Anatomy-based Kinematical Joint Model with Connective Soft Tissues

by

Anderson Maciel

Virtual Reality Lab
Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Outline

1. The problem of joint modeling
2. Context of this work (medical applications)
3. Our approach
 1. Kinematics (motion)
 2. Soft tissues (deformation)
4. Results & evaluation
5. Expected medical outcome
1. The problem of joint modeling
Usual approach

• Simplified – Idealized joint

• From robotics works

1. The problem of joint modeling
Ideal Approach

- Model everything
 - From cells to tissues to organs
- Complex
 - We cannot run the “Matrix” in nowadays’ machines
- Must simplify
 - Application driven simplification

1. The problem of joint modeling
Context and overview

• CO-ME project
 – Computer Aided and Image Guided Medical Interventions
 – Project #10:
 • A generalized approach towards individualized functional modeling of human articulations

2. Context of this work
2. Context of this work
Our approach

• Compromise (simplify according to the application)

• Medical applications: problem split in 2
 – Kinematical aspects
 – Soft tissues
Kinematical aspects

Joint motion model
Related work

Two classes of works

General mechanisms to keep body structure

Simulation of specific complex parts

3. Our approach – related work
Anatomy-based kinematical model

• Take anatomy into consideration
• Allow producing and constraining any type of motion
 + normalized parameterization
 + range of motion control
 + axes coupling
 + axes displacements
• Can be setup from captured data
• Simple motion specification (unified parameter)
Types of joints - anatomy

- Synarthroses
- Amphiarthrosis
- Diarthroses
 - Planar
 - Hinge
 - Pivot
 - Ellipsoid
 - Saddle
 - Ball-and-socket

2 DOF
- Axes are not fixed
- Joints are coupled

3. Our approach – kinematical model
The Joint Model – Basic topology

LIM = Local Instance Matrix

\[M_{[J_n \rightarrow \text{World}]} = \left(LIM_{J_n} \times LIM_{J_{n-1}} \times \ldots \times LIM_{J_2} \left(LIM_{J_1} \times LIM_{J_0} \right) \right) \]

3. Our approach – kinematical model
3. Our approach – **kinematical model**
3. Our approach – **kinematical model**
The Joint Model – Range modifiers

- Coupling between joints

3. Our approach – kinematical model
Anatomy-based configuration

Optical motion capture

Hip Joint Center and range of motions

Dynamic MRI data

3. Our approach – kinematical model
Deformation aspects

Soft tissues model

3. Our approach – deformation model
Literature review: modeling methods

• Mass-spring systems
 – Lattice of masses connected by springs
 – Advantages
 • Easy to construct/implement
 • Real-time animation
 – Limitations
 • Difficult to tune mechanics
 • Convergency problem (time step vs. stiffness)

3. Our approach – deformation model
Literature review: modeling methods

• Finite element method
 – Deformable object is considered as a continuum subdivided into elements
 – Advantages
 • Mechanical behavior is more realistic than mass-spring methods
 • Mechanical properties can be specified in the model
 – Limitations
 • computationally less efficient than mass-spring methods (especially for soft biological tissues)

3. Our approach – deformation model
Related work

Simulation of deforming elastic solids in contact
- Simulation of human motion from scanned data (visible human)
- Lowered computations
 - Precomputed material depth
- Solving method
 - Implicit finite element

Time and space adaptive sampling
- Adaptive level of detail
 - Refining the resolution with larger deformation
- Fast solving method
 - Local explicit finite element

3. Our approach – deformation model
Soft tissues model

Molecular model based on *

A generalized mass-spring model where mass points are spherical mass regions.

\[E = \{ e_1, e_2, \cdots e_n \} \quad C = \{ C_{e_1}, C_{e_2}, \cdots C_{e_n} \} \quad C_e = \{ C_1, C_2, \cdots C_n \} \]

\[\vec{F}_e = \vec{F}_G + \vec{F}_L + \vec{F}_C + \vec{F}_{\text{collision}} \]

\[\vec{F}_G = m_e \ddot{g} \]

\[\vec{F}_C = \vec{F}_b + \vec{F}_d + \vec{F}_f \]

\[\vec{F}_L = -\Pi r_e^2 \rho \frac{\vec{V}_e^2 \vec{V}_e}{\vec{V}_e} \]

\[\vec{F}_b = \sum_{i=0}^{C_{d}} -k_c (|\vec{P}_e - \vec{P}_p| - l_c) \frac{\vec{P}_e - \vec{P}_p}{|P_e - P_p|} \]

\[\vec{F}_d = \sum_{i=0}^{C_{d}} -b_c \left(\vec{V}_e \right) \]

\[\vec{F}_f = \sum_{i=0}^{C_{d}} -\mu_c \frac{\vec{V}_e}{|\vec{V}_e|} \]

3. Our approach – deformation model
Bio-tissues behavior

- Ligament, cartilage, tendon, muscle.
- Viscoelastic
- Anisotropic
- Non-linear
- Heterogeneous
- Sensitive to: age, gender, activity…

3. Our approach – deformation model
Configuring springs: trivial approach

Input:
- Young’s modulus of material (E)
- Spheres distribution
 - $r =$ radius
 - $l_0 =$ nominal distance between centers

Output:
- $k =$ Hooke’s constant

\[k = \frac{E(2r)^2}{l_0} \]

This approach works straightforward when applied to objects which springs have only right angles.

3. Our approach – deformation model
Iterative approach

- Pre-processing phase
 - Iteratively approximate value of spring constants

\[E = \frac{F \cdot l_0}{\Delta l \cdot A} \]

- Estimate effective \(E \) at a time step
 - A given force
 - Rest elongation
 - Current elongation variation
 - Cross sectional area
- Adapt \(k \) values
 - Minimize difference between effective and target \(E \)

3. Our approach – deformation model
Comparing with FEM analysis

- Same dimensions
- Same Young’s modulus
- Same force applied
- Very similar deformation

1 - FEM static analysis by IMES - Center of Mechanics/ETHZ
2 - Our reproduction using the same physical parameters and applying the same forces

3. Our approach – deformation model
Results and Evaluation

• Case study
 – Hip joint

MRI acquisition and 3D models reconstruction

Hip Joint Center

Discretization and kinematical model

4. Results and evaluation
Results – stress on hip joint cartilage

4. Results and evaluation
Outcome

• Challenges:
 – Understanding the role of different structures
 • Correlate pain and stress
 – Help on diagnosis
 – Surgery planning
 • validate customized treatments before application

5. Medical outcome
Acknowledgement