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Abstract. The Braess Paradox is a well known phenomenon in transportation
engineering: adding a new road to a traffic network may not reduce the total
travel time in it. In fact, some road users may be better off but they con-
tribute to an increase in travel time for other users. This situation happens
because drivers do not face the true social cost of an action. Previous works
have shown that in commuting scenarios, where people use the same traffic
network routinely, a continuous learning and adaptation process is a realistic
scenario: road users can adapt to the traffic conditions and will eventually
learn to avoid the situation in which the cost is higher. However, this learning
process can take a long time. Moreover, because the process is very sensi-
ble to the cost function and to the number of agents using the network, a
more efficient approach to distribute agents in the network is to let the traffic
control center to acquire and process data regarding the occupancy of the
available roads and compute the optimal distribution (from the point of view
of the whole system). With this information, manipulated information can be
passed to the road users. The interesting point is what happens when drivers
simultaneously receive this kind of information and are involved in learning
processes. Thus this paper reports results obtained after simulations of sev-
eral situations related to the Braess scenario: only uninformed agents using
the network; with different shares of uninformed agents; drivers adapting to
the traffic conditions under different learning probabilities; drivers receiving
forecast; and drivers receiving manipulated information.

1. Introduction

The Braess Paradox was originally presented by Braess in 1968 [4]. This “paradox”
consists of a phenomenon which contradicts the common sense: in a traffic network,
when a new link connecting two points (e.g. origin and destination) is constructed,
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it is possible that there is no reduction regarding the time necessary to commute
from the origin to the destination. Actually, frequently this time increases and so
the costs for the commuters.

Several authors have investigate the original problem ([1, 2, 7, 8, 10] among
others) as it will be detailed in the next section.

The present work describes a model already partially used by Tumer and
Wolpert [10] who have investigated the use of a multi-agent system to control
routing of packages in a computer network using the so-called Collective Intelli-
gence (COIN) formalism. The authors conclude that the network is also sensible
to the paradox in some cases. It happens because the agents, by trying to reduce
their individual routing times in a greedy way, end up increasing the global time.

We depart from Tumer and Wolpert work in what concerns the scenario and
the determination of private goals for each agent. We use the classical scenario
proposed by Braess, i.e. road traffic, in which a new link added to the network
is very attractive to the users since the commuting time there is low. Besides,
instead of using the COIN formalism, we introduce a kind of “manipulation” of
the information given to agents about the state of the system in order to distribute
the agents more evenly.

The discussion on the Braess Paradox and previous approaches to it is pre-
sented in the next section. Section 3 describes the approach based on providing
information manipulation to the road users and all the situations we simulated.
The results of these simulations are reported in Section 4 while Section 5 discusses
the conclusions and future work.

2. The Braess Paradox and Some Previous Approaches

2.1. Basic Braess Scenario

In the scenario proposed by Braess [4], drivers or agents can select between two
or three available paths to commute from origin O to destination D, as depicted
in Figure 1, items (a) and (b) respectively.

In the network, commuting times are computed by means of the functions
depicted for each link. They are all function of the flow or number of vehicles (e.g.
TOQ = f ∗ 10), where f is the number of vehicles in that particular edge.

In the configuration depicted in Figure 1, item (a), it is clear that if we have 6
vehicles (the original number in Braess paper), the equilibrium occurs when routes
OQD and OPD carry 3 vehicles each. No one would be better off changing route.

In order to understand the paradox which occurs in the configuration depicted
in Figure 1, item (b), let us consider an increasing number of vehicles starting
with only one. For a single vehicle, route OQPD is much cheaper: it takes only
10+11+10 = 31 time units to commute from O to D. Taking OPQ or OQD would
take 61 time units. It is easy to see that for more than 2.58 drivers, the new route
is not advantageous anymore, so drivers would not use OQPD at all.
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Figure 1. Two configurations of the network in the classical sce-
nario of the Braess Paradox: (a) two possible routes: OPD and
OQD (four-link network); (b) with additional route OQPD (five-
link network)

Table 1 shows the costs for each of the five links, as well as the cost over all
links, for different distribution of drivers among the three routes. The paradox is
clear: when the six drivers are distribute in the two original routes, then the total
cost is 176 units. However, when they find themselves two in each route, then the
total cost increases to 196. This is so because the last case is the user equilibrium:
each route takes 92 units so there is no incentive to change route. In the former
case, routes OQD and OPD cost 83 each while route OQPD costs 70 thus being
an incentive for drivers to change to OQPD. The problem is that when too many
change, then the cost can be very high (see for instance the last line in the table,
where the total cost is 236 because all six drivers use OQPD).

Nb. of Drivers Cost of Link Cost

OP QD QP
3 3 0
2 2 2
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
6 0 0
0 6 0
0 0 6

OP QD QP OQ PD
53 53 10 30 30
52 52 12 40 40
51 52 13 50 40
51 53 12 50 30
52 51 13 40 50
52 53 11 40 30
53 51 12 30 50
53 52 11 30 40
56 50 10 0 60
50 56 10 60 0
50 50 16 60 60

Total
176
196
206
196
206
186
196
186
176
176
236

Table 1. Cost for link and total cost for different distributions of drivers
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2.2. Related Work

Following the seminal work by Braess [4], many authors have been proposing
applications and modifications on the formulation of the problem in order to avoid
the paradox. Smith’s paper [9] aims to show how, in a particular simple case, total
journey time varies with the travel time along an uncongested link. This result is
of particular relevance to towns with a good bypass or, better, a good outer ring
road.

From the perspective of the economics of traffic, Arnott and Small [2] analyse
three paradoxes in which the usual measure for alleviating traffic congestion, i.e.
expanding the road system, is ineffective. The resolution of these paradoxes —
among them the Braess Paradox — employs the economic concept of externalities
(when a person does not face the true social cost of an action) to identify and
account for the difference between personal and social costs of using a particular
road. For example, drivers do not pay for the time loss they impose on others,
so they make socially-inefficient choices. This is a well-studied phenomenon more
generally known as The Tragedy of the Commons [5].

Regarding the Braess Paradox, in the scenario analysed by Arnott and Small
the travel time for each of the two original routes is 20 minutes, while after the
addition of the new route the travel time for the equilibrium situation rises to 22.5
minutes for each route.

Returning to traffic engineering and physics communities, in Penchina [8] the
“simplest anti-symmetric” two-path network is described which exhibits the Braess
paradox. A discussion of the good effects (non-paradoxical) of a bridge (especially
a two-way bridge) is also included. Their Minimal Critical Network and graphical
solution technique gives a clear understanding of the paradox for this network.
They are also especially useful for analysis of sensitivity to such extensions as, e.g.
changes in parameters, elastic demand, general non-linear (even non-continuous)
cost functions, two-way bridges, tolls and other methods to control the paradox,
and diverse populations of users. It is shown that the paradox occurs in a simpler
network than previously noted, and with a larger Braess penalty than previously
noticed.

Yang and Bell [11] work deals with network design via the Braess paradox
and show how this capacity paradox can be avoided by introducing the concept
of network reserve capacity into network design problems. Pas and Principio [7]
examine properties of the paradox and show that whether the paradox does or
does not occur depends on the conditions of the problem (link congestion function,
parameters and the demand for travel). Akamatsu [1] explores the properties of
dynamic flow patterns on two symmetrical networks.

Although the literature from the transportation branch also proposes some
ways of avoiding the paradox, all of them concentrate on the parameters of the
network, not on the driver itself, thus relegating the human component which plays
an important role. One can argue that even if the “right” network is constructed
(i.e. one which avoids the paradox from the point of view of the mathematics of the
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problem as it was proposed in the literature), drivers will always seek to maximize
their individual payoffs which frequently leads to sub-optimal global distribution
of traffic in the roads of the network. Besides, even if the “right” parameters are
taken into account in the design of the network, the increasing demand for mobility
in our society leads to a rapid obsolescence of the network. Thus we argue that it
is not correct to talk about “right” parameters.

2.3. Multi-agent Approaches

Multi-agent systems approaches are interesting in the Braess scenario since one can
focus on the issues related to the driver and its decision-making process. Tumer
and Wolpert [10] have investigated the use of a multi-agent system to control rout-
ing of packages in a computer network, as well as the sensitivity of the network
to the Braess paradox using the Collective Intelligence (COIN) formalism. Perfor-
mance using COIN is compared to the case in which each agent in a set of agents
estimates the “shortest path” to its destination. Since each agent decision (which
is based on this estimation) ignores the effects of the decision of other agents on
the overall traffic, performances based on estimation of the shortest path are badly
sub-optimal. The authors conclude that the network is also sensible to the paradox
in some cases. It happens because the agents, by trying to reduce their individual
routing times in a greedy way, end up increasing the global time.

In the COIN approach, the new goals are tailored so that if they are col-
lectively met the system maximizes throughput. The world utility, G(ζ), is an
arbitrary function of the state of all agents across all time. The utility for an agent
is given by the difference between the total cost accrued by all agents in the net-
work and the cost accrued by agents when all agents sharing the same destination
are “erased”.

Bazzan and Klügl [3] present a learning heuristic and depart from Tumer
and Wolpert work in what concerns the scenario and the determination of private
goals for each agent. The classical scenario proposed by Braess, i.e. road traffic,
is used, in which a new link added to the network is very attractive to the users
since the commuting time there is low. However, since it overlaps (see Figure 1)
with the existing paths, the global commuting time increases.

The approach in [3] is based on learning and adaptation by means of an
heuristic capable of minimizing both the global and local performance losses.
Moreover, the heuristic was developed with the multi-agent paradigm in mind
requiring very little processing of each simulation agent making it very scalable.
Besides, it is important to notice that agents do not need to explicitly communi-
cate in order to coordinate their choices. Thus, the learning heuristic proposed –
called A2B (Adapt to Braess) – improves the performances because it implicitly
includes some factors of the global performance in the individual ones. Comparing
the situation in which the agents use this heuristic to the situation in which the
selection of routes happens at random, the performance greatly improves, i.e. the
total commuting time decreases.
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In short, A2B is based on reinforcement learning. Agents form tactics for
selecting a route according to the reward obtained in that route in the past. Each
tactic is associated with a learning rule.

Be i the index of an agent, and j the index of an action available to agent i.
In a set of actions Ai = (a1,. . . ,aj), a learning rule is a rule which specifies the
probabilities Pi = (pi,t(a1),. . . ,pi,t(aj)) as a function of the rewards obtained by
selecting actions in the past. In the future, each action is selected according to its
probability.

In the Braess scenario, this means that each agent remembers how many
times s/he used each route and the total amount of time spent traveling on each
of them. With this information in mind, the agent then calculates the average
travel time taken at each route and selects the one with the shortest time. The
average travel time in each route is actually computed by means of a discount
factor δ, in order to allow us to play with the fact that it is not desirable that
agents remember all the past with the same weight they remember the more recent
outcomes. Thus, the last time measured at a given route is multiplied by δ while
the averaged past time is multiplied by (1 − δ).

Hence, pr – the probability of selecting each route r – is updated according
to Equation 1, where r is the index of each available route,

∑

r

is the sum over

all routes, and
∑

t

TOD,r the sum of travel time for commuting from O to D using

route r along time t.

pr =

1
P

t

TOD,r

∑

r

( 1
P

t

TOD,r
)

(1)

3. Approaches and Scenarios

Although this scenario is not one of binary decision, the basic conditions from
the iterated route choice (IRC) scenario [6] are valid. This is a model for adaptive
choice in which each agent has no information about other agents. They decide
which alternative to select based on a local inference about the costs or rewards
of each available action from the action set. This inference is based on the update
of the probability according to which an agent selects each alternative action.

In the adaptive scenario the agent i updates these probabilities with a certain
periodicity according to the rewards it has obtained selecting alternative r up to
that point. The update of the heuristic is done via reinforcement according to the
following formula:

heuristic (i) =

∑

t

rewardr(i)

∑

t

reward(i)
(2)
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This basic scenario can be extended to give agents forecast information. Now,
the decision-making process was performed in two phases. First, agents make their
initial selection (first decision) based on the adaptation process introduced above.
Based on this information collected from agents, a control center computes the
reward for every agent and sends this information back: the agents receive a fore-
cast information regarding the potential reward they would have if they would
keep their first decision. Then, they have a second chance to actually take their
first choice or change it (second decision). Finally the actual selections are made
yielding the actual rewards.

The third situation occurs when “manipulated information” is given to agents
to try to force an equilibrium distribution between the alternatives. For example: if
the current distribution is numberOQPD = 500 and numberOPD =numberOQD =
500, it is clear that the system could do better in terms of global sum of travel times.
Also, the rewards of agents are sub-optimal (not necessarily for each individual).
When the control system perceives such a situation, it tries to induce agents to
come closer to the global optimum by given manipulated forecast to them. In the
particular case above, the control system can give a bad forecast for route OQPD
to try to divert drivers to other routes.

In our scenario, drivers or agents can select between the three available paths
to commute from origin O to destination D, as depicted in Figure 1, item (b). In
this network, commuting times are computed by the means of the cost functions
depicted for each link. They are all function of the flow or number of vehicles
as already explained in Section 2. Moreover, since this is a commuting scenario,
agents perform this selection repeatedly. We then measure the number of drivers
selecting each of the available routes, as well as the total time of commuting.

Thus, in some situations we simulate, agents just select a route at random,
while in others they consider their past experience regarding performance mea-
sured by commuting time 1.

The implementation was done using SeSAm, a shell for developing agent-
based simulation2. In the implementation, agents and vehicles can be consider a
single unit. The situations we have simulated are:

I Drivers are uninformed i.e. they all randomly select one of the 3 routes
II Drivers select one of the 3 routes according to the algorithm proposed in [3]

(A2B) which includes adaptation based on the past performance
III Different proportions of uninformed drivers select randomly while the rest

use the A2B learning algorithm
IV All drivers receive forecast information about the occupancy of the road it

has selected and either keep their decision or reselect a route
V Drivers receive manipulated information regarding the forecast

1Up to now we use only this measure which is also standard in the field. However we do not com-

pletely agree that commuting time is the only issue drivers consider, although it is certainly the

most important. We are investigating how to include driver comfort, knowledge of the network,

willingness to change route, and other issues to the performance function.
2available for download at www.simsesam.de
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Simulations of situation I is clear: N drivers randomly select between routes

OPD, OQD, and OQPD. If ~P is the array of probabilities for selecting routes,

then the initial distribution is ~P0 = (1/3, 1/3, 1/3). One can argue that this ini-
tial distribution does not reflect the commuting times. However, since the cost of
commuting is influenced by the number of drivers at any of the routes (which is
unknown), each agent actually has no preference at the beginning. Therefore, it
puts equal probability to each of the routes.

Situation II was simulated taking into account a behaviour by agents which
follows these ideas: drivers use the selection strategy A2B. This keeps track of
choices in the past, sums the performances regarding each of the three possible
route, and updates an array of probabilities for selecting each route. The perfor-
mances depend on the choices of all other agents, what configures a typical problem
of coordination.

While in situation II all drivers are informed, in situation III we play with
the parameter rate of random drivers, i.e. the rate of drivers who are new in
the network so they do not have enough information to use the learn-and-adapt
algorithm. Thus they just select a route randomly. We use rates of 0 (which is
situation II), 25, 50, 75, and 100% (situation I).

In situation IV drivers receive forecast information about the selected route,
as explained above when we introduced the IRC model plus its extensions. Also
here we played with the number of random drivers so when this rate is 0% everyone
gets the information and adapt. When it is 100% everyone ignores the forecast. The
difference in this case is that the forecast information may influence the decisions
of the agents since not all will keep their first intention. It is expected that the
noise increases and that the third route is used more frequently.

Finally, in situation V, the traffic control center gives “false” forecast to
prevent drivers from using a route which is expected to be increase the global
costs. An interesting question here is that agents can learn that the information
cannot be trusted, as they not only receive this kind of information but rely on their
learn-and-adapt heuristic. The situation regarding false or manipulated forecast
happens frequently with radio broadcast of traffic messages. When it brings no
real payoff, drivers tend to have a critical view of it.

4. Description of the Experiments and Results

In this section we discuss the results regarding the five situations presented above.
In all cases, the N agents interact and have to implicitly coordinate since they are
using shared resources. For the experiments, we use N = 1500 agents, δ = 0.8,
and the learning probability is 0.2. Cases with less agents and in particular with
N = 6 are reported in [3].

As for the cost functions to compute the commuting time, they are shown in
Table 2. For N = 1500, the paradox happens with parameters shown in Table 3.
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Links Function
OQ TOQ = β1 ∗ fOQ + α1

PD TPD = β1 ∗ fOQ + α1

OP TOP = β2 ∗ fOP + α2

QD TQD = β2 ∗ fQD + α2

QP TQP = β4 ∗ fQP + α4

Table 2. Functions to compute the time to traverse each route
in the network.

Parameter Values
α1 70
α2 500
α4 5
β1 0.2
β2 0.05
β4 0.5

Table 3. Values for parameters when N = 1500.

With these parameters, the global costs can be computed for the particular
situations of interest:

1. when the N = 1500 drivers are distributed equally among the 3 routes, the
global cost is 795 for OQPD, OQD, and OPD; this is also the average cost
per driver, while the global cost is 1845 (over all sub paths).

2. when all drivers avoid the OQPD route and 750 use each remaining route,
the total cost is 445 for OQPD and 757.5 for the other two, thus adding up
1520.

In the simulations, the dimensions measured were mainly distribution of dri-
vers in each route, and the probability of selecting each route (averaged over the
N agents). The cost is a direct function of the distribution of drivers so we do not
plot costs here.

In situation I the paradox can be observed: since the selection of the 3 routes
is random, some drivers do select route OQPD and this increases the global com-
muting time.

The case of situation II for N = 1500 agents was discussed in [3]. The majority
of the agents tended to avoid the third route, although this does not happen
completely due to the inertia in the learning process. The distribution of agents
between the two remaining routes tended to be equal, as it maximizes the average
performance of the agents. The learning process is slow and sensible to the cost
parameters.
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Figure 2. Number of drivers selecting route OQPD along time,
under different conditions (only random selection, with learning,
with forecast, and under information manipulation (N = 1500).

The simulations of situation III show that the increase in the number of
random drivers increases the usage of the route OQPD thus increasing the global
cost.

As for situation IV, the forecast given to the drivers does not help when it is
the correct one, that means, when it is the information actually computed from the
first intention of each driver. This happens because, in the majority of the cases,
the forecast is worse than the expected value a driver computes for the selected
route. Thus, the driver rejects his first selection and perform a second selection
randomly. As above, situations in which too many drivers choose randomly brings
to an usage of OQPD and therefore, to an increase in costs. Even if drivers have
a tolerance to the forecast (i.e. they do not simply reject their first selection but
tolerate a worse forecast up to some threshold), the situation does not improve
because in this case the system has a performance similar to that in situation II.

Therefore, the best results were achieved with situation V, i.e. with infor-
mation manipulation. The gain in performance is summarized in Figure 2. We
plot the number of drivers who select route OQPD along time, for the situations
above: with only random selection, with the learn-and-adapt process, with forecast
(and no random driver), and under manipulation of information (and no random
driver). One sees that only the last case brings some of the number of drivers to
avoid the route OQPD. In the other cases, around 1/3 of the drivers still select
this route (curves overlap).



Reducing the Effects of the Braess Paradox with Information Manipulation 11

0 100 200 300 400 500 600 700 800 900 1000
200

300

400

500

600

25% random drivers
75% random drivers
50% random drivers
no random drivers
100% random drivers

Figure 3. Number of drivers selecting routes OQPD along time,
under manipulation and with different rates of random selection
(N = 1500 agents).

Now, it is interesting to investigate what happens if not all drivers are in-
formed, i.e. when random drivers perform the route selection together with drivers
who learn and get manipulated forecast. We have simulated this situation with dif-
ferent shares of uninformed drivers: 0, 25, 50, 75, and 100% and these results are
depicted in Figure 3).

The case with the lowest number of drivers selecting OQPD is the one in
which everybody is informed (thus, the same curve which appeared in Figure 2).
This shows that the role of information is significant and, moreover, that the role
of manipulated information is even more important than the correct forecast since
the latter can introduce noisy in the learning process of the drivers, especially when
too many drivers are unaware of this information. For higher shares of uninformed
drivers, the trend is that the route OQPD is selected more often. Of course, in
case 100% of drivers do not get information, the manipulation has no effect and
thus, the selection is random and inefficient both for each driver and for the whole
system.

5. Conclusion and Future Work

In the classical scenarios on the Braess Paradox reported in the literature, if drivers
or agents of any kind, act to maximize their own profits, the global performance
of the system may decrease. This happens because the global goal opposes the
individual goals in most cases.
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While studying the Braess Paradox, we noticed that this could be an in-
teresting scenario for investigating issues related to learning and adaptation as
well as information manipulation in order to minimize both the global and local
performance losses. Moreover, the heuristic was developed with the multi-agent
paradigm in mind requiring very little processing of each simulation agent mak-
ing it very scalable. Besides, it is important to notice that agents do not need to
explicitly communicate in order to coordinate their choices.

In this paper we have studied the effect of information manipulation in the
Braess scenario. The simulations show that it is useful to manipulate the forecast
information given to the agents. Doing so, the control system is able to divert them
to the more convenient alternative, from the point of view of both the overall
system and the individual agents (as this is the situation in which individual
rewards are the highest). This holds in higher or lower degrees for different shares
of uninformed drivers.

The main conclusion is that having agents provided with the most accurate
information (information about the actual state of the system) is not necessarily
good.

This work is based on a series of assumptions that may not be bearable in
every real world application. First, we assume a global control component that is
able to compute the exact utility of the agent decisions for producing the forecast
information. Although this degree of exactness in forecast might not be necessary,
under which circumstances the existence of such a forecast system is realistic in
general?

Second, and more interesting from the perspective of mechanism design, is
the assumption that the central component acts in the interest of the highest
system performance. However, when we have other interests involved (for instance
when there are several competing “central” controller components), some of them
may act primarily to disturb the others.

Therefore, the next directions of this research are twofold: the system may
be able to learn the share of uninformed and account for this share when giving
manipulated information; and designing of more complex agent architectures to
accommodate competition and self-interest.
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