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Abstract

This paper addresses evaluation and visualization of
stress and strain on soft biological tissues in contact.
Given three-dimensional models of reconstructed organs
from magnetic resonance images (MRI), we use an
Anatomy-based kinematical model combined with a soft
tissues model to represent their shape and behavior.
Then, we compute resulting distribution of stress and
strain on deforming surface when motion is simulated.
The computed stress and strain are then effectively
visualized using an interactive animation framework.
Experimental results are illustrated in the case of the hip
joint cartilage.

1. Introduction

Evaluation of stress and strain is a typical analysis
method of three-dimensional bodies. It allows estimating
the deformation of an object under given load conditions.
That is why it is being widely used in CAD/CAM
applications and also in medical applications, especially
those related to biomechanics where it is important to
assess joints congruity [6]. For instance, assessing stress
and strain allows analyzing joint surface, which helps in
diagnosing possible pathologies or planning surgery.

Approaches for modeling object deformation range
from non-physical methods to methods based on
continuum mechanics which account for the effects of
material properties, external forces, and environmental
constraints or object deformation [9]. Here we focus on
specific physically based approaches, which are used for
modeling soft tissues and compute related physical
quantities. In this category, we find mass-spring systems
and finite element methods. Other physically based
methods used to model deformable objects include
implicit surfaces and particles systems but are not
considered here.

Our approach to model soft tissues relies on a
generalized mass-spring model where mass points are, in
fact, spherical mass regions called molecules. Elastic
forces are established between molecules by spring-like

connections. This model integrates properties of real
biological materials to define the stiffness of those
connections.

We compute the distribution of stress and strain on
deforming surface when motion is simulated. The stress
and strain calculated by means of the deformation model
are color mapped on the meshes representing organs to
indicate variation during motion. Experimental results are
illustrated in the case of hip joint cartilage. 

2. Related Work

2.1. Mass-spring systems

The mass-spring method is a physically based
technique that has been used widely and effectively for
modeling deformable objects. An object is modeled as a
collection of point masses connected by springs in a
lattice structure. Springs connecting point masses exert
forces on neighboring points when a mass is displaced
from its rest position (Figure 1). 

Mass-spring systems have been widely used in facial
animation. Terzopoulos and Waters used a three-layers
mesh of mass points associated to three anatomically
distinct layers of facial tissue (dermis, subcutaneous fatty
tissue, and muscle) [23]. To improve realism, Lee et al.
added further constraints to prevent penetrations between
soft tissues and bone [13]. In [20], mass-spring systems
were used to simulate muscle deformation. Muscles were
represented at two levels: action lines and muscle shape.
This shape was deformed using a mass-spring mesh. In
order to control the volume of muscles during deformation 
and smooth out mesh discontinuities, “angular springs”
were introduced. These springs differ from other springs
by the way they are attached. In this work, emphasis was
put on interaction rather than simulation quality. Aubel
used a similar approach with a multi-layered model based
on physiological and anatomical considerations [1].
Bourguignon and Cani proposed a model offering control
of the isotropy or anisotropy of elastic material [3]. Mass-
spring models do not have this property. The basic idea of 
their approach is to let the user define, everywhere in the
object, mechanical characteristics of the material along a



given number of axes corresponding to orientation of
interest. All internal forces will be acting along these axes 
instead of acting along the mesh edges. Mass spring
systems have also been used for cloth motion [2] and
surgical simulation [21][5]. In a more recent work,
Jansson et al. used a discrete mechanical model that can
be viewed as a generalized mass-spring model for
applications in computer-aided design [11].

Figure 1. Portion of a mass-spring model.
(Reprinted from [9])

Mass-spring models are easy to construct, and both
interactive and real-time simulations of mass-spring
systems are possible even with desktop systems. Another
well-known advantage is their ability to handle both large
displacements and large deformations. Mass-spring
systems have some drawbacks. Since the model is tuned
through its spring constants, good values for these
constants are not always easy to derive from measured
material properties. Furthermore, it is difficult to express
certain constraints (like incompressibility and anisotropy)
in a natural way. Another problem occurs when spring
constants are large. Such large constants are used to
model nearly rigid objects, or model non-penetration
between deformable objects. This problem is referred as
stifness. Stiff systems are problematic because of their
poor stability, which requires small time steps for
numerical integration resulting in slow simulation [9]. 

2.2. Finite Element

Whereas mass-spring models start with a discrete
object model, more accurate physical models consider
deformable objects as a continuum: solid body with mass
and energies distributed throughout. Models can be
discrete or continuous but the method used for solving is
discrete. Finite element method is used to find an
approximation for a continuous function that satisfies

some equilibrium expression. In FEM, the continuum
(object) is divided into elements joined at discrete node
points. A function that solves the equilibrium equation is
found for each element.

FEM has been widely used in soft tissues modeling.
Debunne et al. used a space and time adaptive level of
detail, in combination with a large displacement strain
tensor formulation [7]. To solve the system, explicit FEM
was used where each element is solved independently
through a local approximation, which reduces
computational time. Hirota et al. used FEM in simulation
of mechanical contact between nonlinearly elastic objects
[10]. The mechanical system used as a case study was the
human leg, more precisely, the Visible Human right knee
joint and some of its surrounding bones, muscles, tendons 
and skin. The approach relied on a novel penalty finite
element formulation based on the concept of material
depth to compute skin, tendons and muscles deformation.
By linearly interpolating pre-computed material depths at
node points of the finite element mesh, contact forces can
be analytically integrated over contacting regions without
raising computational cost. The algorithm was
implemented as a part of an implicit finite element
program for dynamic, quasi-static and static analysis of
nonlinear viscoelastic solids. High nonlinearity and
anisotropy typically observed for biological materials
were also supported. To achieve real-time deformation,
reducing computing time is necessary. Bro-Nielsen and
Cotin studied this problem by using a condensation
technique [4]. With this method, the computation time
required for the deformation of a volumetric model can be 
reduced to the computation time of a model only
involving the surface nodes of the mesh.

Finite element methods provide a more realistic
simulation than mass-spring methods but are less
computationally efficient. In addition, the linear elastic
theory used to derive the potential energy equation
assumes small deformation of the object, which is true for 
materials such as metal. However, for soft biological
material, objects dimensions can deform in large
proportions so that the small deformation assumption no
longer holds. Because of this change, the amount of
computation required at each time is greatly increased.

3. Deformable Model

Our approach to model soft tissues is inspired from the 
work of Jansson et al. [11]. Their work exploits a
generalized mass-spring model – which they call
molecular model – where mass points are, in fact,
spherical mass regions called molecules. Elastic forces are 
then established between molecules by a spring-like
connection.



Our contribution to this model is in the integration of
properties of real biological materials to define the
stiffness of its spring-like connections. We tested several
approaches and selected the one that we can generalize for 
arbitrary distributions of masses and springs. The
rheological standard to define the elasticity of a material is 
Young’s modulus. Young’s modulus is a property of a
material, not of an object. So, it is independent of the
object’s shape. However, when one discretizes an object
by a set of springs, the stiffness k of every spring must be
proportional to the fraction of the volume of the object it
represents. It means that if a cube of side l0 is compressed 
by a force F, it should shorten in the direction of the force, 
of the same elongation variation ∆l both if it is
represented by only one spring and if it is discretized by n 
springs. Equation 3 establishes the Young’s modulus E
from the knowledge of the elongation variation ∆l, an
applied force F, the length of the object in rest conditions 
l0, and the cross-sectional area of the object A. Applying
Eq.3 iteratively in the simulation loop we can minimize
the difference between the obtained and the aimed E
increasing or reducing the value of k’s accordingly. See
more details in [18].

The Force Model. The model is described by two sets 
of elements: E, a set of spherical massive elements
(molecules), and C, a set of connections between the
elements in E (Eq. 1).
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The model’s behavior is determined by the forces
produced on each element of E by each connection of C
and some external forces.
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FG: gravity (me is the mass of e and g is the gravity
acceleration);
FL: ambient viscous friction (r is the radius, ? is the
medium density and V is the velocity);
FC: connection forces, see Eq. 6.
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Fb: elasticity (kc is the spring Hooke’s constant, lc is the
spring elongation, and Pe and Pp are the positions of the
elements involved with connection c);
Fd: internal damping (bc is the damping coefficient, P and 
V are respectively the positions and velocities of the
elements involved with connection c);
Ff: sliding friction (µe is the friction constant for the 
element and FN is the force normal to friction direction).
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Figure 2. Comparison of results obtained with
our deformable model (right) to results obtained
with FEM (left) for the same setup.

To approach a validation for the model, we arranged a 
test setup to compare our results with results obtained by a 
Finite Elements static analysis. Two identical cubes have
been created, one by colleagues from IMES-ETHZ
(Institute of Mechanical Systems, Swiss Federal Institute
of Technology Zürich) on their own FEM software, and
the other using our implementation of the deformable
model described above. The same Young’s modulus was



used on the two objects, the same constant forces were
applied onto them, and the results were compared. Visual
results for a shear force applied on the upper face are
shown in Figure 2. Besides the visual results that look
similar, we also compared the displacement of key points
tracked on both objects. These points represented on
figure 2 by red spheres underwent the same
displacements.

4. Anatomy-Based Kinematical Model

A kinematical model represents the human body
articulated system as a tree where joints correspond to the 
nodes of the tree. Organs like bones and cartilage caps are 
instantiated into this node to give anatomical appearance
to a human body part, (Figures 3). Any generic joint is
able to describe any kind of relative motion between two
or more adjacent segments of the body. Such motion can
be given by: a) a rotation around one axis; b) a composed 
rotation around two or three axis; c) a translation in one to 
three Cartesian directions; d) rotations associated to
translations; and e) an axis sliding on a parametric curve
during rotation.

Figure 3. Sliding axis of a Joint. The rotation

angle and the position on the curve are
normalized within the range of motion and are
defined by the same input parameter.

One particularity of our model – (e) above – is an
approach to solve the problem of a joint center or axis that 
presents a displacement during motion. As the sliding axis 
move along a curved path, we chose to represent it by a
standard parametric curve in 3D space. To be sure that the 
axis will slide on the curve, every time the angular
parameter (normalized within the range of motion) of an
axis changes, the same parameter is mapped in the curve
equations to determine its respective point on it. The
example in Figure 4 shows an axis angle and its reference
frame position evolving according to the variation of the

normalized angular parameter. More details can be found
in [17].

5. Color Mapping

Color mapping is a common scientific visualization
technique to display physical quantities on three-
dimensional objects. Being effective and simple, it is
widely used in CAD/CAM [12][8] and medical
applications [16] for shape analysis. This technique
consists in mapping scalar data to colors, and displaying
the colors on the computer system. The scalar mapping is
implemented by indexing into a color lookup table where
scalars serve as indices. 

Color mapping can also be performed by the use of
transfer functions, which are expressions that map scalar
values into color specifications. A lookup table is a
discrete sampling of a transfer function and can be created 
from transfer functions by sampling them at discrete
points [22].

Effective color mapping requires careful selection of
color lookup tables and transfer functions. This selection
requires sensitivity to the qualities of human perception
and any special features in the data itself. Levkovitz
studied the merits of color scales for medical images and
introduced the notion of an optimal color scale [14]. 

In a previous work, we developed an automatic
classification method for color maps [15]. Using different
transfer functions (linear, S-curve, logarithmic, etc) and
color domains, we generated 168 color tables that were
projected onto a 2D layout, which makes exploration easy. 
This method is applied in this work to select appropriate
color tables or transfer functions.

6. Application

Experimental results are illustrated in the case of a
human hip joint. For instance, assessing stress and strain
on the cartilage caps allows analyzing joint surface, which 
helps in diagnosis and surgical planning. An interactive
test application was built. This application allows the user 
to visualize stress and strain on a model of human hip
joint. With this application a user can change the point of
view, choose to show or hide specific structures, use
different color maps or use transparency to inspect
internal parts that are usually masked.

3D boundary models of organs (meshes) are
reconstructed from segmented MRI data [24]. The 3D
meshes representing bones are considered rigid bodies
and are used as is. Cartilage meshes have their volume
discretized into a number of spherical regions representing 
the molecules of the deformation model (Figure 4).
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Figure 4. The cartilage cap of the acetabular cup
discretized into a set of spherical regions.

The vertices on the surfaces of the cartilage caps are
then linked to the neighborhood of underlying molecules
with weights according to distances, and follow the model 
deformations. Surface molecules are used to generate
contact avoidance forces. These forces, that are calculated 
using a penalty method [19], are consequently used by the 
deformation model to produce deformation. Motion is
generated using the kinematical model (Figure 5). Finally, 
stress is calculated relating these forces with their area of
actuation, and strain is calculated relating the original and 
current distances between molecules centers. 

Figure 5. Kinematical hip. In this model the usual 
rotational axes are not constrained to rotate
around a fixed point. The center of rotation can
slide according to the angular position of the
joint.

The last step is using color mapping for effective
visualization of these values (Figures 6). Interactive
visualization techniques allow free exploration of the
simulation setup (Figure 7). All six images display the
same posture but with different options: in the image (a)
all surfaces are visible; in (b) acetabular parts are
transparent to reveal a hidden surface of the femoral
cartilage cap; in (c) the opposite, femoral parts are hidden 
and a user can inspect stress on the acetabular cartilage
(virtual camera is displaced to see the interior); in (d),
both cartilage caps are visible while bones are invisible; in 
(e) and (f) we have respectively the acetabular and

femoral cartilage surfaces only. A simulation of evolving
stress during motion is also presented on Figure 8.

Figure 6. Stress distribution mapping on hip joint 
cartilage using a S-curve, blue-to-red transfer
function.

7. Summary

In this paper, we have presented the combination of a
deformable model for biological soft tissues with an
anatomy-based kinematical model of human joints, which
we used to simulate motion on the hip joint and evaluate
stress and strain on cartilage surfaces. 

The model demonstrated its ability to handle the stress-
strain computation for two coupled surfaces with
interactive user control. Associated to our palette of
visualization tools, the user interaction can easily
highlight regions subject to high stress, hence to
pathologies.

At this moment, the deformation model is linear elastic 
and isotropic. We are working to improve it by adding
viscous components and considering fibers orientation in
the tissue. We aim at making it a viscoelastic, anisotropic
and heterogeneous model, which is closer to the nature of
the real biological tissues. It is crucial to support the
envisaged medical applications. Future work also includes
the evaluation of joint range of motion using the
information given by stress distribution.
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(a) (d)

(b) (e)

(c) (f)

Figure 7. Different views of the problem. Interactive visualization techniques allow free exploration of
the simulation setup. All six images display the same posture but with different options: in the image
(a) all surfaces are visible; in (b) acetabular parts are transparent to reveal a hidden surface of the
femoral cartilage cap; in (c) the opposite, femoral parts are hidden and a user can inspect stress on the 
acetabular cartilage (virtual camera is displaced to see the interior); in (d), both cartilage caps are
visible while bones are invisible; in (e) and (f) we have respectively the acetabular and femoral cartilage 
surfaces only. 
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Figure 8. Simulated right hip joint evolving with stress mapped on cartilage surface. The frames 1 to 6
show a cycle of flexion-extension, and the frames from 7 to 12 show an abduction-adduction cycle.
Note that stress is different for equivalent positions taken in forth or back motion because of dynamics.


