained after making r such transfers. Guéret and Prins suggested
choosing r = n3, and p = .95 for n ≥ 6; but other choices give useful benchmarks too.

September 23, 2015

268 ANSWERS TO EXERCISES 7.2.2.2

subset sum problem
Karp
NP-complete
Gonzalez
Sahni
half adders
full adders
Tseytin encoding, half
pure literals
order encoding
Warners
Mixed-radix
Eén
Sörensson
Tanjo
Tamura
Banbara
preprocessor

409. (a) If S ⊆ {1, . . . , r}, let ΣS =
∑

j∈S aj . We can assume that job n runs on
machines 1, 2, 3 in that order. So the minimum makespan is 2w2n + x, where x is the
smallest ΣS that is ≥ ⌈(a1 + · · · + ar)/2⌉. (The problem of finding such an S is well
known to be NP-hard [R. M. Karp, Complexity of Computer Computations (New York:
Plenum, 1972), 97–100]; hence the open shop scheduling problem is NP-complete.)

(b) Makespan w2n + w4n is achievable if and only if ΣS = (a1 + · · · + ar)/2 for
some S. Otherwise we can achieve makespan w2n + w4n + 1 by running jobs 1, . . . , n
in order on machine 1 and letting s3(n−1) = 0, s4n = w2n; also s2j = w2n + w4n, if
machine 1 is running job j at time w2n. The other jobs are easily scheduled.

(c) ⌊3n/2⌋ − 2 time slots are clearly necessary and sufficient. (If all row and
column sums of W are equal to s, can the minimum makespan be ≥ 3

2
s?)

(d) The “tight” makespan s is always achievable: By renumbering the jobs we
can assume that aj ≤ bj for 1 ≤ j ≤ k, aj ≥ bj for k < j ≤ n, b1 = max{b1, . . . , bk},
an = max{ak+1, . . . , an}. Then if bn ≥ a1, machine 1 can run jobs (1, . . . , n) in order
while machine 2 runs (n, 1, . . . , n− 1); otherwise (2, . . . , n, 1) and (1, . . . n) suffice.

If a1 + · · · + an 6= b1 + · · · + bn, we can increase an or bn to make them equal.
Then we can add a “dummy” job with an+1 = bn+1 = max{a1 + b1, . . . , an + bn} .− s,
and obtain an optimum schedule in O(n) steps as explained above.

Results (a), (b), (d) are due to T. Gonzalez and S. Sahni, who introduced and
named the open shop scheduling problem in JACM 23 (1976), 665–679. Part (c) is a
subsequent observation and open problem due to Gonzalez (unpublished).

410. Using half adders and full adders as we did in () allows us to introduce interme-
diate variables wj such that (x2x1x0)2 +(x2x1x000)2 +(x2x1x0000)2 +(ȳ2ȳ1ȳ0000)2 ≤
(w7w6 . . . w0)2, and then to require (w̄7)∧(w̄6). In slow motion, we successively compute
(c0z0)2 ≥ x0 + x1, (c1z1)2 ≥ x0 + x1 + ȳ0, (c2z2)2 ≥ c0 + z1, (c3z3)2 ≥ x1 + x2 + ȳ1,
(c4z4)2 ≥ c1 + c2 + z3, (c5z5)2 ≥ x2 + ȳ2 + c3, (c6z6)2 ≥ c4 + z5, (c7z7)2 ≥ c5 + c6; then
w7w6 . . . w0 = c7z7z6z4z2z0x1x0. In slower motion, each step (cizi)2 ≥ u+ v expands
to zi ≥ u⊕ v, ci ≥ u∧ v; each step (cizi)2 ≥ t+ u+ v expands to si ≥ t⊕ u, pi ≥ t∧ u,
zi ≥ v ⊕ s, qi ≥ v ∧ s, ci ≥ pi ∨ qi. And at the clause level, t ≥ u ∧ v ⇐⇒ (t ∨ ū ∨ v̄);
t ≥ u∨v ⇐⇒ (t∨ ū)∧ (t∨ v̄); t ≥ u⊕ v ⇐⇒ (t∨ ū∨v)∧ (t∨u∨ v̄). [Only about half of
() is needed when inequalities replace equalities. Exercise 42 offers improvements.]

We end up with 44 binary and ternary clauses; 10 of them can be omitted, because
z0, z2, z4, z6, and z7 are pure literals, and the clause for c7 can be omitted if we simply
require c5 = c6 = 0. But the order encoding of exercise 405 is clearly much better. The
log encoding becomes attractive only with larger integers, as in the following exercise.
[See J. P. Warners, Information Processing Letters 68 (1998), 63–69.]

411. Use m + n new variables to represent an auxiliary number w = (wm+n . . . w1)2.
Form clauses as in exercise 41 for the product xy = w; but retain only about half of
the clauses, as in answer 410. The resulting 9mn − 5m − 10n clauses are satisfiable
if w = xy; and we have w ≥ xy whenever they are satisfiable. Now add 3m + 3n − 2
further clauses as in () to ensure that z ≥ w. The case z ≤ xy is similar.

412. Mixed-radix representations are also of interest in this connection. See, for
example, N. Eén and N. Sörensson, J. Satisfiability, Bool. Modeling and Comp. 2

(2006), 1–26; T. Tanjo, N. Tamura, and M. Banbara, LNCS 7317 (2012), 456–462.

413. Eliminating first an−1, then an−2, etc., yields 2
n−1 clauses. (The analogous result

for x1 . . . xn < y1 . . . yn is 2n+ 2n−1+1. A preprocessor will probably eliminate an−1.)

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 269

(pure) literal
Biere
Brummayer
blocked
subsumed clauses
blocked clause
pure literal
failed literal tests

414. Construct clauses for 1 ≤ k ≤ n that represent ‘ak−1 implies xk < yk + ak’:

(
āk−1 ∨

d−1∨

j=1

(x̄j
k ∨ yjk)

)
∧
(
āk−1 ∨ ak ∨

d−1∨

j=0

(x̄j
k ∨ yj+1

k)
)
, omitting x̄0

k and ydk;

also omit ā0. For the relation x1 . . . xn ≤ y1 . . . yn we can omit the d clauses that
contain the (pure) literal an. But for x1 . . . xn < y1 . . . yn, we want an = 0; so we omit
an and the d− 1 clauses (ān−1 ∨ x̄j

n ∨ yjn).
415. There’s only one, namely

∧
σ1,...,σn∈{−1,1}(σ1x1∨σ1y1∨· · ·∨σnxn∨σnyn). Proof:

Some clause must contain only positive literals, because f(0, . . . , 0) = 0. This clause
must be (x1 ∨ y1 ∨ · · · ∨ xn ∨ yn); otherwise it would be false in cases where f is true.
A similar argument shows that every clause (σ1x1 ∨ σ1y1 ∨ · · · ∨σnxn ∨ σnyn) must be
present. And no clause for f can contain both xj and ȳj , or both x̄j and yj .

416. The other clauses are
∧m

i=1((ui ∨ v̄i ∨ ā0)∧ (ūi ∨ vi ∨ ā0)) and (a0 ∨ a1 ∨ · · · ∨ an).
[See A. Biere and R. Brummayer, Proceedings, International Conference on Formal

Methods in Computer Aided Design 8 (IEEE, 2008), 4 pages [FMCAD 08].]

417. The four clauses (s̄∨ t̄ ∨ u) ∧ (s̄ ∨ t ∨ v) ∧ (s ∨ t̄ ∨ ū) ∧ (s ∨ t ∨ v̄) ensure that s is
true if and only if t?u: v is true. But we need only the first two of these, as in (),
when translating a branching program, because the other two are blocked in the initial
step. Removing them makes the other two blocked on the second step, etc.

418. A suitable branching program for hn when n = 3, beginning at I11, is I11 =
(1̄? 21: 22), I21 = (2̄? 31: 32), I22 = (2̄? 32: 33), I31 = (3̄? 0: 42), I32 = (3̄? 42: 43), I33 =
(3̄? 43: 1), I42 = (1̄? 0: 1), I43 = (2̄? 0: 1). It leads via () to the following clauses for
row i, 1 ≤ i ≤ m: (ri,1,1); (r̄i,k,j∨ xik∨ ri,k+1,j) ∧ (r̄i,k,j∨ x̄ik∨ ri,k+1,j+1), for 1 ≤ j ≤
k ≤ n; (r̄i,n+1,1) ∧ (ri,n+1,n+1) and (r̄i,n+1,j+1∨ xij) for 1 ≤ j < n. Also the following
clauses for column j, 1 ≤ j ≤ n: (ci,1,1); (c̄j,k,i∨xkj∨ cj,k+1,i)∧ (c̄j,k,i∨ x̄kj∨ cj,k+1,i+1),
for 1 ≤ i ≤ k ≤ m; (c̄j,m+1,1) ∧ (cj,m+1,m+1) and (c̄j,m+1,i+1∨ xij) for 1 ≤ i < m.

419. (a) There are exactly n−2 solutions: xij = [j=1][i 6=m−1]+[j=2][i=m−1]+
[j= k][i=m−1], for 2 < k ≤ n.

(b) There are exactly m−2 solutions: x̄ij = [j > 1][i=m−1]+[j=1][i=m−2]+
[j=1][i= k], for 1 ≤ k < m−2 or k = m.

420. Start via () with (x̄1 ∨ x2 ∨ s) ∧ (x1 ∨ x̄2 ∨ s) ∧ (x1 ∨ x2 ∨ s̄) ∧ (x̄1 ∨ x̄2 ∨ s̄);
(x1 ∨ c̄) ∧ (x2 ∨ c̄) ∧ (x̄1 ∨ x̄2 ∨ c); (s̄ ∨ x3 ∨ t) ∧ (s ∨ x̄3 ∨ t) ∧ (s ∨ x3 ∨ t̄) ∧ (s̄ ∨ x̄3 ∨ t̄);
(s∨ c̄′)∧ (x3∨ c̄′)∧ (s̄∨ x̄3∨ c′); (c̄)∧ (c̄′). Propagate (c̄) and (c̄′), obtaining (x̄1 ∨ x̄2)∧
(s̄ ∨ x̄3); remove subsumed clauses (x̄1 ∨ x̄2 ∨ s̄), (s̄ ∨ x̄3 ∨ t̄); remove blocked clause
(s ∨ x3 ∨ t̄); remove clauses containing the pure literal t; rename s to a1.

421. Start via () with (ā5∨ x1∨ a4)∧ (ā5∨ x̄1∨ a3)∧ (ā4∨ x̄2∨ a2)∧ (ā3∨ x2∨ a2)∧
(ā3∨ x̄2) ∧ (ā2∨ x̄3) ∧ (a5). Propagate (a5).

422. (a) x1 implies x̄2, then a1, then x̄3; x2 implies x̄1, then a1, then x̄3.

(b) x1 implies a3, then x̄2, then a2, then x̄3; x2 implies ā3, then x̄1, a4, a2, x̄3.

423. No; consider x1? (x2? x3: x4): (x2? x4: x3) with L = (x̄3) ∧ (x̄4). [But a forcing

encoding can always be constructed, via the extra clauses defined in exercise 436.
Notice that, in the presence of failed literal tests, weak forcing corresponds to forcing.]

424. The clause 1̄3̄4̄ is redundant (in the presence of 1̄2̄3̄ and 23̄4̄); it cannot be omitted,
because {2̄3̄, 23̄, 12} 6⊢1 3̄. The clause 23̄4̄ is also redundant (in the presence of 1̄3̄4̄ and
12); it can be omitted, because {1̄4̄, 34, 1} ⊢1 4̄, {1̄3̄, 34, 1} ⊢1 3̄, and {1̄2̄, 1̄, 12} ⊢1 2.

September 23, 2015

270 ANSWERS TO EXERCISES 7.2.2.2

unit propagation
honesty
symmetric Boolean functions
prime clauses
Buss
Williams
Gwynne
Kullmann

425. If x is in the core, F ⊢1 x, because Algorithm 7.1.1C does unit propagation. Oth-
erwise F is satisfied when all core variables are true and all noncore variables are false.

426. (a) True. Suppose the clauses involving am are (am∨ αi) for 1 ≤ i ≤ p and
(ām∨ βj) for 1 ≤ j ≤ q; then G contains the pq clauses (αi ∨ βj) instead. If F |L ⊢1 l
we want to prove that G |L ⊢1 l. This is clear if unit propagation from F |L doesn’t
involve am. Otherwise, if F | L ⊢1 am, unit propagation has falsified some αi; every
subsequent propagation step from F | L that uses (ām∨ βj) can use (αi ∨ βj) in a
propagation step from G |L. A similar argument applies when F |L ⊢1 ām.

(Incidentally, variable elimination also preserves “honesty.”)
(b) False. Let F = (x1∨ x2∨ a1) ∧ (x1∨ x2∨ ā1), L = x̄1 or x̄2.

427. Suppose n = 3m, and let f be the symmetric function [νx<m or νx>2m]. The
prime clauses of f are the N =

(
n

m,m,m

)
∼ 3n+3/2/(2πn) ORs of m positive literals

and m negative literals. There are N ′ =
(

n
m−1,m,m+1

)
= m

m+1
N ways to specify that

xi1 = · · · = xim = 1 and xim+1
= · · · = xi2m−1

= 0; and this partial assignment
implies that xj = 1 for j /∈ {i1, . . . , i2m−1}. Therefore at least one of the m+1 clauses
(x̄i1 ∨ · · · ∨ x̄im ∨ xim+1

∨ · · · ∨ xi2m−1
∨ xj) must be present in any set of prime clauses

that forces f . By symmetry, any such set must include at least N ′/m prime clauses.
On the other hand, f is characterized by O(n2) forcing clauses (see answer 436).

428. (a) (y∨ zj1∨ · · · ∨ zjd) for 1 ≤ j ≤ n; (x̄ij∨ z̄ik∨ z̄jk) for 1 ≤ i < j ≤ n, 1 ≤ k ≤ d.
(b) Imagine a circuit with 2N(N + 1) gates glt, one for each literal l of Gnd and

for each 0 ≤ t ≤ N , meaning that literal l is known to be true after t rounds of unit
propagation, if we start with given values of the xij variables only. Thus we set gl0 ← 1
if l = xij and xij is true, or if l = x̄ij and xij is false; otherwise gl0 ← 0. And

gl(t+1) ← glt ∨
∨
{gl̄1t ∧ · · · ∧ gl̄kt | (l ∨ l1 ∨ · · · ∨ lk) ∈ Gnd}, for 1 ≤ t < N.

Given values of the xij , the literal y is implied if and only if the graph has no d-coloring;
and at most N rounds make progress. Thus there’s a monotone chain for gyN = f̄nd.

[This exercise was suggested by S. Buss and R. Williams in 2014, based on a
similar construction by M. Gwynne and O. Kullmann.]

429. Let Σk be the sum of the assigned x’s in leaves descended from node k. Unit
propagation will force bkj ← 1 for 1 ≤ j ≤ Σk, moving from leaves toward the root.
Then it will force bkj ← 0 for j = Σk + 1, moving downwards from the root, because
r = Σ2 + Σ3 and because () starts this process when k = 2 or 3.

430. Imagine boundary conditions as in answer 26, and assume that xj1 , . . . , xjr

have been assigned 1, where j1 < · · · < jr. Unit propagation forces skjk+1−k ← 1 for

1 ≤ k ≤ r; then it forces skjk−k ← 0 for r ≥ k ≥ 1. So unassigned x’s are forced to zero.

431. Equivalently x1+· · ·+xm+ȳ1+· · ·+ȳn ≤ n; so we can use ()–() or ()–().

432. The clauses of answer 404(b) can be shown to be forcing. But not those of 404(a)
when a > 1; for example, if a = 2 and we assume x̄2, unit propagation doesn’t yield y2.

433. Yes. Imagine, for example, the partial assignment x = 1∗∗∗10∗∗1, y = 10∗00∗1∗∗.
Then y3 must be 1; otherwise we’d have 10010001 ≤ x ≤ y ≤ 100001111. In this situ-
ation unit propagation from the clauses that correspond to 1 ≤ 〈a101〉, a1 ≤ 〈a2x̄20〉,
a2 ≤ 〈a3x̄3y3〉, a3 ≤ 〈a4x̄40〉, a4 ≤ 〈a500〉 forces a1 = 1, a2 = 1, a4 = 0, a3 = 0, y3 = 1.

In general if a given partial assignment is consistent with x ≤ y, we must have
x↓ ≤ y↑, where x↓ and y↑ are obtained from x and y by changing all unassigned
variables to 0 and 1, respectively. If that partial assignment forces some yj to a

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 271

n.f.: not falsified
Bacchus

particular value, the value must be 1; and we must in fact have x↓ > y′↑, where
y′ is like y but with yj = 0 instead of yj = ∗. If xj 6= 1, unit propagation will force
a1 = · · · = aj−1 = 1, ak = · · · = aj = 0, yj = 1, for some k ≥ j.

Similar remarks apply when xi is forced, because x ≤ y ⇐⇒ ȳ ≤ x̄.
434. (a) Clearly pk is equivalent to x̄1 ∧ · · · ∧ x̄k, qk is equivalent to x̄k ∧ · · · ∧ x̄n, and
rk implies that a run of exactly l 1s begins at xk.

(b) When l = 1, if xk = 1 unit propagation will imply p̄j for j ≥ k and q̄j for
j ≤ k, hence r̄j for j 6= k; then rk is forced, making xj = 0 for all j 6= k. Conversely,
xj = 0 forces r̄j ; if this holds for all j 6= k, then rk is forced, making xk = 1.

But when l = 2 and n = 3, the clauses fail to force x2 = 1 by unit propagation.
They also fail to force x1 = 0 when we have l = 2, n = 4, and x3 = 1.

435. The following construction with O(nl) clauses is satisfactory when l is small:
Begin with the clauses for pk and qk (but not rk) in exercise 434(a); include also
(x̄k ∨ pk−l) for l < k ≤ n, and (x̄k ∨ qk+l) for 1 ≤ k ≤ n− l. Append (p̄k−l ∨ q̄k+l ∨ xk)
for 1 ≤ k ≤ n, omitting p̄j for j < 1 and omitting q̄j for j > n. Finally, append

(xk ∨ x̄k+1 ∨ xk+d) for 0 ≤ k < n and 1 < d < l, (∗)

omitting xj when j < 1 or j > n.

To reduce to O(n log l) clauses, suppose 2e+1 < l ≤ 2e+2, where e ≥ 0. The

clauses (∗) can be replaced by (x̄k ∨ ȳ(e)k ∨ z̄(e)k) for 1 ≤ k ≤ n, if x̄k−d implies y
(e)
k

for 1 ≤ d ≤ ⌊l/2⌋ and x̄k+d implies z
(e)
k for 1 ≤ d ≤ ⌈l/2⌉. And to achieve the latter,

we introduce clauses (ȳ
(t)
k ∨ y

(t+1)
k), (ȳ

(t)

k−2t
∨ y(t+1)

k), (z̄
(t)
k ∨ z

(t+1)
k), (z̄

(t)

k+2t
∨ z(t+1)

k),

(xk−1 ∨ y(0)k), (xk+2e−1−⌊l/2⌋ ∨ y(0)k), (xk+1 ∨ z(0)k), (xk−2e+1+⌈l/2⌉ ∨ z(0)k), for 1 ≤ k ≤ n
and 0 ≤ t < e, always omitting xj or ȳj or z̄j when j < 1 or j > n.

436. Let the variables qk for 0 ≤ k ≤ n and q ∈ Q represent the sequence of states, and
let tkaq represent a transition when 1 ≤ k ≤ n and when T contains a triple of the form
(q′, a, q). The clauses, F , are the following, for 1 ≤ k ≤ n: (i) (t̄kaq∨ xa

k) ∧ (t̄kaq∨ qk),
where x0

k denotes x̄k and x1
k denotes xk; (ii) (q̄k−1∨

∨{tkaq′ | (q, a, q′) ∈ T}), for q ∈ Q;
(iii) (q̄k ∨

∨{tkaq | (q′, a, q) ∈ T}); (iv) (x̄a
k ∨

∨{tkaq | (q′, a, q) ∈ T}); (v) (t̄kaq′ ∨∨{qk−1 | (q, a, q′) ∈ T}); together with (vi) (q̄0) for q ∈ Q \ I and (q̄n) for q ∈ Q \O.

It is clear that if F ⊢1 x̄a
k, no string x1 . . . xn ∈ L can have xk = a. Conversely,

assume that F 6⊢1 x̄a
k, and in particular that F 6⊢1 ǫ. To prove the forcing property, we

want to show that some string of L has xk = a. It will be convenient to say that a
literal l is ‘n.f.’ (not falsified) if F 6⊢1 l̄; thus xa

k is assumed to be n.f.

By (iv), there’s a (q′, a, q) ∈ T such that tkaq is n.f. Hence qk is n.f., by (i). If
k = n we have q ∈ O by (vi); otherwise some t(k+1)bq′ is n.f., by (ii), hence xb

k+1 is n.f.
Moreover, (v) tells us that there’s (q′′, a, q) ∈ T with q′′k−1 n.f. If k = 1 we have q′′ ∈ I ;
otherwise some t(k−1)cq′′ is n.f., by (iii), and xc

k−1 is n.f. Continuing this line of reason-
ing yields x1 . . . xn ∈ L with xk = a (and with xk+1 = b if k < n, xk−1 = c if k > 1).

The same proof holds even if we add unit clauses to F that assign values to one
or more of the x’s. Hence F is forcing. [See F. Bacchus, LNCS 4741 (2007), 133–147.]

The language L2 of exercise 434 yields 17n+4 clauses: F =
∧

1≤k≤n((t̄k00∨ x̄k)∧
(t̄k00∨ 0k)∧ (t̄k11∨ xk)∧ (t̄k11∨ 1k)∧ (t̄k12∨ xk)∧ (t̄k12∨ 2k)∧ (t̄k02∨ x̄k)∧ (t̄k02∨ 2k)∧
(0̄k−1∨ tk00 ∨ tk11)∧ (1̄k−1∨ tk12)∧ (2̄k−1∨ tk02)∧ (xk∨ tk00 ∨ tk02)∧ (x̄k∨ tk11 ∨ tk12)∧
(t̄k00∨ 0k−1) ∧ (t̄k11∨ 0k−1) ∧ (t̄k12∨ 1k−1) ∧ (t̄k02∨ 2k−1)) ∧ (1̄0) ∧ (2̄0) ∧ (0̄n) ∧ (1̄n).
(Unit propagation will immediately assign values to 10 of the 8n+3 variables, thereby
satisfying 22 of these clauses, when n ≥ 3. For example, t̄112, t̄n11, 0̄n−1 are forced.)

September 23, 2015

272 ANSWERS TO EXERCISES 7.2.2.2

preprocessing
eliminate
automaton
unit propagation
Quimper
Walsh
Bailleux
Boufkhad
Roussel

The clauses produced by this general-purpose construction can often be signifi-
cantly simplified by preprocessing to eliminate auxiliary variables. (See exercise 426.)

437. Each variable xk now becomes a set of |A| variables xka for a ∈ A, with clauses
like () and () to ensure that exactly one value is assigned. The same construction is
then valid, with the same proof, if we simply replace ‘xa

k’ by ‘xka’ throughout. (Notice
that unit propagation will often derive partial information such as x̄ka, meaning that
xk 6= a, although the precise value of xk may not be known.)

438. Let l≤j = l1 + · · · + lj . Exercise 436 does the job via the following automaton:
Q = {0, 1, . . . , l≤t + t − 1}, I = {0}, O = {l≤t + t − 1}; T = {(l≤j + j, 0, l≤j + j) |
0 ≤ j < t} ∪ {(l≤j + j + k, 1, l≤j + j + k + 1) | 0 ≤ j < t, 0 ≤ k < lj+1} ∪
{(l≤j + j − 1, 0, l≤j + j − [j= t]) | 1 ≤ j ≤ t}.
439. We obviously want the clauses (x̄j ∨ x̄j+1) for 1 ≤ j < n; and we can use, say,
() and () with r = t, to force 0s whenever the number of 1s reaches t. The difficult
part is to force 1s from partial patterns of 0s; for example, if n = 9 and t = 4, we can
conclude that x4 = x6 = 1 as soon as we know that x3 = x7 = 0.

An interesting modification of () and () turns out to work beautifully, namely
with the clauses (t̄kj ∨ tkj+1) for 1 ≤ j < 2t − 1 and 1 ≤ k ≤ n− 2t + 1, together with
(x2j+k−1∨t̄k2j−1∨tk+1

2j−1) for 1 ≤ j ≤ t and 0 ≤ k ≤ n−2t+1, omitting t̄ 02j−1 and tn−2t+2
2j−1 .

440. It’s convenient to introduce
(
n+1
2

)
|N | variables Pik for all P ∈ N and for 1 ≤ i ≤

k ≤ n, as well as
(
n+1
3

)
|N |2 variables QRijk for Q,R ∈ N and for 1 ≤ i < j ≤ k ≤ n,

although almost all of them will be eliminated by unit propagation. The clauses are:
(i) (QRijk ∨ Qi(j−1)) ∧ (QRijk ∨ Rjk); (ii) (P kk ∨

∨{xa
k | P → a ∈ U}); (iii) (P ik ∨∨{QRijk | i < j ≤ k, P → QR ∈ W }), if i < k; (iv) (x̄a

k ∨
∨{Pkk | P → a ∈ U});

(v) (P ik ∨
∨{PRi(k+1)l | k < l ≤ n,R ∈ N} ∨∨{QRhik | 1 ≤ h < i, Q ∈ N}), if i > 1

or k < n; (vi) (QRijk ∨
∨{Pik | P → QR ∈W }); (vii) (P 1n) for P ∈ N \ S.

The forcing property is proved by extending the argument in answer 436: Assume
that xa

k is n.f.; then some Pkk with P → a is also n.f. Whenever Pik is n.f. with i > 1
or k < n, some PRi(k+1)l or QRhik is n.f.; hence some “larger” P ′il or P ′hk is also n.f.
And if P1n is n.f., we have P ∈ S.

Furthermore we can go “downward”: Whenever Pik is n.f. with i < k, there’s
QRijk such that Qi(j−1) and Rjk are n.f.; on the other hand if Pkk is n.f., there’s a ∈ A
such that xa

k is n.f. Our assumption that xa
k is n.f. has therefore shown the existence

of x1 . . . xn ∈ L with xk = a.
[See C.-G. Quimper and T. Walsh, LNCS 4741 (2007), 590–604].

441. See O. Bailleux, Y. Boufkhad, and O. Roussel, LNCS 5584 (2009), 181–194.

442. (a) F |L−q = F | l1 | . . . | lq−1 | l̄q contains ǫ if and only if F | l1 | . . . | lq−1 contains ǫ
or the unit clause (lq).

(b) If F 6⊢1 l and F | l̄ ⊢1 ǫ, the failed literal elimination technique will reduce F
to F | l and continue looking for further reductions. Thus we have F ⊢2 l if and only if
unit propagation plus failed literal elimination will deduce either ǫ or l.

(c) Use induction on k; both statements are obvious when k = 0. Suppose we
have F ⊢k+1 l̄ via l1, . . . , lp = l̄, with F | L−q ⊢k ǫ for 1 ≤ q ≤ p. If p > 1 we have
F | l |L−q ⊢k ǫ for 1 ≤ q < p; it follows that F | l ⊢k+1 lp−1 and F | l ⊢k+1 l̄p−1. If p = 1
we have F | l ⊢k ǫ. Hence F | l ⊢k+1 ǫ in both cases.

Now we want to prove that F | l ⊢k+1 ǫ and F ⊢k+2 ǫ, given F ⊢k+1 l′ and
F ⊢k+1 l̄

′. If F | L−q ⊢k ǫ for 1 ≤ q ≤ p, with lp = l′, we know that F | L−q ⊢k+1 ǫ.
Furthermore we can assume that F 6⊢k+1 l̄; hence l 6= l̄q for 1 ≤ q ≤ p, and l 6= lp. If

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 273

Kullmann
prime clauses
Gwynne
Kullmann
propagation, kth order
UCk
Gwynne
Kullmann
data structures
Truemper

l = lq for some q < p, then F | l |L−r ⊢k ǫ for 1 ≤ r < q and F |L−r ⊢k ǫ for q < r ≤ p;
otherwise F | l | L−q ⊢k ǫ for 1 ≤ q ≤ p. In both cases F | l ⊢k+1 l

′ and F ⊢k+2 l
′.

Essentially the same proof shows that F | l ⊢k+1 l̄
′ and F ⊢k+2 l̄

′.

(d) True, by the last relation in part (c).

(e) If all clauses of F have more than k literals, Lk(F) is empty; hence L0(R
′) =

L1(R
′) = L2(R

′) = ∅. But Lk(R
′) = {1̄, 2, 4} for k ≥ 3; for example, R′ ⊢3 1̄ because

R′ |1 ⊢2 ǫ, because R′ |1 ⊢2 3 and R′ |1 ⊢2 3̄.

(f) Unit propagation can be done in O(N) steps if N is the total length of all
clauses; this handles the case k = 1.

For k ≥ 2, procedure Pk(F) calls Pk−1(F | x1), Pk−1(F | x̄1), Pk−1(F | x2), etc.,
until either finding Pk−1(F | l̄) = {ǫ} or trying both literals for each variable of F . In
the latter case, Pk returns F . In the former case, if Pk−1(F | l) is also {ǫ}, Pk returns
{ǫ}; otherwise it returns Pk(F | l). The set Lk contains all literals for which we’ve
reduced F to F | l, unless Pk(F) = {ǫ}. (In the latter case, every literal is in Lk.)

To justify this procedure we must verify that the order of testing literals doesn’t
matter. If F | l̄ ⊢k ǫ and F | l̄′ ⊢k ǫ, we have F | l | l̄′ ⊢k ǫ and F | l′ | l̄ ⊢k ǫ by (c); hence
Pk(F | l) = Pk(F | l | l′) = Pk(F | l′ | l) = Pk(F | l′).

[See O. Kullmann, Annals of Math. and Artificial Intell. 40 (2004), 303–352.]

443. (a) If F |L ⊢ ǫ then F |L ⊢ l for all literals l; so if F ∈ PCk we have F |L ⊢k l
and F |L ⊢k l̄ and F |L ⊢k ǫ, proving that PCk ⊆ UCk.

Suppose F ∈ UCk and F |L ⊢ l. Then F |L | l̄ ⊢ ǫ, and we have F | L | l̄ ⊢k ǫ.
Consequently F |L ⊢k+1 l, proving that UCk ⊆ PCk+1.

The satisfiable clause sets ∅, {1}, {1, 1̄2}, {12, 1̄2}, {12, 1̄2, 12̄, 1̄2̄3}, {123, 1̄23,
12̄3, 1̄2̄3}, {123, 1̄23, 12̄3, 1̄2̄3, 123̄, 1̄23̄, 12̄3̄, 1̄2̄3̄4}, . . . , show that PCk 6= UCk 6= PCk+1.

(b) F ∈ PC0 if and only if F = ∅ or ǫ ∈ F . (This can be proved by induction on
the number of variables in F , because ǫ /∈ F implies that F has no unit clauses.)

(c) If F has only one clause, it is in UC0. More interesting examples are {12̄, 1̄2};
{1234, 1̄2̄3̄4̄}; {1234̄, 123̄4, 12̄34, 1̄234}; {12, 1̄2̄, 345̄, 3̄4̄5}; etc. In general, F is in UC0

if and only if it contains all of its prime clauses.

(d) True, by induction on n: If F |L ⊢ l then F |L | l̄ ⊢ ǫ, and F |L | l̄ has ≤ n− 1
variables; so F |L | l̄ ∈ PCn−1 ⊆ UCn−1. Hence we have F |L | l̄ ⊢n−1 ǫ and F |L ⊢n l.

(e) False, by the examples in (c).

(f) R′ ∈ UC2 \ PC2. For example, we have R′ |1 ⊢2 2 and R′ |1 ⊢2 2̄.

[See M. Gwynne and O. Kullmann, arXiv:1406.7398 [cs.CC] (2014), 67 pages.]

444. (a) Complementing a variable doesn’t affect the algorithm’s behavior, so we can
assume that F consists of unrenamed Horn clauses. Then all clauses of F will be Horn
clauses of length ≥ 2 whenever step E2 is reached. Such clauses are always satisfiable,
by setting all remaining variables false; so step E3 cannot find both F ⊢1 l and F ⊢1 l̄.

(b) For example, {12, 2̄3, 12̄3̄, 1̄23}.
(c) Every unsatisfiable F recognized by SLUR must be in UC1. Conversely, if

F ∈ UC1, we can prove that F is satisfiable and in UC1 whenever step E2 is reached.
[Essentially the same argument proves that a generalized algorithm, which uses

⊢k instead of ⊢1 in steps E1 and E3, always classifies F if and only if F ∈ UCk. See
M. Gwynne and O. Kullmann, Journal of Automated Reasoning 52 (2014), 31–65.]

(d) If step E3 interleaves unit propagation on F | l with unit propagation on
F | l̄, stopping when either branch is complete and ǫ was not detected in the other,
the running time is proportional to the number of cells used to store F , using data
structures like those of Algorithm L. (This is an unpublished idea of Klaus Truemper.)

September 23, 2015

274 ANSWERS TO EXERCISES 7.2.2.2

Schlipf
Annexstein
Franco
Swaminathan
forcing
4-cycle
quad
lexicographic row/column symmetry
Steiner triple system
Horsley
symmetric solutions
projective plane

[SLUR is due to J. S. Schlipf, F. S. Annexstein, J. V. Franco, and R. P. Swami-
nathan, Information Processing Letters 54 (1995), 133–137.]

445. (a) Since the lexicographic constraints () are forcing, a succinct certificate is
(x̄1m, x̄2m, . . . , x̄(m−1)m, x̄2(m−1), x̄3(m−1), . . . , x̄(m−1)(m−1), x̄3(m−2), x̄4(m−2), . . . ,
x̄(m−1)(m−2), . . . , x̄(m−1)2, ∅). The first m− 1 steps can be replaced by ‘x0m’.

(b) (x̄(m−1)1, x̄(m−2)2, . . . , x̄1(m−1), ∅).
(c) (x01, x12, . . . , x(m−2)(m−1), ∅).

446. Z(m,n)− 1, because a 4-cycle corresponds to a quad.

447. For general m and n we can add the m3n3/3! constraints (x̄ij ∨
x̄i′j ∨ x̄i′j′ ∨ x̄i′′j′ ∨ x̄i′′j′′ ∨ x̄ij′′) to (), for 1 ≤ i < i′ < i′′ ≤ m
and distinct {j, j′, j′′} ⊆ {1, . . . , n}. The 19-edge graph illustrated here works when
m = n = 8; and Algorithm C finds girth ≥ 8 unsatisfiable with 20 edges, after only
400 megamems of calculation (using lexicographic row/column symmetry).

448. Each pair of points can occur together in at most one line. If the lines contain
respectively l1, . . . , ln points, we therefore have

(
l1
2

)
+ · · ·+

(
ln
2

)
≤

(
m
2

)
= 3n. A Steiner

triple system achieves equality, with l1 = · · · = ln = 3. Since
(
l−1
2

)
+
(
l′+1
2

)
<

(
l
2

)
+
(
l′

2

)

when l ≥ l′ + 2, we can’t have l1 + · · ·+ ln > 3n. Thus Z(m, n) = 3n+ 1.

[If m is even and
(
m
2

)
= 3n, we can’t cover all the pairs with triples, because no

point can be in more than (m−2)/2 triples. Daniel Horsley has shown that Z(m,n) =
3n+ ⌊1−m/14⌋ in such cases; see (a paper in preparation).]

449. It’s wise to try first for symmetric solutions with xij = xji, roughly halving the
number of variables; then the matrices below are found quickly. Such solutions are
impossible when n = 9, 12, 13 (and also when n = 15 and 16 if we insist on five
1s in the top row). The case n = 13 corresponds to the projective plane of order 3;
indeed, a projective plane of order q is equivalent to a maximum quad-free matrix with
m = n = q2 + q + 1 and Z(n, n) = (q + 1)n+ 1.

11100000
10011000
10000110
01010100
01000011
00110001
00101010
00001101

111100000
100011100
100000011
010010010
010001001
001010001
001000110
000101010
000100101

1111000000
1000110000
1000001100
1000000011
0100101010
0100000101
0010100001
0010010110
0001100100
0001011001

11110000000
10001100000
10000011100
10000000011
01001010010
01000001001
00101001000
00100110001
00100000110
00011000101
00010101010

111100000000
100011100000
100000011000
100000000111
010010010100
010001001010
010000100001
001010001001
001000110010
000110000010
000101010001
000100101100

1111000000000
1000111000000
1000000111000
1000000000111
0100100100100
0100010010010
0100001001001
0010100010001
0010010001100
0010001100010
0001100001010
0001010100001
0001001010100

11110000000000
10001110000000
10000001110000
10000000001110
01000100001001
01001001000100
01000010100010
00100101000010
00100010011000
00100000100101
00011000101000
00010100010100
00010011000001
00001000010011

111100000000000
100011100000000
100000011100000
100000000011110
010010010010000
010001001001000
010000000100101
001010001000011
001001010000100
001000100110000
000110000101000
000101000010001
000100101000100
000100010000010
000000110001001

1111000000000000
1000111000000000
1000000111100000
1000000000011100
0100100100010000
0100010010001010
0100000001000101
0010100010000100
0010010100000001
0010001001001000
0010000000110010
0001100000101001
0001010001010000
0001001100000110
0000010000100100
0000001010010001

450. To prove the hint, add the unary clause (x̄15) to the others; this problem is rapidly
found to be unsatisfiable, hence no line has more than 4 points. On the other hand, a
line with fewer than 3 points is impossible because Z(9, 10) = 32. The same arguments
show that every point belongs to either 3 or 4 lines. Thus exactly four lines contain
four points, and exactly four points lie on such lines.

If p ∈ l and l is a 4-point line, every other line containing p must contain 2 of
the remaining 6 points. And the four 4-point lines contain at least 4 × 4 −

(
4
2

)
= 10

points altogether. Hence, pigeonwise, we see that each of the four 4-point lines contains
exactly one of the four 4-line points.

Now we may call the 4-line points {a, b, c, d}, and the 4-point lines {A,B,C,D}.
The other points may be called {ab, ac, ad, bc, bd, cd}, with A = {a, ab, ac, ad}, B =
{b, ab, bc, bd}, C = {c, ac, bc, cd}, D = {d, ad, bd, cd}. The other lines can be called
{AB,AC,AD,BC,BD,CD}; and we have AB = {a, b, cd}, AC = {a, c, ad}, etc.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 275

Knuth
Beresin
Levine
Winn
Lewis
Nowakowski
Steinbach
Posthoff
rotational symmetry
block decomposition
Mader
Mutzbauer
pure literal
Stanley
Robinson
Schensted
Knuth
tableau

451. One of the colors can be placed uniquely, by the previous exercise. So we’re left
with the simple problem of two-coloring the remaining 66 squares and avoiding both
0-quads and 1-quads. That problem is unsatisfiable with

∑
xij odd. The author then

constructed a 33 + 33 + 33 solution by hand, using the fact that each color class must
be unable to use the deleted square. [See M. Beresin, E. Levine, and
J. Winn, The College Mathematics Journal 20 (1989), 106–114 and the
cover; J. L. Lewis, J. Recreational Math. 28 (1997), 266–273.]

452. Any such solution must have exactly 81 cells of each color, because
R. Nowakowski proved in 1978 that Z(18, 18) = 82. The solution exhibited
here was found by B. Steinbach and C. Posthoff [Multiple-Valued Logic and

Soft Computing 21 (2013), 609–625], exploiting 90◦ rotational symmetry.

453. (a) If R⊆{1, . . . ,m} and C ⊆{1, . . . , n}, let V (R,C)= {ui | i∈R}∪{vj | j ∈C}. If
X is decomposable, there’s no path from a vertex in V (R,C) to a vertex not in V (R,C);
hence the graph isn’t connected. Conversely, if the graph isn’t connected, let V (R,C) be
one of its connected components. Then 0 < |R|+|C| < m+n, and we’ve decomposedX.

(b) False in general, unless every row and column of X ′ contains a positive
element. Otherwise, clearly true by the definition of lexicographic order.

(c) True: A direct sum is certainly decomposable. Conversely, let X be decom-
posable via R and C. We may assume that 1 ∈ R or 1 ∈ C; otherwise we could replace
R by {1, . . . ,m} \ R and C by {1, . . . , n} \ C. Let i ≥ 1 and j ≥ 1 be minimal such
that i /∈ R and j /∈ C. Then xi′j = 0 for 1 ≤ i′ < i and xij′ = 0 for 1 ≤ j′ < j.
The lexicographic constraints now force xi′j′ = 0 for 1 ≤ i′ < i, j′ ≥ j; also for i′ ≥ i,
1 ≤ j′ < j. Consequently X = X ′ ⊕ X ′′, where X ′ is (i − 1) × (j − 1) and X ′′ is
(m + 1 − i) × (n + 1 − j). (Degenerate cases where i = 1 or j = 1 or i = m + 1 or
j = n+1 need to be considered, but they work fine. This result allows us to “read off”
the block decomposition of a lexicographically ordered matrix.)

Reference: A. Mader and O. Mutzbauer, Ars Combinatoria 61 (2001), 81–95.

454. We have f(x) ≤ f(xτ) ≤ f(xττ) ≤ · · · ≤ f(xτk) ≤ · · · ; eventually xτk = x.

455. (a) Yes, because C only causes 1001 and 1101 to be nonsolutions. (b) No, because
F might have been satisfied only by 0011. (c) Yes as in (a), although () might no
longer be an endomorphism of F ∧C as it was in that case. (d) Yes; if 0110 is a solution,
so are 0101 and 1010. [Of course this exercise is highly artificial: We’re unlikely to know
that a weird mapping such as () is an endomorphism of F unless we know a lot
more about the set of solutions.]

456. Only (1 + 2 · 7)(1 + 2)(1 + 8) = 405, out of 65536 possibilities (about 0.06%).

457. We have min0≤k≤16(k
k1616−k) = 661610 ≈ 51.3 × 1016. For general n, the mini-

mum occurs when k = 2n/e+O(1); and it is 22
n(n−x) where x = 1/(e ln 2)+O(2−n) < 1.

458. The operation of assigning values to each variable of an autarky, so that all clauses
containing those variables are satisfied, while leaving all other variables unchanged, is
an endomorphism. (For example, consider the operation that makes a pure literal true.)

459. sweep(Xij) = 0 when i = 0 or j = 0. And for 1 ≤ i ≤ m and 1 ≤ j ≤ n we have
sweep(Xij) = max(xij + sweep(X(i−1)(j−1)), sweep(X(i−1)j), sweep(Xi(j−1))).

[Let the 1s in the matrix be xi1j1 , . . . , xirjr , with 1 ≤ i1 ≤ · · · ≤ ir ≤ m and with
jq+1 < jq when iq+1 = iq . Richard Stanley has observed (unpublished) that sweep(X)
is the number of rows that occur when the Robinson–Schensted–Knuth algorithm is
used to insert the sequence n− j1, . . . , n− jr into an initially empty tableau.]

September 23, 2015

276 ANSWERS TO EXERCISES 7.2.2.2

Durfee square
disjoint shortest paths
unit propagation

460. We introduce auxiliary variables stij that will become true if sweep(Xij) > t.
They are implicitly true when t < 0, false when t = k. The clauses are as follows, for
1 ≤ i ≤ m, 1 ≤ j ≤ n, and 0 ≤ t ≤ min(i − 1, j − 1, k): (s̄t(i−1)j ∨ stij), if i > 1 and

t < k; (s̄ti(j−1) ∨ stij), if j > 1 and t < k; and (x̄ij∨ s̄t−1
(i−1)(j−1) ∨ stij). Omit s̄t−1

0(j−1) and

s̄t−1
(i−1)0 and s̄0(i−1)(j−1) and s̄kij from that last clause, if present.

461.
∨m−1

i=1

∨n−1
j=1 (xij∨ c̄(i−1)j∨ cij) ∧

∨m
i=1

∨n−1
j=1 (c̄(i−1)j∨ x̄ij ∨ xi(j+1)), omitting c̄0j .

These clauses take care of τ1; interchange i↔ j, m↔ n for τ2.

462. Let X̃ij denote the last m+ 1− i rows and the last n+ 1− j columns of X; and
let tij = sweep(X(i−1)(j−1))+sweep(X̃(i+1)(j+1)). For τ1 we must prove 1+ ti(j+1) ≤ k,
given that 1 + tij ≤ k. It’s true because sweep(X(i−1)j) = sweep(X(i−1)(j−1)) when

column j begins with i−1 zeros, and we have sweep(X̃(i+1)(j+2)) ≤ sweep(X̃(i+1)(j+1)).

LetX ′ = Xτ3 have the associated sweep sums t′ij . We must prove that t′ij ≤ k and
1+t′(i+1)(j+1) ≤ k, if 1+tij ≤ k, 1+ti(j+1) ≤ k, 1+t(i+1)j ≤ k, and t(i+1)(j+1) ≤ k. The
key point is that sweep(X ′ij) = max(sweep(X(i−1)j), sweep(Xi(j−1))), since x

′
ij = 0.

Also sweep(X̃ ′(i+1)(j+1)) = 1 + sweep(X̃(i+2)(j+1)).

(Notice that τ1 and τ2 might actually decrease the sweep, but τ3 preserves it.)

463. If row i + 1 is entirely zero but row i isn’t, τ2 will apply. Therefore the all-zero
rows occur at the top. And by τ1, the first nonzero row has all its 1s at the right.

Suppose rows 1 through i have r1, . . . , ri 1s, all at the right, with ri > 0.
Then r1 ≤ · · · ≤ ri, by τ2. If i < n we can increase i to i + 1, since we can’t have
x(i+1)j > x(i+1)(j+1) when j ≤ n−ri, by τ1; and we can’t have it when j > n−ri, by τ3.

Thus all the 1s are clustered at the right and the bottom, like the diagram of a
partition but rotated 180◦; and the sweep is the size of its “Durfee square” (see Fig. 48
in Section 7.2.1.4). Hence the maximum number of 1s, given sweep k, is k(m+ n− k).
464. By answer 462, τ1 can be strengthened to τ ′1, which sets xi(j+1) ← 1 but leaves
xij = 1. Similarly, τ2 can be strengthened to τ ′2. These endomorphisms preserve the
sweep but increase the weight, so they can’t apply to a matrix of maximumweight. [One
can prove, in fact, that max-weight binary matrices of sweep k are precisely equivalent
to k disjoint shortest paths from the leftmost cells in row m to the rightmost cells in
row 1. Hence every integer matrix of sweep k is the sum of k matrices of sweep 1.]

465. If not, there’s a cycle x0 → x1 → · · · → xp = x0 of length p > 1, where xiτuvi 7→
xi+1. Let uv be the largest of {uv1, . . . , uvp−1}. Then none of the other τ ’s in the cycle
can change the status of edge uv. But that edge must change status at least twice.

466. Notice first that v11 must be true, if m ≥ 2. Otherwise h11, v21, h22, v32, . . .
would successively be forced by unit propagation, until reaching a contradiction at the
edge of the board. And v31 must also be true, ifm ≥ 4, by a similar argument. Thus the
entire first column must be filled with verticals, except the bottom row when m is odd.

Then we can show that the remainder of row 1 is filled with horizontals, except
for the rightmost column when n is even. And so on.

The unique solution when m and n are both even uses vij if and only if i+ j is
even and max(i,m − i) ≤ j ≤ n/2, or i + j is odd and vi(n+1−j) is used. When m is
odd, add a row of horizontals below the (m− 1) × n solution. When n is odd, remove
the rightmost column of verticals in the m× (n+ 1) solution.

467. The 8 × 7 covering is obtained by reflection of the 7 × 8 covering
(shown here) about its southwest-to-northeast diagonal. Both solutions
are unique.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 277

even-length cycle
truth table
orbits
cycle

468. (a) Typical running times with Algorithm C for sizes 6 × 6, 8 × 8, . . . , 16 × 16
are somewhat improved: 39Kµ, 368Kµ, 4.3Mµ, 48Mµ, 626Mµ, 8Gµ.

(b) Now they’re even better, but still growing exponentially: 30Kµ, 289Kµ,
2.3Mµ, 22Mµ, 276Mµ, 1.7Gµ.

469. For instance (v11), (v31), (v51), (h12), (h14), (v22), (v42), (h23), (v33), ǫ.

470. There can’t be a cycle x0 → x1 → · · · → xp = x0 of length p > 1, because the
largest vertex whose mate is changed always gets smaller and smaller mates.

471. We must pair 2n with 1, then 2n− 1 with 2, . . . , then n+ 1 with n.

472. We can number the vertices from 1 to mn in such a way that every
4-cycle switches as desired. For example, we can make (i, j) < (i, j + 1)
⇐⇒ (i, j) < (i+ 1, j) ⇐⇒ (i, j) mod 4 ∈ {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2),
(2, 3), (3, 3), (3, 0)}. One such numbering in the 4× 4 case is shown here.

16 15

14 13

12 11

109 87

65

4 3

21

473. For every even-length cycle v0−−−v1−−−· · ·−−−v2r−1−−−v0 with v0 = max vi and
v1 > v2r−1, assert (v0v1 ∨ v1v2 ∨ v2v3 ∨ · · · ∨ v2r−1v0).

474. (a) (2n) · (2n− 2) · . . . · 2 = 2nn!. (b) (173̄)(1̄7̄3)(252̄5̄)(44̄)(6)(6̄).
(c) Using 0, 1, . . . , f for the 4-tuples 0000, 0001, . . . , 1111, we must have

f(0) = f(9) = f(5), f(2) = f(b) = f(7); f(4) = f(8) = f(d); and f(6) = f(a) = f(f);
in other words, the truth table of f must have the form abcdeagceagcfehg , where
a, b, c, d, e, f, g, h ∈ {0, 1}. So there are 28 f ’s.

(d) Change ‘=’ to ‘6=’ in (c). There are no such truth tables, because ()
contains odd cycles; all cycles of an antisymmetry must have even length.

(e) The 128 binary 7-tuples are partitioned into sixteen “orbits” {x, xσ, xσ2, . . . },
with eight of size 12 and eight of size 4. For example, one of the 4s is {0011010, 0010110,
0111110, 0110010}; one of the 12s is {0000000, 0011101, . . . , 1111000}. Hence there are
216 functions with this symmetry, and 216 others with this antisymmetry.

475. (a) 2n+1n!. (There are 2n+1n!/a, if f has a automorphisms+antiautomorphisms.)
(b) (xz̄)(x̄z), because (surprisingly) (x ∨ y) ∧ (x⊕ z) = (z̄ ∨ y) ∧ (z̄ ⊕ x̄).
(c) In general if σ is any permutation having a cycle of length l, and if p is a

prime divisor of l, some power of σ will have a cycle of length p. (Repeatedly raise σ
to the qth power for all primes q 6= p, until all cycle lengths are powers of p. Then, if
the longest remaining cycle has length pe, compute the pe−1st power.)

(d) Suppose f(x1, x2, x3) has the symmetry (x1x̄2x3)(x̄1x2x̄3). Then f(0, 0, 0) =
f(1, 1, 0) = f(0, 1, 1), f(1, 1, 1) = f(0, 0, 1) = f(1, 0, 0), so (x1x̄2)(x̄1x2) is a symmetry.

(e) A similar argument shows that (ux)(vw)(ūx̄)(v̄w̄) is a symmetry.
(f) If σ is an antisymmetry of f , then σ2 is a symmetry. If f has a nontrivial

symmetry, it has a symmetry of prime order p, by (c). And if p 6= 2, it has one of
order 2, by (d) and (e), unless n > 5.

(g) Let f(x1, . . . , x6) = 1 only when x1 . . . x6 ∈ {001000, 001001, 001011, 010000,
010010, 010110, 100000, 100100, 100101}. (Another interesting example, for n = 7, has
f = 1 ⇐⇒ x1 . . . x7 is a cyclic shift of 0000001, 0001101, or 0011101; 21 symmetries.)

476. We want clauses that specify r-step chains in n variables, having a single out-
put xn+r. For 0 < t < t′ < 2n, introduce new variables ∆tt′ = x(n+r)t ⊕ x(n+r)t′ .
(See ().) Then for each signed involution σ, not the identity, we want a clause that
says “σ is not a symmetry of f ,” namely (

∨{∆tt′ | t < t′ and t′ = tσ}). (Here t is
considered to be the same as its binary representation (t1 . . . tn)2, as in exercise 477.)

Also, if σ has no fixed points—this is true if and only if σ takes xi 7→ x̄i for at
least one i—we have further things to do: In case (b), we want a clause that says “σ

September 23, 2015

278 ANSWERS TO EXERCISES 7.2.2.2

normal chain
preprocessor
colexicographic order
author
full-adder

is not an antisymmetry,” namely (
∨{∆tt′ | t < t′ and t′ = tσ}). But in case (a), we

need further variables aj for 1 ≤ j ≤ T , where T is the number of signed involutions
that are fixedpoint-free. We append the clause (a1 ∨ · · · ∨ aT), and also (āj ∨∆tt′) for
all t < t′ such that t′ = tσ when σ corresponds to index j. Those clauses say, “there’s
at least one signed involution that is an antisymmetry.”

There are no solutions when n ≤ 3. Answers for (a) are (((x1⊕x2)∨x3)∧x4)⊕x1

and ((((x̄1 ⊕ x2) ∧ x3) ⊕ x4) ∧ x5) ⊕ x1; in both cases the signed involution (11̄)(22̄)
is obviously an antisymmetry. Answers for (b) are ((x1 ⊕ x2) ∨ x3) ∧ (x4 ∨ x1) and
(((x1 ∧ x2)⊕ x3) ∧ x4)⊕ (x5 ∨ x1). [Is there a simple formula that works for all n?]

477. Use the following variables for 1 ≤ h ≤ m, n < i ≤ n+ r, and 0 < t < 2n: xit =
(tth bit of truth table for xi); ghi = [gh = xi]; sijk = [xi =xj ◦i xk], for 1 ≤ j < k < i;
fipq = ◦i(p, q) for 0 ≤ p, q ≤ 1, p+ q > 0. (We don’t need fi00, because every operation
in a normal chain takes (0, 0) 7→ 0.) The main clauses for truth table computations are

(s̄ijk ∨ (xit⊕a)∨ (xjt⊕ b)∨ (xkt⊕ c)∨ (fibc⊕ ā)), for 0 ≤ a, b, c ≤ 1 and 1 ≤ j < k < i.

Simplifications arise in special cases: For example, if b = c = 0, the clause is omitted
if a = 0, and the term fi00 is omitted if a = 1. Furthermore if t = (t1 . . . tn)2, and if
j ≤ n, the (nonexistent) variable xjt actually has the known value tj ; again we omit
either the whole clause or the term (xjt⊕ b), depending on b and t. For example, there
usually are eight main clauses that involve sijk; but there’s only one that involves si12
when t < 2n−2, namely (s̄i12 ∨ x̄i1), because the truth tables for x1 and x2 begin with
2n−2 0s. (All such simplifications would be done by a preprocessor if we had defined
additional variables fi00 and xjt, and fixed their values with unit clauses.)

There also are more mundane clauses, namely (ḡhi ∨ x̄it) or (ḡhi ∨ xit) according
as gh(t1, . . . , tn) = 0 or 1, to fix the outputs; also (

∨n+r
i=n+1 ghi) and (

∨i−1
k=1

∨k−1
j=1 sijk),

to ensure that each output appears in the chain and that each step has two operands.
Additional clauses are optional, but they greatly shrink the space of possibilities:

(
∨m

k=1 gki∨
∨n+r

i′=i+1

∨i−1
j=1 si′ji∨

∨n+r
i′=i+1

∨i′−1
j=i+1 si′ij) ensures that step i is used at least

once; (s̄ijk∨ s̄i′ji) and (s̄ijk∨ s̄i′ki) for i < i′ ≤ n+ r avoid reapplying an operand.
Finally, we can rule out trivial binary operations with the clauses (fi01∨fi10∨fi11),

(fi01∨ f̄i10∨ f̄i11), (f̄i01∨fi10∨ f̄i11). (But beware: These clauses, for n < i ≤ n+r, will
make it impossible to compute the trivial function g1 = 0 in fewer than three steps!)

Further clauses such as (s̄ijk ∨ fi01 ∨ x̄it∨xjt) are true, but unhelpful in practice.

478. We can insist that the (j, k) pairs in steps n+1, . . . , n+r appear in colexicographic
order; for example, a chain step like x8 = x4 ⊕ x5 need never follow x7 = x2 ∧ x6. The
clauses, for n < i < n+r, are (s̄ijk∨ s̄(i+1)j′k′) if 1 ≤ j′ < j < k = k′ < i or if 1 ≤ j < k
and 1 ≤ j′ < k′ < k < i. (If (j, k) = (j′, k′), we could insist further that fi01fi10fi11 is
lexicographically less than f(i+1)01f(i+1)10f(i+1)11. But the author didn’t go that far.)

Furthermore, if p<q and if each output function is unchanged when xp is swapped
with xq, we can insist that xp is used before xq as an operand. Those clauses are

(s̄ijq ∨
∨

n<i′<i

∨
1≤j′<k′<i′ [j

′= p or k′= p] si′j′k′) whenever j 6= p.

For example, when answer 477 is applied to the full-adder problem, it yields Mr

clauses in Nr variables, where (M4,M5) = (942, 1662) and (N4, N5) = (82, 115). The
symmetry-breaking strategy above, with (p, q) = (1, 2) and (2, 3), raises the number of
clauses to M ′r, where (M ′4,M

′
5) = (1025, 1860). Algorithm C reported ‘unsat’ after

(1015, 291) kilomems using (M4,M
′
4) clauses; ‘sat’ after (250, 268) kilomems using

(M5,M
′
5). With larger problems, such symmetry breakers give significant speedup

when proving unsatisfiability, but they’re often a handicap in satisfiable instances.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 279

sideways sum
author
footprint heuristic
normal function

479. (a) Using the notation of the previous answer, we have (M8,M
′
8, N8) = (14439,

17273, 384) and (M9,M
′
9, N9) = (19719, 24233, 471). The running times for the ‘sat’

cases with M9 and M ′9 clauses were respectively (16, 645, 1259) and (66, 341, 1789)
megamems—these stats are the (min,median,max) of nine runs with different random
seeds. The ‘unsat’ cases with M8 andM ′8 were dramatically different: (655631, 861577,
952218) and (8858, 10908, 13171). Thus s(4) = 9 in 7.1.2–() is optimum.

(b) But s(5) = 12 is not optimum, despite the beauty of 7.1.2–()! The M11 =
76321 clauses in N11 = 957 variables are ‘sat’ in 680 Gµ, yielding an amazing chain:

x6 = x1 ⊕ x2,
x7 = x1 ⊕ x3,
x8 = x4 ⊕ x5,
x9 = x3 ⊕ x6,

x10 = x6 ∨ x7,
x11 = x4 ⊕ x9,
x12 = x9 ⊕ x10,

z0 = x13 = x5 ⊕ x11,

x14 = x̄8 ∧ x11,
z1 = x15 = x10 ⊕ x14,
z2 = x16 = x12 ∧ x̄15.

And (M ′10, N10) = (68859, 815) turns out to be ‘unsat’ in 1773 gigamems; this can be
reduced to 309 gigamems by appending the unit clause (g3(15)), since C(S4,5) = 10.

Hence we can evaluate x1+ · · ·+x7 in only 5+11+2+1 = 19 steps, by computing
(u1u0)2 = x5+x6+x7, (v2v1z0)2 = x1+x2+x3+x4+u0, (w2z1)2 = u1+v1, z2 = v2⊕w2.

(c) The solver finds an elegant 8-step solution for (M8, N8) = (6068, 276) in 6Mµ:

x4 = x1 ∨ x2,
x5 = x1 ⊕ x2,

x6 = x3 ⊕ x4,

S0 = x7 = x3 ∨ x4,

x8 = x3 ⊕ x5,
S3 = x9 = x̄6 ∧ x8,

S1 = x10 = x6 ∧ x8,
S2 = x11 = x7 ⊕ x8.

The corresponding (M ′7, N7) = (5016, 217) problem is ‘unsat’ in 97Mµ.
(d) The total cost of evaluating the S’s independently is 3 + 7 + 6 + 7 + 3 = 26,

using the optimum computations of Fig. 9 in Section 7.1.2. Therefore the author was
surprised to discover a 9-step chain for S1, S2, and S3, using the footprint heuristic:

x5 = x1 ⊕ x2,
x6 = x1 ⊕ x3,
x7 = x3 ⊕ x4,

x8 = x5 ⊕ x7,
x9 = x6 ∨ x7,
x10 = x2 ⊕ x9,

S3 = x11 = x̄8 ∧ x9,
S2 = x12 = x8 ∧ x̄10,
S1 = x13 = x8 ∧ x10.

This chain can solve problem (d) in 13 steps; but SAT technology does it in 12(!):

x5 = x1 ⊕ x2,
x6 = x1 ⊕ x3,
x7 = x3 ⊕ x4,
x8 = x5 ⊕ x7,

x9 = x6 ∨ x7,
x10 = x2 ⊕ x9,
x11 = x5 ∨ x9,

S3 = x12 = x8 ∧ x̄10,

S1 = x13 = x8 ∧ x10,
S4 = x14 = x1 ∧ x̄11,

S0 = x15 = x4 ∨ x11,
S2 = x16 = x̄8 ∧ x11.

The nonexistence of an 11-step solution can be proved via Algorithm C by a long
computation (11034 gigamems), during which 99,999,379 clauses are learned(!).

(e) This solution (found in 342 Gµ) matches the lower bound in exercise 7.1.2–80:

x7 = x1 ⊕ x2,
x8 = x3 ⊕ x4,
x9 = x1 ⊕ x5,
x10 = x6 ⊕ x8,

x11 = x4 ⊕ x10,
x12 = x5 ⊕ x10,
x13 = x8 ∨ x11,
x14 = x7 ⊕ x12,

x15 = x̄9 ∧ x12,
x16 = x13 ⊕ x15,
x17 = x14 ∧ x16.

(f) This solution (found in 7471 Gµ) also matches that lower bound:

x7 = x1 ∧ x2,
x8 = x1 ⊕ x2,
x9 = x3 ⊕ x4,
x10 = x5 ∧ x6,

x11 = x5 ⊕ x6,
x12 = x4 ⊕ x11,
x13 = x9 ⊕ x11,
x14 = x9 ∨ x12,

x15 = x8 ⊕ x13,
x16 = x10 ⊕ x14,
x17 = x7 ⊕ x16,
x18 = x15 ∨ x17.

Here x18 is the normal function S0,4 = S1,2,3,5,6. We beat exercise 7.1.2–28 by one step.
(g) A solution in t(3) = 12 steps is found almost instantaneously (120 megamems);

but 11 steps are too few (‘unsat’ in 301 gigamems).

September 23, 2015

280 ANSWERS TO EXERCISES 7.2.2.2

don’t-cares
Kojevnikov
Kulikov
Yaroslavtsev
Biere
modified full adder
full adder, modified
don’t-cares
Demenkov
Kojevnikov
Kulikov
Yaroslavtsev
Sinz

480. (a) Let x1x2x3x4 = xlxrylyr. The truth tables for zl and zr are 0011010010001000
and 01∗∗1∗00∗011∗011, where the ∗s (“don’t-cares”) are handled by simply omitting

the corresponding clauses (ḡhi ∨ ±xit) in answer 477.

Less than 1 gigamem of computation proves that a six-step circuit is ‘unsat’.
Here’s a seven-stepper, found in just 30 Mµ: x5 = x2⊕ x3, x6 = x3 ∨x4, x8 = x1⊕ x6,
x7 = x1 ∨ x5, x9 = x6 ⊕ x7, zl = x10 = x7 ∧ x8, zr = x11 = x3 ⊕ x9. (See exercise
7.1.2–60 for a six-step solution that is based on a different encoding.)

(b) Now we have the truth tables zl = 00110100010010000100100010000011,
zr = 01∗∗1∗001∗00∗0111∗00∗011∗01101∗∗, if x4x5 = ylyr. One of many 9-step
solutions is found in 6.9 gigamems: x6 = x1⊕x2, x7 = x2⊕x5, x8 = x4⊕x6, x9 = x̄4∧x7,
x10 = x1⊕x9, x11 = x8∨x9, x12 = x3⊕x10, zr = x13 = x3⊕x11, zl = x14 = x11 ∧ x̄12.

The corresponding clauses for only 8 steps are proved ‘unsat’ after 190 Gµ of
work. (Incidentally, the encoding of exercise 7.1.2–60 does not have a 9-step solution.)

(c) Let cn be the minimum cost of computing the representation zlzr of (x1 +
· · ·+xn) mod 3. Then (c1, c2, c3, c4) = (0, 2, 5, 7), and cn−3 ≤ cn+9. Hence cn ≤ 3n−4
for all n ≥ 2. [This result is due to A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev,
whose paper in LNCS 5584 (2009), 32–44, also inspired exercises 477–480.]

Conjecture: For n ≥ 3 and 0 ≤ a ≤ 2, the minimum cost of evaluating the (single)
function [(x1 + · · ·+ xn) mod 3= a] is 3n−5− [(n+ a) mod 3=0]. (It’s true for n ≤ 5.
Here’s a 12-step computation when n = 6 and a = 0, found in 2014 by Armin Biere:
x7 = x1⊕ x2, x8 = x3⊕ x4, x9 = x1⊕ x5, x10 = x3⊕ x5, x11 = x2⊕ x6, x12 = x8⊕ x9,
x13 = x8 ∨ x10, x14 = x7 ⊕ x13, x15 = x̄12 ∧ x13, x16 = x̄11 ∧ x14, x17 = x11 ⊕ x15,
S0,3,6 = x18 = x16 ∨ x17. The case n = 6 and a 6= 0, which lies tantalizingly close to
the limits of today’s solvers, is still unknown. What is C(S1,4(x1, . . . , x6))?)

481. (a) Since z⊕z′ = 〈x1x2x3〉 and z′ = x1⊕x2⊕x3, this circuit is called a “modified
full adder.” It costs one less than a normal full adder, since z′ = (x1 ⊕ x2) ⊕ x3 and
z = (x1⊕x2)∨ (x1⊕x3). (And it’s the special case u = 0 of the more general situation
in exercise 7.1.2–28.) Part (b) describes a “modified double full adder.”

(b) The function z2 has 20 don’t-cares, so there are many eight-step solutions
(although 7 are impossible); for example, x6 = x1⊕x5, x7 = x2⊕x5, z3 = x8 = x3⊕x6,
x9 = x4 ⊕ x6, x10 = x1 ∨ x7, x11 = x̄3 ∧ x9, z2 = x12 = x6 ⊕ x11, z1 = x13 = x10 ⊕ x11.

(c) Letting y2k−1y2k = [[x2k−1x2k]], it suffices to show that the binary represen-
tation of Σn = ν[[y1y2]] + · · · + ν[[y2n−1y2n]] + y2n+1 can be computed in at most 8n
steps. Four steps are enough when n = 1. Otherwise, letting c0 = y2n+1, we can
compute z’s bits with ν[[y4k−3y4k−2]] + ν[[y4k−1y4k]] + ck−1 = 2ν[[z2k−1z2k]] + ck for
1 ≤ k ≤ ⌊n/2⌋. Then Σn = 2(ν[[z1z2]] + · · · + ν[[zn−1zn]]) + cn/2 if n is even, Σn =
2(ν[[z1z2]]+· · ·+ν[[zn−2zn−1]]+zn)+c

′ if n is odd, where ν[[y2n−1y2n]]+c⌊n/2⌋ = 2zn+c
′,

at a cost of 4n in both cases. The remaining sum costs at most 8⌊n/2⌋ by induction.
[See E. Demenkov, A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, Information

Processing Letters 110 (2010), 264–267.]

482. (a)
∑k

j=1(2yj − 1) is odd when k is odd, and it’s ±1 when k = 1.

(b) Adapting Sinz’s cardinality clauses as in exercises 29 and 30, we only need the
auxiliary variables aj = sj−1

j , bj = sjj , and cj = sj+1
j , because sj+2

j = 0 and sjj+2 = 1.

The clauses are then (b̄j∨aj+1)∧(c̄j∨bj+1)∧(bj∨ c̄j)∧(aj+1∨ b̄j+1), for 1 ≤ j < t/2−1;
and (ȳ2j−2 ∨ aj) ∧ (ȳ2j−1 ∨ āj ∨ bj) ∧ (ȳ2j ∨ b̄j ∨ cj) ∧ (ȳ2j+1 ∨ c̄j) ∧ (y2j−2 ∨ c̄j−1) ∧
(y2j−1 ∨ cj−1 ∨ b̄j) ∧ (y2j ∨ bj ∨ āj+1) ∧ (y2j+1 ∨ aj+1) for 1 ≤ j < t/2, omitting ā1, c0,
and the two clauses that contain y0.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 281

auxiliary variables
break symmetry
Konev
Lisitsa
Erdős
direct encoding
order encoding
Ramani
Markov
Sakallah
Aloul
WalkSAT
comparison of running times
monotone Boolean function
adjacency matrix
prime implicants
Endomorphisms
quenching

(c) Use the construction in (b) with yj = xjd for 1 ≤ d ≤ n/3 and independent
auxiliary variables aj,d, bj,d, cj,d. Also, assuming that n ≥ 720, break symmetry by
asserting the unit clause (x720). (That’s much better than simply asserting (x1).)

This problem was shown to be satisfiable if and only if n < 1161 by B. Konev
and A. Lisitsa [Artificial Intelligence 224 (2015), 103–118], thereby establishing the
case C = 2 of a well-known conjecture by Paul Erdős [Michigan Math. J. 4 (1957),
291–300, Problem 9]. Algorithm C can prove unsatisfiability for n = 1161 in less than
600 gigamems, using the parameters of exercise 512.

483. Using a direct encoding as in (), with vjk meaning that vj has color k, we can
generate the clauses (v̄jk) for 1 ≤ j < k ≤ d and (v̄j(k+1)∨

∨j−1
i=k vik) for 2 ≤ k < j ≤ n.

A similar but slightly simpler scheme works with the order encoding, when vjk means
that vj has color > k. [See Ramani, Markov, Sakallah, and Aloul, Journal of Artificial

Intelligence Research 26 (2006), 289–322. The vertices might be ordered in such a way
that degree(v1) ≥ · · · ≥ degree(vn), for example.]

Those book graphs can be colored optimally with (11, 11, 13, 11, 10) colors, re-
spectively. Such colorings are found with less than a megamem of work by AlgorithmW
or Algorithm C, without any symmetry breaking; Algorithm L also finds them, but after
more than an order of magnitude more effort. The symmetry breaking clauses actually
will retard this search, especially in the case of homer. On the other hand when we ask
for only (10, 10, 12, 10, 9) colors those clauses are extremely helpful: The runtime for
anna and david decreases from about 350Gµ to only about 200Kµ with Algorithm C!
For huck and jean the reduction is roughly 333Gµ → 833Mµ and 14Gµ → 4.3Mµ;
for homer, dozens or more of Tµ go down to about 11Gµ. (Algorithm L is hopelessly
slow on these unsatisfiable coloring problems, even with symmetry broken.)

484. (a) A type (iii) move will work if and only if v1−−−v4, v2−−−v4, v2−−−v3.
(b) For 0 ≤ t < n− 1 we have the clause (

∨n−t−1
k=1 qt,k ∨

∨n−t−3
l=1 st,l), as well as

the following for 1 ≤ i < j < n− t, 1 ≤ k < n− t, 1 ≤ l < n− t− 2: (q̄t,k ∨ xt,k,k+1);
(q̄t,k∨x̄t+1,i,j∨xt,i′,j′); (s̄t,l∨xt,l,l+3); (s̄t,k∨x̄t+1,i,j∨xt,i′′,j′′); here i

′ = i+[i≥ k], j′ =
j+[j≥ k], and {i′′, j′′} are the min and max of {i+[i≥ l + 3]+3[i= l], j+[j≥ l + 3]+
3[j= l]}. Finally there’s a unit clause (x̄0,i,j) for all 1 ≤ i < j ≤ n with vi /−−−vj .

(These clauses essentially compute [G is quenchable], which is a monotone Bool-
ean function of the

(
n
2

)
elements above the diagonal in the adjacency matrix of G. The

prime implicants of this function correspond to certain spanning trees, of which there
are respectively 1, 1, 2, 6, 28, 164, 1137, . . . when n = 1, 2, 3, 4, 5, 6, 7,)

485. Let t′ = t + 1. Instances of commutativity are: (qt,k, qt′,k′) ↔ (qt,k′+1, qt′,k) if
k < k′; (st,l, st′,l′) ↔ (st,l′+1, st′,l) if l + 2 < l′; (qt,k, st′,l′) ↔ (st,l′+1, qt′,l) if k < l′;
(st,l, qt′,k′) ↔ (qt,k′+1, st′,l) if l + 2 < k′; (st,l, st′,l) ↔ (qt,l+3, st′,l). These can be
broken by appending the clauses (q̄t,k′+1 ∨ q̄t′,k), (s̄t,l′+1 ∨ s̄t′,l), . . . , (q̄t,l+3 ∨ s̄t′,l).

Endomorphisms are also present in the two cases (qt,k, qt′,k)↔ (qt,k+1, qt′,k) and
(st,k+1, qt′,k) ↔ (qt,k+1, st′,k), provided that both pairs of transitions are legal. These
are exploited by the clauses (q̄t,k+1 ∨ q̄t′,k ∨ x̄t,k,k+1) and (q̄t,k+1 ∨ s̄t′,k ∨ x̄t,k+1,k+4).

486. This game is a special case of graph quenching, so we can use the previous
two exercises. Algorithm C finds a solution after about 1.2 gigamems, without the
symmetry-breaking clauses; this time goes down to roughly 85 megamems when those
clauses are added. Similarly, the corresponding 17-card problem after A♣×J♣ is found
to be unsatisfiable, after 15 Gµ without and 400 Mµ with. (A♣×× 10♣ fails too.)

Those SAT problems have respectively (1242, 20392, 60905), (1242, 22614, 65590),
(1057, 15994, 47740), (1057, 17804, 51571) combinations of (variables, clauses, cells),

September 23, 2015

282 ANSWERS TO EXERCISES 7.2.2.2

Stanford
Ross
Knuth
poison cards
Tower of Babel
Tower of London
Accordion
Methuselah
Skip Two
Morehead
Mott-Smith
8 queens problem
revolving door
Gray code
symmetry reduction
Schwarzkopf
Lemaire
Vitushinskiy
lexicographically

and they are not handled easily by Algorithms A, B, D, or L. In one solution both

q0,11 and s0,7 are true, thus providing two ways to win(!), when followed by q1,15, s2,13,
q3,12, s4,10, s5,7, q6,7, s7,5, q8,5, s9,4, q10,5, s11,3, q12,3, s13,1, s14,1, q15,1, q16,1.

Notes: This mildly addictive game is an interesting way to waste time in case
you ever get lost with a pack of cards on a desert island. If you succeed in reducing the
original 18 piles to a single pile, you can continue by dealing 17 more cards and trying
to reduce the new 18 piles. And if you succeed also at that, you have 17 more cards
for a third try, since 52 = 18 + 17 + 17. Three consecutive wins is a Grand Slam.

In a study of ten thousand random deals, just 4432 turned out to be winnable.
Computer times (with symmetry breaking) varied wildly, from 1014 Kµ to 37 Gµ in
the satisfiable cases (median 220 Mµ) and from 46 Kµ to 36 Gµ in the others (median
848 Mµ). The most difficult winnable and unwinnable deals in this set were respectively

9♠ 7♣ 3♣ K♦ 7♠ 3♥ 2♦ 8♣ 6♥ J♦ 8♠ 2♥ 6♠ 4♦ 5♠ 4♥10♦ Q♠ and

A♥ Q♥ 2♦ 9♦ 7♣ 7♦ 8♥ K♣ 3♦10♣ 3♣ 3♠ Q♠ 8♣ 2♣ K♠ 6♦ 5♣ .

Students in Stanford’s graduate problem seminar investigated this game in 1989
[see K. A. Ross and D. E. Knuth, Report STAN-CS-89-1269 (Stanford Univ., 1989),
Problem 1]. Ross posed an interesting question, still unsolved: Is there a sequence of
(say) nine “poison cards,” such that all games starting with those cards are lost?

The classic game Idle Year is also known by many other names, including Tower of
Babel, Tower of London, Accordion, Methuselah, and Skip Two. Albert H. Morehead
and Geoffrey Mott-Smith, in The Complete Book of Solitaire and Patience Games

(1949), 61, suggested that moves shouldn’t be too greedy.

487. Every queen in a set of eight must attack at least 14 vacant cells. Thus |∂S| gets
its minimum value 8× 14 = 112 when the queens occupy the top row. Solutions to the
8 queens problem, when queens are independent, all have |∂S| ≤ 176. The maximum
|∂S| is 184, achieved symmetrically for example in Fig. A–9(a). (This problem is
not at all suitable for SAT solvers, because the graph has 728 edges. The best way
to proceed is to run through all

(
64
8

)
possibilities with the revolving door Gray code

(Algorithm 7.2.1.3R), because incremental changes to |∂S| are easy to compute when
a queen is deleted or inserted. The total time by that method is only 601 gigamems.)

The maximum of |∂outS| is obviously 64 − 8 = 56. The minimum, which corre-
sponds to Turton’s question, is 45; it can be achieved symmetrically as in Fig. A–9(b),
leaving 64 − 8 − 45 = 11 cells unattacked (shown as black queens). In this case SAT

solvers win: The revolving door method needs 953 gigamems, but SAT methods show
the impossibility of 44 after only 2.2 Gµ of work. With symmetry reduction as in the
following exercise, this goes down to 900 Mµ although there are 789 variables and 4234
clauses. [Bernd Schwarzkopf, in Die Schwalbe 76 (August 1982), 531, computed all
solutions of minimum |∂outS|, given |S|, for n × n boards with n ≤ 8. Extensions of
Turton’s problem to larger n have been surveyed by B. Lemaire and P. Vitushinskiy
in two articles, written in 2011 and accessible from www.ffjm.org. Optimum solutions
for n > 16 are conjectured but not yet known.]

All sets S of eight queens trivially have |∂inS| = 8.

488. Let variables wij and bij represent the presence of white or black queens on
cell (i, j), with clauses (w̄ij ∨ b̄i′j′) when (i, j) = (i′, j′) or (i, j)−−−(i′, j′). Also, if each
army is to have at least r queens, add clauses based on () and () to ensure that∑
wij ≥ r and

∑
bij ≥ r. Optionally, add clauses based on Theorem E to ensure that

k of the w variables for the top row are lexicographically greater than or equal to the

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 283

breaking the symmetries
Smith
Petrie
Gent
CSP: The constraint satisfaction problem
asymptotic
Gardner
Chung
Graham
lex-leaders
Sims tables

Q

Q

Q

Q

Q

Q

Q

Q

(a)

QQQ

Q Q

Q

Q Q

qq

qq

q qqq

q qq

(b)

QQQ

QQQ

Q

Q

QQ

qqq

qq

qq

qqq

(c)

Q Q Q Q

Q Q Q Q

Q Q Q Q

q

q q q q

q

q

q q q q

q

(d)

QQQ

QQQ

QQQ

QQQ

QQ

qqqq

qqq

qq

qqq

qq

(e)

QQQ

QQQQ

QQQQ

QQQ

QQQ

qqqq

qqq

qq

q q

qqq

qqqq

(f)

Fig. A–9. Optimum queen placements of various kinds.

corresponding k variables in fifteen symmetrical variants. (For instance, if k = 3, we
might require w11w12w13 ≥ b1nb2nb3n, thus partially breaking the symmetries.)

The maximum army sizes for 1 ≤ n ≤ 11 are found to be 0, 0, 1, 2, 4, 5, 7, 9, 12,
14, and 17, respectively. A construction with 21 armies is known for n = 12, but 22 has
not yet been proved impossible. [B. M. Smith, K. E. Petrie, and I. P. Gent obtained
similar results using CSP methods in LNCS 3011 (2004), 271–286.] An extra black
queen can actually be included in the cases n = 2, 3, 4, 6, 8, 10, and 11. Solutions
appear in Fig. A–9; the construction shown in Fig. A–9(d) generalizes to armies of
2q(q + 1) queens whenever n = 4q + 1, while those in parts (c), (e), (f) belong to
another family of constructions that achieve the higher asymptotic density 9

64
n2.

When n = 8 and r = 9, Algorithm C typically finds a solution in about 10
megamems (k = 0), or about 30 megamems (k = 3); but with r = 10 it typically
proves unsatisfiability in about 1800 Mµ (k = 0) or 850 Mµ (k = 3) or 550 Mµ
(k = 4) or 600 Mµ (k = 5). Thus the symmetry breaking constraints are helpful
for unsatisfiability in this case, but not for the easier satisfiability problem. On the
other hand, the extra constraints do turn out to be helpful for both the satisfiable
and unsatisfiable variants when n is larger. The “sweet spot” turns out to be k = 6
when n = 10 and n = 11; unsatisfiability was proved in those cases, with r = 15 and
r = 18, after about 185 Gµ and 3500 Gµ, respectively. [See Martin Gardner, Math

Horizons 7, 2 (November 1999), 2–16, for generalizations to coexisting armies of sizes
r and s. F. R. K. Chung and R. L. Graham conjecture that the maximum value of s,
if r = 3q2 + 3q + 1, is asymptotically n2 − (6q + 3)n+O(1).]

489. T0 = 1, T1 = 2, Tn = 2Tn−1 + (2n− 2)Tn−2 (see Eq. 5.1.4–()). The generating
function

∑
n Tnz

n/n! and the asymptotic value are given in exercise 5.1.4–31.

490. Yes. For example, using the signed permutation 4̄132̄, we’re allowed to assume
that some solution satisfies x̄4x1x3x̄2 ≤ x̄′4x

′
1x
′
3x̄
′
2 for every endomorphism—because

the solution with lexicographically smallest x̄4x1x3x̄2 has this property. Notice that
the signed permutation 1̄2̄ . . . n̄ converts ‘≤’ to ‘≥’.
491. Let σ be the permutation (1 2 3 4 1̄ 2̄ 3̄ 4̄). Then σ4 = (1 1̄)(2 2̄)(3 3̄)(4 4̄); and by
Theorem E we need only search for solutions that satisfy x1x2x3x4 ≤ x̄1x̄2x̄3x̄4. We’re
therefore allowed to append the clause (x̄1) without affecting satisfiability.

(We actually are allowed to assert that x1 = x2 = x4 = 0, because 0000 and 0010
are the lex-leaders of the two 8-cycles when σ is a written as a permutation of states.)

In general if an automorphism σ is a permutation of literals having a cycle that
contains both v and v̄, for some variable v, we can simplify the problem by assigning
a fixed value to v and then by restricting consideration to automorphisms that don’t
change v. (See the discussion of Sims tables in Section 7.2.1.2.)

492. Suppose x1 . . . xn satisfies all clauses of F ; we want to prove that (x1 . . . xn)τ =
x′1 . . . x

′
n also satisfies them all. And that’s easy: If (l1∨ · · · ∨ lk) is a clause, we have

September 23, 2015

284 ANSWERS TO EXERCISES 7.2.2.2

Szeider
Aloul
Ramani
Markov
Sakallah
Shlyakhter
fallacy
generating function
Pólya’s theorem
global ordering
quad-free

l′1 = l1τ , . . . , l
′
n = lnτ ; and we know that (l1τ ∨ · · · ∨ lkτ) is true because it’s subsumed

by a clause of F . [See S. Szeider, Discrete Applied Math. 130 (2003), 351–365.]

493. Using the global ordering p1 . . . p9 = 543219876 and Corollary E, we can add
clauses to assert that x5 = 0 and x4x3x2x1 ≤ x6x7x8x9. A contradiction quickly fol-
lows, even if we stipulate only the weaker relation x4 ≤ x6, because that forces x6 = 1.

494. Exercise 504(b) shows that (uv)(ūv̄) is a symmetry of the underlying Boolean
function, although not necessarily of the clauses F . [This observation is due to Aloul,
Ramani, Markov, and Sakallah in the cited paper.] The other symmetries allow us to
assert (i) (x̄i ∨ xj) ∧ (x̄j ∨ x̄k), (ii) (x̄i ∨ x̄j) ∧ (x̄j ∨ x̄k), (iii) (x̄i ∨ x̄j) ∧ (x̄j ∨ xk).

495. Suppose, for example, that m = 3 and n = 4. The variables can then be called
11, 12, 13, 14, 21, . . . , 34; and we can give them the global ordering 11, 12, 21, 13, 22,
31, 14, 23, 32, 24, 33, 34. To assert that 21 22 23 24 ≤ 31 32 33 34, we use the involution
that swaps rows 2 and 3; this involution is (21 31)(22 32)(23 33)(24 34) when expressed
in form () with signs suppressed. Similarly we can assert that 12 22 13 ≤ 13 23 33
because of the involution (12 13)(22 23)(32 33) that swaps columns 2 and 3. The same
argument works for any adjacent rows or columns. And we can replace ‘≤’ by ‘≥’, by
complementing all variables.

For generalm and n, consider any global ordering for which xij precedes or equals
xi′j′ when 1 ≤ i ≤ i′ ≤ m and 1 ≤ j ≤ j′ ≤ n. The operation of swapping adjacent
rows makes the global lexicographic order increase if and only if it makes the upper
row increase lexicographically; and the same holds for columns.

[See Ilya Shlyakhter, Discrete Applied Mathematics 155 (2007), 1539–1548.]

496. No; that reasoning would “prove” that m pigeons cannot fit into m holes. The
fallacy is that his orderings on rows and columns aren’t simultaneously consistent with
a single global ordering, as in the previous exercise.

497. A BDD with 71,719 nodes makes it easy to calculate the total, 818,230,288,201,
as well as the generating function 1 + z + 3z2 + 8z3 + 25z4 + · · · + 21472125415z24 +
31108610146z25 + · · ·+ 10268721131z39 + 6152836518z40 + · · ·+ 24z60 + 8z61 + 3z62 +
z63+z64. (The relatively small coefficients of z39 and z40 help account for the fact that
≥ was chosen in ()–(); problems with sparse solutions tend to favor ≥.)

[Pólya’s theorem in Section 7.2.3 shows that exactly 14,685,630,688 inequivalent
matrices exist; compare this to 264 ≈ 1.8447 × 1019 without any symmetry reduction.]

498. Consider the global ordering x01, x11, . . . , xm1; x12, x22, . . . , xm2, x02; x23, x33,
. . . , xm3, x03, x13; . . . ; x(m−1)m, xmm, x0m, . . . , x(m−2)m. There’s a column symmetry
that fixes all elements preceding x(j−1)j and takes x(j−1)j 7→ x(j−1)k.

499. No. The unusual global ordering in answer 498 is not consistent with ordinary
lexicographic row or column ordering. [Nor can the analogous clauses (xii∨ x̄ij) for
1 ≤ i ≤ m and i < j ≤ n be appended to () and (). No quad-free matrix for
m = n = 4 and r = 9 satisfies all those constraints simultaneously.]

500. If F0 has a solution, then it has a solution for which l is true. But (F0 ∪ F1) | l
might be unsolvable. (For example, let F0 = (x̄1∨ x2) ∧ (x̄2 ∨ x1), which has the
symmetry 1̄2̄; so we can take S = (x̄1), l = x̄1. Combine that with F1 = (x1).)

501. Let xij denote a queen in cell (i, j), for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Also
let rij = [xi1 + · · ·+ xij ≥ 1] and r′ij = [xi1 + · · ·+ xi(j+1)≥ 2], for 1 ≤ i ≤ m and
1 ≤ j < n. Using () and () we can easily construct about 8mn clauses that
define the r’s in terms of the x’s and also ensure that xi1 + · · · + xin ≤ 2. Thus
r′i(n−1) = [xi1 + · · ·+ xin =2]; call this condition ri.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 285

Cooper
Pikhurko
Schmitt
Warrington
symmetry breaking
tomography problem
integer programming
magic sequences
cardinality constraints
Hamming distance
Karpovsky
Frances
Litman

Similar conditions cj , ad, and bd are readily established for column j, and for the
diagonals with i+j = d+1 or i−j = d−n, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ d < m+n.
Then condition (ii) corresponds to the mn clauses (xij ∨ ri ∨ cj ∨ ai+j−1 ∨ bi−j+n).

Finally we have clauses from () and () to ensure that
∑
xij ≤ r.

When m = n, the lower bound r ≥ n − [nmod 4=3] has been established by
A. S. Cooper, O. Pikhurko, J. R. Schmitt, and G. S. Warrington [AMM 121 (2014),
213–221], who also used backtracking to show that r ≥ 12 on an 11 × 11 board. SAT

methods, with symmetry breaking, yield that result much more quickly (after about 9
teramems of computation); but this problem, like the tomography problem of Fig. 36,
is best solved by integer programming techniques when m and n are large.

If we call the upper left corner white, solutions with m = n = r−1 and all queens
on white squares appear to exist for all n > 2, and they are found almost instantly.
However, no general pattern is apparent. In fact, when n is odd it appears possible to
insist that the queens all appear in odd-numbered rows and in odd-numbered columns.

Here are examples of optimum placements on smallish boards. The solutions for
8× 9, 8× 10, 8× 13, 10× 10, and 12× 12 also work for sizes 8× 8, 9× 10, 8× 12, 9× 9,
and 11× 11, respectively.

Q

Q Q

Q Q

Q Q

Q Q

Q Q

QQ

Q Q

QQ

Q Q

Q Q

Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

QQ

Q Q

Q Q

QQ

Q Q

This placement of ten queens on a 10 × 10 board can be described by the “magic
sequence” (a1, . . . , a5) = (1, 3, 7, 5, 9), because the queens appear in positions (ai, ai+1)
and (ai+1, ai) for 1 ≤ i < n/2 as well as in (a1, a1) and (an/2, an/2). The magic
sequences (1, 3, 9, 13, 15, 5, 11, 7, 17) and (9, 3, 1, 19, 5, 11, 15, 25, 7, 21, 23, 13, 17)
likewise describe optimum placements for n = 18 and 26. No other magic sequences
are known; none exist when n = 34.

502. For each j, construct independent cardinality constraints for the relation x
(j)
1 +

· · ·+ x
(j)
n ≤ rj , using say () and (), where x

(j)
k = (sjk? x̄k: xk).

503. The Hamming distance d(x, y) = ν(x ⊕ y) between binary vectors of length n
satisfies d(x, y) + d(x̄, y) = n. Thus there is no x with d(x, sj) ≥ rj + 1 for all j if and
only if there is no x with d(x̄, sj) ≤ n − 1 − rj for all j. [See M. Karpovsky, IEEE
Transactions IT-27 (1981), 462–472.]

504. (a) Assume that n ≥ 4. For strings of length 2n we have d(z, w) + d(z, w̄) = 2n;
hence d(z,w) ≤ n and d(z, w̄) ≤ n if and only if d(z, w) = d(z, w̄) = n. Every string
z with z2k−1 6= z2k for 1 ≤ k ≤ n satisfies d(z,wj) = n for 1 ≤ j ≤ n. Conversely, if
d(z, wj) = d(z, wk) = n and 1 ≤ j < k ≤ n, then z2j−1 + z2j = z2k−1 + z2k. Thus if
z2j−1 = z2j for some j we have z = 00 . . . 0 or 11 . . . 1, contradicting d(z, w1) = n.

(b) For each string x̂ = x̄1x1x̄2x2 . . . x̄nxn that satisfies part (a) we have d(x̂, y) =
2l̄1 + 2l̄2 + 2l̄3 + n− 3, which is ≤ n+ 1 if and only if (l1∨ l2∨ l3) is satisfied.

(c) Let sj = wj and rj = n for 1 ≤ j ≤ 2n; let s2n+k = yk and r2n+k = n + 1
for 1 ≤ k ≤ m, where yk is the string in (b) for the kth clause of F . This system
has a closest string x̂ = x̄1x1x̄2x2 . . . x̄nxn if and only if x1 . . . xn satisfies every clause.
[A similar construction in which all strings have length 2n + 1 and all rj are equal
to n + 1 is obtained if we append the bit [n< j≤ 2n] to each sj . See M. Frances and
A. Litman, Theory of Computing Systems 30 (1997), 113–119.]

September 23, 2015

286 ANSWERS TO EXERCISES 7.2.2.2

mutilated
Looking ahead
ParamILS
pi
double lookahead
author

(d) Boilerplate 11000000, 00110000, 00001100, 00000011, 00111111, 11001111,
11110011, 00000011, at distance ≤ 4; for the clauses, 01011000, 00010110, 01000101,
10010001, 10100100, 00101001, 10001010, and possibly 01100010, at distance ≤ 5.

505. (For k = 0, 1, . . . , n − 1 one can set j to a uniform integer in [0 . . k] and
INX[k + 1]← j; also if j = k set VAR[k]← k + 1, otherwise i← VAR[j], VAR[k]← i,
INX[i] ← k, VAR[j] ← k + 1.) With nine random seeds, typical runtimes for D3 are
(1241, 873, 206, 15, 748, 1641, 1079, 485, 3321)Mµ. They’re much less variable for the
unsatisfiable K0, namely (1327, 1349, 1334, 1330, 1349, 1322, 1336, 1330, 1317)Mµ;
and even for the satisfiable W2: (172, 192, 171, 174, 194, 172, 172, 170, 171)Mµ.

506. (a) Almost true: That sum is the total number of clauses of length ≥ 2, because
every such clause of length k contributes 1/

(
k
2

)
to the weights of

(
k
2

)
edges.

(b) Each of the 122 − 2 = 142 cells of the mutilated 12 × 12 board contributes
one positive clause (v1 ∨ · · · ∨ vk) and

(
k
2

)
negative clauses (v̄i ∨ v̄j), when that cell can

be covered by k potential dominoes {v1, . . . , vk}. So the weight between u and v is 2,
4/3, or 7/6 when dominoes u and v overlap in a cell that can be covered in 2, 3, or 4
ways. Exactly 6 cells can be covered in just 2 ways (and exactly 102 in 4 ways).

(The largest edge weights in all of Fig. 52 are 37/6, between 20 pairs of vertices
in K6. At the other extreme, 95106 of the 213064 edges in X3 have the tiny weight
1/8646, and 200904 of them have weight at most twice that much.)

507. Consider, for example, the clauses (u ∨ t̄), (v ∨ t̄), (ū ∨ v̄ ∨ t), (u ∨ t̄′), (v ∨ t̄′),
(ū∨ v̄∨ t′) from (). Looking ahead from t = 1 yields the windfall (t̄∨ t′), and looking
ahead from t′ = 1 yields (t̄′ ∨ t). Henceforth Algorithm L knows that t equals t′.

508. According to (), the purging parameters were ∆p = 1000 and δp = 500; thus
we have learned approximately 1000k + 500

(
k
2

)
clauses when doing the kth purging

phase. After 1000L clauses this works out to be ≈ (
√
16L+ 9− 3)/2 phases, which is

≈ 34.5 when L = 323. (And the actual number was indeed 34.)

509. One remedy for overfitting is to select training examples at random. In this case
such randomness is already inherent, because of the different seeds used while training.

510. (a) From Fig. 53 or Fig. 54 or Table 7 we know that T1 < T2 < L6 in the median
rankings; thus T2 obscures L6 and T1.

(b) Similarly, L8 < M3 < Q2 < X6 < F2 < X4 < X5; X6 obscures L8 and X4.

(c) X7 obscures K0, K2, and (indirectly) A2, because K2 obscures K0 and A2.

511. (a) Nine random runs finished in only (4.9, 5.0, 5.1, 5.1, 5.2, 5.2, 5.3, 5.4, 5.5)Mµ(!).

(b) Nine random runs now each were aborted after a teramem of trials. (No theo-
retical explanation for this discrepancy, or for the wildness of P4 in Fig. 54, is known.)

(c) (0.2, . . . , 0.5, . . . , 3.2)Mµ without; (0.3, . . . , 0.5, . . . , 0.7)Mµ with.

512. A training run with ParamILS in 2015 suggested the parameters

α = 0.7, ρ = 0.998, ̺ = 0.99995, ∆p = 100000, δp = 2000,

τ = 10, w = 1, p = 0, P = 0.05, ψ = 0.166667, (∗)

which produce the excellent results in Fig. A–10.

513. After training on rand (3, 1062, 250, 314159), ParamILS choose the values α = 3.5
and Θ = 20.0 in (), together with distinctly different values that favor double
lookahead, namely β = .9995, Y = 32. [The untuned values α = 3.3, β = .9985,
Θ = 25.0, and Y = 8 had been used by the author when preparing exercise 173.]

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 287

ParamILS

←
R

u
n
n
in

g
ti

m
e

fr
o
m

e
rd
o
s

p
a
ra

m
et

er
s

(∗
)
→

← Running time from default parameters () →
400

500

600
700

800

900

1000

1000

1100

1100

1160

1160
1161

5
T
µ

1
T
µ

.1
T
µ

1
0

G
µ

1
G
µ

.1
G
µ

1
0

M
µ

1
M
µ

1 Tµ

.1 Tµ

10 Gµ

1 Gµ

.1 Gµ

10 Mµ

1 Mµ

Fig. A–10. Running times for Algorithm C, with and without special parameter tuning.

514. ParamILS suggests p = .85 and N = 5000n; that gives a median time ≈ 690Mµ.
(But those parameters give horrifically bad results on most other problems.)

515. Use variables Sijk meaning that cell (i, j) in the solution holds k, and Zij meaning
that cell (i, j) is blank in the puzzle. The 729 S variables are constrained by 4× 81×
(1 +

(
9
2

)
) = 11,988 clauses like (). From condition (i), we need only 41 variables Zij .

Condition (ii) calls for 15 clauses such as (Z11∨· · ·∨Z19), (Z11∨· · ·∨Z51∨Z49∨· · ·∨Z19),
(Z15 ∨ · · · ∨ Z55), (Z44 ∨ Z45 ∨ Z46 ∨ Z54 ∨ Z55), when equal Z’s are identified via (i).
Condition (iii), similarly, calls for 28 clauses such as (Z̄11∨Z̄12∨Z̄13), (Z̄11∨Z̄21∨Z̄31),
(Z̄45 ∨ Z̄55). Condition (vi) is enforced by 34,992 clauses epitomized by (S̄111 ∨ Z̄11 ∨
S̄122 ∨ Z̄12 ∨ S̄412 ∨ Z̄41 ∨ S̄421 ∨ Z̄42).

For conditions (iv) and (v), we introduce auxiliary variables Vijk = Sijk ∧ Z̄ij ,
meaning that k is visible in (i, j); Rik = Vi1k ∨ · · · ∨ Vi9k, meaning that k is visible
in row i; Cjk = V1jk ∨ · · · ∨ V9jk, meaning that k is visible in column j. Also Bbk =∨
〈i,j〉=b Vijk, meaning that k is visible in box b; here 〈i, j〉 = 1+3⌊(i−1)/3⌋+⌊(j−1)/3⌋.

Then Pijk = Zij ∧ R̄ik ∧ C̄jk ∧ B̄〈i,j〉k means that k is a possible way to fill cell (i, j)
without conflict. These 1701 auxiliary variables are defined with 8262 clauses.

Condition (iv) is enforced by nine 9-ary clauses for each i and j, stating that we
mustn’t have exactly one of {Pij1, . . . , Pij9} true. Condition (v) is similar, enforced by
three sets of 81× 9 clauses of length 9; for example, one of those clauses is

(P417 ∨ P427 ∨ P437 ∨ P517 ∨ P̄527 ∨ P537 ∨ P617 ∨ P627 ∨ P637).

September 23, 2015

288 ANSWERS TO EXERCISES 7.2.2.2

symmetry breaking
Kroening
dancing links
Impagliazzo
Paturi
exponential time hypothesis
Calabro
density of clauses

(“We aren’t obviously forced to put 7 into box 4 by using cell (5, 2).”)

Finally, some of the symmetry is usefully broken by asserting the unary clauses
S1kk∧Z̄11∧Z12. The grand total is 58,212 clauses with 351,432 cells, on 2,471 variables.

(This problem was suggested by Daniel Kroening. There are zillions of solutions,
and about one in every five or six appears to be completable uniquely to the setting
of the S variables. Thus we can obtain as many “hard sudoku” puzzles as we like, by
adding additional unary clauses such as S553∧Z̄17 more or less at random, then weeding
out ambiguous cases via dancing links. The clauses are readily handled by Algorithms
L or C, but they’re often too difficult for Algorithm D. That algorithm did, however,
find the uniquely completable solution (a) below after only 9.3 gigamems of work.)

If we beef up condition (iii), insisting now that no box contains a row or column
with more than one blank, condition (vi) becomes superfluous. We get solutions such
as (b) below, remarkable for having no forced moves in spite of 58 visible clues, yet
uniquely completable. That puzzle is, however, quite easy; only 2, 4, 7 are unplaced.

1....6.8.

5.87214.6

.6.38.2.1

84...3..5

..5.6.8..

6..8...42

3.6.48.2.

4.76321.8

.8.5....4

(a)

1.3.56.89

59738.61.

68.1.93.5

956.318.7

.315.896.

2.896.153

8.96.5.31

.65.13298

31.89.5.6

(b)

1.3.5.7..

.5.79...1

7....125.

..1..5.76

..5.7.1..

47.1..5..

.185....7

5...87.1.

..7.1.8.5

(c)

1.3.56.89

68.3.91.5

.9518.63.

3.896..51

.195.836.

56..319.8

.56.9381.

8.16.5.93

93.81.5.6

(d)

We might also try to strengthen conditions (iv) and (v) by requiring at least three ways
to make each choice, not just two. Then we get solutions like (c) above. Unfortunately,
however, that one is completable in 1237 ways! Even if we also strengthen condition (iii)
as in (b), we get solutions like (d), which can be completed in 12 ways. No uniquely
completable sudoku puzzles are known to have such ubiquitous threefold ambiguity.

516. This conjecture can be expressed in several equivalent forms. R. Impagliazzo and
R. Paturi [JCSS 62 (2001), 367–375] defined sk = inf{ lg τ | there exists an algorithm
to solve kSAT in τn steps}, and stated the exponential time hypothesis: s3 > 0. They
also defined s∞ = limk→∞ sk, and proved that sk ≤ (1 − d/k)s∞ for some positive
constant d. They conjectured that s∞ = 1; this is the strong exponential time
hypothesis. An alternative formulation [C. Calabro, R. Impagliazzo, and R. Paturi,
IEEE Conf. on Computational Complexity 21 (2006), 252–260] was found later: “If
τ < 2, there is a constant α such that no randomized algorithm can solve every SAT

problem with ≤ αn clauses in fewer than τn steps, where n is the number of variables.”

517. (a) If there are n variables, introduce
(
2n
2

)
new variables ll′ = l′l, one for each

pair of literals {l, l′}, with the equations ll′ + l l̄′ + l̄ = 1. Similarly, introduce
(
2n
3

)

variables ll′l′′, via ll′l′′+ ll′ l̄′′+ ll̄′+ l̄ = 1. Then the ordinary ternary clause l∨ l′ ∨ l′′
is true if and only if we have ll′l′′ + ll′ l̄′′ + l l̄′l′′ + l l̄′ l̄′′ + l̄l′l′′ + l̄ l′ l̄ ′′ + l̄ l̄ ′l′′ = 1.

(b) Remove clauses of length > 3 by using the fact that l1 + · · ·+ lk = 1 if and
only if l1 + · · ·+ lj + t = 1 and lj+1 + · · ·+ lk + t̄ = 1, where t is a new variable. Also,
if a, b, c, and d are new variables with a+ b+ d = a+ c+ d̄ = 1, beef up short clauses
using l + l′ = 1 ⇐⇒ l + l′ + a = 1 and l = 1 ⇐⇒ l̄ + b+ c = 1.

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 289

Schaefer
Ben-Dor
Halevi
Mallach
CPLEX
GUROBI
Xeon computer
langford
per minute
Jabbour
Lonlac
Säıs
Salhi
exclusion clauses
at-most-one

[Thomas J. Schaefer proved the NP-completeness of 1-in-3 SAT as a special case
of considerably more general results, in STOC 10 (1978), 216–226.]

518. (a) A = (
x y y
y x y
y y x

), where x = −1
1

0
0
, y = 1

−1
1
1
.

(b) Twice in the n variable rows and n variable columns; once in the 3m output
rows and 3m input columns; never in the 3m input rows and 3m output columns.

(c) By (a), each way to choose 2s in different rows and columns contributes zero
to the permanent unless, in every clause, the subset of chosen inputs is nonempty and
matches the chosen outputs. In the latter case it contributes 16m2n. [See A. Ben-Dor
and S. Halevi, Israel Symp. Theory of Computing Systems 2 (IEEE, 1993), 108–117.]

519. The unsatisfiable problem corresponding to D1 and D2 has median running time
2099Mµ (losing to both factor fifo and factor lifo). The satisfiable one corresponding
to D3 and D4 is unstable (as in Fig. 54), with median 903Mµ (winning over both).

520. (Solution by Sven Mallach, 2015, using solvers X and Y, where X was CPLEX 12.6
and Y was GUROBI 6, both used with emphasis on mixed-integer-program feasibility,
constant objective function, and solution limit 1.) With a time cutoff of 30 minutes on a
single-threaded Xeon computer, neither X nor Y could solve any of the 46 problems A1,
A2, C1, C2, C3, C4, C5, C6, C8, D1, D2, E1, E2, F1, F2, G1, G2, G5, G6, G7, G8, K7,
K8, M5, M7, M8, O1, O2, P0, P1, P2, Q7, S3, S4, T5, T6, T7, T8, W2, W4, X1, X3,
X5, X6, X7, X8. (In particular, this list includes P0, S4, and X1, which are extremely
easy for Algorithm C.) On the other hand both X and Y solved the langford problems
L3 and L4—which were the toughest for Algorithm C— in less than a second.

Algorithm C performs about 20Gµ per minute on a comparable Xeon. In these
experiments it significantly outperformed the geometric methods except on problems
K0, K1, K2, L3, L4, and P4 (and some easy cases such as B2).

Of course we must keep in mind that the particular clauses in Table 6 aren’t
necessarily the best ways to solve the corresponding combinatorial problems with an
IP solver, just as they aren’t necessarily the best encodings for a SAT solver. We are
comparing here only black-box clause-solving speeds.

521. A variety of simple schemes has been surveyed by S. Jabbour, J. Lonlac, L. Säıs,
and Y. Salhi, arXiv:1402.1956 [cs.AI] (2014), 13 pages.

522. For cycles of length T we can introduce 27T variables xyzt for 1 ≤ x, y, z ≤ 3 and
0 ≤ t < T , signifying that vertex (x, y, z) occupies slot t in the path. Binary exclusion
clauses ¬xyzt∨¬x′y′z′t′ , when xyz = x′y′z′ and t 6= t′ or when xyz 6= x′y′z′ and t = t′,
ensure that no vertex appears twice in the path, and that no two vertices occupy the
same slot. A valid path is specified via the adjacency clauses

¬xyzt ∨
∨
{x′y′z′(t+1) mod T | 1 ≤ x′, y′, z′ ≤ 3 and |x′ − x|+ |y′ − y|+ |z′ − z| = 1}.

We represent the shadows by introducing 36 variables a!b∗, ba!∗, a!∗b, b∗a!, ∗a!b, ∗ba!
for 1 ≤ a ≤ 2 and 1 ≤ b ≤ 3; here a!∗b (for example) means that the shadow of
(x, z) coordinates has a transition between (a, b) and (a+1, b). These variables appear
in ternary clauses such as (¬xyzt ∨ ¬(x+1)yzt′ ∨ x!∗z) ∧ (¬xyzt ∨ ¬(x+1)yzt′ ∨ x!y∗)
whenever x < 3 and t′ ≡ t± 1 (modulo T). To exclude loops we append clauses like

¬1!1∗ ∨ ¬2!1∗ ∨ ¬31!∗ ∨ ¬32!∗ ∨ ¬2!3∗ ∨ ¬22!∗ ∨ ¬1!2∗ ∨ ¬11!∗;

this one excludes the loop in the example illustration. There are 39 such loop-defeating
clauses, one for each of the 13 simple cycles in each shadow.

September 23, 2015

290 ANSWERS TO EXERCISES 7.2.2.2

break symmetry
unary clauses
bipartite
exclusions
at-most-one
Rickard
Winkler
delta sequence
Winkler
break symmetry
reflected ternary code
spanning trees
van Deventer
hollow mazes
Mysterians
author
Tseytin
graph-based axioms
parity-related clauses
4-regular
girth
4SAT
Markström
comparison of run times
endomorphisms
broke symmetry
Spence
3D matching

Finally we can break symmetry by asserting the unary clauses 121T−1, 1110, 1121
without loss of generality, after verifying that no solution can avoid all eight corners.

Clearly T must be an even number, because the graph is bipartite; also T < 27.
If the method of exercise 12 is used for the exclusions, we obtain a total of 6264 clauses,
822 variables, and 17439 cells when T = 16; there are 9456 clauses, 1242 variables, and
26199 cells when T = 24. These clauses are too difficult for Algorithm D. But Algo-
rithm L resolves them almost instantaneously for any given T ; they turn out to be satis-
fiable if and only if T = 24, and in that case there are two essentially different solutions.
One of these cycles, due to John Rickard (who introduced this problem at Cambridge
University, circa 1990), is beautifully symmetric, and it is illustrated on the cover of
Peter Winkler’s book Mathematical Mind-Benders (2007). It can be represented by the
delta sequence (3223̄1331̄2̄1123̄2̄2̄31̄3̄3̄121̄1̄2̄), where ‘k’ and ‘k̄’ change coordinate k by
+1 or −1. The other is unsymmetric and represented by (33212̄13̄3̄1̄2212̄3231̄1̄3̄12̄1̄3̄2̄).

523. (Solution by Peter Winkler.) With coordinates (x, y, z) for 1 ≤ x ≤ m, 1 ≤ y ≤ n,
1 ≤ z ≤ 2, any cycle with loopless shadows must contain at least two steps (x, y, 1)−−−
(x, y, 2) and (x′, y′, 1) −−− (x′, y′, 2). We can assume that x < x′ and that x′ − x is
minimum. The m × 2 shadow contains (x, 1)−−− (x, 2) and (x′, 1)−−− (x′, 2), together
with (say) the path (x, 1)−−−· · ·−−−(x′, 1), but without the edge (x′′, 2)−−−(x′′+1, 2) for
some x′′ with x ≤ x′′ < x′. The unique shortest path from (x, y) to (x′, y′) in the m×n
shadow contains some edge (x′′, y′′)−−− (x′′+1, y′′); hence (x′′, y′′, 1)−−− (x′′+1, y′′, 1)
must occur twice in the cycle.

524. This problem involves clauses very much like those for a cyclic path, but simpler;
we have T = 27 and no “wrap-around” conditions. With typically 1413 variables, 10410
clauses, and 28701 cells, Algorithm L shines again, needing only a gigamem or two to
handle each of several cases that break symmetry based on starting and ending points.
There are four essentially different solutions, each of which can be assumed to start
at 111; one ends at 333, another at 133, another at 113, and the other at 223. Using
the delta sequence notation above, they are: 3323̄3̄23313̄3̄2̄332̄3̄3̄13323̄3̄233 (which is
reflected ternary code); 313̄1331̄1̄2113̄3̄1̄31̄3̄2313̄1331̄1̄; 323̄2313̄2̄32̄3̄1323̄2332̄2̄1̄221̄2̄2̄;
11221̄1̄2̄131̄2112̄2̄1̄1̄311221̄1̄2̄1.

[Such paths, and more generally spanning trees that have loopless shadows, were
invented in 1983 by Oskar van Deventer, who called them “hollow mazes”; see The

Mathemagician and Pied Puzzler (1999), 213–218. His Mysterians puzzle is based on
an amazing Hamiltonian path on P5 P5 P5 that has loopless shadows.]

525. The author’s best solution, as of July 2015, had 100 variables, 400 clauses, and
1200 literals (cells); it was derived from Tseytin’s examples of exercise 245, applied to a
more-or-less random 4-regular graph of girth 6 on 50 vertices. Tseytin’s construction,
with one odd vertex and 49 even ones, yields 400 clauses of 4SAT, which are quite
challenging indeed. It can be simplified to a 3SAT problem by insisting further that
every even vertex must have degree exactly 2 in the subgraph specified by true edges.
(See K. Markström, J. Satisfiability, Boolean Modeling and Comp. 2 (2006), 221–227).

That simplified problem still turned out to be fairly challenging: It was proved
unsatisfiable by Algorithm L in 3.3 Tµ and by Algorithm C in 1.9 Tµ. (But by applying
the endomorphisms of exercise 473, which broke symmetry by adding 142 clauses of
length 6, the running time went down to just 263 Mµ and 949 Mµ, respectively.)

Another class of small-yet-difficult problems is worth mentioning, although it
doesn’t fit the specifications of this exercise [see I. Spence, ACM J. Experimental Algo-

rithmics 20 (2015), 1.4:1–1.4:14]: Every instance of 3D matching whose representation

September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 291

exact cover problem
5SAT
competition
dancing links

as an exact cover problem has 5n rows and 3n columns, with five 1s in each column and
three 1s in each row, can be represented as a SAT problem in 3n variables, 10n binary
clauses, and 2n quinary clauses, hence only 30n total literals. This 5SAT problem has
the same number of literals as the 3SAT problem discussed above, when n = 40; yet it
is considerably more difficult if the matching problem is unsatisfiable. (On the other
hand, the problem of this kind that defeated all the SAT solvers in the 2014 competition
corresponds to a matching problem that is solved almost instantaneously by the dancing
links method: Algorithm 7.2.2.1D needs less than 60 Mµ to prove it unsatisfiable.)

526. We prove by induction on |F | that it’s possible to leave at most w(F) clauses
unsatisfied, where w(F) =

∑
C∈F 2−|C|: If all clauses of the multiset F are empty we

have w(F) = |F |, and the result holds. Otherwise suppose the variable x appears in F .
Let l = x if w({C | x ∈ C ∈ F}) ≥ w({C | x̄ ∈ C ∈ F}); otherwise l = x̄. A simple
calculation shows that w(F | l) ≤ w(F). [JCSS 9 (1974), 256–278, Theorem 3.]

999. . . .

September 23, 2015

INDEX TO ALGORITHMS AND THEOREMS

Algorithm 7.2.2.2A, 28–29, 208.

Algorithm 7.2.2.2A∗, 208–209.

Algorithm 7.2.2.2B, 31.

Lemma 7.2.2.2B, 58.

Theorem 7.2.2.2B, 59.

Algorithm 7.2.2.2C, 68.

Theorem 7.2.2.2C, 52–54.

Algorithm 7.2.2.2D, 33–34.

Algorithm 7.2.2.2E, 176.

Corollary 7.2.2.2E, 113.

Theorem 7.2.2.2E, 111.

Algorithm 7.2.2.2F, 205.

Theorem 7.2.2.2F, 86.

Theorem 7.2.2.2G, 70.

Algorithm 7.2.2.2I, 61.

Theorem 7.2.2.2J, 82.

Algorithm 7.2.2.2K, 216–217.

Theorem 7.2.2.2K, 90.

Algorithm 7.2.2.2L, 38–39.

Algorithm 7.2.2.2L′ , 212.

Lemma 7.2.2.2L, 82.

Theorem 7.2.2.2L, 82.

Algorithm 7.2.2.2M, 82–83.

Theorem 7.2.2.2M, 83.

Algorithm 7.2.2.2P, 77.

Algorithm 7.2.2.2P′ , 241.

Program 7.2.2.2P′ , 242.

Algorithm 7.2.2.2R, 146.

Theorem 7.2.2.2R, 56.

Algorithm 7.2.2.2S, 93.

Theorem 7.2.2.2S, 87.

Algorithm 7.2.2.2T, 249–250.

Theorem 7.2.2.2U, 78–79.

Algorithm 7.2.2.2W, 79–80, 242.

Corollary 7.2.2.2W, 79.

Algorithm 7.2.2.2X, 44–45.

292

September 23, 2015

GOLDSMITHINDEX AND GLOSSARY

The republic of letters is at present divided into three classes.

One writer, for instance, excels at a plan or a title-page,

another works away the body of the book,

and a third is a dab at an index.

— OLIVER GOLDSMITH, in The Bee (1759)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

∂S (boundary set), 58, 154, 180, 188.
0–1 matrices, 106–109, 151, 176–177, 181,

see also Grid patterns.
1SAT, 49, 148.
2-colorability of hypergraphs, 185.
2SAT, 49, 51–54, 77–78, 80, 101, 144,

147, 149, 157, 159, 266.
3-regular graphs, 147, 154, 231.
3CNF, 3, 148.
3D MATCHING problem, 134, 225, 290–291.
3D visualizations, 116–118.
3SAT, 3–4, 47–51, 59, 60, 78–80, 93–94, 131,

135, 146, 148–151, 153, 182–184, 231.
4-cycles, 109–110, 178, 225, 274.
4-regular graphs, 290.
4SAT, 49, 51, 150, 290.
5SAT, 51, 58, 224, 291.
6SAT, 51.
7SAT, 51, 151.
8 queens problem, 25, 282.
90◦-rotational symmetry, 138, 202, 275.
100 test cases, 113–124, 127, 182, 184.
∅ (the empty set), 185.
ǫ (the empty clause), 3, 27, 185, 291.
ǫ (the empty string), 3, 85.
ǫ (the tolerance for convergence), 93–94.
ε (offset in heuristic scores), 126, 213.
νx (1s count), see Sideways sum.
π (circle ratio), see Pi.
ρ (damping factor for variable activity),

67, 125–127, 155, 286.
ρ (damping factor for reinforcement), 93–94.
̺ (damping factor for clause activity),

74, 125–127, 286.
τ parameter, 125–127, 235, 286.
τ(a, b) function, 147.
φ (golden ratio), 146, 147, 160, 251.
ψ (agility threshold), 76–77, 124–127,

240, 286.
ψ (confidence level), 93, 255.

a.s.: almost surely, 149, 153.
AAAI: American Association for Artificial

Intelligence (founded in 1979);

Association for the Advancement of
Artificial Intelligence (since 2007), 67.

Absorbed clauses, 168.
Accordion solitaire, 282.
Achlioptas, Dimitris (Aqliìpta,

Dhm trh), 221.
ACT(c), 74, 125.
ACT(k), 66–68, 75, 125, 132.
Active path, 13.
Active ring, 32.
Activity scores, 67, 74–76, 125, 132,

155, 239.
Acyclic orientation, 161.
Adams, Douglas Noel (42), 126.
Adaptive control, 46, 126.
Addition, encoding of, 100–101, 114; see

also Full adders, Half adders.
Adjacency matrix, 281.
Adjacent pairs of letters, avoiding, 248.
AGILITY, 76, 158, 240.
Agility level, 76, 124, 158.
Agility threshold (ψ), 76–77, 124–127,

240, 286.
Ahmed, Tanbir (t;nbIr a;hemd), 5, 147.
Alava, Mikko Juhani, 80.
Aldous, David John, 219.
Algorithm L0, 39, 147.
Alice, 20–24, 139–141.
All-different constraint, 171.
All solutions, 143, 266.
Alon, Noga (OEL� DBEP), 174, 254, 260.
Aloul, Fadi Ahmed (¾Ø¿n¬¿m �Ì� Ý�n³),

112, 281, 284.
Analysis of algorithms, 146–152,

158–160, 164.
Ancestors, 43.
AND operation, 9, 10, 13.

bitwise (x & y), 28, 29, 31, 37, 38, 66, 68,
76, 81, 196, 209–211, 220, 241.

André, Pascal, 131.
Anisimov, Anatoly Vasilievich (Anisimov,

Anatoli� Vasil~eviq), 249.
Annexstein, Fred Saul, 274.
Anti-maximal-element clauses, 56, 62, 97,

115, 153, 155, 157, 167.

293

September 23, 2015

294 INDEX AND GLOSSARY

Antisymmetry, 178.
Appier dit Hanzelet, Jean, 57.
April Fool, 7.
Ardila Mantilla, Federico, 256.
Arithmetic progressions, 4, 114.

avoiding, 135.
Armies of queens, 180.
Aśın Achá, Roberto Javier, 267.
Asserting clause, see Forcing clause.
Associative block design, 4.
Associative law, 227.
Asymmetric Boolean functions, 178.
Asymmetric elimination, 260.
Asymmetric tautology, see Certifiable

clauses.
Asymptotic methods, 53–54, 147–151,

164, 210, 226, 230, 283.
At-least-one constraint, 171, 265.
At-most-one constraint, 6, 97–99, 103,

104, 120, 134, 149, 170, 171, 238,
265, 266, 289.

ATPG: Automatic test pattern generation,
see Fault testing.

Atserias, Albert Peŕı, 262.
Audemard, Gilles, 72.
Aurifeuille, Léon François Antoine,

factors, 14.
Autarkies, 44, 71, 146, 152, 177, 214,

215, 217.
testing for, 146, 214.

Autarky principle, 44.
Automatic test pattern generation, see

Fault testing.
Automaton, 272.
Automorphisms, 108, 111, 180, 197,

236, 277.
Autosifting, 220.
Auxiliary variables, 6, 8, 15, 17, 60, 97, 101,

104, 105, 109, 135, 136, 148, 170–174,
186, 262, 268, 276–279, 280–281, 287.

AVAIL stack, 257.
Averages, 120.
Avoiding submatrices, 106–107.
Awkward trees, 227.
Axiom clauses, 54, 59, 100, 264, 266.

Bacchus, Fahiem, 73, 271.
Backjumping, 64, 68, 74, 132, 233, 236, 239.
Backtrack trees, see Search trees.
Backtracking, 4, 27–34, 38–39, 64, 105,

128, 129, 132, 151, 176, 190, 204,
219, 231, 236.

Bailleux, Olivier, 8, 26, 135, 137, 143,
174, 272.

Baker, Andrew Baer, 98.
Balas, Egon, 206.
Baldassi, Carlo, 93.
Ball, Walter William Rouse, 180.
Ballot numbers, 78.

Balls and urns, 221.
Banbara, Mutsunori (), 264,

267, 268.
Bartley, William Warren, III, 129.
Basket weavers, 141.
Batcher, Kenneth Edward, 266.
Baumert, Leonard Daniel, 265.
Bayardo, Roberto Xavier, Jr., 132.
Bayes, Thomas, networks, 95.
BCP: Boolean constraint propagation,

see Unit propagation.
BDD: A reduced, ordered binary decision

diagram, 17–18, 102, 103, 132, 137, 148,
174, 181, 188, 193, 194, 197, 202, 220.

BDD base, 219.
Belief propagation, 95.
Ben-Dor, Amir (XEC-OA XIN�), 289.
Ben-Sasson, Eli (OEYY -OA IL�), 57–58,

153, 231.
Benchmark tests, 35, 131–133, 139,

147, 190, 206.
100 test cases, 113–124, 127, 182, 184.

Bender, Edward Anton, 250.
Beresin, May, 275.
Berghammer, Rudolf, 204.
BerkMin solver, 132.
Berlekamp, Elwyn Ralph, 17.
Berman, Piotr, 224.
Bernhart, Frank Reiff, 188.
Bernoulli, Jacques (= Jakob = James),

distribution, multivariate, 89.
Bethe, Hans Albrecht, 95.
Better reasons, 157.
Bias messages, 92.
Biased random bits, 12, 241.
Biere, Armin, v, 66, 76, 96, 129, 132, 166,

188, 258, 260, 261, 269, 280.
Big clauses, 145.
BIMP tables, 36–41, 43, 45, 124, 144, 235.
Binary addition, 114.
Binary clauses, 3, 6, 36, 124, 133, 155–156.
Binary constraints, 171.
Binary decoder, 179.
Binary implication graph, see Dependency

digraph, 41.
Binary matrices, 106–109, 151, 176–177,

181, see also Grid patterns.
Binary multiplication, 8.
Binary number system, 9, 98.
Binary recurrence relations, 189.
Binary relations, 56.
Binary search, 187.
Binary strings, 181.
Binary tensor contingency problem,

142, 151.
Binomial coefficients, 149.
Binomial convolutions, 250.
Bipartite graphs, 58, 177, 290.
Bipartite matching, 150.

September 23, 2015

INDEX AND GLOSSARY 295

Bipartite structure, 90.
Birthday paradox, 49.
Bishops, 141.
Bitmaps, 17, 139.
Bitwise operations, 11, 12, 81, 158, 161,

241, 246, 258–259.
Black and blue principle, 146, 216.
Black and white principle, 146.
Blake, Archie, 130.
blit, 234, 236.
Block decomposition, 275.
Block designs, 106.
Block diagonal matrices, 177.
Blocked clauses, 102, 215, 260, 261, 269.

binary, 146.
elimination of, 167.

Blocked self-subsumption, 167.
Blocking digraph, 215.
Blocks in Life, 197, 200.
Bloom, Burton Howard, coding, 258.
Bloom, Thomas Frederick, 185.
Bob, 20–24, 115, 139–141.
Böhm, Max Joachim, 131.
Bollobás, Béla, 54, 220.
Bonacina, Maria Paola, 129.
book graphs, 126, 179.
Boole, George, 129.
Boolean chains, 9, 11, 12, 102, 114, 173.

optimum, 178–179.
Boolean formulas, 1.
Boolean functions, 14–16.

expressible in kCNF, 220.
synthesis of, 178–179.

Boppana, Ravi Babu, 174.
Borgs, Christian, 54.
Bottom-up algorithms, 252.
Boufkhad, Yacine (��³Øp ÑÛ�nÚ), 8, 26, 131,

135, 137, 143, 174, 272.
Boundary sets, 58, 154, 180, 188.
Boundary variables, 230.
Bounded model checking, 16–24, 132,

137–141, 157, 179–180.
Branching heuristics, 105, 144, see also

Decision literals.
Branching programs, 102, 173, 174.
Branchless computation, 242.
Braunstein, Alfredo, 90, 91, 256.
Breadth-first search, 37, 43, 68, 130, 235.
Break count, 79.
Breaking symmetries, vii, 5, 19, 105–114,

138, 176–181, 187, 188, 190–192, 238,
267, 281–283, 285, 288–290.

in graph coloring, 99–100, 114, 171,
179, 187.

Broadcasting, 170.
Broadword computations, 11, 12, 158,

161, 246, 258.
Brown, Cynthia Ann Blocher, 30, 32,

131, 151, 226.

Brown, Thomas Craig, 185.
Brummayer, Robert Daniel, 269.
Brunetti, Sara, 206.
Bryant, Randal Everitt, v, 7, 187.
BST(l), 211.
BSTAMP counter, 211.
Buckingham, David John, 197, 200.
Buddy system, 36, 144, 235.
Bugrara, Khaled Mohamed

(Ò�mǱ¯Øpm �Ì�Ë �¿n�), 226.
Bugs, 16, 69, 77, 133, 240.
Bulnes-Rozas, Juan Bautista, 215.
Bumped process, 21.
Bundala, Daniel, 196.
Burney, Charles, viii.
Burns, James Edward, 204.
Buro, Michael, 131.
Buss, Samuel Rudolph, v, 153, 270.
Bystanders, see Easy clauses.

C-SAT solver, 131.
Cache memories, 24.
Calabro, Chris, 288.
Candidate variables, 40–44, 131, 214.
Canonical forms, 138, 248.
Cardinality constraints, 7–8, 26, 104, 106,

113, 114, 121, 135, 143, 187, 188,
193, 194, 196, 204, 285.

for intervals, 100, 190, 280.
Carlier, Jacques, 131.
Carlitz, Leonard, 162.
Carriers in Life, 197, 200.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), 129–130.
Carry bits, 9, 12, 101, 192, 193.
Cartier, Pierre Emile, 83, 86, 163.
Case analysis, 27, 130.
CDCL (conflict driven clause learning)

solvers, 62–71, 103, 121, 132–133, 155.
combined with lookahead solvers, 129.
compared to lookahead solvers, 98–100,

118–121, 182, 290.
Cells of memory, 28, 122–124.
Cellular automata, 17, 202.
Certifiable clauses, 168, 260.
Certificates of unsatisfiability, 69–71,

157, 169, 176, 178.
Chaff solver, 67, 132.
Chain rule for conditional probability, 254.
Chains, see Boolean chains, Resolution

chains, s-chains.
Channel assignment, 136.
Channeling clauses, 264.
Characteristic polynomial of a matrix,

163, 218.
Chavas, Joël, 91.
Chayes, Jennifer Tour, 54.
Chebyshev (= Tschebyscheff), Pafnutii

Lvovich (Qebyxev�, Pafnut��

September 23, 2015

296 INDEX AND GLOSSARY

L~voviq� = Qebyxev, Pafnuti�

L~voviq), inequality, 221.
polynomials, 247.

Cheshire Tom, 24–26, 115, 142–143.
Chess, 7, 170.
Chessboards, 18, 25, 99, 106, 115, 138, 180.
Chiral symmetry (rotation but not

reflection), 138, 202, 275.
Chordal graphs, 163–164.
Chromatic number χ(G), 99, 135–136,

147, 174, 281.
Chung Graham, Fan Rong King

(), 283.
Chvátal, Václav (= Vašek), 5, 52, 59, 185.
Cimatti, Alessandro, 132.
Circuits, Boolean, 10, 101–103, 114, see

also Boolean chains.
Circular lists, 32.
Clarke, Edmund Melson, Jr., 132.
Clashing pairs of letters, 84.
Clausal proofs, see Certificates of

unsatisfiability.
Clause activity scores, 74, 239.
Clause-learning algorithms, 61–62, 103,

118, 121, 132–133, 154–155.
Clauses per literal, 150, 231; see also

Density of clauses.
Claw graph, 249.
Clichés, 76.
Clique Local Lemma, 165.
Cliques, 81, 100, 162, 167, 169, 171,

179, 190.
covering by, 165.

Closest strings, 114, 181, 182.
Clusters, 166.
CNF: Conjunctive normal form, 9, 101,

154, 173, 193, 196.
Cocomparability graphs, 249, 250.
Coe, Timothy Vance, 201.
Coexisting armies of queens, 180.
Cographs, 163, 250.
Cohen, Bram, 79, 246.
Coja-Oghlan, Amin, 221.
Colexicographic order, 206, 278.
Coloring a graph, 6–7, 99–100, 153, 179, 260.

fractional, 135.
multiple, 135.
of queens, 99–100, 114–115, 171.
radio, 136.

Column sums, 151.
Commutative law, 27, 180, 227.

partial, 83, 250–251.
Comparator modules, 115, 137.
Comparison, lexicographic, 101, 111–113.
Comparison of running times, 34–35, 39,

69, 97–100, 105–107, 110, 112, 118–128,
182, 184, 218, 237, 264, 281, 290.

Compensation resolvents, 39, 144, 147.
Competitions, 131–133, 291.

Complement of a graph, 134.
Complementation of unary representations,

100.
Complemented literals, 2–4, 37, 62–64,

78, 111, 210, 266.
Complete binary trees, 8, 135, 230.
Complete bipartite graphs Km,n, 250, 254.
Complete graphs Kn, 153, 178, 186, 262.
Complete k-partite graphs, 250, 262.
Complete t-ary trees, 160.
Compressing, see Purging unhelpful clauses.
Conditional autarkies, 215.
Conditional expectation inequality, 150.
Conditional symmetries, 107, see

Endomorphisms.
Conditioning operations (F | l and F |L), 27,

96, 143, 157, see Unit conditioning.
Cones in trace theory, 87.
Confidence level (ψ), 93, 255.
Conflict clauses, 63, 70, 171; see also

Preclusion clauses.
Conflict driven clause learning, 62–69,

103, 121, 132–133, 155.
Conflicts, 62, 124, 132.
Conjunctive normal form, 1, 9, 101,

154, 173, 193, 196.
irredundant, 257.

Conjunctive prime form, 104.
Connected graphs, 177.
Connectedness testing, 169–170.
Connection puzzles, 170.
CoNP-complete problems, 3, 207.
Consecutive 1s, 88, 175, 254.
Consensus of implicants, 130.
Consistent Boolean formulas, see

Satisfiable formulas.
Consistent partial assignments, 30, 165.
Constrained variables in partial assignments,

165–166.
Contests, 131–132.
Context free languages, 175.
Contiguous United States, 136.
Contingency tables, binary, 142.

3D, 151.
Convex functions, 216.
Convex hulls, 247.
Convolution principle, 250.
Conway, John Horton, 17, 139, 201.
Cook, Stephen Arthur, 61, 62, 130–131,

154, 229, 237.
cook clauses, 157.
Cooper, Alec Steven, 285.
Core assignments, 166.
Core of Horn clauses, 174, 216.
Coupon collector’s test, 220.
Covering assignments, 166, 221, 255.
Covering problems, 2, 193, 194, see also

Domino coverings.
Covering strings, 181.

September 23, 2015

INDEX AND GLOSSARY 297

CPLEX system, 26, 289.
CPU: Central Processing Unit (one

computer thread), 121.
Crawford, James Melton, Jr., 98, 113.
Cray 2 computer, 137.
Critical sections, 21–23, 140–141.
Crossover point, see Threshold of

satisfiability.
Crusoe (= Kreutznaer), Robinson, vii.
CSP: The constraint satisfaction

problem, 283.
Cube and conquer method, 129.
Cubic graphs (3-regular, trivalent),

147, 154, 231.
Cufflink pattern, 255.
Culver, Clayton Lee, 185.
Cut rule, 59.
Cutoff parameters, 41, 145.
Cutting planes, 184, 206.
Cycle detection problem, 260.
Cycle graphs Cn, 135, 160, 262.
Cycle structure of a permutation, 108,

112–113, 163, 178, 277.
Cyclic DPLL algorithm, 33.
Cyclic patterns, 19.
Cyclic permutations, 163.

da Vinci, Leonardo di ser Piero, 7.
Dadda, Luigi, 9, 114, 136, 173.
Dags: Directed acyclic graphs, 54.

of resolutions, 54–56, 70.
Damping factors, 46, 67, 74, 76, 93–94,

125, 126, 155.
Dancing links, 5, 121, 134, 208, 288, 291.
Dantchev, Stefan Stoyanov (Danqev,

Stefan Sto�nov), 110.
Darwiche, Adnan Youssef

(�Ú×�� µ�ØÚ ÎnÏ�«), 67, 262.
Data structures, 28–34, 36–38, 43, 66–67,

80, 95–96, 143–145, 155–156, 159,
167, 238, 273.

Davis, Martin David, 9, 31–32, 130, 298.
Dawson, Thomas Rayner, 170.
De Morgan, Augustus, laws, 3.
de Vries, Sven, 206.
de Wilde, Boris, 213.
Deadlock, 22–23.
Debugging, 69, 77.
Dechter, Rina Kahana (XHKC �PDK DPIX), 67.
Decision literals, 62, 69, 124, 132.
Decision trees, see Search trees.
Decomposable matrices, 177.
Default parameters, 93, 125–126.
Default values of gates, 11.
Definite Horn clauses, 174.
Defoe, Daniel (= Daniel Foe), vii.
Degree of a vertex, 191.
Degrees of truth, 37–39, 42–43, 45–46, 216.
Dekker, Theodorus Jozef, 140.

Del Lungo, Alberto, 206.
Delayer, 55–56, 152–153.
Deletion from a heap, 234.
Delta sequence, 290.
Demenkov, Evgeny Alexandrovich

(Demenkov, Evgeni� Aleksandroviq),
280.

Density of clauses: The number of clauses
per variable, 50–51, 150, 231, 288.

Dependence graph in trace theory, 248.
Dependence of literals, 63.
Dependency digraph (of literals), 41, 131,

168, 215, 237, 260.
Dependency-directed backtracking, see

Backjumping.
Dependency graph (of events), 82, 164, 165.
Dependency on a variable, 137.
Depth-first search, 130.
Dequen, Gilles Maurice Marceau, 131.
Determinants, 162, 163, 251.
Deterministic algorithm, 17, 120.
Deventer, Mattijs Oskar van, 290.
DFAIL, 46, 147.
Dfalse literals, 45.
Diagonals of a matrix, 24–25, 141–142.
Diagram of a trace, 84.
Dı́az Cort, José Maria (= Josep), 51.
Dick, William Brisbane, 180.
Difficult instances of SAT, 5, 14, 26, 51,

55–59, 118–121, 153–154, 184, 190,
192, 197, 206, 280.

Digital tomography, 24–26, 115, 141–143,
167, 285.

Digraphs, 54, 108, 161, 162, 263, see also
Blocking digraph, Dependency digraph,
Implication digraph.

Dijkstra, Edsger Wybe, 22, 202, 204.
DIMACS: Center for Discrete Mathematics

and Theoretical Computer Science, 131.
DIMACS: DIMACS Series in Discrete

Mathematics and Theoretical Computer
Science, inaugurated in 1990.

Ding, Jian (), 51.
Direct encoding, 98, 114, 171, 186,

264, 265, 281.
Direct sum of graphs or matrices, 162, 177.
Directed acyclic graphs of resolutions,

54–56, 70.
Directed graphs, see Digraphs.
Discarding the previous learned clause,

72, 156.
Discrepancy patterns, 114, 182.
Disjoint shortest paths, 276.
Disjunctive normal forms, 14, 115,

130, 195, 257.
Distance d(u, v) in a graph, 262.
Distinct literals, 2.
Division of traces, 85, 161, 250.

September 23, 2015

298 INDEX AND GLOSSARY

DNF: Disjunctive normal form, 14, 115,
130, 195, 257.

Dodgson, Charles Lutwidge, 129–130.
Domino coverings, 110, 114, 115, 143,

177, 178.
Don’t-cares, 194, 280.
Double clique hints, 100, 114, 171.
Double coloring, 115, 135.
Double lookahead, 45–46, 126, 131, 286.
Double order, 214.
Double truth, 45.
Doubly linked lists, 28, 257, 259.
Downhill resolution, 96, 166.
Downhill transformations, 95.
Doyle, Arthur Ignatius Conan, 72.
DPLL (Davis, Putnam, Logemann,

Loveland) algorithm, 32–33, 62.
with lookahead, 38, 131.

DT (double truth), 45.
Dtrue literals, 45.
Dual of a Boolean function, 130, 174.
Dubois, Olivier, 131.
Dudeney, Henry Ernest, 114, 263.
Dufour, Mark, 37.
Dull, Brutus Cyclops, 181.
Durfee, William Pitt, square, 276.
Dynamic storage allocation, 144.
Dynamical system, discrete, 16.

e, as source of “random” data, 12, 193.
Eager data structures, 30, 36, 156.
Easy clauses, 149.
Eaters in Life, 20, 139.
Eén, Niklas Göran, v, 67, 96, 166,

203, 260, 268.
Ehlers, Thorsten, 196.
Eightfold symmetry, 138, 198.
Elegance, 35–36, 196.
Elimination of clauses, 167–168; see also

Purging unhelpful clauses.
Elimination of variables, 60–61, 95–97, 101,

102, 129, 130, 154–155, 166–168, 173,
174, 256–257, 259–260, 270, 272.

Embedded graphs, 169, 262.
Empilements, 84, 161, 248.
Empirical performance measurements,

122–124.
Empty clause (ǫ), 3, 27, 185.
Empty list, representation of, 33, 210.
Empty partial assignment, 166.
Empty set (∅), 185.
Empty string (ǫ), 3, 85.
Encoding into clauses, 6, 18, 97–105, 120,

134, 170, 179, 198, 202.
ternary data, 100, 141, 179.

Endomorphisms, 107–111, 177–178,
181, 281, 290.

Equal sums, encoding of, 174.
Equally spaced 1s, 4, 114, 135; see

also waerden .

Equivalence classes in trace theory, 84.
Equivalence of Boolean functions, 178.
Erdős, Pál (= Paul), 81, 107, 190, 281.

discrepancy patterns, 114, 179, 182.
Erp rules, 95–96, 166–168, 259.
Evaluation of Boolean functions, 137,

178–179, 194.
Even-length cycles, 277.
Even-odd endomorphisms, 110, 177–178.
Exact cover problems, vii, 2, 5–6, 28, 134,

183, 186, 219, 225, 257, 291.
by pairs (perfect matchings), 109–110,

see also Domino coverings.
by triples (3D MATCHING), 134,

225, 290–291.
fractional, 135–136.

Exclusion clauses, 6, 21, 99, 114, 134,
149, 153, 238, 260, 289.

Exclusive or, ternary, 136.
Existential quantifiers, 60.
Expander graphs, 58, 231.
Exploitation stack, 259.
Exploration phase of lookahead, 40, 43–44.
Exponential time, 144.

hypothesis, 288.
Extended resolution, 60, 71, 133, 154,

168, 215.
Extreme distribution, 87, 89, 163.

factor fifo(m,n, z), 10, 12, 114, 184, 192.
factor lifo(m,n, z), 10, 114, 184, 192.
factor rand (m, n, z, s), 10, 184.
Factorization, 8–10, 136, 184, 192.

of traces, 86, 162, 250.
Failed literals, 97, 167, 175, 269.
Fallacious reasoning, 16, 284.
False hits, 258.
False literals preferred, 31, 33, 67,

125–127, 286.
Fanout gates, 10–14, 136.
Fat clauses, 58.
Fault testing, 10–14, 114, 126, 136–137,

167, 260.
Feedback mechanism, 46, 104.
Fermat, Pierre de, 10.
Fernandez de la Vega, Wenceslas, 52.
Fibonacci, Leonardo, of Pisa (= Leonardo

filio Bonacii Pisano), numbers,
160, 215, 254.

ruler function, 246.
Fichte, Johannes Klaus, 262.
Field of a variable, 91, 165.
FIFO: first in, first out, 10.
Finite-state automata, 175.
First in, first out, 10.
First moment principle, 53, 148, 150.
First order logic, 59, 130.
Fischetti, Matteo, 206.
Fixed point of endomorphisms, 177.

September 23, 2015

INDEX AND GLOSSARY 299

Fixed values of literals, 37, 42–46.
FKG inequality, 89.
Flag bits, 235.
Flammenkamp, Achim, 198.
Flexibility coefficients, 91.
Flickering state variables, 141.
Flipflops in Life, 138, 143.
Floating point arithmetic, 91–92, 217, 239.

overflow, 67.
Floor tiling, 115, 143, 199.
Flower snarks, 69, 147, 153, 157.
Flushing literals and restarting, 68, 75–77,

124, 132, 157, 158, 169, 234, 246.
Foata, Dominique Cyprien, 83, 86, 163.
Focus of attention, 41, 67, 91, 132.
Foe, Daniel (= Daniel Defoe), vii.
Footprint heuristic, 279.
Forced literals, 45.
Forcing clause, 62, see Unit propagation.
Forcing representations, 104–105, 174,

175, 274.
Forests, 43, 87, 163.
Forgetting clauses, 168, 169, see Purging

unhelpful clauses.
Four bit protocol, 115.
Four Color Theorem, 7.
Fourfold symmetry, 138.
Fractional coloring number, 135.
Fractional exact cover, 135–136.
Frances, Moti (QQPXT ICEN), 285.
Franco, John Vincent, 131, 148, 225, 274.
Free literals and free variables, 38,

66, 165–166.
Freeman, Jon William, 131.
Friedgut, Ehud (HEBCIXT CED�), 51.
Frontier (∂in), 180, 188.
Frost, Daniel Hunter, 67.
fsnark clauses, 69, 71, 114, 147–148,

153, 157.
Full adders, 9, 136, 179, 192, 268, 278.

modified, 114, 280.
Full runs, 73, 158, 235.
Furtlehner, Cyril, 91.

Gµ: Gigamems = billions of memory
accesses, 97, 118.

per minute, 289.
Gadgets, 134, 183.
Gallager, Robert Gray, 95.
Game of Life, 17–20, 97, 114, 137–139,

143, 167.
Garden of Eden, 139.
Gardner, Martin, 7, 19, 181, 188, 283.
Gates, 10–13, 101–103, 121, 136.
GB GATES, 13–14.
Gebauer, Heidi Maria, 224.
Geek art, 116–117.
Generalization of resolution, 226.

Generating functions, 85, 89–90, 151,
158–159, 164, 188, 194, 219, 222,
230, 284.

exponential, 162.
Generic graph, 174.
Gent, Ian Philip, v, 265, 283.
Gentzen, Gerhard Karl Erich, 59.
Geometric distribution, 244, 262.
Georges, John Pericles, 192.
Gerdes, Paulus Pierre Joseph, 205.
Gessel, Ira Martin, 248.
Giant strong component, 52.
Gigamem (Gµ): One billion memory

accesses, 35, 39, 97, 188.
per minute, 289.

Ginsberg, Matthew Leigh, 113.
Gipatsi patterns, 141.
Girth of a graph, 176, 290.
Given literals (F | l or F |L), 27, 96, 143,

157; see also Unit conditioning.
Gliders in Life, 19, 138–139, 197, 201.

symmetry of, 200.
Global ordering, 284.
Glucose measure, see Literal block distance.
Goerdt, Andreas, 52.
Goldberg, Allen Terry, 131, 225.
Goldberg, Eugene Isaacovich (Gol~dberg,

Evgeni� Isaakoviq), 70, 132.
Goldman, Jay Robert, 250.
Goldsmith, Oliver, 293.
Golomb, Solomon Wolf, 265.
González-Arce, Teófilo Francisco, 268.
Gosper, Ralph William, Jr., 20, 198.
Goultiaeva, Alexandra Borisovna

(Gul~t�eva, Aleksandra Borisovna),
73.

Grabarchuk, Peter Serhiyevich (Grabarquk,
Petro Serg��oviq), 263.

Grabarchuk, Serhiy Alexeevich (Grabarquk,
Serg�� Oleks��oviq), 263.

Grabarchuk, Serhiy Serhiyevich (Grabarquk,
Serg�� Serg��oviq), 263.

Graham, Ronald Lewis (), 185, 283.
Graph-based axioms, 59, 154, 178, 290.
Graph coloring problems, see Coloring

a graph.
Graph embedding, 169, 262.
Graph layout, 116–118.
Graph quenching, 114, 179–180, 281.
Gray, Frank, codes, 201, 282.
Greedy algorithms, 80, 136, 172.
Greenbaum, Steven Fine, 102.
Grid graphs, 110, 136, 151, 162–163.

list coloring of, 151.
Grid patterns, 17–20, 24–26, 137–139, 142.

rotated 45◦, 141–142.
Griggs, Jerrold Robinson, 192.
Grinbergs, Emanuels Donats Fr̄ıdrihs

Jänis, 218.

September 23, 2015

300 INDEX AND GLOSSARY

Gritzman, Peter, 206.
Grötschel, Martin, 264.
Gu, Jun (), 77.
Guéret-Jussien, Christelle, 267.
Guilherme De Carvalho Resende,

Mauricio, 16.
GUROBI system, 289.
Guy, Richard Kenneth, 17, 19, 107.
Gwynne, Matthew Simon, 105, 270, 273.

Hackers, 199.
Haken, Armin, 57, 58.
Halevi, Shai (IELD IY), 289.
Half adders, 9, 192, 268.
Halting problem, 130.
Hamadi, Youssef (âamady ©uÓaf, Ý�nÌ�

µ�ØÚ), 236.
Hamilton, William Rowan, cycles, 169.

paths, 184.
Hamming, Richard Wesley, distance, 285.
Han, Hyojung (), 236.
Handwaving, 89.
Hanzelet, see Appier dit Hanzelet.
Hard clauses, 168.
Hard sudoku, 183.
Hartman, Christiaan, 202.
Haven, G Neil, 131.
Head of the list, 28.
Header elements, 225.
HEAP array, 67, 158, 233–235, 240.
Heap data structure, 67, 214.

insertion and deletion from, 234.
Heaps of pieces, 83.
Height of a literal, 214.
Height of a trace, 85.
Heilmann, Ole Jan, 251.
Helpful rounds, 169.
Heule, Marienus (= Marijn) Johannes

Hendrikus, iv, v, 37, 40, 46, 71, 75,
97–98, 104, 129, 134, 147, 182, 186,
202, 213, 239, 260, 261, 263.

Heuristic scores, 90–95.
for clauses, 72–74, 125–127, 158, 239, 286.
for variables, 40–44, 61, 67, 80, 126,

145–147, 214.
Hidden weighted bit function, 173.
Hierarchy of hardness, 176, 178.
Hilton, Anthony John William, 191.
Hint clauses, 100, 114, 171.
Hirsch, Edward Alekseevich (Girx, �duard

Alekseeviq), 215.
Historical notes, 32, 59–60, 105,

129–133, 231.
Hollow mazes, 290.
Holmes, Thomas Sherlock Scott, 72.
Homomorphic embedding, 169, 262.
Honest representations, 105, 270.
Hoory, Shlomo (IXEG DNLY), 224.
Hoos, Holger Hendrik, v, 125–127, 133, 160.

Horn, Alfred, clauses, 132, 166, 176,
216, 263.

core of, 174, 216.
renamed, 176, 263.

Horsley, Daniel James, 274.
Horton, Robert Elmer, numbers, 152.
Hsiang, Jieh (), 129.
Hume, David, 1.
Hunt, Warren Alva, Jr., 71, 239.
Hutter, Frank Roman, 125, 133.
Hypergraph 2-colorability, 185.
Hyperresolution, 56, 228, 257.

Idle Year solitaire, 180.
If-then-else operation (u? v: w), 81,

102, 152, 173, 219.
ILS: Iterated Local search, 125.
Impagliazzo, Russell Graham, 55, 288.
Implication digraph, 52, 144.
in situ deletion, 156.
Inclusion and exclusion, 221–222, 256.
Inconsistent clauses, see Unsatisfiable

formulas.
Indecomposable matrices, 177.
Independent vertices, 7, 147.
Induced graph, 262.
Induction proofs by machine, 24, 203.
Infinite loop, 244.
Initial guess for literals, 31, 33, 66,

125–127, 286.
Initial state X0, 16–17, 21, 24, 140, 202.
Inprocessing, 95, 168.
Input and output, 120.
Input states, 175.
Insertion into a heap, 234.
Integer programming, 26, 184, 206, 285.
Interactive SAT solving, 142.
Interlaced roots of polynomials, 163.
Internet, ii, iii, v, 118.
Intersection graphs, 84, 161.
Interval graphs, 87, 163.
Intervals, cardinality constrained to,

100, 190, 280.
Invariant assertions, 23–24, 43, 115, 140,

203, 216, 217, 255, 261.
Inverse permutations, 112, 265.
Inversions of a permutation, 213.
Involution polynomial of a set, 163.
Involutions, signed, 112–113, 180, 277–278.
INX array, 38, 211, 286.
IP: Integer programming, 26, 184, 206, 285.
Irredundant CNF, 257.
Irreflexive relation, 56.
Irving, Robert Wylie, 151.
Isaacs, Rufus Philip, 218.
Isolated vertices, 262.
IST array, 38.
ISTACK array, 38, 145.
ISTAMP counter, 37–38, 46, 145.

September 23, 2015

INDEX AND GLOSSARY 301

Iterated local search, 125.
Iwama, Kazuo (), 224.

Jabbour, Säıd (jabur Óayd, �Øq~ �Û¬�),
236, 289.

Jacquet, Philippe Pierre, 225.
Jagger, Michael Philip “Mick”, 1.
Janson, Carl Svante, v.
Järvisalo, Matti Juhani, 105, 132, 260, 261.
Jeannicot, Serge, 215.
Jeavons, Peter George, v.
Jerrum, Mark Richard, 151.
Job shop problems, 172.
Johnson, David Stifler, 184, 191.
Johnson, Samuel, viii.
Join of graphs, 162.

k-induction, 203.
Kµ: Kilomems = thousands of memory

accesses, 98.
Km,n (complete bipartite graph), 176.
Kamath, Anil Prabhakar (aEnl þBAkr

kAmT), 16.
Kaporis, Alexis Constantine Flora (Kapìrh,

Alèxio Kwnstant�nou Fl¸ra), 51.
Karmarkar, Narendra Krishna (nr��dý

�k	Z krmrkr), 16.
Karp, Richard Manning, 52, 268.
Karpiński (= Karpinski), Marek

Mieczys law, 224.
Karpovsky, Mark Girsh, 285.
Kasif, Simon (SIQK OERNY), 265.
Katona, Gyula (Optimális Halmaz), 107.
Kautz, Henry Alexander, 79, 132.
Kaye, Richard William, 207.
Keller, Robert Marion, 83.
Kernel of a graph, 99, 134, 186, 188, 218.

clauses for, 114, 134.
Kilomem (Kµ): One thousand memory

accesses, 39, 98.
Kim, Jeong Han (), 54.
King moves, 134, 169.
Kingwise connected cells, 170.
Kirousis, Lefteris Miltiades (KuroÔsh,

Eleujèrio Milti�dh), 51.
Kitagawa, Satoshi (), 264, 267.
Kleine Büning (= Kleine-Büning), Hans

Gerhard, 131, 185.
Knapsack problem with a partial

ordering, 158.
Knessl, Charles, 225.
Knight moves, 115, 169.
Knuth, Donald Ervin (), i, vi, 1,

14, 16, 19, 51–52, 72, 74, 93, 94, 118,
125–127, 192, 193, 195, 197, 202,
210, 212, 213, 216, 227, 235–237,
240, 242, 249, 260, 264–267, 275,
278, 279, 282, 286, 290.

Knuth, John Martin (), see Truth.

Kojevnikov, Arist Alexandrovich
(Ko�evnikov, Arist Aleksandroviq),
280.

Kolipaka, Kashyap Babu Rao (G�Þ�© �G �G�l®

�

a

�� g�k�Ò), 90, 161, 255.
Konev, Boris Yurevich (Konev, Boris

�r~eviq), 281.
Kouřil, Michal, 5, 185.
Kroening, Daniel Heinrich Friedrich

Emil, v, 203, 288.
Krom, Melven Robert, clauses, see 2SAT.
kSAT, 3, 49–51, 146, 148, 150, 183.
Kulikov, Alexander Sergeevich (Kulikov,

Aleksandr Sergeeviq), 280.
Kullmann, Oliver, v, 5, 105, 129, 147, 152,

215, 216, 218, 228, 260, 270, 273.
Kwekkeboom, Cornelis (= Kees)

Samuël, 202.

L(2, 1) labeling of graphs, 136.
L7 lattice, 255.
Labeled pyramids, 162.
Labeled traces, 162.
Lalas, Efthimios George (L�la, EujÔmio

Gewrg�ou), 51.
Lamport, Leslie B., 24, 204.
Land mines, 142.
Landman, Bruce Michael, 185.
Langford, Charles Dudley, problem of

pairs, vii, 5–6, 34, 98, 121, 125,
134, 170, 186, 289.

langford (n), 6, 34–35, 39, 97, 98, 114,
121, 134, 210, 236, 289.

langford ′(n), 6, 98, 114, 134, 289.
langford ′′(n), 98.
langford ′′′(n), 264.
Larrabee, Tracy Lynn, 13, 137.
Las Vegas algorithms, 159–160.
Last in, first out, 10.
Late Binding Solitaire, 114, 180.
Latin rectangle construction, 151.
Lattices of partial assignments, 165–166.
Lauria, Massimo, v, 56.
Laurier, Jean-Louis, 187.
Lazy data structures, 30–34, 36, 65,

156, 234.
Le Berre, Daniel Claude Yves, 132.
Learned clauses, 63–65, 70–71, 124, 132, 168.

sequence of, 70, 156.
Learning a Boolean function, 14–16,

115, 137.
Least common ancestor, 253.
Left division of traces, 85, 161.
Left factor of a trace, 161–162.
Lemaire, Bernard François Camille, 282.
Lemma generation, see Clause-learning

algorithms.
Length of a trace, 85.
Lettmann, Theodor August, 185.
Level 0, 62, 66, 124, 156, 207, 233.

September 23, 2015

302 INDEX AND GLOSSARY

Levels of values, 62–66, 156, 233.
Levesque, Hector Joseph, 50.
Levine, Eugene, 275.
Lewis, Jerome Luther, 275.
Lex-leader: The lexicographically smallest

element, 111, 283.
Lexicographic order, 4, 25, 26, 30, 101, 105,

107, 109, 111–113, 115, 197, 282–283.
encoded in clauses, 101, 173, 174.

Lexicographic row/column symmetry,
106–107, 177, 181, 274.

Lexicographically smallest (or largest)
solution, 25–26, 111–113, 142,
157, 282, 283.

Lexicographically smallest traces, 84,
161, 162, 250.

Leyton-Brown, Kevin Eric, 125, 133.
Li, Chu Min (), 131.
Li, Wei (), 149.
Lieb, Elliott Hershel, 251.
Life, Game of, 17–20, 97, 114, 137–139,

143, 167.
Light speed in Life, 139.
Line graph of a graph, 147, 249.
Linear equations, 26, 231.
Linear extensions, see Topological sorting.
Linear inequalities, 184.

encoding of, 100–101, 172, 173.
Linear programming relaxation, 26.
Lines, abstracted, 106.
Links, dancing, 5, 121, 134, 208, 288.
Lisitsa, Alexei Petrovich (L�s�a, Al�kse�

P�trov�q), 281.
List coloring of graphs, 135, 151.
List merging, 231, 258.
Literal block distance, 72, 74, 158.
Literals, 2, 111.

flushing, 76.
internal representation, 28, 37, 66,

208, 209, 242, 257.
Litman, Ami (ONHIL INR), 285.
Livelock, 22–23.
Llunell, Albert Oliveras i, 267.
LNCS: Lecture Notes in Computer Science,

inaugurated in 1973.
Local Lemma, 81–90, 133, 151, 160–165.
Log encodings, 98, 114–115, 173.
Logemann, George Wahl, 31–32, 130, 298.
Longest simple path, 23, 203.
Lonlac, Jerry, 289.
Look-back, see Backjumping.
Lookahead autarky clauses, see Black

and blue principle.
Lookahead forest, 42–44, 145–147, 168.
Lookahead solvers, 38–46, 55, 97, 129,

131, 176.
combined with CDCL solvers, 129.
compared to CDCL solvers, 98–100,

118–121, 182, 290.

Loopless shadows, 184.
Lopsidependency graphs, 82, 83, 160,

164, 165, 185, 224.
Lovász, László, 81, 82, 185, 191.
Loveland, Donald William, 32, 130, 298.
Lower semimodular lattices, 255–256.
Loyd, Samuel, 263.
Luby, Michael George, 80, 159.
Luks, Eugene Michael, 113.

Mµ: Megamems = millions of memory
accesses, 69, 98.

Maaren, Hans van, 37, 46.
MacColl (= McColl), Hugh, 227.
MacMahon, Percy Alexander, Master

Theorem, 250, 251.
Mader, Adolf, 275.
Madigan, Conor Francis, 132.
Magic, 193.
Magic sequences, 285.
Magnetic tape, 32.
Makespan, 172–173.
Mallach, Sven, 289.
Malik, Sharad (frd mElk), 132.
Maneva, Elitza Nikolaeva (Maneva, Elia

Nikolaeva), 166, 256.
Mapping three items into two-bit codes, 179.
march solver, 40, 216.
Marek, Victor Wiktor, 216.
Markov (= Markoff), Andrei Andreevich

(Markov, Andre� Andreeviq), the
elder, inequality, 158, 241.

Markov, Igor Leonidovich (Markov, �gor
Leon�doviq), 112, 281, 284.

Markström, Klas Jonas, 290.
Marques da Silva (= Marques-Silva),

João Paulo, 132.
Marriage theorem, 224.
Martin, Alexander, 264.
Matching polynomial of a graph, 249.
Matchings in a graph: Sets of disjoint

edges, 150, 230, 249.
perfect, 109–110, 177.

Mathews, Edwin Lee (41), 67.
Matrix multiplication, 260.
Mauro, David Whittlesey, 192.
Maximal elements, 56, 62, 97, 115,

153, 157, 167.
Maximal planar graphs, 186.
Maximum independent sets, 87, 136,

187, 188.
Maximum number of 1s, 106–109,

135, 136, 177.
MAXSAT lower bound, 184.
“Maybe” state, 20.
Mazurkiewicz, Antoni Wies law, 83.
McColl (= MacColl), Hugh, 227.
McGregor, William Charles, 7, 188.

graphs, 7–8, 114–115, 134, 135, 188.
Mean running time, 120.

September 23, 2015

INDEX AND GLOSSARY 303

Median operation, 9, 136, 179.
Median running times, 99, 120–124, 127.
Megamem (Mµ): One million memory

accesses, 201.
Méjean, Henri-Michel, 226.
Mellin, Robert Hjalmar, transforms, 151.
Mem (µ): One 64-bit memory access, 34.
MEM array, 66, 68, 124, 156.
Memo cache, 60, 233.
Memoization technique, 233.
Memoryless property, 244.
Menagerie, 116–117.
Merge networks, 266.
Merging lists, 231, 258.
Mertens, Stephan, 51.
Message passing, 90–95, 165–166.
Method I, 61.
Method IA, 61, 154.
Method of Trees, 129.
Methuselah solitaire, 282.
Methuselahs in Life, 19.
Mézard, Marc Jean Marcel, 51, 90, 91, 95.
Midpoint inequalities, 266.
Mijnders, Sid, 213.
Mills, Burton Everett, 130.
Minesweeper, 142–143.
Minimally unsatisfiable clauses, 150, 153.
Minimum covers, 193.
MiniSAT, 67.
Minterms, 179.
Mitchell, David Geoffrey, 50.
Miters, 121, 182.
Mitsche, Dieter Wilhelm, 51.
Mixed metaphors, 76.
Mixed-radix number systems, 268.
MMIX computer, ii, 158.
Mobile Life paths, 18–19, 138–139.

flipflops, 138.
Möbius, Augustus Ferdinand, functions, 86.

series, 86, 160, 162–163, 165, 247, 249.
Mod 3 addition, 114, 179.
Mod 3 parity, 179.
Mod 4 parity, 179.
Model checking, 16–17, 137–141, 179–180.
Model RB, 149.
Modified full adders, 114, 280.
Modular lattices, 255.
mone (−1), 242.
Monien, Burkhard, 215.
Monkey wrench principle, 113, 181.
Monotone functions, 163.

Boolean, 137, 281.
Monotonic clauses, 5, 133, 157.
Monotonic paths, 108, 276.
Montanari, Andrea, 95.
Monus operation (x

.
−y = max{0, x−y}),

92, 247, 268.
Moore, Edward Forrest, 202.
Morehead, Albert Hodges, 282.

Morel, Henri, 226.
Moser, Robin Alexander, 82, 254.
Moskewicz, Matthew Walter, 132.
Mossel, Elchanan (LQEN OPGL�), 166.
Mott-Smith, Geoffrey Arthur, 282.
Move codes, 29–31, 34, 144, 145, 155, 210.
MPR: Mathematical Preliminaries Redux, v.
Mueller, Rolf Karl, 60, 130.
Müller, Mike, 196.
Multicommodity flows, 170.
Multigraphs, 231.
Multilinear function, 86.
Multiplication of binary numbers, 8–9,

12–14, 114, 136, 173.
Multiplication of traces, 85, 161.
Multisets, 3, 214, 224, 250.
Multivalued graph colorings, 99.
Mutilated chessboard, 110, 114,

177–178, 286.
Mutual exclusion protocols, 20–24,

115, 139–141.
Mutzbauer, Otto, 275.
Mux operation (u? v: w), 81, 102,

152, 173, 219.
Mysterians, 290.

n-cube, 79, 136, 148, 184.
n.f.: not falsified, 271.
n queens problem, 25, 115, 171, 282.
NAND operation, 60.
Napier, John, Laird of Merchiston, 9, 173.
Near truth, 37–39.
Necessary assignments, 45, 146.
Negated auxiliary variables, 105.
Negative k-clauses, 157.
Negative literals, 2, 132, 153.
Nesting phase of lookahead, 40, 42–43,

145–147.
Newbie variables, 41.
Newton, Isaac, method for rootfinding,

216–217.
Niborski, Rodolfo, 190.
Niemelä, Ilkka Niilo Fredrik, 105.
Nieuwenhuis, Robert Lukas Mario, 267.
Nightingale, Peter William, 265.
No-player game, 17.
Nodes of a search tree, 34–35, 69, 124.
Noels, Alain, 202.
Noisy data, 181.
Nonattacking queens, 25, 115, 171, 282.
Nonaveraging sets, 114, 135.
Nonchromatic rectangles, 176–177.
Nonchronological backtracking, see

Backjumping.
Noncommutative variables, 162.
Nonconstructive proofs, 57, 58, 81, 202.
Nondeterministic finite-state automata, 175.
Nondeterministic polynomial time, 131.
Nondeterministic processes, 20, 141, 182.
Nonintersecting paths, 170.

September 23, 2015

304 INDEX AND GLOSSARY

Nonnegative coefficients, 164.
Nonprimary columns, 186.
Nonterminal symbols, 175.
Normal chains, 278.
Normal functions, 279.
Not-all-equal SAT, 185.
Notational conventions, vi.
∂S (boundary set), 58, 154, 180, 188.
C′ ⋄ C ′′ (resolvent), 54, 152.
C ⊆ C′ (subsumption), 61, 152.
F | l (F given l), 27, 96, 291.
F |L (F given L), 27, 103, 157.
F ⊢ C (F implies C), 59, 152, 153.
F ⊢1 ǫ, 70, 157, 175.
F ⊢1 l, 103–104, 176.
F ⊢k ǫ,
F ⊢k l, 175–176.
G ⊕ H (direct sum), 162, 177.
|l| (a literal’s variable), 2.
±v (v or v̄), 2.
〈xyz〉 (median), 9.
x& y (bitwise AND), 28, 29, 31, 37, 38, 66,

68, 76, 81, 196, 209–211, 220, 241.
x | y (bitwise OR), 43, 196, 241, 258–259.
x ⊕ y (bitwise XOR), 28, 137, 196,

208, 220, 241.
x

.
−y (monus), 92, 247, 268.
x? y: z (if-then-else), 81, 102, 152,

173, 219.
w(α), 57.
w(α ⊢ ǫ), 57.
‖α ⊢ C‖, 57.
µ(C), 59, 153.

Novikov, Yakov Andreevich (Novikov,
�kov Andreeviq), 70, 132.

Nowakowski, Richard Joseph, 107, 275.
NP-complete problems, 1, 3, 27, 87,

130–131, 134, 142, 151, 181–183, 207,
268, see also CoNP-complete problems.

NT (near truth), 37–39.
Null clause (ǫ), 3, 27, 185, 291.
Null list, representation of, 33, 210.
Null partial assignment, 166.
Null set (∅), 185.
Null string (ǫ), 85.
Nullary clause (ǫ), 3, 27, 185, 291.
Number theory, 14, 137, 192.

Occurrence threshold of a graph, 160.
Odd permutations, 218.
Odd-even merge network, 266.
Odd-even transposition sort, 263.
Oliveras i Llunell, Albert, 267.
On-the-fly subsumptions, 124, 156.
One-in-three satisfiability, 183.
One-per-clause satisfiability, 183.
Open shop scheduling problems, 115,

172–173.
OR operation, 9, 10, 13, 258.

bitwise (x | y), 43, 196, 241, 258–259.

Orbits of a permutation group, 108, 277.
Order encoding, 98–101, 114, 120, 170–173,

190, 268, 281.
Order of a permutation, 111.
Organ-pipe permutations, 171.
Oriented cycle detection, 260.
Oriented trees, 108.
Orphan patterns in Life, 139.
Orponen, Olli Pekka, 80.
Oscillators in Life, 19, 138–139.
Output states, 175.
OVAL array, 74, 125, 237, 240.
Overfitting, 182.
Overflow in arithmetic, 67, 240.
Oxusoff, Laurent, 215.

℘ (tautology, the always-true clause), 3, 58,
60, 152, 180, 215, 226–228, 258.

P = NP, 1.
Palindromes, 136.
Panagiotou, Konstantinos (Panagi¸tou,

Konstant�no), 221.
Papadimitriou, Christos Harilaos

(Papadhmhtr�ou, Qr�sto Qaril�ou),
77, 240, 241.

Parallel multiplication circuits, 12–14, 137.
Parallel processes, 20, 24, 121, 128–129.
Parameters, tuning of, 80–81, 93–94,

124–128.
ParamILS, 125, 286–287.
Parity-related clauses, 153–154, 172,

178, 231–232, 290.
Partial assignments, 30, 61, 62, 165, 176.
Partial backtracking, 208.
Partial latin square construction, 151.
Partial orderings, 56, 85, 115, 248.

of dimension ≤ 2, 213.
Participants, 41, 44, 145.
Path detection, 169.
Path graphs Pn, 84, 160, 253.
Patience, see Solitaire games.
Paturi, Ramamohan (g��eî�o�Z ÑV�Ý), 288.
Paul, Jerome Larson, 5.
Paull, Marvin Cohen, 148.
PCk, 176, 178.
Pearl, Judea (LXT DCEDI), 95.
Pegden, Wesley Alden, v, 164, 253.
Peierls, Rudolf Ernst, 95.
Peres, Yuval (QXT LAEI), 221.
Pérez Giménez, Xavier, 51.
Perfect matchings in a graph, 109–110, 177.
Permanent of a matrix, 183, 251.
Permutation polynomial of a set, 163.
Permutation posets, 213.
Permutations, 105, 265.

signed, see Signed permutations.
weighted, 163.

Permuting variables and/or complementing
them, see Signed permutations.

September 23, 2015

INDEX AND GLOSSARY 305

Peterson, Gary Lynn, 23, 115, 140, 204.
Petrie, Karen Elizabeth Jefferson, 283.
Phase saving, 67, 75.
Phase transitions, 50–52, 149–150.
Phi (φ), 146, 147, 160, 251.
Phoenix in Life, 198, 207.
Pi (π), as source of “random” data, 12,

46, 108, 115, 147, 184, 193, 286;
see also Pi function.

Pi function, 102, 174.
Pieces, in trace theory, 84–87.
Pigeonhole principle, 57.

clauses for, 57–59, 105–106, 113, 153,
176, 181, 186, 265.

Pikhurko, Oleg Bohdan (P�hurko, Oleg
Bogdanoviq), 285.

Pile sums, 151.
Pincusians, 133.
Pipatsrisawat, Thammanit (= Knot)

(¾Ô¾Ñ²¹ìÈ�ÕÊÇÑÊ´́, ¸��Á¹Ôµ́ (= ¹Íµ)), 67, 262.

Pixel images, 200; see also Grid patterns.
Plaisted, David Alan, 102.
Planning, 132.
Playing cards, 114, 180, 282.
Points, abstracted, 106.
Poison cards, 282.
Poisson, Siméon Denis, probability, 225.
Polarities, 3, 67, 76, 207, 237.
Pólya, György (= George), theorem, 284.
Polynomials in trace theory, 85.
Population in Life, 19.
Portfolio solvers, 133.
Posets, see Partial orderings.
Positive autarkies, 146.
Positive j-clauses, 157.
Positive literals, 2, 132, 146.
Posthoff, Christian, 275.
Postorder, 42–43, 214.
Postprocessor, 96.
Preclusion clauses, 99, 171, 186.
Preorder, 42–43, 214.
Preprocessing of clauses, 95–97, 103,

166–168, 182, 268, 272, 278.
Preselection phase of lookahead, 40–42, 147.
Prestwich, Steven David, 264.
Primary variables, 104, 105.
Prime clauses, 174, 270, 273.
Prime implicants, 281.
Pringsheim, Alfred Israel, 88, 164.
Prins, Jan Fokko, 267.
Probabilistic method, 81.
Probability of satisfiability, 47–54.
prod (m, n), 12–14, 114, 137.
Production rules, 175.
Profile of a search tree, 151.
Progress, display of, 30, 145, 155.
Progress saving, 67, see Phase saving.
Projection of a path, 184.
Projective plane, 274.

Propagation, kth order, 175–176, 273.
Propagation completeness (UC1), 176.
Proper ancestors, 164.
Proto truth, 37, 42.
Prover–Delayer game, 55–56, 152–153.
PSATO solver, 159.
Pseudo-Boolean constraints, see Threshold

functions.
PT (proto truth), 37, 42.
Pudlák, Pavel, 55.
Puget, Jean-François, 113.
Purdom, Paul Walton, Jr., 30, 32,

131, 151, 226.
Pure cycles, 140.
Pure literals, 29, 31, 32, 34, 44, 60, 130,

135, 146, 152, 208, 215, 227, 256,
259, 268, 269, 275.

Purging unhelpful clauses, 68, 71–75, 124,
132, 157, 158, 168, 182, 184, 235.

threshold for, 74, 125, 127.
Putnam, Hilary, 9, 32, 130, 298.
Pyramids in trace theory, 87, 162.

q.s.: quite surely, 149, 153, 169.
QDD: A quasi-BDD, 188.
Quad-free matrices, 106–107, 113,

176–177, 274, 284.
Quantified formulas, 60, 154.
Queen graphs, 25, 99–100, 114–115,

120, 171, 180, 181.
Quenchable graphs, 179–180, 281.
Quick, Jonathan Horatio, 181.
Quilt patterns, 198.
Quimper, Claude-Guy, 272.
Quine, Willard Van Orman, 129, 130.

R(G) (Local Lemma bounds), 82, 87–90,
160, 163–165.

Radio colorings, 136.
Radix-d representation, 173.
Rado, Richard, 191.
Ramakrishnan, Kajamalai Gopalaswamy, 16.
raman graphs, 231.
Ramani, Arathi (Bmg� ���), 112,

281, 284.
Ramanujan Iyengar, Srinivasa (ÿ��W�

�W�WÈ{h I�axWm), graphs, 154;
see also raman graphs.

Ramos, Antonio, 75.
Ramsey, Frank Plumpton, theorem, 81.
rand , 39–40, 46, 50, 115, 147, 182.
Random bits, biased, 12, 241.
Random choices, 12.
Random decision variables, 125–127,

155, 286.
Random graphs, 81.
Random permutations, 233.

September 23, 2015

306 INDEX AND GLOSSARY

Random satisfiability problems, 47–54,
91, 151.

2SAT, 51–54, 149.
3SAT, 39–40, 46–51, 59–60, 80, 93–94,

147–149, 153, 242.
kSAT, 49–51, 146, 148.

Random walks, 77–81, 125, 243.
Random words, 149.
Randomized methods, 77, 129, 182, 210.
RANGE scores, 74, 125–127, 158, 239.
RAT, see Resolution certifiable clauses.
Rauzy, Antoine Bertrand, 131, 215.
Reachability in a graph, 169.
Ready list, 32.
Real roots of polynomials, 163, 249.
Real truth, 37–39.
Reasons, 62, 72, 157, 165, 233.
Rebooting, 22.
Reckhow, Robert Allen, 61.
Recurrence relations, 151, 177, 189, 215, 243.
Recursive procedures, 27, 130, 172, 186, 233.
Recycling of clauses, 66, 124.
Reduction of clauses, 27, 143; see also

Simplification of clauses.
Redundant clauses, 257.
Redundant literals, 65, 155–156, 232, 234.
Redundant representations, 171.
Reed, Bruce Alan, 52.
Reflected ternary code, 290.
Reflection symmetries, 112, 138, 156.
Refutation chains, 57, 227.
Refutation trees, 152.
Refutations, 54–60, 70, 110, 152; see also

Certificates of unsatisfiability.
Regular expressions, 174–175.
Regular resolution, 55, 152, 231.
Reinforcement messages, 91–93.
Reliability polynomials, 83.
Reluctant doubling, 77, 80–81, 159–160.
Reluctant Fibonacci sequence, 160.
Renamed Horn clauses, 176, 263.
Repeated clauses, 49.
Replacement principle, 96.
Representation of Boolean functions, 104,

see Encoding into clauses.
Representing three states with two bits, 179.
Rescaled activity scores, 67.
Resende, see Guilherme De Carvalho

Resende.
Resizing of data structures, 210.
Resolution certifiable clauses, 261.
Resolution chains, 57–59, 152, 153, 227.
Resolution of clauses, 54–65, 70, 101, 129,

130, 144, 167, 185, 215, 224, 256.
implementation of, 167.

Resolution refutations, 54–60, 70, 110, 152;
see also Certificates of unsatisfiability.

extended, 60, 71, 133, 154, 168, 215.
regular, 55, 152, 231.

treelike, 55–56, 152–153.
Resolvable clauses, 164.
Resolvent (C′ ⋄ C ′′), 54, 130, 152.
Restarting, 80–81, 95, 125, 132.

and flushing literals, 68, 75–77, 124, 132,
157, 158, 169, 234, 246.

Restricted growth strings, 179.
Restricted pigeonhole principle, 58.
Reusing the trail, 75.
Reverse unit propagation, 71.
Revolving door Gray code, 282.
Reynaud, Gérard, 226.
Richards, Keith, 1.
Rickard, John, 290.
Right division of traces, 85, 161.
Right factor of a trace, 161.
Riis, Søren Møller, 110.
Ripoff, Robert Iosifovich (Ripov, Robert

Iosifoviq), 7.
Rivest, Ronald Linn, clauses, 4, 55,

70, 134, 144, 182.
Roberts, Fred Stephen, 136.
Robertson, Aaron Jon, 185.
Robinson, Gilbert de Beauregard, 275.
Robinson, John Alan, 59, 96, 227.
Rodŕıguez Carbonell, Enric, 267.
Rokicki, Tomas Gerhard, 200.
Rooij, Iris van, 207.
Rook paths, 206.
Rookwise connected cells, 170.
Ross, Kenneth Andrew, 282.
Rotational symmetry, 138, 202, 275.
Rotors in Life, 138.
Roussel, Olivier Michel Joseph, 132, 272.
Routing, disjoint, 170.
Row sums, 151.
Roy, Amitabha (aimt;& r;Y), 113.
RT (real truth), 37–39, 43.
Ruler doubling, 160.
Ruler of Fibonaccis, 246.
Running times, 89–90.

comparison of, 34–35, 39, 69, 97–100,
105–107, 110, 112, 118–128, 182, 184,
218, 237, 264, 281, 290.

mean versus median, 120.
worst case, 144, 146, 154.

Runs of 1s, 26, 143, 175.

s-chains, 52–53, 149.
s-snares, 53, 149.
S1(y1, . . . , yp), 6.
Sk(m, n), 50–54.
Sk,n, 49–51, 148, 149.
S≤r(x1, . . . , xn) and S≥r(x1, . . . , xn), 8,

see Cardinality constraints.
Saddle point method, 226.
Sahni, Sartaj Kumar (srtAj k� mAr

sAhnF), 268.
Säıs, Lakhdar (ÓayÓ laØ�ar, �Ún�

Ǳ �¿), 236, 289.

September 23, 2015

INDEX AND GLOSSARY 307

Sakallah, Karem Ahmad (?m¶n� �Ì�

Ê�n»), 112, 132, 281, 284.

Salhi, Yakoub (Þ�¿n� oØ¸¬Ú), 289.

Sampling with and without replacement,
49–50, 132, 226.

Samson, Edward Walter, 60, 130.
SAT: The satisfiability problem, 3.
SAT solvers, 1, 131–133.
SATexamples.tgz, 118.
Satisfiable formulas, 1.

variability in performance, 35, 120–121,
128, 287.

Satisfiability, 1–184.
history, 32, 59–60, 105, 129–133.
thresholds for, 50–54, 91, 148–149, 221.

Satisfiability-preserving transformations,
107–113.

Satisfying assignments, 1, 30, 143–144,
166, 214, 219.

SATzilla solver, 132–133.
Schaefer, Thomas Jerome, 289.
Schensted, Craige Eugene (= Ea Ea), 275.
Schlipf, John Stewart, 274.
Schmitt, John Roger, 285.
Schoenfield, Jon Ellis, 192.
Schöning, Uwe, 78.
Schrag, Robert Carl, 132.
Schroeppel, Richard Crabtree, 197.
Schwarzkopf, Bernd, 282.
Scott, Alexander David, 224, 251, 252.
Scott, Allan Edward Jolicoeur, 207.
Scott, Sidney Harbron, 191.
Scoville, Richard Arthur, 162.
Search trees, 28–29, 32–34, 124, 152.

expected size, 151–152.
optimum, 144.

Second moment principle, 54, 221, 222.
Seitz, Simo Sakari, 80.
Self-subsumption, 96, 167, 168, 257.
Selman, Bart, 50, 79, 132.
Semimodular lattices, 255–256.
Sentinel values, 259.
Sequential consistency, 24.
Sequential lists, 36–37, 144.
Sequents, 59.
Serial correlation coefficients, 143.
Set partitions, 220.
SGB, see Stanford GraphBase.
Shadows of paths, 184.
Shandy, Tristram, iii.
Sharp thresholds, 51–52, 149.
Shearer, James Bergheim, 82, 87, 160.
Sheeran, Mary, 203.
Shlyakhter, Ilya Alexander (Xl�hter,

Il~� Aleksandroviq), 284.
Shmoys, David Bernard, 267.
Shortest paths, 262.
Shortz, William Frederic, v.

SIAM: The Society for Industrial and
Applied Mathematics, 204.

Sideways sum (νx): Sum of binary digits,
114, 143, 179, 195, 279.

second order (ν(2)x), 143.
Sifting, 219, 220.
Siftup in a heap, 234.
Signature of a clause, 72, 158.
Signature of a literal, 258.
Signed mappings, 180–181.
Signed permutations, 4, 111, 178.

involutions, 112–113, 180, 277–278.
Silva, see Marques da Silva.
Silver, Stephen Andrew, 138, 200.
Simmons, Gustavus James, 192.
Simon, Laurent Dominique, 72, 132.
Simple cycles and paths, 23–24, 140.
simplex graphs, 136.
Simplification of clauses, 65, 155, 232; see

also Preprocessing of clauses.
Sims, Charles Coffin, tables, 283.
Simultaneous read/write, 141.
Simultaneous write/write, 141.
Sinclair, Alistair, 80, 159, 256.
Singh, Satnam, 203.
Single lookahead unit resolution, 105, 176.
Single-stuck-at faults, 10–14, 114, 136–137.
Sink: A vertex with no successor, 87, 214.

components, 108–110.
Sinz, Carsten Michael, v, 8, 117, 118,

135, 174, 189, 280.
Skip Two solitaire, 282.
Slack, in trace theory, 88, 251.
Slisenko (= Slissenko), Anatol Olesievitch

(Slisenko, Anatol~ Oles~eviq), 59.
SLS: Stochastic local search, 77.
SLUR algorithm, 105, 176.
Sly, Allan Murray, 51.
Smile, 207.
Smith, Barbara Mary, 283.
Snake dance, 138.
Snakes, 52–54, 149.
Snares, 52–54, 149.
Snark graphs, 69, 147, 153, 157.
Snevily, Hunter Saint Clair, 5.
Socrates, son of Sophroniscus of

Alopece (Swkr�th Swfrwn�skou
>Alwpek¨jen), 129.

Soft clauses, 168.
Sokal, Alan David, 251, 252.
Solitaire games, 180, 282.
Solutions, number of, 48, 219.
Somenzi, Fabio, 236.
Sörensson, Niklas Kristofer, v, 67,

155, 203, 268.
Sorting networks, 115, 137, 203, 263, 266.
Source: A vertex with no predecessor,

87, 252.
Spaceships in Life, 139, 201.

September 23, 2015

308 INDEX AND GLOSSARY

Spanning trees, 281, 290.
Sparse encoding, see Direct encoding.
Speckenmeyer, Ewald, 131, 215.
Spence, Ivor Thomas Arthur, 290.
Spencer, Joel Harold, 81, 82, 254.
Spiral order, 206.
Stable Life configurations, 19, 197.
Stable partial assignments, 165–166.
Stacks, 37–39, 43.
Stacking the pieces, 84–85.
St̊almarck, Gunnar Martin Natanael, 56,

132, 153, 203, 232, 238.
Stamm-Wilbrandt, Hermann, 131.
STAMP(l), 258.
Stamping of data, 37–38, 64, 66, 145,

155, 211, 236, 258–260.
Standard deviation, 48, 240.
Stanford GraphBase, ii, 12, 13, 126,

179, 214, 231.
Stanford University, 282.
Stanley, Richard Peter, 275.
Starfish graphs, 249.
Starvation, 22–24, 115, 140, 141.
Statistical mechanics, 90.
Stators in Life, 138.
Stege, Ulrike, 207.
Stein, Clifford Seth, 267.
Steinbach, Heinz Bernd, 275.
Steiner, Jacob, tree packing, 264.

triple systems, 106, 274.
Sterne, Laurence, iii.
Stickel, Mark Edward, 132.
Sticking values, 67, see Phase saving.
Still Life, 19, 138, 200.
Stirling, James, approximation, 221, 240.

subset numbers, 149, 220, 226.
Stochastic local search, 77.
Stopping time, 48–50, 148.
Strahler, Arthur Newell, numbers, 152.
Strengthening a clause, 96, 156, 259–260.
Sťŕıbrná, Jitka, 224.
Strichman, Ofer (ONKIXHY XTER), 203.
Strictly distinct literals, 2–3, 52, 165.
Strings generalized to traces, 83.
Strong components: Strongly connected

components, 41–42, 52–53, 108,
131, 215, 221, 263.

Strong exponential time hypothesis, 183.
Strong product of graphs, 134.
Strongly balanced sequences, 179.
Stuck-at faults, single, 10–14, 114, 136–137.
Stützle, Thomas Günter, 125.
Subadditive law, 59.
Subcubes, 148.
Subforests, 42.
Subinterval constraints, 190.
Submatrices, 106–109, 177.
Subset sum problem, 268.
Substitution, 257.

Subsumption of clauses, 61, 96, 124, 152,
155, 156, 166–168, 181, 269.

implementation, 167, 259.
on-the-fly, 124, 156.

Subtraction, encoding of, 100.
Sudoku, 183, 225.
Summation by parts, 48.
Summers, Jason Edward, 200.
Sun, Nike (), 51.
Support clauses, 99, 114, 171.
Survey propagation, 51, 90–95, 165–166, 213.
Swaminathan, Ramasubramanian (= Ram)

Pattu (�W�Âj����h �eÅ

z�W��W�h), 274.
Swapping to the front, 211, 242.
Sweep of a matrix, 108–109, 177.
Swoop of a matrix problem, 109.
Syllogisms, 129.
Symeater in Life, 200.
Symmetric Boolean functions, 179, 207, 219,

270; see also Cardinality constraints.
S≤1, see At-most-one constraint.
S1, 6, 220.
S≥1, see At-least-one constraint.
Sr , 135, 179, 256.

Symmetric threshold functions, see
Cardinality constraints.

Symmetrical clauses, 105–106, 156.
Symmetrical solutions, 138, 183, 274.
Symmetries of Boolean functions, 178.
Symmetry breaking, vii, 5, 105–114, 138,

176–181, 187, 188, 190–192, 238, 267,
281–283, 285, 288–290.

in graph coloring, 99–100, 114, 171,
179, 187.

Symmetry from asymmetry, 19, 201.
Synthesis of Boolean functions, 137,

178–179, 194.
Szabó, Tibor András, 224.
Szegedy, Márió, 90, 161, 255.
Szeider, Stefan Hans, 224, 284.
Szemerédi, Endre, 59.
Szpankowski, Wojciech, 225.

t-snakes, 53, 54, 149.
Tµ: teramems = trillions of memory

accesses, 110, 121, 126, 265, 281.
Tableaux, 275.
Taga, Akiko (), 264, 267.
Tajima, Hiroshi (), 100.
Tak, Peter van der, 75.
Takaki, Kazuya (), 224.
Tamura, Naoyuki (), 100, 171,

264, 267, 268.
“Take account,” 37, 43, 45–46, 217, 235.
Tanjo, Tomoya (), 268.
TAOCP: The Art of Computer

Programming, problem, 115, 169.
Tape records, 32.
Tardos, Gábor, 82, 224, 254.

September 23, 2015

INDEX AND GLOSSARY 309

Tarjan, Robert Endre, 41, 42, 214, 217.
Tarnished wires, 13, 193.
Tatami tilings, 115, 143.
TAUT: The tautology problem, 3, 129, 130.
Tautological clause (℘), 3, 58, 60, 152,

180, 215, 226–228, 258.
Tensors, 151.
Teramem (Tµ): One trillion memory

accesses, 40, 106, 107, 110, 217,
218, 286.

Ternary clauses, 3–6, 36, 118, 131, 183;
see also 3SAT.

Ternary numbers, 100, 141, 179.
Ternary operations, 9, 136.
Territory sets, 84, 161, 163.
Test cases, 113–124.

capsule summaries, 114–115.
Test patterns, see Fault testing.
Tetris, 84.
Theobald, Gavin Alexander, 190.
Theory and practice, 109.
Three-coloring problems, see Flower snarks.
Threshold functions, 100–101, 175.
Threshold of satisfiability, 50–54, 91,

148–149, 221.
Threshold parameter Θ, 126, 213, 286.
Thurley, Marc, 262.
Tie-breakers, 74, 239.
Tiling a floor, 115, 138, 143, 199.
Time stamps, see Stamping of data.
Timeouts, 120.
TIMP tables, 36–40, 43, 45, 144–145.
To-do stack, 259.
Tomographically balanced matrices, 141.
Tomography, 24–26, 115, 141–143, 167, 285.
Top-down algorithms, 252.
Topological sorting, 85, 248.
Toruses, 134, 138, 200.
Touched clauses, 44.
Touched variables, 259.
Tovey, Craig Aaron, 150, 223.
Tower of Babel solitaire, 282.
Tower of London solitaire, 282.
Trace of a matrix: The sum of its diagonal

elements, 108, 218.
Traces (generalized strings), 83–90,

161–162, 252, 254.
Tradeoffs, 125–126.
Trail (a basic data structure for Algorithm

C), 62–65, 68, 72, 124, 166, 236, 238.
reusing, 75.

Training sets, 15–16, 115, 125–127, 133,
137, 182, 286.

Transitions between states, 16–24,
175, 202, 218.

Transitive law, 56, 228.
Tree-based lookahead, see Lookahead forest.
Tree function, 230.
Tree-ordered graphs, 163–164.

Treelike resolution, 55–56, 152–153.
Treengeling solver, 121.
Triangle-free graphs, 167.
Triangles (3-cliques), 167, 238, 264.
Triangular grids, 136.
Tribonacci numbers, 216.
Triggers, 46, 126.
Trivalent graphs, 147, 154, 231.
Trivial clauses, 124–127, 156, 236, 239.
Trivially satisfiable clauses, 3.
Truemper, Klaus, 273.
Truszczyński, Miros law (= Mirek)

Janusz, 216.
Truth, degrees of, 37–39, 42–43, 45–46, 216.
Truth tables, 129–130, 179, 194, 220, 277.
Tseytin, Gregory Samuelovich (Ce�tin,

Grigori� Camuiloviq), 9, 59–60, 71,
133, 152, 154, 168, 178, 215, 231, 290.

encodings, 9, 17, 101–102, 136, 173, 195.
encodings, half of, 192, 268.

Tsimelzon, Mark Boris, 134.
Tuning of parameters, 124–128, 133, 182.
Turán, Pál (= Paul), 190.
Turton, William Harry, 180.
Two-level circuit minimization, 257.

UCk, 176, 273.
UIP: Unique implication point, 132, 233.
Unary clauses, see Unit clauses.
Unary representation (= order encoding),

98–101, 114, 120, 170–173, 190,
268, 281.

Undoing, 28–31, 37–39, 95–96, 143–145,
208, 212, 217–218.

Uniform distribution, 159.
Unique implication points, 132, 233.
Uniquely satisfiable clauses, 48, 219.
Unit clauses (= unary clauses), 3, 6, 9, 13,

21, 23, 30, 31, 33, 35, 36, 66, 70, 130,
144, 151, 157, 192, 205, 210, 238, 290.

Unit conditioning, 27, 96, 166, 259, 261.
Unit propagation (⊢1), 31–34, 36, 62, 65,

68, 70–71, 93, 97–99, 103–104, 132, 155,
157, 165, 171, 174, 236, 270, 272, 276.

generalized to ⊢k, 175.
Universality of Life, 17.
Unnecessary branches, 55, 227.
Unsatisfiable core, 185.
Unsatisfiable formulas, 1.

implications of, 104, 175–176.
Unsolvable problems, 130.
Urns and balls, 221.
Urquhart, Alisdair Ian Fenton, 231.

VAL array, in Algorithm C, 66–68, 73–76,
233–236, 238, 240.

in Algorithm L, 37–39, 43, 216.
Valid partial assignments, 165–166.
Van de Graaff, Robert Jemison, 198.
van der Tak, Peter, 75.

September 23, 2015

310 INDEX AND GLOSSARY

van der Waerden, Bartel Leendert, 4.
numbers, 5, seeW (k0, . . . , kb−1).

van Deventer, Mattijs Oskar, 290.
Van Gelder, Allen, 71, 233, 237, 263.
van Maaren, Hans, 37, 46.
van Rooij, Iris, 207.
van Zwieten, Joris Edward, 37.
VAR array, in Algorithm L, 38, 182, 211.
Variability in performance on satisfiable

problems, 35, 120–121, 128, 287.
on unsatisfiable problems, 69, 121,

128, 287.
Variable elimination, 96–97, 101, 102,

129, 154–155, 166–168, 173, 174,
256–257, 259–260, 270, 272.

Variable interaction graphs, 116–118, 182.
Variables, 2.

introducing new, 3, 6, 8, 9, 13, 60;
see Auxiliary variables, Extended
resolution.

Variance, 49, 158, 164, 240, 243.
Vassilevska Williams, Virginia Panayotova

(Vasilevska, Virgini� Pana�otova),
167.

Vaughan, Theresa Phillips, 162.
Verification, 16, 157; see also Certificates

of unsatisfiability.
Viennot, Gérard Michel François Xavier,

83, 84, 87, 162, 249.
Vinci, Leonardo di ser Piero da, 7.
Virtual unswapping, 211.
Visualizations, 116–118.
Vitushinskiy, Pavel Viktorovich

(Vituxinski�, Pavel Viktoroviq),
282.

Vries, Sven de, 206.
VSIDS, 132.

W (k0, . . . , kb−1) (van der Waerden
numbers), 4–5, 127, 133.

waerden (j, k;n), 4–5, 32, 35, 37, 39–42,
45, 63–66, 69, 71–75, 97, 112, 115,
121, 127–129, 133, 142–145, 156, 157,
166, 167, 181, 210, 236, 256.

Waerden, Bartel Leendert van der, 4.
numbers, 5, seeW (k0, . . . , kb−1).

Wagstaff, Samuel Standfield, Jr., 190.
Wainwright, Robert Thomas, 138,

166, 197, 198.
Walks in a graph, 260.
WalkSAT algorithm, 79–81, 93–94, 118, 125,

159–160, 182, 191, 265, 281.
Walsh, Toby, 272.
Warmup runs, 125, 239.
Warners, Johannes (= Joost) Pieter, 268.
Warrington, Gregory Saunders, 285.
Watched literals, 30–34, 65–66, 68, 132,

144, 155, 233–236.

Weakly forcing, 174.
Websites, ii, iii, v, 118.
Weighted permutations, 163.
Wein, Joel Martin, 267.
Weismantel, Robert, 264.
Welzl, Emmerich Oskar Roman (=

Emo), 158.
Wermuth, Udo Wilhelm Emil, v.
Wetzler, Nathan David, 71, 239.
Wheel graphs (Wn), 191.
Whittlesey, Marshall Andrew, 192.
Width of a resolution chain, 57–59, 153–154.
Wieringa, Siert, 129.
Wigderson, Avi (OEFXCBIE IA�), 57–58,

153, 231.
Wilde, Boris de, 213.
Williams, Richard Ryan, v, 270.
Williams, Virginia Panayotova Vassilevska

(Virgini� Pana�otova Vasilevska),
167.

Wilson, David Bruce, 54, 149, 221.
Windfalls, 43, 147, 182, 217.
Winkler, Peter Mann, 290.
Winn, John Arthur, Jr., 275.
Wires of a circuit, 10–14, 136.
Wobble function, 51, 151.
Worst case, 144, 146, 154, 239, 244.
Write buffers, 24.

Xeon computer, 289.
XOR operation, 9, 10, 13, 136.

bitwise (x⊕ y), 28, 137, 196, 208, 220, 241.
Xray-like projections, 24.
Xu, Ke (), 149.
Xu, Lin (), 133.
Xu, Yixin (), 255.

Yaroslavtsev, Grigory Nikolaevich
(�roslavev, Grigori� Nikolaeviq),
280.

Yeh, Roger Kwan-Ching (), 192.
Yuster, Raphael (XHQEI L�TX), 260.

Z(m,n) (Zarankewicz numbers),
106–107, 176.

Zanette, Arrigo, 206.
Zarankiewicz, Kazimierz, 106.

quad-free problem, 106–107, 113, 176.
Závodný, Jakub, 196.
Zecchina, Riccardo, 51, 90, 91, 256.
Zhang, Hantao (), 129, 132.
Zhang, Lintao (), 132.
Zhao, Ying (), 132.
Zhu, Yunshan (), 132.
ZSEV (zero or set if even), 242.
Zuckerman, David Isaac, 80, 159.
Zwick, Uri (WIEEV IXE�), 260.
Zwieten, Joris Edward van, 37.

