

Physical Response to Collision between
Deformable Objects

by
Fabiana Benedetti

November 2002

Supervisors: Anderson Maciel and Sofiane Sarni
Director: Prof. Daniel Thalmann

Postgraduate Course on Graphics Visualization and Communication

Virtual Reality Lab (VRLab)
Institute of Computing and Multimedia Systems (ISIM)

School of Computer and Communication Sciences (I&C)
Swiss Federal Institute of Technology (EPFL)

« Voyez-vous dans la vie,
il n’y a pas de solutions.
Il y a des forces en marche :
il faut les créer
et les solutions les suivent. »

Antoine de Saint-Exupéry

Contents

List of Figures.. 7

List of Tables ... 9

Abstract.. 11

Acknowledgements ... 13

1 Introduction... 15

1.1 Context .. 15
1.2 Project Goals .. 15
1.3 Organization ... 15
1.4 Notation and Units.. 16

2 State of the Art in Collision/Contact Avoidance 17

2.1 Introduction... 17
2.2 Physical Problem.. 17

2.2.1 Contact Forces .. 19
2.2.2 Impulse.. 21

2.3 Existent Methods to Avoid Interpenetration ... 22
2.3.1 Penalty Method ... 22
2.3.2 Constraint-based Method .. 23
2.3.3 Impulse-based Method.. 26

2.4 Comparison... 29
2.5 Conclusion .. 31

3 Contribution .. 33

3.1 Introduction... 33
3.2 Deformation Model... 33
3.3 Surface Generation ... 34
3.4 Collision Detection ... 37

3.4.1 Spheres based Collision Detection.. 37
3.4.2 Mesh based Collision Detection ... 38

3.5 The Non-Penetration Model ... 38
3.5.1 Penetration Depth Estimation ... 39
3.5.2 Penalty Force .. 41

4 Demo Application.. 43

4.1 Introduction... 43
4.2 Description.. 43

4.2.1 Architecture... 43
4.2.2 Interface .. 44

4.3 Experiments... 48
4.3.1 Scene without Implicit Surface... 48
4.3.2 Scene with Implicit Surface .. 52
4.3.3 Performance .. 57

5 Conclusion ... 59

Bibliography .. 61

Appendix A: Newton’s Law of Motion ... 65

Appendix B: V-Collide User’s Manual ... 67

Appendix C: RAPID User’s Manual... 71

Appendix D: Example of a XML File ... 75

Appendix E: Scene of the performance test ... 79

List of Figures

Figure 2.1: Vector sum ... 18
Figure 2.2: Normal force.. 19
Figure 2.3: Static friction force .. 20
Figure 2.4: Kinetic friction force.. 20
Figure 2.5: Spring force [Physics 01] .. 21
Figure 2.6: (a) C(p(t)) = 0. (b) C(p(t)) ≥ 0 [Baraff 93]... 24
Figure 2.7: Collision between two objects [Mirtich 94] .. 27
Figure 2.8: Phases of a collision [Mirtich 94] ... 28
Figure 2.9: A box resting on an inclined plane .. 29
Figure 2.10: A suitable situation for constraint-based method.. 31
Figure 2.11: A suitable situation for impulse-based method.. 31
Figure 3.1: Cube – an aggregate of molecules... 33
Figure 3.2: Connections between molecules .. 33
Figure 3.3: Objects with surface .. 34
Figure 3.4: Mesh resolution ... 35
Figure 3.5: Volume and Resolution.. 36
Figure 3.6: Potential field (mesh resolution = 0.005)... 36
Figure 3.7: Radius and Potential field ... 37
Figure 3.8: Spheres colliding ... 38
Figure 3.9: Springs inserted between the objects... 39
Figure 3.10: Collision geometry... 40
Figure 3.11: Face fj .. 40
Figure 3.12: Algorithm to calculate non-penetration force to mesh collision 41
Figure 3.13: Algorithm to calculate non-penetration force to sphere-to-sphere collision
... 42
Figure 4.1: Application architecture .. 43
Figure 4.2: Example of the main window... 45
Figure 4.3: Scene loading... 45
Figure 4.4: Virtual objects editing.. 46
Figure 4.5: Spheres-based collision detection.. 46
Figure 4.6: Mesh-based collision detection.. 46
Figure 4.7: Scene visualization... 46
Figure 4.8: Show: (a) Spheres (b) Connexions (c) Mesh (d) Mesh and Spheres 47
Figure 4.9: Iterations per second ... 47
Figure 4.10: Simulation.. 47
Figure 4.11: Box ... 48
Figure 4.12: Ground... 48
Figure 4.13: Scene without implicit surface - Reference key-frames 49
Figure 4.14: Scene without implicit surface - Collision force evolution.......................... 50
Figure 4.15: Scene without implicit surface – y-coordinate position............................... 50
Figure 4.16: Collision force evolution varying the density of the box object (spheres
collision) ... 51

Figure 4.17: Evolution of the y-coordinate position varying the density of the box object
(spheres collision)... 51
Figure 4.18: Collision force evolution varying the elasticity of the box object (spheres
collision) ... 52
Figure 4.19: Evolution of the y-coordinate position varying the elasticity of the box
object (spheres collision) ... 52
Figure 4.20: Scene with implicit surface - Reference key-frames 53
Figure 4.21: Scene with implicit surface - Collision force evolution 54
Figure 4.22: Scene with implicit surface - y-coordinate position 54
Figure 4.23: Collision force evolution varying the density of the box object (mesh
collision) ... 55
Figure 4.24: Evolution of the y-coordinate position varying the elasticity of the box
object (mesh collision) ... 55
Figure 4.25: Collision force evolution varying the elasticity of the box object (mesh
collision) ... 56
Figure 4.26: Evolution of the y-coordinate position varying the elasticity of the box
object (mesh collision) ... 56
Figure 4.27: Performance test - objects of the scene ... 57
Figure 4.28: Performance .. 58
Figure E.1: Scene of the performance test.. 79

List of Tables

Table 2.1: Comparative analysis of the different methods ... 30
Table 4.1: Simulation Parameters .. 57
Table 4.2: Computation time .. 58
Table B.1: C++ Command reference - #include <VCollide.h> 67
Table B.2: C command reference - #include <VCol.h>.. 68

Abstract

When several objects move in a virtual environment, there is the possibility that
they interpenetrate. This is an undesired state, because objects do not interpenetrate in the
real world. In this manner, a computerized physical simulation must impose a non-
penetration constraint so that two objects do not share the same space. In order to do that,
collisions between objects should be detected, collision response should be evaluated,
and this response should in some way affect the simulation.

This work deals with the collision/contact avoidance. It describes the most widely
used methods for preventing interpenetration between contacting virtual objects.
Collisions are detected adapting existent libraries, and a penalty method is used to
calculate response forces between deformable objects.

A collection of test situations is presented, where the parameters defining the
behavior of collision detection and response methods vary and results are compared.

Keywords: Collision detection, collision response, deformable objects

Acknowledgements

I would like to thank my boyfriend for this love, support and guidance at the more
difficult moments. Many thanks to my mother and brother for their support and love.

This work could not have been completed without the encouragement, support,
enthusiasm and expert guidance of my supervisors Anderson Maciel and Sofiane Sarni. I
also would like to thank Professor Thalmann for having allowed me to realize my
diploma project at VRLab. Thanks to VRLab’s people for their cooperation and good
will.

Many thanks to my friends in Brazil for all those e-mails of encouragement and
enthusiasm (Valeu!!!). Special thanks to my new friends Jelena Debljovic and Belkiss
Chattaoui. I also would like to thank my colleagues of the postgraduate course on
Graphics Visualization and Communication, Daniel Gutierrez, Lionel Egger, Mich
Gaudry, Meeteo Ashvin, Sébastien Hugues and Razakanirina Mahaleo for their help and
support.

 15

1 Introduction

1.1 Context

The NCCR-COME1, more specifically the Project 10: A generalized approach
towards functional modeling of human articulations [COME 02] aims to provide
medical applications to aid on diagnosis of joint disease and planning of surgical
interventions. Such applications will be based on a biomechanical model of the tissues
present in the joint and a framework for visualization and interaction with this model,
both being developed in VRLab. Such model and framework rely on the mechanical and
physical properties of biomaterials, and then they depend of the force exchange between
the different structures of joints’ anatomy to provide correct motion and deformation.
Treating these contact forces is the problem of the work presented here.

1.2 Project Goals

According to the situation described above, the correct calculation of forces
produced due to contact between different joint elements is essential to the faithfulness of
the results.

Thus, the general objective of this diploma project is to create a set of the classes
that will generate a 3D surface from the deformation model, detect collisions between the
objects, and provide the deformation model with the new contact forces derived from
collisions. Such library will be integrated in the framework developed at VRLab, and a
test application to evaluate the results will be developed. In this application, a virtual
world is specified and simulated, in which all defined objects move and deform according
to physical laws. Besides, the user will be allowed to change material properties of the
objects in order to verify how objects behave.

1.3 Organization

The plan of this document is presented as follows:

- Chapter 2 – State of the Art in the Collision/Contact Avoidance. Within this chapter
we review the main previous works for the problem of force calculation to prevent
interpenetration of objects.

- Chapter 3 – Contribution. This chapter describes the theoretical approach used for the
force calculation between colliding objects.

1 National Center of Competence in Research – Computer Aided and Image Guided Medical Interventions

Introduction

 16

- Chapter 4 – Demo Application. The present chapter describes a software environment
where the method to compute non-penetration force is implemented. Besides, we
present the main results of this work.

- Chapter 5 – Conclusion. We overview the contribution of this work.

1.4 Notation and Units

Throughout this document, we use italic symbols with an arrow on top for vector
quantities, such as, vv , av and F

v
; unit vectors have a caret on top, such as n̂ ; and other

vectors are denoted by small boldface letters such as v. The three basis vectors of a
coordinate frame are denoted by x, y and z. Scalars are denoted by small italic letters
such as s. Matrices are denoted by capital letters such as M and points are denoted by
capital boldface letters such as P.

In this document SI2 units are used, e.g., SI unit for force magnitude is Newton
(N).

2 International System or SI (abbreviation for its French name, Système International) of units used by
scientists and engineers around the world.

 17

2 State of the Art in Collision/Contact Avoidance

2.1 Introduction

In the real world, bodies are controlled by nature’s laws that automatically avoid
them to interpenetrate. They are made of matter and matter is impenetrable. Just
remember that elementary law of Physics that says that two bodies cannot occupy the
same space at the same time. In Computer Graphics’ virtual environments, however,
bodies are not made of matter and consequently are not automatically subjected to
nature’s laws. It means that they can pass right through each other unless we create
mechanisms to impose the same nature’s constraints.

In virtual worlds as in the real world, interactions between objects and other
environmental effects are mediated by forces applied onto them. In particular, if we wish
to influence the behavior of objects, we must do so through application of forces. Thus, a
computerized physical simulation must enforce non-penetration by calculating
appropriate forces between contacting objects and then use these forces to derive their
actual motion.

Over the last two decades, a number of approaches to this problem have appeared
in the Computer Graphics literature. Through this chapter, after a description of forces
and their types from the physical point of view, we present the currently most widely
used approaches for preventing interpenetration between contacting virtual objects.

2.2 Physical Problem

When we throw a ball straight up in the air, how high does it go? Why the apple
falls from the tree? Why when we press the trigger of a gun, the projectile is launched in
high speed? The answers to these and similar question take into the subject of dynamics,
the relationship of motion to the forces that cause it.

Force is a quantitative measure of the interaction between two bodies or between
a body and its environment. From daily life experience, we can point four properties of
force [Young 96][Nave 00]:

1. Force is a vector quantity, since a push or pull have both magnitude and direction.
2. Forces occur in pairs. If object A exerts a force on object B, then B also exerts a

force on A (action-reaction).
3. A force can cause an object to accelerate. For example, if we kick a football, the

ball velocity changes.
4. A force can deform an object and the force exerted on an object is the result of

interaction between this object and some other object.

To fully describe the force acting on an object, we must describe the direction in

which it acts, as well as its magnitude, indicating “how much” or “how hard” the force

State of the Art in Collision/Contact Avoidance

 18

pushes or pulls. The SI unit for magnitude of force is Newton, abbreviated by an “N”,
which is defined and may be seen from Newton’s second law (see Appendix A) by

2*11
s
m

KgNewton = (2.1)

The several forces acting on a body combine by vector addition, that is, two
forces 1F

r
and 2F

r
acting simultaneously at a point P of a body have the same effect on the

body’s motion as a single force R
v

 equal to the vector sum of 1F
r

 and 2F
r

(Figure 2.1) 3:

 F F R 21

rrr
+= (2.2)

Figure 2.1: Vector sum

The vector sum of all the forces acting on the body is called the net force on a
body. If the forces are labeled ,,, 321 FFF

rrr
and so on, we abbreviate the sum as

∑=+++= F
rrrrr

.... F F F R 321 (2.3)

We can describe a force F
r

in terms of its x- and y-components in the 2 space xF
r

and yF
r

. The component version of Eq. (2.3) is

∑∑ == yyxx FRFR , (2.4)

Once we have xR and yR , the magnitude and direction of the net force

∑= FR
rr

acting on the body is

22
yx RRR += (2.5)

The forces can have z-components in three-dimensional problems. In this case we
add the equation ∑= zz FR to Eqs. (2.4). Then, the magnitude of net force is

222
zyx RRRR ++= (2.6)

A force resulting from the direct contact of body with another body is called a
contact force. Examples are a stretched spring exerts forces on the bodies attached to
ends; the upward force exerted by a table on a book resting on it and the force on a bone

3Each force is represented by an arrow pointing in the direction the force is acting, and having a length
equal to the magnitude of the force. The head or the tail of this arrow is placed at the point where the force
is acting on the body.

1F
r

2F
r

R
v

State of the Art in Collision/Contact Avoidance

 19

by a contracting muscle. These forces viewed on an atomic scale result from the electrical
attractions and repulsions of the electrons and nuclei in the atoms of the materials [Young
96].

In contrast, gravitational forces, as well as magnetic and electric forces can be
exerted between objects that are not in contact. The gravitational force on a body is
referred to as its weight. This force pulls a body downward along the direction it will fall
if it is not supported. Thus, the force of gravity is always found by the equation:

 mg Fgrav = (2.7)

where g = 9.8 m/s2 (on Earth) and m = mass (in kg).

2.2.1 Contact Forces

As already mentioned, contact force is a type of force in which two interacting
objects are physically in contact with each other. Frictional and normal forces are both
contact forces. These and others contact forces are discussed below.

• Normal Force

When a body rests or slides on a surface, that surface must exert a contact force
on the body. This force can be represented in terms of a force perpendicular to the
interaction surface. We call this force perpendicular the normal force, denoted by nF

r
.

The normal force is equal and opposite of the weight of the body if it is sitting on
a horizontal surface as shown in Figure 2.2-a. But the normal force is not always equal to
the weight of the body as shown in Figure 2.2-b; it is the force pressing the surfaces
together [Young 96][Physics 01].

Figure 2.2: Normal force

• Frictional Force

A surface can always supply a normal force. However, a surface often also
supplies a friction force parallel to the plane.

The friction force is the force exerted by a surface as an object moves across it or
makes an effort to move across it [Young 96]. Suppose we push a box along the floor to
the right with an external force F

r
 as shown in Figure 2.3. We know the gravitational

force pulls down with a force gravF
r

, the weight of the box. Besides, the plane responds by

nF
r

gravF
v

g.mFn =
v

nF
r

gravF
v

θsinFg.mF Tn

vv
−=θ

TF
v

(a) (b)

State of the Art in Collision/Contact Avoidance

 20

exerting a normal force nF
r

 and the surface responds by exerting a parallel force sF
r

. This
is the force of static friction. The static friction force must be overcome to cause the
object to start moving, that is, when we first push the box it does not move, it is held in
place by this force of static friction.

Figure 2.3: Static friction force

If we increase the external force ,F
r

 the box starts to move to the right (Figure 2.4)
and a kinetic friction force, kF

r
, occurs that is opposite to the motion of the sliding box.

This force is less than the maximum value of the force of static friction, that is

 kF
r

 < sF
r

 (2.8)

Figure 2.4: Kinetic friction force

The sF
r

and kF
r

 are often directly proportional to the normal force. These forces
can be calculated using the equations:

ns s F F
vv

µ= (2.9)

nk k F F
vv

µ= (2.10)

where µs and µk are called the static and kinetic coefficient of friction, respectively. These
coefficients vary widely depending of the nature of the two surfaces and on the degree
with which they are pressed together. For example, metal on metal: µs = 0.10 and µk =
0.07; copper on glass: µs = 0.68 and µk = 0.53.

• Spring Force

The spring force is the force exerted by a compressed or stretched spring on any
object that is attached to it [Nave 00]. This force acts to restores the object, which
compresses or stretches a spring, to its rest or equilibrium position. The magnitude of the
spring force is given by

F
r

sF
r

nF
r

gravF
r

Motion

F
r

kF
r

nF
r

gravF
r

State of the Art in Collision/Contact Avoidance

 21

kx- Fspring =
v

 (2.11)

where k is a constant called force constant (or spring constant) of the spring, and x is
equilibrium position relative to the origin. That linear dependence of displacement upon
stretching force is called Hooke’s law. We can see in Figure 2.5 that the direction of the
spring force is opposite to the displacement of the end of the spring to the equilibrium
position.

Figure 2.5: Spring force [Physics 01]

2.2.2 Impulse

The impulse of the force is the product of force and the time interval [Young 96]:

∑ ∆= tFJ
rr

 (2.12)

where J
r

denote the impulse, ∑ F
r

is the constant net force and ∆t is time interval. An
impulse is a vector quantity, just like a force, but it has the units of momentum. The SI
unit of impulse is Newton•Second (Ns). So, the impulse exerted on an object depends
directly on both how much force is applied and for how long the force is applied [Nave
00].

However, when the forces are not constant, the impulse of the force is a vector
defined as the integral of the force during a time interval,

∫ ∑= 2

1

t

t
dtFJ

rr
 (general definition of impulse). (2.13)

State of the Art in Collision/Contact Avoidance

 22

2.3 Existent Methods to Avoid Interpenetration

When trying to avoid interpenetration we need to deal with two types of overlap:
colliding and resting contact [Baraff 98]. We call colliding contact the situation where
two objects are in contact at some point P and they have a velocity towards each other.
This contact requires an instantaneous change in velocity; whenever a collision occurs,
the state of an object undergoes a discontinuity in the velocity. In the other hand, we say
that objects are in resting contact whenever objects are resting on one another at some
point P. That is, they are touching but their relative contact velocity is zero. In this case,
we compute a resting contact force that prevents an object to accelerate.

A variety of approaches have been taken for computing contact reactions, each
with their own strengths and weaknesses. This section presents three widely used
approaches.

2.3.1 Penalty Method

The physical interpretation of the penalty method is a rubber band that attracts the
physical state to the subspace g(x)=0 4. The penalty method adds a quadratic energy term
that penalizes violations of constraints [Platt 88]. Thus, it converts a constrained
optimization problem

minimize f(x) such that g(x) = 0 (2.14)

to an unconstrained problem

minimize f(x) + kg(x)2 as k→ ∝ (2.15)

where deviation from the constraint is penalized; that is, in the new problem, satisfaction
on the constraint is encouraged, but not strictly enforced. In Eq. (2.15) kg(x)2 is called the
penalty function. The idea of the method is that

- as k grows larger, potential solutions for x must make g(x)2 smaller, to minimize Eq.
(2.15), and

- as k goes to infinity, the solution of Eq. (2.15) must satisfy g(x) = 0 while minimizing
f(x).

The method presents a theoretically firm basis, but, in practice, it is not a very
robust numerical method. This occurs because as k grows, Eq. (2.15) can become very
poorly conditioned and difficult to solve [Baraff 93].

Let us see how the penalty method can be applied to calculate collision and
contact forces. Suppose two objects A and B collide. The penalty method allows objects
in the simulation to penetrate each other. Upon penetration, a temporary spring is
attached between the contact points. This spring compresses over a very short time and
applies equal and opposite forces to each body so that they will separate. As objects
interpenetrate, the forces generated increase with the penetration distance.

4 g(x) is a scalar function of x which is zero when a constraint is met.

State of the Art in Collision/Contact Avoidance

 23

Thus, the penalty force can be written as

)))t(x(p)t(x(kf −−=
v

 (2.16)

Here, f is the force applied against each object, p(x(t)) denote the closest point on
the surface to x(t), and k is the spring constant which is a measure of the spring stiffness.

Often, there is friction or other dissipation in the spring [Barzel 92]. A damping5
term can be added to help to limit oscillations that springs induce in a model. Thus, the
force equation can be then written as:

||||
)vk)||(||k(f d0s x

x
xx vv

+−−= (2.17)

where x is the difference vector from the fixed point to the surface point, vv is the
velocity, x0 is the initial length of the spring and ks is the spring constant and kd is the
damping coefficient.

The penalty method has been employed in a vast number of simulations in
Computer Graphics and Robotics [Terzopoulos 87][Platt 88][Moore 88][McKenna
90][Joukhadar 98][Desbrun 99][Jansson 00] aiming to enforce non-interpenetration
constraints. Their applications include the simulation of deformable bodies, cloth, and
articulated rigid bodies. Moore and Wilhelms [Moore 88] pioneered the method by
introducing penalty forces to prevent bodies in resting contact from penetrating.

The main drawback of this method is finding penalty constants that are effective
for different objects in different environments. The choice of theses constants interacts
with the choice of the integration time step, because to keep penetration to a minimum,
the penalty constants need to be set as high as possible, but this imply large contact forces
and these contact forces demand small integration time steps. Consequently, it is
computationally expensive, with stiffer spring needing smaller time steps to solve the
resulting equations accurately.

Despite their limitations, the penalty method presents advantages as
computational simplicity, facility of incorporating static friction models, and, ability to
simulate a variety of surface characteristic.

2.3.2 Constraint-based Method

Constraints are used to describe the interactions between objects, which often
occur only through physical contact. Constraint-based method computes constraint forces
that are designed to cancel any external acceleration that would result in interpenetration.
This method results in simulations where interpenetration is completely eliminated.
However, it is required solving nonlinear systems of equations [Baraff 89].

Suppose that S is a surface in three-space (R3) and p is a particle. The particle’s
position p at time t is a function p(t) and an external force (t)F

v
 acts on the particle at time

t. Now suppose that the particle p is constrained to always remain on the surface S. Thus,
the constraint on the particle can be expressed by

C(p(t)) = 0 (2.18)

5 It is the decrease in amplitude of an action or response over time caused by dissipative force [Young 96].

State of the Art in Collision/Contact Avoidance

 24

where C is a scalar function that models the surface S implicitly. This is an example of an
equality-constrained problem (Figure 2.6-a).

However, the particle p can be constrained to lie either on or “above” S, then this
constraint can be written as

C(p(t)) ≥ 0 (2.19)

Here we have the example of an inequality-constrained dynamics problem (Figure
2.6-b).

Figure 2.6: (a) C(p(t)) = 0. (b) C(p(t)) ≥ 0 [Baraff 93]

Consider again that we introduce a constraint force (t)Fc

v
 into the inequality-

constrained problem. Since (t)Fc

v
 acts in a direction normal to the contact surface at the

contact point, we can write

(t)n̂f(t) (t)Fc =
r

 (2.20)

where)(ˆ tn is surface normal at the point p(t), f is an unknown scalar and must satisfy

f(t) >= 0. (2.21)

Constraint-based method can be used to solve the problem of resting contact, that
is, objects are in resting contact, but are not effectively colliding. For a single contact
point, the scalar f (Eq. 2.20) is easily computed and must satisfy the following
conditions:

1. f(t) ≥ 0, since the constraint force must be repulsive; that is, it can push bodies apart,
but never pull.

2. (t)Fc

v
 (Eq. 2.20) must be strong enough to prevent that the objects being pushed

towards each other.
3. When the objects begin to separate, 0(t)Fc =

v
. This condition is written as f(t)a = 0

which ensures that if a > 0, f(t) = 0. Here a denotes the acceleration.

As a and f are linearly related, we can write

a = cf(t) + d (2.22)

where c and d are variables of the system. Using Eq. (2.22) we can say that f must satisfy
the conditions

State of the Art in Collision/Contact Avoidance

 25

f ≥ 0, cf(t) + d ≥ 0 and f(t)(cf(t) + d) = 0. (2.23)

Now consider a system of frictionless bodies contacting at n different points. For
each contact point there will be some force (t)Fc

v
 normal to the surface at the contact

point. For that reason, it is necessary to calculate contact force magnitude, f(t), at each
contact point.

 Thus, for each contact point pi between two bodies we have a relative
acceleration ai and a contact force magnitude fi at time t. We will represent the collection
of all ai by the vector a, and the collection of all fi is a vector f, in this manner we can
write [Baraff 89]

a = Af + b (2.24)

where A represents the masses and contact geometries of the bodies and b represents the
external and inertial forces [Baraff 94]. The matrix A and the vector b are determined
from the known configuration of the system.

At each contact point the same conditions as in Eq. (2.23) must be satisfied,
yielding the system

f ≥ 0, a ≥ 0 and fiai = 0 for 1≤ i ≤ n. (2.25)

Therefore, using the Eq. (2.24) we can rewrite the conditions on fi as

f ≥ 0, a = Af + b ≥ 0 and f Ta = f T(Af + b). (2.26)

The Eq. (2.26) is known as a linear complementary problem (LCP). A detailed
explanation of LCP can be found in [Cottle 92]. Furthermore, Baraff salient that the
conditions described in Eq. (2.26) can be considered as a quadratic program (QP) that is,
a vector f that satisfy those conditions is a solution to the QP

≥
≥+

+
0f

0bAf
tosubject)bAf(fmin T

f
 [Baraff 94]. (2.27)

We can find simulation methods that have used LCP to calculate forces between
contacting rigid bodies [Baraff 89][Baraff 94][Pang 96][Faure 96][Popovic 00].
According to Baraff [Baraff 89], solving for the accelerations in the contact points and
substituting the result into the constraint equations results in a system of equations which
can be used to compute the contact forces. So, linear programming techniques are used to
formulate and heuristically solve a system of inequality and equality constraints on the
forces. This system must assure that the contact forces will prevent the interpenetration
and satisfy the Newton’s laws (Appendix A).

When there is no friction, the LCP is convex and solutions can be computed using
algorithms that run in worst case exponential time but expected polynomial time in the
number of contacts. Friction can be incorporated to the algorithms by modifying or
adding constraints to the LCP. In [Baraff 94] an algorithm for computing the contact
forces between objects with static and dynamic friction is presented. This algorithm is an
adaptation of the one described by Dantzig, which is related to pivoting methods for
solving linear and quadratic programming. Dantzig’s algorithm for solving LCP is
described in [Cottle 92]. Baraff’s algorithm presents the followings problems:

State of the Art in Collision/Contact Avoidance

 26

- Convergence. It was not proven with friction and in this case we have no guarantee
that the algorithm would terminate;

- Control of computation time. An unpredictable number of iterations (unless the
contacts are frictionless) is necessary to maintain the previously computed values for
the forces and accelerations within the correct bounds.

Faure presented a method to compute resting contact forces based on energy
transfer between the bodies in contact that satisfies both the conservation of energy and
the inequality constraints [Faure 96]. The first iteration of the algorithm consists of a
global dynamic solution involving inertia and external forces that satisfy the conservation
of energy. The subsequent iterations consist of global redistributions of energy through
the solids. This method simultaneously handles both static and sliding friction, like the
approach presented in [Baraff 94], and avoid the problems of convergence and
computation time. The former is proven in the frictionless case, and the later occurs when
either desired precision or an allowed computation time is reached.

2.3.3 Impulse-based Method

In Physics, when we apply a force on an object, we also exert an impulse on it.
Suppose that two objects are in contact at the point Pc at time tc, and they have a relative
velocity towards each other. Unless the relative velocity is abruptly changed,
interpenetration will immediately occur after time tc. Thus, we apply an impulse, which
will instantaneously change the velocities of the two objects. As already mentioned in the
section 2.2.2, an impulse J

v
 is the product of a force F

v
 and the time interval ∆t that the

F
v

 acts on an object,

.tFJ ∆=
vv

 (2.28)

If we apply an impulse J
v

 to a rigid body with mass m, then the change in linear
velocity ∆v of the body is

 .
m
J

v
v

=∆ (2.29)

Let us see how an impulse is treated in impulse-based dynamic simulation of rigid
bodies. Impulse-based method for dynamic simulation was pioneered by Hahn [Hahn 98]
and extended by Mirtich and Canny [Mirtich 94]. The central idea of this approach is to
model all contacts between objects through a series of impulses [Mirtich 94]. It is based
on the treatment of contacts as momentary collisions, where two objects are separated by
applying a brief impulsive force. When a collision is detected between a pair of objects, a
collision impulse will be calculated. This impulse must prevent interpenetration and
obeys certain physical laws relating to friction and energy restitution. The collision
response is calculated as an impulse p which is applied to one object and, from Newton’s
third law, an impulse –p is applied to other object (see Figure 2.7).

State of the Art in Collision/Contact Avoidance

 27

Figure 2.7: Collision between two objects [Mirtich 94]

The frictional force is dependent on the relative sliding velocity of the objects in

contact, and this velocity is not constant during a collision. Because of that, the dynamics
of the object must be analyzed during the collision to compute the collision impulse. So,
at each time frame the initial relative velocity between the two objects, uv , is computed
from

 u - u u 21
vvv = (2.30)

where 1uv and 2uv are the absolute velocity of the object 1 and of the object 2 respectively.
This velocity is calculated as

 .Rw v u iiii ×+= vvv
 (2.31)

Here vv is the linear velocity of center of mass, wv is the angular velocity of the
rigid body around the center of mass, and R is the position relative to the center of mass.
Then uv is projected to the collision frame6. If uz is non-negative, no action needs to be
taken, because the objects are not in contact with each other; if uz is negative, a collision
impulse must be applied to prevent interpenetration. Thus we numerically integrate7 uv
using Eq. (2.32).

+
−

+
−

=

1

22

22

'

'

'

yx

y

yx

x

z

y

x

uu

u

uu

u

M

u

u

u

µ

µ

 (2.32)

6 It is established around the collision plane. This plane is defined as follow. If one of the colliding features
is a face, this face is used as a collision plane. If vertices or edges are the closest features, the collision
plane is perpendicular to the line which represents the shortest distance between them.
7 Details about the integration method of the Eq. 2.32 can be found in [Mirtich 96] and [Zhang 96].

State of the Art in Collision/Contact Avoidance

 28

where M is a matrix dependent only upon the masses and mass matrices of the colliding
bodies, and the location of the contact point relative to their centers of mass. µ is the
coefficient of friction.

During integration8, uz will increase until it reaches zero. When this occurs, the
point of maximum compression is reached. As can be seen in Figure 2.8, this point is the
limit between compression and restitution phase in a collision process, where f(t) and p(t)
are the force and total impulse delivered at time t in the collision respectively.

Figure 2.8: Phases of a collision [Mirtich 94]

At this point, the integration variable pz is the impulse that has been applied.
Based in the Poisson’s hypothesis, pz multiplied by (1 + e) gives the terminating value
for pz. Here e is the coefficient of restitution that can range from 0 to 1. A value of 0
means that practically all energy is lost (the objects do not separate after collision; plastic
collision), and value of 1 means that no energy is lost (elastic collision) [Mirtich 94].

So, we continue the integration until the termination value pz(1 + e) in order to
find the final value for ∆u that is the change in the contact point velocity of an object over
the course of the collision. The final value of the relative velocity ∆u is used to calculate
the impulse by reversing Eq. (2.32), that is,

p = M –1 ∆u (2.33)

With this calculated impulse, the positions and orientations of all the objects are
recalculated by assuming ballistic trajectories.

Hahn presented a method to calculate collision impulse with friction at a single
point. This method models sliding and rolling contacts using impact equations. The
contact forces are not computed explicitly, but occur only as time averages of reaction
impulses [Hahn 98].

Mirtich and Cany extended the applicability of Hahn’s method to resting contacts,
and gave a more unified treatment for multiple objects in contact and a fully general
treatment of frictional collisions. The interaction between objects is modeled as a series
of tiny micro-collisions that are frequent collisions between objects in continuous contact,
for example, a box resting on a floor. The effect of a micro-collision is to reverse the
motion direction of the object [Mirtich 94].

8 If sticking occurs during this integration (ux=uy=0), the model changes and a simpler set of differential
governs the evolution of u.

State of the Art in Collision/Contact Avoidance

 29

This work, in turn, has been extended in [Mirtich 95] to support generalized
articulated bodies, but the constraints equations are still fundamentally based on equation
of motion for simple rigid body systems.

The major disadvantage of this method is its inability to efficiently handle
simultaneous and persistent contacts. Consider for example a box resting on an inclined
plane (see Figure 2.9). Under impulse-based simulation, the box gradually slides
downward. This happens because constant micro-collisions are bouncing the box off the
surface at a high frequency. This means that the frictional forces that would normally
prevent the box from sliding are only acting intermittently9 and the box slides, regardless
of the properties of the surface.

Figure 2.9: A box resting on an inclined plane

Despite of that, impulse-based method presents advantages like simplicity and

robustness in comparison with constraint-based method, real-time speed and physical
accuracy [Mirtich 94].

2.4 Comparison

We have presented the main methods for calculating forces between two objects
in resting contact or collision. We analyze these methods from a critical point of view and
present the advantages and disadvantages of each of them which will offer us the
guidelines to select a method suitable to our case.

9 During collisions but not while the box is airborne.

State of the Art in Collision/Contact Avoidance

 30

Table 2.1: Comparative analysis of the different methods

 Penalty Method Constraint-based
Method

Impulse-based
Method

Type of Objects Rigid and
deformable

Rigid, deformable
and articulated

Only rigid

Concept and Implementation
Complexity

Simple Complex Medium

Computational Cost High Low Medium
Number of Time Steps
Required

High Low Low to Medium

Supported Contact Types Problems with stiff
contacts

Problems when
contact modes

change frequently

Problems with
resting contacts

Parallel Computation Possible Complicated and
difficult

Potential

Physical Accuracy Depends on time
discretization

Accurate in most
cases

Accurate

Accuracy Verification Very difficult Easy Easy

Penalty forces are usually computed as elastic forces that depend on the
interpenetration between objects. The main problem with penalty method is that it causes
instabilities or unwanted vibration. This can happen if the stiffness of contacts is too high,
or the force update rate is not high enough. Besides, penalty for rigid bodies are often
computational expensive, give only approximate results and may require adjustments for
different simulation conditions. In particular, the differential equations that arise using
penalty methods may be “stiff” and require an excessive number of time-steps during
simulation to accurate results. Additionally, the correctness of the simulation is very
difficult to verify. In their defense, penalty method for rigid bodies presents
computational simplicity and effectiveness. Add to this, the ease of incorporating static
friction models and the ability to simulate qualitatively a variety of surface
characteristics. This method for rigid bodies is easily extendible for flexible bodies.

 In contrast, constraint-based method is based on finding exact contacts between
the rigid bodies. It gives exact answers and produce differential equations that require far
fewer time steps during simulation. The correctness of simulation when using constraint-
based method is easily provable because it is directly based on the laws of Newtonian
dynamics. Unlike penalty method, this method is computationally more efficient unless
the collision is very gentle. In this case, the penalty method is more adequate. However,
constraint-based method is much more complex to derive and implement. Besides, the
computation is too complicated, the assumptions of perfectly rigid bodies interacting
without friction are too restrictive and it must declare each contact to be a resting contact
or colliding contact.

Unlike constraint-based method, in the impulse-based method non-penetration
constraints do not exist because the collision is responsible for enforcing separation
between two bodies in collision. Besides, in comparison with constraint-based method, it
is conceptually and algorithmically simpler. The impulse-based method works well on
systems of bodies where the contacts are changing rapidly, but has difficulty to
adequately simulate frequent and prolonged contact. In contrast, the penalty method is a

State of the Art in Collision/Contact Avoidance

 31

poor choice for simulating brief rigid body collision, which demand high spring
constants, but provides an efficient and flexible qualitative model of prolonged contacts.

Finally, there are simulations in which constraint-based method is more
appropriate than impulse-based method. Consider a hinge joint (see Figure 2.10). We can
model this hinge by micro-collisions between the hinge pin and its sheath. However, due
to the enormous amount of collision detection and resolution that would be necessary to
model this contact, the simulation would be too slow. However, the constraint-based
method is not well suited to situations as shown in Figure 2.11. Under constraint-based
simulation, the constraints change as the ball begins travelling up the ramp, leaves the
ramp and settles into a roll along the ground. All these occurrences must be detected and
processed and new equations of motion for the system must be derived at every transition
[Mirtich 95].

Figure 2.10: A suitable situation for constraint-
based method

Figure 2.11: A suitable situation for impulse-
based method

2.5 Conclusion

Precise detection of contacts and calculation of non-interpenetration forces
resulting from object-object interactions is complex, time consuming, and in the general
case, an open area of research. There is no single best approach to simulate contact
dynamics in arbitrary environments. In fact, the choice of the method to be used usually
depends on the application requirements.

In the present work, contact can happen between two deformable objects. So, we
believe that the penalty method has a number of characteristics that make it a good
candidate for contact resolution when used in simulations of deformable objects. This
method is simple and easy to implement, supports simultaneous and persistent contacts, is
easily parameterized to simulate a variety of surface characteristics, and is amenable to
parallelization. An implementation of this method and the results obtained are presented
and discussed respectively in chapter 3 and 4.

State of the Art in Collision/Contact Avoidance

 32

 33

3 Contribution

3.1 Introduction

The general goal of this work is to calculate forces to prevent interpenetration of
objects in a virtual environment. Two issues are involved in order to achieve this goal:
detecting that a collision has occurred and responding to it. The former is a fundamental
problem involving the positional relationship of the objects in the virtual world and is a
mandatory issue to prevent interpenetration in a multi-object simulation. The later is a
dynamic problem that involves predicting behavior according to physical laws.

Both detecting and responding to collisions are dependent on how virtual objects
are represented. The objects concerned with this work are deformable, and the
deformation method is based on the discretization of the objects in sets of spherical
regions (more details in the section 3.2). Consequently, their surfaces are not smooth and
it could cause the collisions to be non-realistic. That is why another step, generating a
smooth surface on the top of objects, is performed before detecting and responding to
collisions.

These three phases (surface generation, collision detection and response forces)
are presented and discussed in detail in the sequence of this chapter. However, let us first
introduce the deformation model in the section 3.2.

3.2 Deformation Model

The objects we deal with in this project are built on the top of a deformation
model currently being developed at VRLab. It is a generalized mass-spring system, where
mass points are, in fact, spherical mass regions called molecules. The idea of molecules
has first been presented by Jansson in [Jansson 00], and is based on the relationship of the
real matter molecules with they neighborhood in a piece of material. Elastic forces are
established between molecules by a spring-like connection where properties of materials
are taken into account. Figures 3.1 and 3.2 illustrate the objects representation.

Figure 3.1: Cube – an aggregate of molecules Figure 3.2: Connections between molecules

Contribution

 34

3.3 Surface Generation

As mentioned in the section 3.2, each virtual object is modeled as a collection of
spheres connected by generic springs. The surfaces of these objects are, then, not smooth,
which could cause the collisions to be non-realistic. To obtain visual realism during a
simulation, it is necessary to apply a surface on the virtual objects. In this work, an
implicit surface is created on the top of these objects. To generate this implicit surface,
we use a library developed at VRLab [Aubel 02].

 Implicit surfaces have been progressively used in modeling and animation during
the past decade. Also known as "Metaballs", "Blobbies" or "Soft objects", implicit
surfaces are surfaces that are contours (isosurfaces) through some scalar field in 3D
[Bourke 97]. An implicit surface is defined by an implicit function, a continuous scalar-
valued function over the domain R3. The implicit surface of such a function is the locus
of points at which the function takes on the value zero. For example, a unit sphere may be
defined using the implicit function f(x) = 1 - |x|, for points x ∈ R3. Points on the sphere
are those locations at which f(x) = 0. This implicit function takes on positive values
inside the sphere and is negative outside the surface [Turk 02].

The surface generation library used in this work implements a marching cubes
algorithm to create a polygonal surface representation of an implicit surface through a set
of spheres. This algorithm was adapted by [Aubel 02] who created a library on SGI10
platform from the basic code written by [Bourke 97]. Our port of this library to PC
presented results like the examples of Figure 3.3. However, to refine these results a key
issue is to find the best values for two input parameters: mesh resolution and potential
field.

Figure 3.3: Objects with surface

10 Silicon Graphics, Inc.

Contribution

 35

• Mesh Resolution

The resolution of a surface mesh is the overall spacing between vertices that
comprise the mesh. The mesh resolution parameter determines the amount of surface
detail the mesh contains and is closely related to the number of vertices, edges and faces
in the mesh. A coarse resolution mesh will contain a small number of vertices while a
fine resolution mesh will contain a large number of vertices. Therefore, it is necessary
that this parameter is set according to shape of each object in a virtual environment, and
your needs in terms of precision.

Number of Faces = 648

Figure 3.4: Mesh resolution

In this work, the mesh resolution parameter for each object is automatically
calculated according to its volume. The influence of the object’s volume about the mesh
resolution had been verified from a series of tests realized. In these tests, for each object,
we chose a value for the mesh resolution parameter so as to have a more or less smooth
surface with few triangles (see Figure 3.4). These values were plotted in the graph bellow
from which, we can write the following equation

005.0
20

volume
solutionReMesh += . (3.1)

Contribution

 36

Figure 3.5: Volume and Resolution

• Potential Field

Potential field parameter describes the maximum distance between the spheres
and the surface. Thus, we need to choose a value for this parameter that best
approximates the implicit contours of the spheres. Figure 3.6 shows a sequence of images
of the same object in which the potential field parameter varies until the desired
approximation is reached, following the surface of the spheres.

Potential Field = 20

Potential Field = 40

Potential Field = 80

Potential Field = 160

Figure 3.6: Potential field (mesh resolution = 0.005)

Contribution

 37

This parameter is mostly influenced by the radius of the spheres, that is, the radius
describes the maximum distance at which the surface will touch the spheres. To
automatically determine a good value for this parameter let us consider a set of objects.
For each object we choose the best value for the potential field parameter according to
radius of its spheres. The graph in Figure 3.7 shows the relation between radius and this
parameter. From this relation, we can define the following equation to calculate the value
of the potential field parameter

radius
2

ieldPotentialF = . (3.2)

Figure 3.7: Radius and Potential field

3.4 Collision Detection

The problem of collision detection is fundamental to computer animation, robot
motion planning, and virtual reality in general. The objective of collision detection is to
report a geometric contact when it is going to occur or has actually occurred. So, it is one
of the most important aspects in a multi-object simulation to avoid inter-penetration and
to calculate resulting forces of interacting objects. In this project we tested two
approaches to detect collisions. One of them is based on the spheres that compose the
objects, and the other is based on the implicit surface described in section 3.3 and uses V-
Collide and RAPID collision detection libraries developed by the Gamma group of the
University of North Carolina called [Gamma 02].

3.4.1 Spheres based Collision Detection

One of the simplest and more straightforward methods to detect collisions is the
sphere-to-sphere collision detection. Every sphere corresponds to a molecule in the
deformation model and is described as a central position and a radius, both obtained from

Contribution

 38

the molecule. If the distance between the centers of two spheres is smaller than the sum
of their radius they collide; otherwise they do not (Figure 3.8).

c
r1

c
r2

d < r1 + r2

c
r1

c
r2

d < r1 + r2
Figure 3.8: Spheres colliding

3.4.2 Mesh based Collision Detection

V-Collide is a “n-body” processor that works with polygon soups. This C++ library
uses a fast n-body algorithm to decide which pairs of objects are potentially in contact,
and then for each potential contact pair it calls RAPID functions to determine whether the
objects actually collide [Hudson 97].

For each collision, V-Collide reports only the objects involved. However, for
computing non-penetration force, it is necessary to identify which faces of which objects
are involved in the collision. For this reason, we use V-Collide for identifying all scene
objects that are in collision and then RAPID to find exactly which pairs of triangles
collide.

RAPID is the acronym for “Robust and Accurate Polygon Interference Detection”.
It is a C++ library that is applicable to polygon soups and operates only with triangles.
Unlike V-Collide, RAPID only processes two objects simultaneously. RAPID is based on
two algorithms. The first algorithm uses a top-down decomposition technique to build a
hierarchy of Oriented Bounding Boxes11 (OBBs) of an input polygon soup model. The
second one realizes collision tests among OBB pairs. These tests consist to verify
whether two high-level OBBs overlap; if they overlap, then the algorithm verifies the
overlapping of lower level OBBs. Otherwise, the two objects do not collide and the
algorithm ends. Thus, RAPID returns a list of contact pairs, where each contact pair is a
triangle taken from each of object [Gottschalk 96]. See the guides for basic usage of V-
Collide and RAPID in the Appendices B and C, respectively.

3.5 The Non-Penetration Model

Once collision has been detected we need to produce a collision response, that is,
to calculate the forces acting on the objects that collide. In this work a very small
penetration between two objects is allowed and a separation force is caused by that

11 An OBB is a rectangular bounding box whose orientation is arbitrary and the resulting hierarchy is called
OBBTree.

Contribution

 39

penetration. This force tries to prevent further penetration and to separate the colliding
bodies. The following rules to compute this force are taken into account:

- If object A does not penetrate any other object, the force acting on the object A is
zero;

- If object A and B penetrate, then forces must be created to act on the objects A and B.
These forces are applied at the point of contact on each object;

- The magnitude of the force is proportional to the penetration depth of A and B. This
depth is the minimum (translational) distance required to separate two colliding
objects.

- The direction of the forces is the normal vector to the surface in each object.

The penetration depth is incorporated into a penalty-based formulation to enforce
the non-penetration constraint between two deformable objects. As already mentioned in
sections 2.2.1 and 2.3.1, penalty method has been widely used because of its simplicity
and ease of implementation. Essentially, this method models contacts by placing a spring
at each contact point, between the two contacting bodies (see Figure 3.9).
Interpenetration is allowed between the objects at a contact point, and the amount of
interpenetration is used to introduce restoring or “penalty” force that acts between the
objects, pushing them apart.

Figure 3.9: Springs inserted between the objects

We do not introduce the spring into the model as a body, but as a force that acts
on the objects it attaches. A spring always pulls or pushes along its own length, thus
yielding a collinear force pair [Barzel 92]. These forces are based in the Newton’s third
law (“every action has an equal and opposite reaction”) being thus consistent with many
natural sources, such as elastic springs, gravitational attraction, etc.

The approaches for estimating penetration depth and penalty force (or string
force) are discussed bellow.

3.5.1 Penetration Depth Estimation
As you can see Figure 3.10, the penetration depth d is length of the shortest

displacement that can cause the separation of the objects A and B. Assume that the
objects A and B collide at time t and that the separation force in direction d is applied to
the object B at the point PBA; it pushes out the object B from A. The opposite force F

v
−

in direction –d is applied to the object A at the point PAB, and pushes A away from B.

Contribution

 40

Figure 3.10: Collision geometry

As already mentioned (section 3.3), for each object of a scene a triangulated
surface is created. These surfaces are used by collision detection libraries: V-Collide and
RAPID. V-Collide determines whether two objects have points in common and then
RAPID return a list of triangle pairs in contact. However, these libraries do not provide
distance between objects. Thus, we need to compute an approximate penetration depth
before calculating the non-penetration force.

We have a list of pairs of faces (fi, fj) of each object i and j involved in the
collision. Imagine the face fj represented in Figure 3.11 as being the face in which a vertex
P of the face fi collided. For calculating penetration depth d, that here is a distance of the
face fi to face fj, we project the point P onto the plane generated by the face fj. Point P’ is
the projection of this point on the plane. Thus, we can calculate the distance between P’
and P, and we obtain an approximate value for penetration depth.

C

D

E

P’

P

1wv

2wv
d fj

fi

C

D

E

P’

P

1wv

2wv
d fj

fi

Figure 3.11: Face fj

The projection plane was defined from the following equations

).CECP(||CP||
||CE||

CE
w

)CDCP(||CP||
||CD||

CD
w

2

1

⋅⋅⋅=

⋅⋅⋅=

v

v

 (3.3)

Then, using the Eqs. (3.3), we find the projection of the point P’BA in this plane.

 ,Cww'P 21 ++= vv
 (3.4)

and the distance between these points is calculated from

Contribution

 41

 'PPd −= (3.5)

Now suppose the situation where two or three vertices of one face are penetrating
the other object. In this case, we have to calculate the penetration distance for both them
and choose the greatest between the calculated distances to be the penetration depth.

For the sphere-to-sphere collision, penetration distance is calculated as the
difference between distance of the central positions and the sum of the radius of the two
involved spheres.

3.5.2 Penalty Force

Penalty method (section 2.3.1) is based on a dependency between the non-
penetration force and the penetration depth. The penalty force model considered here
assumes that non-penetration force npF

v
 depends on penetration depth d as follow

≤
>−

=
0dif,0
0dif,nkd

Fnp

vv
 (3.6)

where k is a positive constant (called penalty coefficient) and nv is the non-penetration
force direction. Physically k corresponds to a stiff spring, temporarily placed between
objects during the collision. In this work the value k is calculated using following
equation

K*mk = (3.7)

where m is lightest object mass and K is a arbitrary positive constant that was chosen
from the analysis of the object behavior over the course of a simulation.

Using the Eqs. (3.6) and (3.7), we calculate npF
v

 for each pair of colliding face.
Thus, we write the non-penetration force for the face fi as

jnp n̂kdF
i

−=
v

 (3.8)

where jn̂ is the normal vector to the face fj. For the face fj, the direction of the npjF
v

 will be
in the direction of the normal vector to the face fi as shown in the equation

.n̂kdF inp j
−=

v
 (3.9)

Given those equations we propose the following algorithm:

Figure 3.12: Algorithm to calculate non-penetration force to mesh collision

Algorithm to calculate Non-Penetration Force to Mesh Collision

compute the spring constant k from Eq. 3.7.
For each pair of contacting face (fi, fj)
 compute the penetration depth according to section 3.5.1
 compute the non-penetration force for the face fi using the Eq. 3.8
 compute the non-penetration force for the face fj using the Eq. 3.9
end

Contribution

 42

For the sphere-to-sphere collision, non-penetration force is calculated as described
in the following algorithm:

Figure 3.13: Algorithm to calculate non-penetration force to sphere-to-sphere collision

Afterwards, all non-penetration forces are passed as input to the deformation
model that will calculate itself the correct deformation and motion of the objects in
virtual environment.

Algorithm to calculate Non-Penetration Force to Spheres Collision

For each pair of contacting sphere (si, sj)
 compute the spring constant k from the elasticity of the molecule material.
 compute the penetration depth according to section 3.5.1
 compute the non-penetration force for the sphere si using the Eq. 3.8
 compute the non-penetration force for the sphere sj using the Eq. 3.9
end

 43

4 Demo Application

4.1 Introduction

In this chapter, we show the main results of this work. We describe a demo
application where virtual worlds can be specified and simulated, and objects can move
and deform according to non-penetration forces presented in the chapter 3. Furthermore,
we show some experiments realized.

4.2 Description

4.2.1 Architecture

Figure 4.1: Application architecture

Demo application architecture is shown in Figure 4.1. It consists of the following
modules:

- Interface QT. A graphical user interface (GUI) was created using QT Non-
Commercial version 2.3.0. QT is a multi-platform C++ GUI application framework
from Trolltech. This framework is fully object-oriented, easily extensible and allows
true component programming [Trolltech 01]. This module is the link between the user
and the application. It handles events generated by the user and calls the deformation

Demo Application

 44

model and/or the VTK View module, which take the appropriate action to react to the
user. This module receives a signal from the VTK View module to update the image
on the 3D window.

- Deformation Model. This module is external to this project; it is just used here. It
manages the objects motion and deformation. It is controlled by the simulator, which
requests temporal changes in the model, and its state can be read by the VTK View
module for visualization purposes. In addition, it keeps a relationship with the
collision detection module – which inspects objects positions – and with the collision
response module – which send it new non-penetration forces.

- VTK View. This module shows the scene in the 3D window taking into account the
information received from the deformation model and the interface module. This
visualization is done using VTK (Visualization ToolKit). VTK is an open source,
freely available C++ class library that supports 3D graphics and visualization
[Kitware 01].

- Simulator. This module simulates a scene. It is responsible by the control of the
simulation time and events that can be of two types: user interactions and calls for
methods of the modules: surface generation, deformation model and collision
detection.

- Surface Generation. The generation of an implicit surface on the top of the
deformable objects is performed by this module (section 3.3).

- Collision Detection. The task of this module is to detect collisions between objects of
a scene and create a list of pairs of colliding faces. Each of these pairs is send to the
response force module. Depending of the type of collision detection method defined
in interface, this module uses different routines. These routines are described in
section 3.4.

- Response Force. This module handles the effects of the collision between deformable
objects. It receives a list of pairs of colliding faces of the collision detection module
and calculates a reaction force for each pair of faces using the penalty method
(section 3.5). Theses forces are sent to the deformation model.

4.2.2 Interface

The application interface has been designed to provide some necessary tools to
evaluate the behavior of the objects in a virtual environment (see Figure 4.2). The various
components of the interface and their interactions in the context of the whole application
are discussed below.

Demo Application

 45

Figure 4.2: Example of the main window

- Scene loading

The user specifies its virtual environment by means of a XML12 file (see an
example in Appendix D). This file defines each virtual object as a set of molecules. Each
molecule has its position, radius and proprieties of its material (such as elasticity, friction
constant and damping constant). This file also defines some simulation parameters as the
number of iterations per second and duration of the simulation. All these information
about the virtual environment are loaded into the deformation model and then the user
can run the simulation.

The application provides also a XML Editor to the user to create/edit a XML file
(Figure 4.3).

Figure 4.3: Scene loading

12 Extensible Markup Language

Demo Application

 46

- Virtual objects editing

Once the deformation model is loaded, the user can access the information of each
object of the virtual environment and change the following material proprieties: elasticity,
density and friction constant (see Figure 4.4). These changes can be realized during the
simulation.

Figure 4.4: Virtual objects editing

- Collision detection mode

The user can choose the type of collision detection that will be used by the
collision detection module. As we see in Figure 4.5, there are two methods: spheres-
based (section 3.4.1) and mesh-based (section 3.4.2). The former method is a trivial
sphere-to-sphere test, and the later uses RAPID library to report the colliding faces
between two objects. However, to identify which among all objects are in contact, the
user can choose either V-Collide library or Bounding Box. The collision detection mode
can be changed during the simulation.

Figure 4.5: Spheres-based collision detection

Figure 4.6: Mesh-based collision detection

- Scene visualization

A scene is visualized in a 3D window where the objects can be seen in different
modes according to the following options: mesh, spheres and connexions (see Figure 4.7
and Figure 4.8). It is important salient that collision detection mode determines the
visualization option. If collision detection mode is mesh-based, an implicit surface will be
generated to detect collisions. These options can be modified on the course of the
simulation.

Figure 4.7: Scene visualization

Demo Application

 47

(a)

(b)

(c)

(d)

 Figure 4.8: Show: (a) Spheres (b) Connexions (c) Mesh (d) Mesh and Spheres

- Iterations per second

The size of the time-step used by numerical integration can be redimensioned on
the fly by means of this slider bar that defines the number of iterations to be performed
per second of simulation.

Figure 4.9: Iterations per second

- Simulation

Once the scene has been loaded, we can simulate it. Figure 4.10 shows the buttons
used to control the simulation.

Figure 4.10: Simulation

Demo Application

 48

4.3 Experiments

The experiments of sections 4.3.1 and 4.3.2 present the simulation of a box
(Figure 4.11) that is pulled towards the ground (Figure 4.12) by a gravitational force. The
goal of these experiments is to analyze the behavior of the resulting contact force
between these objects.

- 75 molecules;
- 426 connections;
- Density = 2500 kg/m3;
- Elasticity = 5000 N/m2;

 Figure 4.11: Box

- 225 molecules;
- 812 connections;
- Density = 970 kg/m3;
- Elasticity = 500000 N/m2;

Figure 4.12: Ground

4.3.1 Scene without Implicit Surface

The volumes of the objects of this scene are represented by the volume of the
spherical molecules that compose them. Thus, such objects are not covered by a surface
mesh and collision detection is performed based on spheres. Figure 4.13, shows a
sequence of reference key-frames collected during the simulation.

Demo Application

 49

t = 0s

t = 0.2s

t = 0.3s

t = 0.4s

t = 0.6s

t = 0.8s

t = 0.9s

t = 1s

t = 1.1s

t = 1.6s

Figure 4.13: Scene without implicit surface - Reference key-frames

Demo Application

 50

0

50

100

150

200

250

300

350

400

0

0.
07

0.
15

0.
22

0.
29

0.
37

0.
44

0.
51

0.
59

0.
66

0.
73

0.
81

0.
88

0.
95

1.
03 1.
1

1.
17

1.
25

1.
32

1.
39

1.
47

1.
54

1.
61

1.
69

1.
76

1.
83

1.
91

1.
98

Time (s)

C
ol

lis
io

n
Fo

rc
e

(N
)

Figure 4.14: Scene without implicit surface - Collision force evolution

The graph below shows the minimum y-coordinate of the box object and the
maximum y-coordinate of the ground on the course of the simulation. Once the surfaces
of the objects are not smooth, spheres find equilibrium position in the ditches between
spheres of the other object, and consequently the maximum and minimum y-coordinates
overlap in the graph. That is why the box curve passes bellow the ground one, while on
the images we do not see such penetration.

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.
07

0.
14

0.
21

0.
27

0.
34

0.
41

0.
48

0.
55

0.
62

0.
68

0.
75

0.
82

0.
89

0.
96

1.
03

1.
09

1.
16

1.
23 1.

3

1.
37

1.
44 1.

5

1.
57

1.
64

1.
71

1.
78

1.
85

1.
91

1.
98

Time (s)

P
o

si
ti

o
n

Y Position

Ground Y Position

Figure 4.15: Scene without implicit surface – y-coordinate position

Demo Application

 51

We modify the density and elasticity of the box object in order to analyze the
influence of this modification on the behavior of the collision force. The results of this
experiment are verified in the graphs below.

• Object’s Density Modifying

0

100

200

300

400

500

600

0

0.
07

0.
15

0.
22

0.
29

0.
37

0.
44

0.
51

0.
59

0.
66

0.
73

0.
81

0.
88

0.
95

1.
03 1.
1

1.
17

1.
25

1.
32

1.
39

1.
47

1.
54

1.
61

1.
69

1.
76

1.
83

1.
91

1.
98

Time (s)

C
o

lli
si

o
n

 F
o

rc
e

(N
)

Density = 833 kg/m3

Density = 5000 kg/m3

Figure 4.16: Collision force evolution varying the density of the box object (spheres collision)

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.
07

0.
14

0.
21

0.
27

0.
34

0.
41

0.
48

0.
55

0.
62

0.
68

0.
75

0.
82

0.
89

0.
96

1.
03

1.
09

1.
16

1.
23 1.

3

1.
37

1.
44 1.

5

1.
57

1.
64

1.
71

1.
78

1.
85

1.
91

1.
98

Time (s)

P
o

si
ti

o
n

Y Position (Density = 833 kg/m3)

Y Position (Density = 5000 kg/m3)

Ground Y Position

Figure 4.17: Evolution of the y-coordinate position varying the density of the box object (spheres

collision)

Demo Application

 52

• Object’s Elasticity Modifying

0

100

200

300

400

500

600

0

0.
06

0.
11

0.
17

0.
23

0.
28

0.
34 0.

4

0.
45

0.
51

0.
57

0.
62

0.
68

0.
74

0.
79

0.
85

0.
91

0.
96

1.
02

1.
08

1.
13

1.
19

1.
25 1.

3

1.
36

1.
42

1.
47

1.
53

1.
59

1.
64 1.

7

1.
76

1.
81

1.
87

1.
93

1.
98

Time (s)

C
o

lli
si

o
n

 F
o

rc
e

(N
)

Elasticity = 1500 N/m2

Elasticity = 50000 N/m2

Figure 4.18: Collision force evolution varying the elasticity of the box object (spheres collision)

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.
06

0.
12

0.
18

0.
23

0.
29

0.
35

0.
41

0.
47

0.
53

0.
58

0.
64 0.

7

0.
76

0.
82

0.
88

0.
93

0.
99

1.
05

1.
11

1.
17

1.
23

1.
28

1.
34 1.

4

1.
46

1.
52

1.
58

1.
63

1.
69

1.
75

1.
81

1.
87

1.
93

1.
98

Time (s)

P
o

si
ti

o
n

Y Position (Elasticity = 1500 N/m2)

Y Position (Elasticity = 50000 N/m2)

Ground Y Position

Figure 4.19: Evolution of the y-coordinate position varying the elasticity of the box object

(spheres collision)

4.3.2 Scene with Implicit Surface

In this experiment, an implicit surface is generated on the top of each object of the
scene. The box surface is composed of 2820 triangles and the ground surface of 9940
triangles. Besides, the collision detection is done using the V-Collide and RAPID
libraries.

Figure 4.20 shows snapshots from a simulation sequence where the gravitational
force pulls a box downwards.

Demo Application

 53

t = 0 s

t = 0.2 s

t = 0.3 s

t = 0.4 s

t = 0.6 s

t = 0.8 s

t = 1.0 s

t = 1.2 s

t = 1.5 s

t = 1.9 s

Figure 4.20: Scene with implicit surface - Reference key-frames

Demo Application

 54

The graph below shows collision force evolution during the simulation described
by Figure 4.20.

0

50

100

150

200

250

300

350

0

0.
06

0.
12

0.
18

0.
24 0.

3

0.
36

0.
42

0.
48

0.
54 0.

6

0.
66

0.
72

0.
78

0.
84 0.

9

0.
96

1.
02

1.
08

1.
14 1.

2

1.
26

1.
32

1.
38

1.
44 1.

5

1.
56

1.
62

1.
68

1.
74 1.

8

1.
86

1.
92

1.
98

Time (s)

C
o

lli
si

o
n

 F
o

rc
e

(N
)

Figure 4.21: Scene with implicit surface - Collision force evolution

In figure 4.22 the graph presents the variation of the minimum y-coordinate of the
box and the maximum y-coordinate of the ground during the simulation. This coordinate
remains constant in the ground object because it is fixed. However, the y-coordinate of
the box object varies according to gravitational force that acts in it. In this graph we can
verify that when a collision occurs the y-coordinate of the box briefly crosses y-
coordinate of the ground. This represents the amount of penetration between the objects
and is used to calculate collision force.

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.
06

0.
12

0.
18

0.
23

0.
29

0.
35

0.
41

0.
47

0.
53

0.
58

0.
64 0.

7

0.
76

0.
82

0.
88

0.
93

0.
99

1.
05

1.
11

1.
17

1.
23

1.
28

1.
34 1.

4

1.
46

1.
52

1.
58

1.
63

1.
69

1.
75

1.
81

1.
87

1.
93

1.
98

Time (s)

P
o

si
ti

o
n

Y Position

Ground Position

Figure 4.22: Scene with implicit surface - y-coordinate position

As in the experiment presented in section 4.3.1, we modify also the density and
elasticity of the box object and plot the results in the graphs below.

Demo Application

 55

• Object’s Density Modifying

0

100

200

300

400

500

600

700

0

0.
06

0.
12

0.
18

0.
24 0.

3

0.
36

0.
42

0.
48

0.
54 0.

6

0.
66

0.
72

0.
78

0.
84 0.

9

0.
96

1.
02

1.
08

1.
14 1.

2

1.
26

1.
32

1.
38

1.
44 1.

5

1.
56

1.
62

1.
68

1.
74 1.

8

1.
86

1.
92

1.
98

Time (s)

C
o

lli
si

o
n

 F
o

rc
e

(N
)

Density = 833 kg/m3

Density = 5000 kg/m3

Figure 4.23: Collision force evolution varying the density of the box object (mesh collision)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.
06

0.
12

0.
18

0.
23

0.
29

0.
35

0.
41

0.
47

0.
53

0.
58

0.
64 0.

7

0.
76

0.
82

0.
88

0.
93

0.
99

1.
05

1.
11

1.
17

1.
23

1.
28

1.
34 1.

4

1.
46

1.
52

1.
58

1.
63

1.
69

1.
75

1.
81

1.
87

1.
93

1.
98

Time (s)

P
o

si
ti

o
n

Y Position (Density = 833 kg/m3)

Y Position (Density = 5000 kg/m3)

Ground Position

Figure 4.24: Evolution of the y-coordinate position varying the elasticity of the box object (mesh

collision)

Demo Application

 56

• Object’s Elasticity Modifying

0

50

100

150

200

250

300

350

400

0

0.
07

0.
14

0.
21

0.
27

0.
34

0.
41

0.
48

0.
55

0.
62

0.
68

0.
75

0.
82

0.
89

0.
96

1.
03

1.
09

1.
16

1.
23 1.

3

1.
37

1.
44 1.

5

1.
57

1.
64

1.
71

1.
78

1.
85

1.
91

1.
98

Time (s)

C
o

lli
si

o
n

 F
o

rc
e

(N
)

Elasticity = 1500 N/m2

Elasticity = 50000 N/m2

Figure 4.25: Collision force evolution varying the elasticity of the box object (mesh collision)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 42 83 12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

53
4

57
5

61
6

65
7

69
8

73
9

78
0

82
1

86
2

90
3

94
4

98
5

10
26

10
67

11
08

11
49

11
90

Time (s)

P
o

si
ti

o
n

Y Position (Elasticity = 1500 N/m2)

Y Position (Elasticity = 50000 N/m2)

Ground Position

Figure 4.26: Evolution of the y-coordinate position varying the elasticity of the box object (mesh

collision)

Demo Application

 57

4.3.3 Performance

In this section we analyze the performance of our implementation. The scene (see
Appendix E) is composed of 11 objects where 9 objects fall at the same time due to the
gravitational force, 1 object is fixed and 1 object has the fixed board and the non-fixed
center (where the gravitational force acts). The characteristics of each object are
described in Figure 4.27, the simulation parameters in Table 4.1. The equipment used to
perform these experiments was a PC Dual Intel Xeon 1.7Ghz, 1Gb Ram and a Wildcat III
graphics card (300Mhz, 64Mb Ram). The application was developed using Microsoft
Visual C++ version 6.0 on Windows 2000.

Table 4.1: Simulation Parameters

Parameters Values

Iterations per second 1000

Simulation duration 5.0s

Refresh rate of the view 100 times per second of simulation

Surface generation 10 times per second of simulation

Collision detection at each step of simulation

8 molecules
24 connections

Density: 1500 kg/m3

Elasticity: 5000 N/m2

8 molecules
28 connections

Density: 1500 kg/m3

Elasticity: 15000 N/m2

27 molecules

126 connections
Density: 970 kg/m3

Elasticity: 15000 N/m2

64 molecules

210 connections
Center (green):
 Density: 970 kg/m3

 Elasticity: 15000 N/m2
Board (light brown):
 Density: 1500 kg/m3

 Elasticity: 15000 N/m2

454 molecules

1583 connections
Density: 970 kg/m3

Elasticity: 500000 N/m2

Figure 4.27: Performance test - objects of the scene

Demo Application

 58

Table 4.2: Computation time

Computation time Surface
generation

Collision
detection

Visualization Total

Collision detection using
Bounding Box and RAPID

521.441000s
(8min 41s)

1303.260000s
(21min 43s)

101.519000s
(1min 41s)

1997.109000s
(33min 28s)

Collision detection using
V-Collide and RAPID

538.932000s
(8min 58s)

1937.989000s
(32min 29s)

103.483000s
(1min 43s)

2657.531000s
(44min 29s)

Spheres collision 0.000000s 29.622000s 346.002000s
(5min 45s)

446.563000s
(7min 44s)

Collision detection using Bounding Box and
RAPID

26.11%

65.26%

5.08%

3.55%

Surface generation Collision detection

Visualization Deformation and control

Collision detection using V-Collide and
RAPID

20.28%
3.89%

2.91%

72.92%

Spheres collision

6.63%
15.89%

77.48%

Figure 4.28: Performance

 59

5 Conclusion

The goal of this work was to implement a collection of functions to compute

response forces due to collision between simple deformable objects. These functions
were implemented based in the penalty method and integrated into a deformation model
being developed at VRLab.

Our implementation generates an implicit surface to cover the deformable objects,
detect collisions between them, and provide the deformation engine with response forces
derived from collisions.

From the performed experiments, we figured out that:

- Collision response forces have been appropriated when the displacements of the
virtual objects are small. Nevertheless, for large displacements, the calculation of
these forces demands very stiff springs to avoid unwanted interpenetrations, which
can cause numerical instabilities. So, the choice of spring constant interacts with the
choice of integration time step, and then influences the cost of the simulation.
One possible solution is an extension to the spring-damper penalty method where
relative velocity between the objects at the moment the collision is also considered on
determining penalty springs stiffness.

- The method presented in this work to detect collisions using V-Collide is the major
bottleneck of simulation. In our experiments, around 69% of the computation time
was spent by this process. It confirms that V-Collide is not suitable to detect
collisions between deformable objects. On the other hand, the sphere-to-sphere
collision method is very fast, but the objects surfaces are not smooth which could
cause contacts to be non-realistic. So, other approaches must be investigated in order
to find one that better adapts to the type of objects we are dealing with.

- Implicit surface generation is also a considerable time-consuming process, mainly
when number of spheres increase. Thus, an idea is to generate the surface only once
at the beginning of the simulation, and deform it according to positions of the
underlying spheres.

Conclusion

 60

 61

Bibliography

[Aubel 02] A. Aubel. Anatomically-based human body deformations. PhD
Thesis. EPFL, Lausanne, 2002.

[Baraff 89] D. Baraff. Analytical Methods for Dynamic Simulation of Non-
Penetrating Rigid Bodies. In Computer Graphics(Proc. SIGGRAPH),
Vol. 23, No. 3, pp. 223-232. ACM, July 1989.

[Baraff 92] D. Baraff. Dynamic Simulation of Non-penetrating Flexible Bodies.
In Computer Graphics (Proc. SIGGRAPH), Vol. 26, No. 2, pp. 303-
308. July 1992.

[Baraff 93] D. Baraff. Non-penetrating Rigid Body Simulation. In
EUROGRAPHICS’93. Barcelona, September 6-10, 1993.

[Baraff 94] D. Baraff. Fast Contact Force Computation for Nonpenetrating Rigid
Bodies. In Computer Graphics (Proc. SIGGRAPH), Annual
Conference Series, pp. 23-34, 1994.

[Baraff 98] D. Baraff and A. Witkin. Physically Based Modelling. Siggraph ’98
Course Notes. 1998.

[Barzel 92] R. Barzel. Physically-based Modeling for Computer Graphics. ACM
Press, 1992. 334p.

[Bourke 97] P. Bourke. Polygonising a scalar field. 1997. Available at:
http://astronomy.swin.edu.au/~pbourke/modelling/polygonise/

[COME 02] CO-ME. http://co-me.ch. 2002

[Cottle 92] R.W. Cottle, J.S. Pang and R.E. Stone. The Linear Complementary
Problem. Boston: Academic Press, 1996.

[Desbrun 99] M. Desbrun, P. Schröder and A. Barr. Interactive Animation of
Structured Deformable Objects. In Graphics Interface, pp. 1-8. 1999.

[Faure 96] F. Faure. An Energy-Based Method for Contact Force Computation.
In Proceedings of EUROGRAPHICS’96. Computer Graphics Forum,
Vol. 15, No. 3, pp. 357-366, 1996.

[Gamma 02] Gamma Group. Collision Detection. Department of Computer
Science, University of North Carolina. 2002. Available at:
http://www.cs.unc.edu/~geom/collide/index.shtml

[Gottschalk 96] S. Gottschalk, M. C. Lin and D. Manocha. OBBTree: A Hierarchical
Structure for Rapid Interference Detection. In Computer Graphics
(Proc. SIGGRAPH), Annual Conference Series, Vol. 30, ACM
SIGGRAPH, pp. 171-180. 1996

Bibliography

 62

[Hahn 88] J. K. Hahn. Realistic Animation of Rigid Bodies. In Computer
Graphics (Proc. SIGGRAPH), Vol. 22, No. 4, pp 299-308. August
1988.

[Hudson 97] T.C. Hudson et al. V-Collide: Accelerated Collision Detection for
VRML. In Proceedings of Second Symposium on the Virtual Reality
Modeling Language (VRML’97), pp. 119-125. New York: ACM
Press, 1997

[Jansson 00] J. Jansson and J.S.M Vergeest. A General Mechanics Model for
Systems of Deformable Solids. In Proceedings International
Symposium On Tools and Methods for Competitive Engineering
(TMCE 2000), pp. 361-372. Delft: Delft University Press, 2000.

[Joukhadar 98] A. Joukhadar, A. Deguet and C. Laugier. A collision model for
deformable bodies. In IEEE International Conference Robotics and
Automation, Vol. 2, pp. 982-988. 1998.

[Kitware 01] Kitware, Inc. The visualization ToolKit. 2001 Available at:
http://public.kitware.com/VTK/

[McKenna 90] M. McKenna and D. Zeltzer. Dynamic simulation of autonomous
legged locomotion. In Computer Graphics (Proc. SIGGRAPH), Vol.
24, pp. 29-38. ACM, August 1990.

[Mirtich 94] B. Mirtich and J. Canny. Impulse-based Dynamic Simulation. In
Proc. of Workshop on Algorithmic Foundations of Robotics. February
1994.

[Mirtich 95] B. Mirtich and J. Canny. Impulse-based Simulation of Rigid Bodies.
In Proc. of 1995 Symposium on Interactive 3D Graphics, pp. 181-
188. April 1995.

[Mirtich 95a] B. Mirtich. Hybrid Simulation: Combining Constraints and Impulses.
In Proc. of First Workshop on Simulation and Interaction in Virtual
Environments, July 1995.

[Mirtich 96] B. Mirtich. Impulse-based Dynamic Simulation of Rigid Body
Systems. PhD Thesis, University of California, Berkeley, December
1996.

[Moore 88] M. Moore and J. Wilhelms. Collision Detection and Response for
Computer Animation. In Computer Graphics, Vol. 22, No. 4, pp.
289-298. August 1988.

[Nave 00] C. R. Nave. Hyperphysics. Department of Physics and Astronomy,
Georgia State University, Atlanta, Georgia, 2000. Available at:
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html.

[Pang 96] J.S. Pang and J.C. Trinkle. Complementarity Formulations and
Existence of Solutions of Dynamic Multi-Rigid-Body Contact
Problems with Coulomb Friction. Mathematical Programming. 73:
pp. 199-226. 1996.

Bibliography

 63

[Physics 01] The Physics Classroom, 2001. Available at:
http://www.glenbrook.k12.il.us/gbssci/phys/Class/newtlaws/newtltoc.
html

[Platt 88] J.C. Platt and A. H. Barr. Constraint Methods for Flexible Models. In
Computer Graphics (Proc. SIGGRAPH), Vol. 22, No. 4, pp. 279-288.
ACM, August 1988.

[Popovic 00] J. Popovic et al. Interactive Manipulation of Rigid Body Simulations.
In Computer Graphics (Proc. SIGGRAPH), Annual Conference
Series, pp.209-217. ACM SIGGRAPH, 2000.

[Tallec 94] P. Le Tallec. Numerical Methods for Nonlinear Three-dimensional
Elasticity. In P.G. Ciarlet and J.L. Lions. Handbook of Numerical
Analysis. Elsevier Science B.V., Vol. III, chapter VI, pp. 565-578.
1994.

[Terzopoulos 87] D.Terzopoulos et al. Elastically deformable models. In Computer
Graphics (Proc. SIGGRAPH), Vol. 21, pp. 205-214. ACM, August
1987.

[Trolltech 01] Trolltech. On-line reference documentation. 2001. Available at:

http://doc.trolltech.com/2.3/index.html

[Turk 02] G. Turk and J. F. O’Brien. Modelling with Implicit Surfaces that
Interpolate. In ACM Transactions on Graphics, Vol. 1, No. 4, pp.
855-873. ACM Press, October 2002.

[Witkin 87] A. Witkin, K. Fleischer and A. Barr. Energy Constraints on
Parametrized Models. In Computer Graphics (Proc. SIGGRAPH),
Vol. 21, No. 4, pp. 225-232. ACM, August 1987.

[Young 96] H.D. Young and R.A. Freedman. University Physics. Addison-
Wesley Publishing Company, Inc. 1996.

[Zhang 96] P. Zhang. Physically Realistic Simulation of Rigid Bodies. Master
thesis, Department of Computer Science, Tulane University. 1996.
Available at: http://www.eecs.tulane.edu/www/Zhang/

Bibliography

 64

 65

Appendix A: Newton’s Law of Motion

The effects of forces on objects are described by Newton's three laws. A force

may be defined as any influence, which tends to change the motion of an object, that is, a
force is that which causes an object to accelerate.

• Newton’s First Law

An object moving with constant velocity will continue to move with constant
velocity until acted upon by a net, external force.

Newton's First Law states that an object will remain at rest or in uniform motion

in a straight line unless acted upon by an external force. It may be seen as a statement
about inertia, that objects will remain in their state of motion unless a force acts to change
the motion [Young 96].

• Newton’s Second Law

If a net external force acts on a body, the body accelerates. The direction of
acceleration is the same as the direction of the net force. The net force vector
is equal to the mass of the body times the acceleration of the body.

∑ = amF
rr

The Newton’s second law is used to describe the causes of motion along with

Newton’s first law and Newton’s third law. Besides this law has certain limitations, but is
extremely useful for the solution of standard problems inducing the effects of friction
[Nave 00].

• Newton’s Third Law

If a body A exerts a force on body B (an “action”), then body B exerts a force
on body A (a “reaction”). These two forces have the same magnitude but are
opposite in direction. These two forces act on different bodies.

In symbols,

 AonBBonA FF
rr

−=

For example, when you kick a soccer ball, the forward force that your foot exerts
on the ball launches it into its trajectory, but you also feel the force that ball exerts on
your foot. These action and reaction forces are contact forces that are present only when

 66

the two bodies are touching. But it is important remember this law also applies to force
that do not require physical contact.

 67

Appendix B: V-Collide User’s Manual13

Introduction

The V-Collide collision detection library performs efficient and exact collision
detection between triangulated polygonal models. It uses a 2-level hierarchical approach:
the top level eliminates from consideration pairs of objects that are not close to each
other, while the bottom level performs exact collision detection down to the level of the
triangles themselves.

The basic steps involved in using this library are creating objects, adding sets of
triangles to these objects, choosing which pairs of objects should be tested for collisions,
setting the positions of the objects, performing the collision test, and getting back reports
of the test results. Based on these results and any other parameters of the
simulation/interaction, the objects may be moved and the collisions tested again, etc.

V-Collide is written in C++, but it provides a C interface as well.

Table B.1: C++ Command reference - #include <VCollide.h>

int VCollide::NewObject (int *id); Create a new object and prepare it for adding
triangles.

int VCollide::AddTri (double v1[3],
 double v2[3],
 double v3[3]);

Add triangles to the current object (only valid
between NewObject() and EndObject()).

int VCollide::EndObject (void) Finish adding triangles to the current object and
build the hierarchical collision detection
structures for the object.

int VCollide::DeleteObject (int id); Delete an object.
int VCollide::ActivateObject (int id); Turn on collision detection for an object.
int VCollide::DeactivateObject (int id); Turn off collision detection for an object.
int VCollide::ActivatePair (int id1, int id2); Turn on collision detection between a specific

pair of objects.
int VCollide::DeactivatePair (int id1, int id2); Turn off collision detection between a specific

pair of objects.
int VCollide::UpdateTrans (int id,
 double trans[4][4]);

Update the transformation applied to an
object.Note that we consider only the change in
position of the object. Scaling is not supported.

int VCollide::Collide (void); Compute collisions.
int VCollide::Report (int size,
 VCReportType *vcrep);

Does not return VC_OK or VC_ERR, but
rather the number of collisions that occurred.
If size is nonzero, copies up to size collision
reports into the array colrep.

13 Extraided and adaptaded from Hudson’s documentation about V-Collide: A. Pattekar; J. Cohen; T.
Hudson; S. Gottschalk; M. Lin; D. Manocha. V-COLLIDE USER'S MANUAL - Release 1.1.
Department of Computer Science, University of North Carolina.

 68

Table B.2: C command reference - #include <VCol.h>

void * vcOpen (void); Creates and returns a valid handle to a new
collision detection engine.

void vcClose (void *vc_handle); Shuts down a collision detection engine.
int vcNewObject (void *vc_handle,
 int *id);

Create a new object and prepare it for adding
triangles.

int vcAddTri (void *vc_handle,
 double v1[3],
 double v2[3],
 double v3[3]);

Add triangles to the current object (only valid
between begin_object() and end_object()).

int vcEndObject (void *vc_handle) Finish adding triangles to the current object and
build the hierarchical collision detection
structures for the object.

int vcDeleteObject (void *vc_handle,
 int id);

Delete an object.

int vcActivateObject (void *vc_handle,
 int id);

Turn on collision detection for an object.

int vcDeactivateObect (void *vc_handle,
 int id);

Turn off collision detection for an object.

int vcActivatePair (void *vc_handle,
 int id1, int id2);

Turn on collision detection between a specific
pair of objects.

int vcDeactivatePair (void *vc_handle,
 int id1, int id2);

Turn off collision detection between a specific
pair of objects.

int vcUpdateTrans (void *vc_handle,
 int id,
 double trans[4][4]);

Update the transformation applied to an
object.Note that we consider only the change in
position of the object. Scaling is not supported.

int vcCollide (void *vc_handle); Compute collisions.
int vcReport (void *vc_handle, int size,
 col_report_type * colrep);

Does not return VC_OK or VC_ERR, but rather
the number of collisions that occurred. If size is
nonzero, copies up to size collision reports into
the array colrep.

Creating objects
To create an object, first call NewObject(), which will set up an empty object and

provide an integer ID for that object.
For every triangle in the object, call AddTri() with the coordinates of its three

vertices. If the object has faces with more than three vertices, you will first need to
triangulate them.

When you are done adding triangles, call EndObject(). This tells the library to
build its data structures for the object.

The only library call which may appear between NewObject() and EndObject() is
AddTri(). Objects can be deleted with DeleteObject().

You can create or delete objects at any time during the simulation, but building
the data structures for these objects has some run-time overhead.

 69

Managing activation state
 V-Collide's activation state determines which objects will be tested for

collisions. The activation state has two components -- a per-object component and a
pairwise component (for each possible pair of objects). These two components are
managed independently, so for a pair of objects to be tested for collision, not only must
the pair be active, but each of the two objects must be active as well.

When an object is created, it is active by default. In addition, all pairs of objects
that include this new object are also active.

The pairwise component of the activation state is managed using the ActivatePair()
and DeactivatePair() calls, while the per-object component is managed using the
ActivateObject() and DeactivateObject() calls. Because these components are managed
independently, modifying an object activation state does not affect the activation state of
an object's pairs.

Moving objects
To move an object, call UpdateTrans(). This function takes as arguments the ID of

the object and a new transformation for it, expressed as a 4x4 matrix, formulated to be
multiplied to the left of a column vector during the transformation. This matrix should be
a rigid-body transformation -- rotation and translation. When an object is first created, it
has the identity matrix as its transformation.

Performing the collision test
When all the objects' transformations have been modified as necessary and the

activation state is properly set, call collide() to perform the collision testing for the current
time step.

Getting reports
Calling Report() will return the number of collisions that occurred in the most

recent test. Report() can also be passed a buffer and a buffer size limit, and the buffer will
be filled with collision reports (of type VCReportType, defined in VCollide.[H]).

Return values
Most operations called on a V-Collide engine return an integer success code:

VC_OK on success, or an appropriate error code on failure. These codes are defined in
VCollide.[h]. Return values should be checked regularly to make sure that the application
is performing correctly.

Data files
V-Collide has no native data file format, so you are free to use to format of your

choice. The example code reads from several different file types.

 70

 71

Appendix C: RAPID User’s Manual14

Performing a Collision Query
A model thus specified can have a placement in its environment, or in “world

space”. The model’s placement in world space is defined as the placement of the model’s
coordinate axes within world space, which are specified as a rotation, R, followed by a
translation, T. Given the placement of a model with R and T, we can determine the
location in world space of a vertex of the model, given the vertex’s coordinates in model
space:

xw = Rxm + T

where xm is a point in the model coordinate system, and xw are the coordinates of the
same point, but with respect to the world coordinate system.

The basic function of RAPID is to indicate whether two objects are in contact in
world space. Suppose model m1 has orientation R1 and position T1 in world space, while
model m2 has orientation R2 and position T2. Then the function call to rapid which asks
whether the two models are touching is,

int
Collide (double R1[3][3], double T1[3][3]. RAPID_model *m1,

 double R2[3][3], double T2[3][3], RAPID_model *m2,
 int flag);.

This function returns RAPID_OK, which is 0, on success. A nonzero value
indicates that the call failed, and the value is itself the error code. At present, the only
error RAPID_Collide() can return is RAPID_ ERR_ COLLIDE_ OUT_ OF_ MEMORY.

After calling this function, the number of pairwise intersecting triangles can be
found in the global variable RAPID_ num_ contacts. So if this variable is 0, the models
were not touching. If it nonzero, they were touching.

To find out which triangles were among the contact pairs, the client must look in
the global array RAPID_contacts[] and the first RAPID_num_contacts elements are valid
data. This is an array of contact pair structures:

struct collision_pair{

int id1;
int id2;

};

struct collision_pair *RAPID_contact;

14 Extraided and adaptaded from Gottschalk’s documentation about RAPID: S. Gottschalk. RAPID User
Manual Version 2.0. Department of Computer Science, University of North Carolina, Chapel Hill, N.C.
4/25/97.

 72

Each contact pair structure corresponds to a unique pair of overlapping triangles,
indicated by the id1 and id2. So, for example, after calling Collide() as shown above, if
find that RAPID_num_contacts has been set to 43 then we could look at, say,
RAPID_contact[20].id2 to retrieve from the 21’st contact pair the triangle from model m2

The global variables remain valid until Collide() is called again.
Note that a given triangle id may appear multiple times in the contact pair list

once for each triangle it touches in the opposing model. But a given contact pair will
appear only once in the list.

Theoretically it is possible for each of n triangles in one model to touch each of m
triangles in another model, result in a list containing m*n contact pairs. If m and n are in
the hundred thousands or millions then the list could be quite long. If RAPID is unable to
allocate space for the contact list (or any other required structure) then Collide()
will return RAPID_ ERR_ COLLIDE_ OUT_ OF_ MEMORY instead of RAPID_ OK.

Building a model
So, how did RAPID acquire the models in the first place, and how do the triangles

get their id numbers?
The client tells RAPID the shape of an object by allocating a RAPID_model object,

and adding the model’s triangles to it. The following sequence of calls creates a pyramid
model, consisting of six triangles. Notice that the square base of the pyramid must be
built as two triangles.

static double p0[3] = { 0.0, 0.0, 1.0 }; //top of pyramid
static double p1[3] = {-0.5, -0.5, 0.0 }; //SW corner
static double p2[3] = { 0.5, -0.5, 0.0 }; //SE corner
static double p3[3] = { 0.5, 0.5, 0.0 }; //NE corner
static double p4[3] = {-0.5, 0.5, 0.0 }; //NW corner

RAPID_model *m = new RAPID_model;
m->BeginModel();
m->AddTri(p1, p2, p0, 0); //south face
m->AddTri(p2, p3, p0, 1); //east face
m->AddTri(p3, p4, p0, 2); //north face
m->AddTri(p4, p1, p0, 3); //west face
m->AddTri(p1, p4, p2, 4); //bottom face
m->AddTri(p2, p4, p3, 5); //bottom face
m->EndModel();

Notice that each triangle is given an id number, as we add it to RAPID’s object.

When RAPID reports contacts, these are the id numbers that get put into the contact_pair
structures.

The BeginModel() tells RAPID to prepare the object m for the addition of triangles.
Each subsequent AddTri() adds a triangle to the object m stores a copy of the triangle in m.
When EndModel() is called, RAPID knows you won’t be adding any more triangles, and it
then performs any necessary preprocessing.

Any of these three procedures may attempt to allocate additional space for the
model. If the allocation fails, then the procedure will return RAPID_ ERR_ COLLIDE_
OUT_ OF_ MEMORY. Otherwise, a successful procedure call will return RAPID_OK.

 73

Note: It is acceptable to overlap the BeginModel() and EndModel() pairs for different
objects as in the example below:

RAPID_model *m1 = new RAPID_model;
RAPID_model *m2 = new RAPID_model;
m1->BeginModel();
m1->AddTri(…);
m2->BeginModel();
m2->AddTri(…);
m1->AddTri(…);
m1->EndModel();
m2->AddTri(…);
m2->EndModel();

The RAPID model object can be destroyed with the usual C++ syntax,

delete m1;
delete m2;

To reload a model into a RAPID_model object, the BeginModel() call can be

invoked again, which frees all associated storage.
Once EndModel() completes, the model is said to have been processed. Collide()

returns RAPID_ERR_UNPROCESSED_MODEL when passed unprocessed models.
The usual build sequence for RAPID_model objects is BeginModel() repeated

AddTri() followed by one EndModel() and this entire sequence can be repeated. However,
any sequence of calls is safe - the system will not be corrupted. Calling EndModel() when
no triangles have been added yet will leave.

 74

 75

Appendix D: Example of a XML File

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE come SYSTEM "comescene.dtd">

<come>
 <scene gX="0.0" gY="-1.4" gZ="0.0">
 <simulation fps="600" duration="30.0"/>
 <patient name="John" gender="M" weight="70" height="1.80"
 age="25">
 <materials>
 <material description="bord" R="1.0" G="0.1" B="0.1"
 damping_const="0.2" density="970.0" youngs_modulus="15000.0" medium_density="1.0"/>
 <material description="center" R="0.0" G="0.8" B="0.1" damping_const="0.2" density="970.0"
 youngs_modulus="15000.0" medium_density="1.0"/>
 <material description="object" R="0.1" G="0.1" B="0.8" damping_const="0.2" density="833.0"
 youngs_modulus="15000.0" medium_density="1.0"/>
 </materials>
 <molecule_organ type="cartilage" description= "floor">
 <molecule x="-0.0525" y="-0.05" z="-0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0525" y="-0.05" z="-0.0375" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0525" y="-0.05" z="-0.0225" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0525" y="-0.05" z="-0.0075" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0525" y="-0.05" z="0.0075" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0525" y="-0.05" z="0.0225" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0525" y="-0.05" z="0.0375" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0525" y="-0.05" z="0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0375" y="-0.05" z="-0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0375" y="-0.05" z="-0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0375" y="-0.05" z="-0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0375" y="-0.05" z="-0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0375" y="-0.05" z="0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0375" y="-0.05" z="0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0375" y="-0.05" z="0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0375" y="-0.05" z="0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0225" y="-0.05" z="-0.0525" material="bord" friction_const="0.02"

 76

 radius="0.012" fixed="true"/>
 <molecule x="-0.0225" y="-0.05" z="-0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0225" y="-0.05" z="-0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0225" y="-0.05" z="-0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0225" y="-0.05" z="0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0225" y="-0.05" z="0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0225" y="-0.05" z="0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0225" y="-0.05" z="0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0075" y="-0.05" z="-0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="-0.0075" y="-0.05" z="-0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="-0.05" z="-0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="-0.05" z="-0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="-0.05" z="0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="-0.05" z="0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="-0.05" z="0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="-0.05" z="0.0525" material="bord" friction_const="0.02"

 radius="0.012" fixed="true"/>
<molecule x="0.0075" y="-0.05" z="-0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>

 <molecule x="0.0075" y="-0.05" z="-0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="-0.05" z="-0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="-0.05" z="-0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="-0.05" z="0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="-0.05" z="0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="-0.05" z="0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="-0.05" z="0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0225" y="-0.05" z="-0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0225" y="-0.05" z="-0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0225" y="-0.05" z="-0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0225" y="-0.05" z="-0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0225" y="-0.05" z="0.0075" material="center" friction_const="0.02"

 77

 radius="0.012" />
 <molecule x="0.0225" y="-0.05" z="0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0225" y="-0.05" z="0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0225" y="-0.05" z="0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0375" y="-0.05" z="-0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0375" y="-0.05" z="-0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0375" y="-0.05" z="-0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0375" y="-0.05" z="-0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0375" y="-0.05" z="0.0075" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0375" y="-0.05" z="0.0225" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0375" y="-0.05" z="0.0375" material="center" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0375" y="-0.05" z="0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0525" y="-0.05" z="-0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0525" y="-0.05" z="-0.0375" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0525" y="-0.05" z="-0.0225" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0525" y="-0.05" z="-0.0075" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0525" y="-0.05" z="0.0075" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0525" y="-0.05" z="0.0225" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0525" y="-0.05" z="0.0375" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 <molecule x="0.0525" y="-0.05" z="0.0525" material="bord" friction_const="0.02"
 radius="0.012" fixed="true"/>
 </molecule_organ>
 <molecule_organ type="cartilage" description= "cube">
 <molecule x="-0.0075" y="0.03" z="-0.0075" material="object" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="0.03" z="0.0075" material="object" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="0.03" z="-0.0075" material="object" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="0.03" z="0.0075" material="object" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="0.045" z="-0.0075" material="object" friction_const="0.02"
 radius="0.012" />
 <molecule x="-0.0075" y="0.045" z="0.0075" material="object" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="0.045" z="-0.0075" material="object" friction_const="0.02"
 radius="0.012" />
 <molecule x="0.0075" y="0.045" z="0.0075" material="object" friction_const="0.02"

 78

 radius="0.012" >
 <force x="0.0" y="0.0" z="0.0" time="0.0"/>
 <force x="0.0" y="0.0" z="0.0" time="6.0"/>
 <force x="0.0" y="0.07" z="0.0" time="6.5"/>
 <force x="0.0" y="0.07" z="0.0" time="7.0"/>
 <force x="0.0" y="0.0" z="0.0" time="7.2"/>
 <force x="0.0" y="0.0" z="0.0" time="10.0"/>
 </molecule>
 </molecule_organ>
 </patient>
 </scene>
</come>

 79

Appendix E: Scene of the performance test

Figure E.1: Scene of the performance test

 80

