

March 12, 2003 14:6 WSPC/111-IJCIS 00073

International Journal of Cooperative Information Systems
Vol. 12, No. 2 (2003) 241–273
c© World Scientific Publishing Company

ATUCG AN AGENT BASED ENVIRONMENT FOR

AUTOMATIC ANNOTATION OF GENOMES

ANA L. C. BAZZAN∗†, ROGÉRIO DUARTE, ABNER N. PITINGA,
LUCIANA F. SCHROEDER†, FARLON DE A. SOUTO

Instituto de Informática, Univ. Fed. do Rio Grande do Sul, Caixa Postal 15064

91501–970, Porto Alegre, RS, Brazil

bazzan@inf.ufrgs.br

pitinga@inf.ufrgs.br

luciana@inf.ufrgs.br

fsouto@inf.ufrgs.br

SÉRGIO CERONI DA SILVA

Centro de Biotecnologia and Fac. de Veterinária

Univ. Fed. do Rio Grande do Sul

91501–970, Porto Alegre, RS, Brazil

ceroni@inf.ufrgs.br

This work reports on the ATUCG environment (Agent-based environmenT for aUto-
matiC annotation of Genomes). It consists of three layers, each having several agents in
charge of performing repetitive and time-consuming tasks. Layer I aims at automating
the tasks behind the process of finding ORFs (Open Reading Frames). Layer II (the
core of our approach) is associated with three main tasks: extraction and formatting
of data, automatic annotation of data regarding profiles or families of proteins, and
generation and validation of rules to automatically annotate the Keywords field in the
SWISS-PROT database. Layer III permits the user to check the correctness of the au-
tomatic annotation. This environment is being designed having the sequencing of the
Mycoplasma hyopneumoniae in mind. Thus examples are presented using data of organ-
isms of the Mycoplasmataceae family. We have concentrated the developments in layer
II because this is the most general one and because it focusses on machine learning algo-
rithms, a characteristic which is not usual in annotation systems. Results regarding this
layer show that with learning (individual or colaborative), agents are able to generate
rules for annotation which achieve better results than those reported in the literature.

Keywords: Genome annotation; agent-based system; machine learning;
Mycoplasmataceae.

1. Introduction

Nowadays no genome project can escape the speed imposed by the necessity of

finishing the sequencing and annotation of the target organism in the shortest time

possible. Hence, high-throughput sequencing is becoming a common place. However,

∗Corresponding author.
†Author partially supported by CNPq.

241

March 12, 2003 14:6 WSPC/111-IJCIS 00073

242 A. L. C. Bazzan et al.

few tools exist to automate tasks involved in such sequencing and annotation. In

particular, integrated tools are rare.

The aim of our work is to provide the team in charge of genome sequencing

and annotation (henceforth referred as end user(s), even if this is probably not the

most correct term) with a tool that facilitates the activities involved in carrying

out those tasks.

This paper is organized as follows. The next section briefly discusses the motiva-

tion of our work. Section 3 discusses background ideas behind automated annotation

using several techniques such as machine learning, agents, and so on. Then our ap-

proach is fully detailed in Sec. 4. Sections 5 and 6 discuss the results achieved so

far, followed by a comparison of our environment to others and the indication of

further directions regarding this work. We conclude with Sec. 7.

2. Motivation

Genome projects have been under a strong pressure to analyze and publish new

sequences as fast as possible. This way, researchers involved do not have time to

perform complete annotations; they are providing what seems to be the strictly

necessary. One reason for this is that in spite of the growing number of tools for

analyzing DNA sequences, these are no panacea as first thought. Several shortcom-

ings can be listed: no program when used isolated can outperform the human expert

regarding the ability to predict the locations of exons and other genetic signals, but

several different programs combined, using different approaches, have more chance

to come close; each program has its own output format, what poses difficulties

when one wants to compare results; most tools do not allow the human expert to

add personal annotation and to inspect or validate the output of the automatic

annotation once it is done by the computer.

We see that there is a clear need for automatic tools which improve the way

automatic annotation is performed. Following previous works on automated an-

notation using multiagent systems and symbolic machine learning techniques, the

present work proposes an environment and some methods to perform automatic

annotation of some attributes regarding proteins. In particular we are concerned

with the field Keywords in the SWISS-PROT database.a The aim of our work is

twofold: to complete the annotation of keywords which is far from adequate, and

to acquire experience to enable us to propose automatic annotation on other (more

complex) fields of SWISS-PROT. The tools proposed here will serve human experts

working in the sequencing and annotation of the Mycoplasma hyopneumoniae.

There are several networks for genome sequencing and analysis working with

several organisms (mostly pathogenic) in Brazil. In 2001, the PIGS project was

proposed,75 aimed at providing the infrastructure for the sequencing of the genome

of the Mycoplasma hyopneumoniae. This bacterium colonizes the respiratory tract

ahttp://www.expasy.ch/sprot/

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 243

of swine and is the primary agent of enzootic pig pneumonia,29,49 a chronic respi-

ratory disease found in pig farms worldwide and is characterized by high morbidity

and low mortality rates. It causes considerable economic losses through retarded

growth, poor food conversion, and increased susceptibility of pigs to infection by

other organisms.41,59 M. hyopneumoniae infection is a worldwide problem resulting

in economic losses estimated at US$200 million per year in the US alone. Many

studies of M. hyopneumoniae have focused on detection of the organism and diag-

nosis of the disease, because attempts at confining the spread of infection have been

unsatisfactory due to the difficulty in detecting the infection early and the lack of

effective antimicrobial agents to treat the disease.22,28 The diagnosis of M. hyop-

neumoniae is usually done by cultivation of the organism or by immunofluorescence

tests performed on frozen thin lung sections with polyclonal antibodies.3,48 How-

ever, due to the fastidious nature of M. hyopneumoniae, its culture and serological

identification may take up to one month. Moreover, other mycoplasmas, especially

M. hyorhinis, easily overgrow and contaminate M. hyopneumoniae cultures. Cur-

rent serological detection methods are further hampered by cross-reactions which

have been reported between M. hyopneumoniae, M. hyorhinis, and M. flocculare.8,26

Current commercial vaccines are limited in their effectiveness; they do not protect

against colonization of the organism, and outbreaks are occurring with increasing

frequency. The disease is one of the most relevant occurring in pigs in Southern

Brazil.

Mycoplasmas belong to the Mycoplasmataceae family, of which 102 species affect

humans and 6 affect animals. Genomes of these organisms vary between 580 and

1.350 Kb.58 One of the expected results coming from the PIGS project is to fully

sequence and annotate the genome of that microorganism. Then, in a later phase,

important proteins will be expressed aiming at developing diagnostic tests and

vaccine production.

3. Background

3.1. Introduction

Until the last decade, annotation was primarily done by hand, a tedious but ex-

tremely valuable resource. The idea of automating the annotation is not new. Since

it is time-consuming, facilitating some parts of the process has been the motivation

of many tools that we review here.b

It is argued that “Automated genome sequence analysis and annotation has the

advantage that the analysis strategy is uniformly applied to all genome sequences

against the same database, rendering results comparable.”6

bNotice that we do not intend to make an extensive review of such tools, as this is beyond the
scope of this article. However, we refer here to tools which either established milestones or are
interesting for the sake of comparison with our proposal.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

244 A. L. C. Bazzan et al.

Also, through automatic annotation, patterns that are not discernible from in-

dividual genomes become apparent.36

Finally, Andrade5 points out that the efficient analysis of a sequence with com-

putational methods demands a series of requirements:

(1) Application of multiple methods.

(2) Retrieving and updating sequence databases that are used by these methods.

(3) Interpretation of the results.

(4) Integration of the results which, although heterogeneous, refer to one only

object, namely, the query sequence.

All of these tasks require disk space for those databases — can be time con-

suming and need experience in the analysis of massive quantities of sequences. The

experimenter who is confronted to the analysis of a small number of proteins does

not necessarily have the time to install all those programs and learn about their

use. Another possible user is someone confronted with the analysis of large numbers

of proteins (as coming from genome projects, with the analysis of organisms having

hundreds or thousands of sequences). In this case, even if the effort of installing and

learning about the methods is undertaken, its use on hundreds of sequences can be

painstaking.5

In fact, one of the earliest tools to help annotation was ACeDB (A C. elegans

DataBase).23 ACeDB was developed as a database and graphical display tool for

storing and analyzing data from the C. elegans sequencing project. It continues to

be used by the groups involved with that and other sequencing projects.

In 1993, anticipating the high-throughput genome sequencing era, the Sander

group at EMBL-Heidelberg66 began to develop a system oriented to minimize the

time consumed in genome annotation, as well as the tediousness we have just men-

tioned. Since then, many people at EMBL-Heidelberg6,18,34 as well as other groups27

have been working in the field of automated genome annotation. The outcome has

been several systems and tools more or less accessible to the end user. The effort

continues as more sequences and new more powerful methods of analysis become

available. Among others, we can also cite GeneQuiz,6,36 Genotator,31 the Institute

for Genomic Research (TIGR) annotation system,40 BEAUTY,73 RiceGAAS,51,63

and DAS.c

The next subsections present some tools which are based on standard technolo-

gies such as database integration and scripting via perl or similar. Then, we discuss

learning-based and agent-based techniques.

3.2. GeneQuiz

According to the description on its website,d GeneQuiz6,36 is an integrated system

for large-scale biological sequence analysis, that goes from a protein sequence to a

chttp://biodas.org/
dhttp://jura.ebi.ac.uk:8765/ext-genequiz/

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 245

biochemical function, using search and analysis methods and up-to-date protein and

DNA databases. It focuses on deriving a predicted protein function, based on the

available evidence, including the evaluation of the similarity to the closest homo-

logue in the database (identical, clear, tentative, or marginal). The analysis yields

information that can be extracted from the current databases, including three-

dimensional models by homology, when the structure can be reliably calculated.

GeneQuiz consists of four modules:

(1) The database update (Gqupdate).

(2) The search system (Gqsearch).

(3) The interpretation module (Gqreason).

(4) The visualization and browsing system (Gqbrowse).

The modules are driven by perl, and the front-end program for visualization are

web browsers. The principal motivation is the complete automation of all repetitive

actions: database updates, sequence similarity searches, sampling of results in a

uniform fashion, and the automated evaluation and interpretation of the results

using expert knowledge coded in rules.

GeneQuiz uses several methods for database update and search:

• Sequence filters: seg72 and biasdb.56

• Sequence — sequence comparison: TBLASTN, BLASTP2 for protein and nu-

cleotide; TFASTA, FASTA.53

• Support: repeats (Vingron, DKFZ-Heidelberg); coils;46 blimps;32 prosearch;35

MaxHom;65 PredictProtein 2D;62 PredictProtein tmb;60 PredictProtein

exposure;61 WHATIF (Vriend, EMBL-Heidelberg).

The next step is the interpretation and reasoning over the results already

gathered. For instance, a family of putative homologues is gathered from the

sequence–sequence similarity output. From the set of homologues the consensus

of the keywords present in their corresponding database entries is extracted. From

them, a functional class is computed which gives a quick hint on the function of

the protein using Euclid.70

In the last step, all GeneQuiz results on the analysis of a query sequence are

organized in a set of HTML pages. The entry page gives a first indication of the

suggested function, summaries of the results and links to result outputs. Addition-

ally, an alignment of the query to fragments of the homologues can be done with

MView.15

GeneQuiz can be used through a web server.34 The user has the last word on

the validity of the functional assignment derived by GeneQuiz. Usage of GeneQuiz

showed that there are certain problems arising from transferring an annotation from

one sequence to the query.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

246 A. L. C. Bazzan et al.

3.3. Genotator

Genotator is a sequence annotation workbench whose aim is to provide a flexible

and transparent system for automatically running a series of sequence analysis

programs on genetic sequences. It also has a graphical display that allows users to

view all of the annotations and add or delete them. Genotator consists of three

main portions — a set of sequence analysis programs, a database, and a graphical

browser. Genotator’s database is implemented based on local flat files to keep the

results of queries done using the analysis programs (for example, the output of

GRAIL, BLAST, other signal searches etc.). Similarly to GeneQuiz, Genotator

calls several analysis programs which can be grouped in three main categories:

• Gene finders: Genie,43 GRAIL,74 GeneFinder,30 xpound,71 GeneMark.14

• Database homology searches: BLASTN2 on dbEST and database of human or

Drosophila repeat sequences, BLASTX on GenPept.13

• Sequence feature predictors (start/stop codons, ORFs, promoters, splice sites,

and tRNA genes).

For each analysis program, there is a perl filter that parses the results, filters

out the insignificant ones, and saves the significant annotations, from which they

can be read by the browser.

After a sequence has been run through Genotator, a browser provides an in-

teractive graphical view of the annotations. Each type of annotation (for example,

GRAIL exons) is displayed in its own row, in its own color. The Genotator browser

is built on top of the bioTkperl.69 Other functionalities are: generation of a text

report of all annotations; generation of details to be written in FASTA format; addi-

tion of personal annotations; tools to look for sequence patterns (such as restriction

sites) or regular expressions.

3.4. DAS

The distributed annotation system (DAS) came after the completion of the

C. elegans. The DAS design is modeled keeping web pages in mind, i.e. it is written

in HTML. In the DAS design, a user selects from an annotation directory which

annotation sources to view. Then the genome information and annotations are com-

bined in a “layered” fashion within the annotation viewer. DAS is best described

as a multi-database system. Unlike federated and warehouse systems, this system

requires a semantic-free schema rather than the stricter controlled vocabulary. The

system emphasizes the visualization of annotations rather than complex queries.

The basic system is composed of a genome server, one or more annotation

servers, an annotation directory server, and an annotation viewer. The genome

server is responsible for serving genome maps, sequences, and information related

to the sequencing process. Annotation servers are responsible for responding to re-

quests on a region of a clone; third party annotation servers can be built and main-

tained by any laboratory. The directory access server is a small server maintained at

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 247

the sequencing center that provides clients with a list of current annotation servers.

In the annotation viewer, annotation types are dynamically associated with graph-

ical representations.

3.5. RiceGAAS

The next tool we want to discuss was used during the analysis of the rice genome

sequence. RiceGAAS51,63 is a web-based analysis systeme which provides the fol-

lowing features:

• Non-redundant protein and EST database search.

• Gene prediction using several programs.

• Integration of results from various analyses and automatic interpretation of cod-

ing region.

• Collecting all rice genome sequences from GenBank and re-executing automatic

annotation with the latest entries in reference databases.

• A user-friendly system with graphical output of results.

The automated annotation is performed for all rice genome sequences collected

from GenBank as well as user submitted sequences. RiceGAAS runs 14 analysis

programs, namely, BLAST for homology search against protein database and rice

EST; GENSCAN and RiceHMM63 for gene prediction; MZEF for exon predic-

tion; SplicePredictor for splice site prediction; Printrepeats and RepeatMasker for

repetitive sequence detection; tRNAscan for transfer RNA prediction; HMMER,f

ProfileScan and MOTIF for homology search against amino acid sequence motif

database; PSORT for protein localization site prediction; SOSUI for classification

and secondary structure prediction of membrane protein; and PLACE-SignalScan33

for cis-element detection. The results of these programs are integrated for prediction

and analysis of protein-coding gene structure.

3.6. Automatic Annotation with machine learning techniques

Machine learning and data mining techniques are particularly useful when deal-

ing with huge, not clearly structured, and/or heterogeneous databases such as

NCBI and EBI. Machine learning techniques have been widely used in bioinfor-

matics; see for instance, the work by King and colleagues.38,39 Many other could

be cited here but we concentrate on those relevant to our work. Readers are re-

ferred to a book on general applications of machine learning to bioinformatics.9

As for automatic annotation and machine learning combined, please see the work

of Kretschmann and colleagues42 on the Spearmint project. This work describes

a machine-learning-based approach to generate rules based on already annotated

eAvailable at http://ricegaas.dna.affrc.go.jp/
fhttp://hmmer.wustl.edu/

March 12, 2003 14:6 WSPC/111-IJCIS 00073

248 A. L. C. Bazzan et al.

keywords of the SWISS-PROT database. Such rules can then be applied to not-

yet annotated protein sequences. Since this work has actually motivated ours, we

provide here a brief introduction. Details can be found in the referenced article.42

Basically, the authors have developed a method to automate the process of anno-

tation regarding those keywords in SWISS-PROT, which is based on the algorithm

called C4.5.57 This algorithm works on training data (in this case, previously an-

notated keywords regarding proteins). Such data is composed mainly by taxonomy

entries, INTERPRO,7 PFAM10 and PROSITE17,25 classification. Given these data

(called attributes), C4.5 derives a classification for a target attribute (in this case

the keyword).

Since dealing with the whole data in SWISS-PROT at once would be prohibitive,

it was divided in protein groups according to the INTERPRO classification. Then

each group is submitted to an implementation of C4.5 contained in the software

package Weka.g Queries can be made directly via web in the Spearmint site.h There,

the user has access to rules (to recommend or not the annotation of a keyword).

These are generated for each INTERPRO code (when applicable) and, after that,

they are ranked by a confidence factor (CF) defined in the Kretschmann and col-

leagues’ article42 (reproduced here as Eq. 1). This may be confusing for the user.

For instance, when two or more rules have close CFs, but nonetheless recommend

contrary annotation (i.e. one does recommend the annotation while another does

not), how should the user decide?

c =
p +

z2

2n
− z

√

p

n
−

p2

n
+

z2

4n2

1 +
z2

n

. (1)

In a previous work,12 we were motivated by the need to somehow tackle this issue

related to the use of the Spearmint framework, but still extend the annotation in

SWISS-PROT for internal use in the PIGS project (described in Sec. 2). We realized

that, reducing our universe to the proteins related to Mycoplasmataceae, we could

do better by modifying their method. Instead of partitioning the SWISS-PROT

data by INTERPRO codes, the approach we proposed12 is similar but considers all

applicable INTERPRO codes (henceforth IPR Acc’s) as attributes at once, together

with PROSITE Accession Numbers (henceforth PS Acc’s). Of course, taxonomy

was no attribute in our case since we were dealing with a single family, namely the

Mycoplasmataceae.

The data collection was done by means of the EBI SRS24,76 web site.i Ba-

sically, we have performed a query on the SWISS-PROT database in which the

Organism field included Mycoplasmataceae but had not the word “hypothetical”

ghttp://www.cs.waikato.ac.nz/ ml/
hhttp://www.ebi.ac.uk/spearmint
iversion 6 at http://srs6.ebi.ac.uk/

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 249

in the Keywords field. This was done to eliminate hypothetical proteins from the

training set (generator of rules).

Also, we have created a view for the SWISS-PROT database which has associ-

ated this database with the PROSITE and with the IPRmatches.j

Table 1. First dataset used to perform the prediction test; extracted
from TrEMBL.

Total proteins TrEMBL 1139
Total pairs protein-keyword 1874
Pairs correctly predicted 182 (74.0%)
Pairs incorrectly predicted 64 (26.0%)
Proteins without keyword 378
Proteins without attribute 896
Proteins without keyword or attribute 1035
Proteins without both keyword and attribute 239

Some results regarding the prediction using the TrEMBL data are shown in

Table 1. Please see the referred paper12 for details. We have observed that around

75% of the keywords were correctly predicted by the method, while there was 25%

of false negatives (i.e. the keyword was annotated but could not be predicted by

the rule). Moreover, for new protein sequences (just released in the PIGS project)

the rules predicted keywords which were recognized as correct by an expert.

3.7. Agent-based annotation

We discuss here the use of technologies of agents (originally developed with other

means in mind) in bioinformatics. These are useful because the motivation for

their usage in other fields is the same as in bioinformatics: the necessary data

is distributed among several sources, it is dynamic, its content is heterogeneous,

and most of the work can be done in a parallel way. Hence, information agents

can integrate multiple distributed heterogeneous information sources. In fact, it is

argued that:

Key to addressing these issues appropriately is not to consider them as a

result of the biological domain, but instead as an information processing

problem that suggests nothing as much as an agent-based approach.16

It is important to notice that there are only a few truly multi-agent projects

in the domain of bioinformatics. For instance, InfoSleuth11 has been used to anno-

tate livestock genetic samples. The scientific community on agents and multi-agent

systems is now working on a key issue to bioinformatics as well: how to ensure

jThrough a personal communication with SRS maintainers, we found out that the association with
the INTERPRO was not working properly so we have used IPRmatches instead, which provides
the required data as well. It seems that this problem is now solved so that it is possible to relate
IPR Acc directly.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

250 A. L. C. Bazzan et al.

the semantic consistency of the integrated data. This is one of the concerns of the

projects described below.

3.7.1. GeneWeaver

GeneWeaver16 is a multi-agent system for managing the task of genome analysis.

Since all processes of identifying genes and predicting function of proteins (despite

being labour-intensive and requiring expert knowledge) are computer-based tasks,

it is possible to automate them.

GeneWeaver comprises a community of agents that interact with each other,

each performing some distinct task, in an effort to automate the processes involved

in, for example, determining protein function. Agents in the system can be con-

cerned with management of the primary databases, performing sequence analyses

using existing tools, or storing and presenting resulting information.

There are five types of agent present in the GeneWeaver community:

(1) Broker agents to register information about other agents in the community.

(2) Primary database agents to manage remote primary sequence databases, and

keep the data contained in them up-to-date and in a format that allows other

agents to query that data.

(3) Non-redundant database agents to construct and maintain non-redundant

databases from the data managed by other primary database agents in the

community.

(4) Calculation agents to encapsulate some pre-existing methods or tools for anal-

ysis of sequence data, and to attempt to determine the structure or function of

a sequence; whenever possible, they are also responsible for constructing and

managing any underlying data that they rely on.

(5) Genome agents which are responsible for managing the genomic information

for a particular organism.

3.7.2. EDITtoTrEMBL

A further work by the group is a general approach to inconsistency management

for information agents. It is implemented as part of the EDITtoTrEMBL system.50

At the EBI,k a set of analysis programs are integrated into a distributed environ-

ment called EDITtoTrEMBL (Environment for Distributed Information Transfer

to TrEMBL). Its purpose is to provide a correct, comprehensive and complete anno-

tation of the sequence data available in the databases, while preserving consistency,

a special challenge due to the inherent uncertainty and incompleteness of provided

data. For this purpose biological domain knowledge is formalized in extended logic

programs.1

khttp://www.ebi.ac.uk

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 251

One of their main tasks is to perform active searches for relevant information

in non-local domains on behalf of their users or other agents. Information from

multiple autonomous sources is retrieved, analyzed, manipulated and integrated in

order to provide a high-level access to information that is otherwise not efficiently

usable. A common architecture for information agents consists in the agents already

described above when we referred to the Geneweaver. This tool has been used for

the annotation of transmembrane proteins.

3.7.3. A multi-agent system for automated genetic annotation

The next prototype of an agent-based system we discuss here aims to automate

the annotation of a sequence of a virus.21 This work is also based on information

gathering: search, filtering, integration, analysis, and presentation of the data to

the user. It uses the author framework DECAF. The system has four overlapping

multi-agent organizations. The first, Basic Sequence Annotation, is charged with

integrating remote gene sequence annotations from various sources with the gene

sequences at the Local KnowledgeBase Management Agent (LKBMA). The second,

Query, allows complex queries on the LKBMAs via a web interface. The third,

Functional Annotation, is responsible for collecting information needed to make an

informed guess as to the function of a gene, specifically using the three-part Gene

Ontology.l

There are different types of agents:

• Information Extraction Agents (the Genbank wrapper, the SwissProt wrapper,

the PSort wrapper, the ProDomain wrapper allows access to other information

about the encoded protein).

• Task Agents.

• The Annotation Agent.

• The Sequence Source Processing Agent.

• Interface Agents.

The system described is available on the web at

http://udgenome.ags.udel.edu/herpes/. The results point to around 15 herpesvirus

sequences annotations done.

3.7.4. The MASKS environment

The MASKS67 environment groups different symbolic machine learning algorithms

encapsulated in agents in order to classify data. Its goal is to improve symbolic

learning through knowledge exchange. The motivation of this work is to mimic

human interaction in order to reach better solutions. This aims at supporting a

recent practice in data mining which is the use of collaborative systems. Even if

lhttp://www.geneontology.org/

March 12, 2003 14:6 WSPC/111-IJCIS 00073

252 A. L. C. Bazzan et al.

data mining is a powerful technique for knowledge extraction, none of the embedded

algorithm is good in all possible domains. Each algorithm contains an explicit or

implicit bias that leads it to prefer certain generalizations over others. Therefore

different data mining techniques applied to the same dataset hardly generate the

same result. In general, combining inductors increases the accuracy by reducing

the bias. This integration aims to overcome the limitations of individual techniques

through hybridization or fusion of various techniques. These ideas have lead to the

emergence of many different kinds of systems architectures. This environment was

used so far to acquire rules for annotation of the field “Keywords” in the SWISS-

PROT database.

3.8. Automatic annotation: disadvantages and advantages

To close this section on tools and techniques, we want to address the issue of

automatic annotation per se. Some concerns are discussed elsewhere.37,44,47,54 Of

course, there is a criticism regarding the error which arises when automatically

generated information is used as basis to derive new information. For instance, if

100 proteins are automatically annotated with a 1:20 error rate, then we get 5

potentially wrongly annotated proteins. It is easy to see that, if these 5 are now

used to generate further automatic annotation, we end up with an explosion of

wrong results.

A pioneer in the field points out that automation has the drawback of being

not so perfect as an experienced human could be, but it is certainly faster.5 If

the automated tool concludes something with a certain degree of reliability, the

easy cases can be quickly sorted out. They may be either “clear” (e.g. the query

protein is very similar to an already experimentally characterized one) or “nothing

found” (the query has no apparent homologue in the database). When dealing with

tricky cases, the tool can at least ascertain a starting point, allowing researchers to

concentrate efforts on such more complex cases.

We think that, provided we keep the error rate under control (e.g. by working

with high degrees of confidence indices), an automatic annotation is no worse than

the manual one since the last is also error-prone. Moreover, as we will see, in our

approach the end user has a key role: ultimately s/he has the power to decide

which portion of the automatic annotation to keep. This way, our final product

shall contain only verified information.

It was argued5 that: “As we all know, there is no absolute truth, but it is possible

to work with indices of reliability. More information means more possibilities. It is

just a matter of developing cleverer methods.”

We want to close this overview subsection with some figures:

To assess how automatic function assignment will contribute to genome

annotation in the next five years, we have performed an analysis of 31

available genome sequences. An emerging pattern is that function can be

predicted for almost two-thirds of the 73,500 genes that were analyzed.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 253

Despite progress in computational biology, there will always be a great

need for large-scale experimental determination of protein function. [. . .]

The updated annotations also form a resource for the scientific community

for further analysis and assessment. The set of annotations we obtained

contains an additional 5534 novel protein function assignments, a 15% in-

crease over the original genome sequence publications.36

These authors conclude quoting colleagues:

Evaluation of the results has shown that the agreement of automated func-

tion prediction reaches 95%, when compared to expert manual analysis.4,6

4. Description of the ATUCG Environment

4.1. Overview of the architecture

In this section we describe the kernel of the work, namely the ATUCG environment

which stands for Agent-based environmenT for aUtomatiC annotation of Genomes.

It is an agent-based environment, i.e. we allocate agents to do most of the automated

methods as we see the overall task of genome annotation as one close related to

agents in an information community. Besides, they are in charge of performing

much of the tedious work required by using different programs and tools, namely

the translation or reformatation of inputs and outputs. Agents are distributed in

the different layers of the architecture.

First, we give an overview of the three layers which comprises the architecture.

We also discuss the connections with databases (SWISS-PROT, Genbank, etc.),

tools and programs (BlastP and others commonly used in annotation environments

as discussed in Sec. 3) as well as the role of the end user. The interrelationships

and general overview are depicted in Fig. 1. Layers are concerned with well-defined

parts of the process.

Layer I deals with the genome sequencing activities. Having received a file con-

taining the DNA sequencing of a given organism, layer I is aimed at helping the

user to define the Open Reading Frames (ORFs). To this means, specific programs

are used, each regarding the expertise of a particular agent. The output that layer

I passes to layer II is a file containing a list of non-redundant ORFs.

Layer II is perhaps the most interesting from the point of view of both research

and operational aspects, being also the most complex to design and implement.

The aim here is threefold: design of agents which are experts on data extraction

(e.g. from SWISS-PROT and TrEMBL) and reformatting; building of a database

of rules for annotation (this involves training and validation stages using standard

techniques from TrEMBL); automatization of the annotation of fields related to

motifs or profiles regarding families of proteins (i.e. automating the annotation

regarding PROSITE and INTERPRO attributes). The main output passed to layer

III is a set of proposed annotation for selected attributes.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

254 A. L. C. Bazzan et al.

FOR AUTOMATED
ANNOTATION

GENERATION OF RULES

VALIDATION BY USER
AND ANNOTATION

DNA

MOTIFS

SWISS

TrEMBL

FINAL

BLAST

II

III

SEQUENCING ACTIVITIES

I

Fig. 1. Overview of the three-layer architecture.

Finally, layer III helps the user perform the verification of the proposed an-

notation, mainly by “translating” the annotation rules into a semantically richer

language and presenting it in a more understandable form. This is done by linking

attributes presented in the rules to more complete data extracted from databases

such as PROSITE and INTERPRO. Once the annotations are verified, they are

collected into two files: one for accepted annotations, another for rejected ones. In

Sec. 6, we discuss an extension regarding how to learn to accept or reject rules

based on the examples provided by the user.

The next three subsections provide details of each of the layers.

4.2. Layer I

We assume that the end user provides the system with a file containing the se-

quenced genome (as in Fig. 2). The whole DNA sequence is passed to different

agents, each in charge of a process. Figure 3 depicts two of such agents. Others can

be introduced in the future. To this date we work only either with the most popular

programs in their categories, or with programs which are largely used and familiar

to our end users. Those agents do basically three tasks: access to input file, run of

a program, and output the result to a file. The programs used are the following:

• Glimmerm is a system for finding genes in microbial DNA, especially the genomes

of bacteria and archaea.64

• Genemarkn is similar to Glimmer (actually this is a family of gene prediction

programs such as GeneMark.hmm45).

mhttp://www.cs.jhu.edu/labs/compbio.glimmer.html
nhttp://opal.biology.gatech.edu/GeneMark/

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 255

Fig. 2. Screen input file to layer I.

DNA

GLIMMER agent

GENEMARK agent

RBS agent

PROMOTER agent

ORFs
red.

ORFs
red.
non

SWISSUSER

2 13

SIMILARITY
IDENTIFICATION
TOOLS

Fig. 3. Layer I. File 1 is the DNA sequence; File 2 contains redundant ORFs; File 3 contains
non-redundant ORFs.

It must be pointed out that the standard output from such programs is intended

to be textual (see Fig. 4), i.e. easy to be read by an human expert. However, it is

not proper for automatic handling. Therefore, one important task of the agents is

to transform this output in a database-like form.

The glimmer agent receives the input file and outputs either an error message

or a file with the ORFs found. Similarly, the genemark agent, RSB agent, and the

promoter agent output lists of ORFs, although in most of the cases these differ.

Experience say that the outputs of these four agents are complementary, i.e.

apart from some redundancies, they do output different lists of ORFs. Analyzing

and consolidating these lists is the key to the success of the whole project since

incorrect annotation of ORFs normally leads to error propagation, especially in

fully automated environments.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

256 A. L. C. Bazzan et al.

Fig. 4. Standard output from GeneMark.

Once the agents find different lists of ORFs, the intervention of the end user

is necessary. In order to help the user to eliminate redundancies, a popup window

depicts all records for the ORFs found, marking each with a different color accord-

ing to which agent has come out with it. ORFs can be selected by checking the

corresponding box. Once an ORF is selected, the blastp agent runs the BLASTP

program and collects similar sequences.

At this point, the end user decides whether or not to transfer an ORF to the list

of selected ORFs (file 3 in Fig. 3). ORFs can be excluded from this list as well, if

the user decides so. This process can be repeated as many times as desired. When

the end user decides file 3 has a reliable list of ORFs, this stage ends and file 3 is

output to layer II.

4.3. Layer II

The input to this layer is the file 3 depicted in Fig. 3. Besides, layer II has connec-

tions to several databases for in this layer training data has to be gathered in order

to produce rules for automatic annotation, as it can be seen in Fig. 5.

As already mentioned, three main tasks are carried out in layer II: data extrac-

tion and reformatting; application of machine learning techniques to train data and

produce the rules for annotation; and the annotation regarding protein profiles,

keywords, and other attributes.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 257

EXTRACTING
agent

FORMATING
agent

MACHINE
LEARNING

agents

INTERPRO

PROSITE

agent
INTERPRO

best
rule

ATTRIB.

ORFs

PROSITE
agent

TrEMBL

SWISS

prop.

ANNOT.

USER

DATA
extr.

ORF

MOTIFS
with

descr.

MOTIFS

1

3

5b

4

6 5a

Fig. 5. Layer II.

SWISSPROT:FTSH_MYCGE;P47695;Cell divisionATP−binding
TransmembraneHydrolaseMetalloproteaseZincComplete proteome;
IPRMATCHES:P47695;IPR000642IPR003593IPR003959IPR003960;
PROSITE:AAA;PS00674;
SWISSPROT:FTSH_MYCPN;P75120;Cell divisionATP−binding
TransmembraneHydrolaseMetalloproteaseZincComplete proteome;
IPRMATCHES:P75120;IPR000642IPR003593IPR003959IPR003960;
PROSITE:AAA;PS00674;
SWISSPROT:AMPA_MYCGE;P47631Q49371;HydrolaseAminopeptidase
ManganeseComplete proteome;IPRMATCHES:P47631;IPR000819;
PROSITE:CYTOSOL_AP;PS00631;
SWISSPROT:AMPA_MYCPN;P75206;HydrolaseAminopeptidaseManganese
Complete proteome;IPRMATCHES:P75206;IPR000819;
PROSITE:CYTOSOL_AP;PS00631;
SWISSPROT:AMPA_MYCSA;P47707;HydrolaseAminopeptidaseManganese;
IPRMATCHES:P47707;IPR000819;PROSITE:CYTOSOL_AP;PS00631;

 [...]

Fig. 6. Data extracted from SWISS-PROT (view associating SWISS-PROT, IPRMATCHES,
and PROSITE); columns (semi-colon delimited) show: SWISS-PROT code, accession number, key-
words list, IPRMATCHES code, INTERPRO accession number, PROSITE code, and PROSITE
accession number.

4.3.1. Data extraction and formating

This part deals with accessing two main databases, namely SWISS-PROT and

TrEMBL, to retrieve training and validation data respectively. In this section, we

focus on the SWISS-PROT data since the process regarding the TrEMBL data is

to some extent similar.

The agent called extraction agent is invoked and has as tasks:

(1) Ask the user for attributes which will be used in the training process.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

258 A. L. C. Bazzan et al.

(2) Prepare the query at the SRS web siteo and retrieve the data (which produces

the output depicted in Fig. 6.

(3) Prepare the retrieved data in order to serve as entry for our machine learning

tools.

Regarding step 1, the attributes which the user typically wants to work with are:

• for SWISS-PROT: AccNumber (accession number), keywords;

• for INTERPRO: IPR AccNumber;

• for PROSITE: PS AccNumber;

• for PFAM: PF AccNumber.

Therefore, in step 2, a view in SRS is created for the SWISS-PROT database

which associates this database with the PROSITE, the INTERPRO, and the PFAM

databases. This procedure retrieves data regarding accession number of proteins,

keywords, and classification regarding the INTERPRO (IPR code as in Fig. 6). The

Keywords field in the SWISS-PROT database is a very important one, used mainly

when a researcher wants to compare an unknown sequence s/he is working with, to

the sequences already deposited in the SWISS-PROT. Unfortunately, as to what

regards the family of Mycoplasmataceae, a high number of proteins in SWISS-

PROT is classified as “hypothetical protein” (around 50% of them according to

data obtained in February 2002). Besides, the proteins in TrEMBL, which are also

potential targets for comparison, are poorly annotated regarding the Keywords field

(in the data we collected, 378 out of 1894 had no keyword at all, while 896 had no

attribute).

Then the preprocessed data is sent to the various agents responsible for each

machine learning algorithm or technique. Steps 1 and 2 above are relatively simple.

However, step 3 is not only more complex, but can also be performed in several

alternative ways, once each machine learning algorithm makes use of proper syntax

to describe a hypothesis. Since in the collaborative learning stage (discussed below),

the agents will exchange their best rules, it is necessary to have these transformed

to the same format. The format adopted in this work is called PBM.55 PBM is

based on the CN2 format and generates sets of propositional rules of the form:

if < condition > then < class = Ci >. Next, we describe the functioning of agent

C4.557 only. Others (CN2,19 Ripper,20 T2,52 etc.) are similar. For a previous use

of this algorithm in annotation of keywords, please see Sec. 3.6 and the paper by

Kretschmann and colleagues.42

4.3.2. Training data agents

Similarly to our previous work on rule generation for annotation of keywords for

the Mycoplasmataceae family, the approach we propose here consider all applicable

INTERPRO Accession Numbers (IPR Acc’s) as attributes at once, together with

ohttp://srs6.ebi.ac.uk/

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 259

PROSITE Accession Number (PS Acc’s). The details of the training using machine

learning algorithms, and the design and use of cooperative learning can be found

in Bazzan et al.12 and Schroeder and Bazzan67 respectively.

The rules which will determine whether or not a given protein can be annotated

with a given keyword are generated using the machine learning algorithms indicated

above. In all cases the algorithms follow more or less the same approach. First, a

training set is given to the algorithm. Depending on this algorithm, the output

varies but, as we mentioned before, there is an agent (PBM agent) which is in

charge of translating all outputs to a standard format. Figure 7 shows an example

of the output of the C4.5 before the translation by PBM. In this specific case the

rule refers to the keyword “Cell division”. The “|” sign indicates a conjuction, i.e.

an “AND”. Thus, the rule basically suggests the annotation of the keyword “Cell

division” for a given protein if it belongs to the IPR000158 family of proteins. If

this is false, then, the rule goes on asking if it belongs to the family IPR001179.

If the answer is yes, then that keyword should be annotated, otherwise continue

reading the rule and performing the nested tests. At the end, either some “IF” part

is satisfied, or the keyword should not be annotated.

The description above applies to all agents running machine learning algorithms.

After these agents receive and process the data, and generate their annotation rules

Relation: Cell_division
Instances: 1539
Attributes: 714
 [list of attributes omitted]
Test mode: 10−fold cross−validation

=== Classifier model (full training set) ===

J48 pruned tree
−−−−−−−−−−−−−−−−−−

IPR000158 = TRUE: yes (3.0)
IPR000158 = FALSE
| IPR001179 = TRUE: yes (3.0)
| IPR001179 = FALSE
| | IPR000642 = TRUE: yes (2.0)
| | IPR000642 = FALSE
| | | IPR000897 = TRUE
| | | | IPR004125 = TRUE: no (3.0)
| | | | IPR004125 = FALSE: yes (3.0)
| | | IPR000897 = FALSE: no (1525.0/3.0)

Number of Leaves : 6

Size of the tree : 11

Fig. 7. Raw output of the C4.5 algorithm (in Weka).

March 12, 2003 14:6 WSPC/111-IJCIS 00073

260 A. L. C. Bazzan et al.

Base
Knowledge

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�

�
�
�
�
�
�

element
Learning

Evaluation

element element
Performance

ModelMerge

Rules >= threshold

Agent

Example file
Rules

Rules

Rules
Test file

Rules

Splitter

Rules

Knowledge
ModelModelModelModelModel

Model
Knowledge

Rules

Test file
Example file
Configuration

AgentAgent Environment

Fig. 8. Detail of the architecture of one machine learning agent.

plus the confidence factor (CF)p for each rule, they start the interaction which

will select the best rules. This is done in the way described next. The goal is to

improve the individual result and to make sure that all the agents benefit from the

interaction. This interaction is detailed in Fig. 8. The basic components of each

agent is:

• Learning element: Contains the algorithm for rule induction.

• Performance element: Controls, monitors and guides the learning element

progress; it is responsible for the data input/output between the agent and the

environment.

• Knowledge Base element: Stores the rules generated by the learning element

approved by the Evaluation element.

• ModelMerge element: Its role is equivalent to a Knowledge Base; stores other

agents best rules together with the agent’s own rules.

• Evaluation element: Calculates the rules reliability.

The Evaluation component estimates the accuracy for each rule by applying the

Laplace expected error (Eq. 2), and stores those that are equal or better than the

threshold informed by the user to the agent knowledge base.

LaplaceAccuracy = (TP + 1)/(TP + FP + K) (2)

The formula depends on TP (true positives which means the number of examples

correctly covered by the rule), FP (false positives which means the number of

examples wrongly covered by the rule) and K (the number of classes in the domain).

pInitially we use the same formula as in Kretschmann and colleagues,42 i.e. that in Eq. 1.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 261

Fig. 9. Detail of the process of rule generation in Layer II: Agents for running the machine
learning algorithms.

As for the learning element, to this date we use some symbolic rule induction

techniques (CN2, C4.5, T2, and Ripper).q Learning happens in two stages. The

first one is dedicated to individual learning. The input is the pre-processed training

set and the configuration set. After that, the agent applies its rules inductor to the

examples. The objective of the individual learning is to create an individual model

of the domain problem. This model is a set of rules that were approved by the

Evaluation component.

As soon as the individual learning is over, the rules created are evaluated with

the test file (data that had not been used to generate the model). The Evaluation

element measures each rule quality by executing the standard rule evaluation func-

tion and stores those that are equal or better than the threshold (informed in the

configuration file) to the agent knowledge base. Most of the time the individual

learning stage produces a rule set with well described concepts along with poor

described ones. This happens due to the algorithm heuristics applied on the data

to extract knowledge.

In the second stage, cooperative learning (Fig. 9), the goal is to improve the

individual result quality. The input for the cooperation stage is the knowledge base

that reflect the knowledge obtained during the individual learning. The cooperative

learning consists of two further steps. During the first one, the agent queries other

agents’ knowledge bases. The first agent to start the interaction is the one that

got the poorest overall accuracy. The agent searches for its equivalent rules with

better quality. The rules that fill this requisite are added to the agent ModelMerge

component. Each agent repeats this process from the poorer to the richer average

accuracy. We say that a rule is equivalent to another one when the two describe

qWe have also performed tests with a neural network, whose results and comparison were published
elsewhere.68

March 12, 2003 14:6 WSPC/111-IJCIS 00073

262 A. L. C. Bazzan et al.

the same concept and the attributes overlap. This way a high quality rule is added

to the learner ModelMerge when it is similar, overlaps, subsumes, or is in conflict

with a low quality rule produced by the learner. For example, consider the rules R1

and R2 that describe concept C. The R1 rule contains the attribute-value test for

attributes x and y, while the R2 rule includes tests with attributes x and z. These

two rules are related. When the communication ends, the individual knowledge that

was not changed is copied into the ModelMerge component. At this moment each

agent possesses two distinct models of the domain problem.

When the cooperative learning ends, the new model stored in the agent

ModelMerge component is evaluated by using the test file. The individual model

resultant is the one that covered the highest number of instances from the test file.

The output generated by the environment is the best agent model at all. At the

end of this process one has a list of the best rules to describe how to annotate each

attribute (file 3 in Fig. 5).

As mentioned before, there is a similar procedure regarding TrEMBL data and

extraction agents. Step 1 and 2 presented in the previous subsection also apply here.

Step 3 does not exist since the aim of the procedure on TrEMBL is to validate the

rules generated by step 3 of SWISS-PROT agent. Hence, step 3 here goes as follows.

Tuples protein-keyword-attribute1 − . . . − attributen are extracted from TrEMBL

file. Rules (file 3, Fig. 5) are applied using attribute1 to attributen. If a keyword is

predicted and is actually part of the tuple, then we say that this is a true positive

(TP); if a keyword is predicted but is not part of the tuple, we say that this is a

false positive (FP); if a keyword is part of a tuple but is not predicted, we speak of

a false negative (FN); and if a keyword is not part of a tuple and is not predicted,

we say that this is a case of true negative (TN).

Of course an ideal machine learning algorithm will produce TN and TP only,

but this is far from reality due to the intrinsic characteristics of these algorithms.

Thus, it is desirable to reduce the (PF + FN) portion.

4.3.3. Annotation of protein profile data and keywords

After data extraction, reformating, and application of machine learning techniques

to train data and produce the rules for annotation, the last activity in layer II is the

annotation related to profiles of motifs in proteins. This is mandatory since the agent

which actually performs the annotation automatically would not work without the

necessary annotation of the profiles regarding the proteins just discovered (because

they are unknown, there is no information concerning profiles of motifs).

To accomplish this, we are designing an agent which reads each ORF in file 4

(Fig. 5) and query both the PROSITE agent and the INTERPRO agent. Basically

these then call a script to send the ORF to the PROSITE and INTERPRO web

sites in order to get a list of profiles which correspond to the specific ORF. Besides,

these two agents have to divide the profile information and save it to two distinct

databases (files 5a and 5b in Fig. 5). File 5a contains the ORF and its classification

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 263

(list of applicable PROSITE and INTERPRO codes) while file 5b contains not only

the codes but also the rest of the description of the profile itself (we are interested

mainly in the consensus string).

While we do not do this currently, it is possible to ask the user to validate the

inclusion of the profiles in both files 5a and 5b. This would be a further check point

in the automatization but we avoid doing this now because we first want to test

the quality of the annotation without this intervention.

Finally, the last and central activity in layer II is the annotation of the Keywords

field. Having partially annotated the record for each protein (for instance, each has

already information on profiles and taxonomy), the next step is to apply the rules

generated by the machine learning algorithms.

This is the task of the keyword agent. It reads files 3 and 5a (Fig. 5) and do the

following:

(1) reads an entry from file 5a (ORF together with applicable profiles);

(2) repeats for each rule in file 3 (remember that each rule corresponds to a different

keyword);

(a) parse the rule;

(b) tests the rule: tests all preconditions and concludes whether or not the

keyword should be annotated;

(c) do the annotation: creates an entry in file 6 for the ORF, copy the attributes

such as profiles, and add the keyword (in case a keyword does not apply,

insert nothingr);

(3) close files.

At the end of this procedure, two files are sent to the next layer: files 5b and 6.

In layer III, the user can verify the annotation.

MOTIFS

USER VALIDATION

rej. ann.

1

ANNOT.

PRESENTATION
agent

5
2

accep. ann.

3

4
LAYER IV

FINAL

Fig. 10. Layer III.

rThis way, the field may end up with blank if no rule applies.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

264 A. L. C. Bazzan et al.

Fig. 11. Record from INTERPRO.

4.4. Layer III

Layer III receives as input: the proposed annotation and the description of motifs

(consensus for protein profiles etc.) which was used in the annotation process. These

files are depicted in Fig. 10 as files 1 and file 2 respectively.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 265

The agent called presentation agent formats the data from file 1 for presentation

to the end user. The user has a key role in layer III. Ultimately s/he decides what

was correctly annotated (by the automated process) or not. The tools in layer III

are intended to ease this task.

Windows display each annotation stored in file 1. If the user wants to check

a given annotation for keyword, the system shows the rule which has generated

such annotation in a straightforward way, i.e. basically a way similar to that one

stored in file 3 in Fig. 5. However, here we are adding some value to the raw rule:

hyperlinks. If the user clicks on a hyperlink, another popup window will appear

(Fig. 11) displaying more information regarding the selected attribute. This format

of rule can help the user analyze its correctness since it relates numerical codes (e.g.

IPR002106) to their contents (in this case, Aminoacyl tRNA synthetase, class II).

The information on attributes comes from file 2. Remember that in layer II data

from PROSITE and INTERPRO was saved in two different files (files 5a and 5b

in Fig. 5). File 5b in layer II is file 2 in layer III (Fig. 10), the one used by the

presentation agent to prepare the output via the popup window just discussed.

The last stage is to separate the accepted and the rejected annotation upon

decision of the user. These two sets of annotations are saved to files 3 and 4 (Fig. 10)

respectively. The contents of file 3 is sent to file 5, together with other relevant

information regarding the annotation process (mainly operational data such as date

of annotation, who did it, textual information on difficulties etc.).

Up to now the contents of file 4 is not used. However, we plan to add a fourth

layer to the architecture, whose aim will be to apply further machine learning tech-

niques in the process of learning with the user and his/her examples of acceptance

or rejection of an annotation.

5. Implementation Status and Results

As for layer I, since the sequencing of the M. hyopneumoniae is not yet completed,

we do not have the ORFs to fully test it. It is possible to do this with the genome

of the M. pneumoniae which is already available. Some agents in layer I are not

yet fully implemented. We have concentrated on the Blast agent because this is

the most tedious task. Genemark and Glimmer agents are extensions of the Blast

agent, except that the architecture used in these was based in a blackboard concept,

useful in this case for information exchange and persistence.

To control the tasks that the agents have to carry out, a Task Manager was

used. A special characteristic of the task manager is the possibility of dynamically

create new tasks and the locking of a method by a determinated time (necessary

for NCBI to conclude a search). These agents deliver an array of similarities which

helps the user decide about the redundancies regarding the ORFs.

As for the tasks which concern layer II, i.e. the automatic extension of the

annotation of the Keywords field, to test our tool and exemplify its usage, we

have selected the Mycoplasmataceae family as the target. The data we used was

March 12, 2003 14:6 WSPC/111-IJCIS 00073

266 A. L. C. Bazzan et al.

collected in February of 2002. At that time, there were 1539 proteins related to the

Mycoplasmataceae family. Around 130 keywords appeared in the data. The next

step was the formatting and learning processes.

For clarity, we first discuss the use of the framework with a single machine learn-

ing agent. Later in this section we discuss the cooperative learning stage introduced

in Sec. 4.3.2. The role of the C4.5 agent was played by the algorithm implemented in

the Weka machine learning package, whereas for the formatting agent we first used

a program written using the interpreted programming language of the MATLAB

toolbox. Due to the fact that this is a very time-consuming task, we now use the

compiled language C++.

@relation Cell_division

@attribute IPR000642 {TRUE, FALSE}
@attribute IPR003593 {TRUE, FALSE}
@attribute IPR003959 {TRUE, FALSE}
@attribute IPR003960 {TRUE, FALSE}
@attribute IPR000819 {TRUE, FALSE}
@attribute IPR001687 {TRUE, FALSE}
...
@attribute IPR001162 {TRUE, FALSE}
@attribute IPR004791 {TRUE, FALSE}
@attribute Cell_division {yes, no}

@data

...
TRUE,TRUE,TRUE,TRUE, ... ,FALSE,FALSE, yes

Fig. 12. Input file to Weka (in this case, the file refers to the Keyword “Cell division”).

Figure 12 shows one example of a input file (there is a similar one for each

keyword) for the Weka algorithm. Basically, the first line of these files indicates

the target class or relation (keyword). Next there come lines which indicate how

each attribute is mapped for each protein. The last of these is the target attribute

(keyword). Finally, there comes one line for each protein, where each line is formed

by as many entries (separated by comma) as there are attributes.

Once the rules were generated, the extraction agent is invoked to extract data

from the TrEMBL database in order to serve as validation data. We have selected

this database because it has a structure similar to SWISS-PROT. It is also possible

to make a 10-fold cross-validation using the test data: we have done that12 and the

results are no better than those obtained using the TrEMBL data. We have opted

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 267

to use the TrEMBL-based approach because, as a byproduct, we can compare our

automatic annotation to the one done by the curators of TrEMBL.

The following procedure of evaluation was performed: once the data is extracted

(file 1 in Fig. 5), the best rule for each keyword (file 3 in Fig. 5) is found and

applied to that data. For instance, if a protein is annotated with keyword K, then

the rule for K is checked. For example, take the rule depicted in Fig. 7. It says that

if the protein has the INTERPRO classification IPR000158, then it should have

the keyword “Cell division”. This procedure was repeated for each protein and its

keywords. We then count, regarding the total number of proteins, the number of

times that proteins were correctly annotated using our rules.

Next, we want to briefly discuss some preliminary results achieved by the coop-

erative learning (Fig. 9) implemented in the MASKS environment67 which is now

being added to the ATUCG environment as a sub-component. Details of functioning

as well about the results can be found in that paper.

The data used is basically the same reported above, i.e. proteins related to the

Mycoplasmataceae family found in the SWISS-PROT and in the TrEMBL (for train-

ing and evaluation respectively). To test the validity of the cooperative learning, we

applied two symbolic inductors (CN2 and C4.5) on the Keywords field. We choose

to work with just two inductors in order to give a didactic explanation of how the

environment would function. Initially, an individual model was constructed for each

classifier. It consists of translating each rule to the PBM format and then measuring

its quality against the test file. The CN2 and C4.5 rules were both evaluated by the

same evaluation function.

This function bases the accuracy calculation on True Positives (TPs) (instance

exist in data and is predicted) and False Negatives (FNs) (instance exists in data

but is not predicted).

There is a communication between the CN2 and the C4.5 agent. The agent

with the poorer accuracy starts by asking the other whether it has rules for a given

class (“Nucleotidyltransferase”, for instance) as well as its quality. If the agent gets

an affirmative answer with superior quality in it, then it is necessary to check the

equivalence. If the quality and equivalence tests are satisfied, the agent adds the

new rule to its ModelMerge component. For example, the rules of C4.5 agent for the

Keyword “Nucleotidyltransferase” have 36% accuracy while the accuracy for CN2

agent is 45%. As each agent has the goal of improving its knowledge by acquiring

better rules, in the “Nucleotidyltransferase” case, the C4.5 agent adds the rule to

its ModelMerge component. All agents repeat this process until there are no more

related rules to be exchanged. Our results regarding MASKS show that both agents

produced satisfactory results.67

Finally, as to what regards layer III, we are still working on the construction

of all tools which will allow the user to check the ORFs annotated automatically.

Remember that to this date, the genome is not yet fully sequenced so this check is

not possible.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

268 A. L. C. Bazzan et al.

6. Discussion and Future Directions

To begin this discussion, we want to point out the shortcomings and positive points

in some of the tools reported in Sec. 3, for this has helped us during the design of

our tool. As pointed out in that section, a number of researchers have developed

tools that, to some extent, address the same functionality that ours addresses.

ACeDB deals mainly with the C. elegans and thus lacks the functionality to

make it a complete system for sequence annotation. For example, it cannot be run

automatically on a set of sequences to find database homologies, possible promot-

ers, etc. Tools specifically designed for sequence annotation include GeneQuiz and

Genotator. Both address the functionalities of our layer I (where most of the re-

search and other tools focus) and automatically run a series of sequence analysis

tools, including BLAST and FASTA, displaying results as structured text. Recently,

there has been interest in developing Java displays for visualization of sequences

and related information.

In Genotator, most of the work has focused on graphical displays after calling

programs for sequence analysis. As for machine learning techniques, comparing our

work to that by Kretschmann and colleagues42 we can generate rules that take

into account PROSITE and INTERPRO classification of motifs all at once, thus

generating less but more significant rules. Of course this works well because we

isolated organisms of one single taxonomic group. Otherwise we would have had to

deal with too much data from SWISS-PROT.

Finally, when we compare our approach with those based on agents, we do not

see much difference since they all derive from the same motivation, namely using

agents to gather and process information. Our agents are not as general as those in

Geneweaver, for instance, rather they are specialized in particular tasks. However,

we plan to work in that direction.

In summary we are aware that our tool has a poor visualization. Also, layer I

is not yet as good as Genotator or GeneQuiz because we opted to concentrate in

the novelty implemented in layer II, namely the automatic annotation via machine

learning. In fact we think that this is the point which makes our approach differ-

ent since, to the best of our knowledge, no other integrated tool has modules to

generate rules for annotation. Moreover, we also focus on tools that allow the user

to validate those rules. It decreases the chances of incorrect automatic annotation

which generate even more incorrectness.

We still have many tasks ahead. First, we have to make many of the integration

functionalities in layers I and III fully operational. Second, we also want the improve

the broadness of layer I by designing more agents to deal with further tools and

programs (for instance, with PSI-Blast). Third, we have to work on the visualization

issue (in all layers) to make it more attractive to the user. Fourth, we can set more

checkpoints for human control of the automatic process. This has to be decided by

the user since the tradeoff may not be positive. Finally, we want to add a fourth layer

to handle learning how to accept or reject an annotation. This can be done once we

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 269

capture the explanation of the user for acceptance or rejection. If this explanation

is translated into attributes, then we can apply either symbolic machine learning

techniques or an artificial neural network to do that, thus allowing us to go one

step further into the process of automatization. If this succeeds, the user just has

to inspect the files of rejected and accepted annotations to see whether or not s/he

agrees with the classification.

7. Conclusions

This work reports the ATUCG environment, an agent-based systems for automatic

annotation of genomes. It consists of three layers (a fourth one is planned, which

learns with the user how to accept or reject an annotation). Layer I is similar to

those reported in the literature, i.e. tries to automate the tasks behind the process

of finding ORFs. To this end, it is necessary to automate many database searches

as well as to run programs like Blast and similar ones. Layer II is the core of our

approach. It has three main tasks: extraction and formatting of data, automatic

annotation of family profiles (based on INTERPRO and PROSITE motifs), and

generation and validation of rules to automatically annotate the Keywords fiels

in the SWISS-PROT database. In the future, we want to allow other fields to be

automatically annotated as well. Layer III also renders our approach different from

the systems proposed in the literature. It permits the user to check the automatic

annotation in an easy way: motifs appearing in a rule can be directly accessed so

that the user can find out whether or not the rule is correct and/or was correctly

employed to generated a particular annotation.

We have presented these three layers and some results already achieved: despite

the fact that the genome we target is not yet completely sequenced, the tasks in

layer II are independent so that they could already be tested. Preliminary results

show that both the collaborative learning as well as the individual learning (where

single machine learning agents generate the rules for annotation using machine

learning algorithms) achieve better results than those found in the literature.

In the future we want to work on various directions such as improving the broad-

ness of layer I, the visualization tools, studying the feasibility and appropriatness

of inserting more check-points for the user to validate the annotation, and further

uses of machine learning tools.

Acknowledgments

We are greatful for the support of CNPq to the PIGS project, as well as to the

PIGS team. We also thank the anonymous reviewers for their suggestions.

References

1. J. J. Alferes and L. M. Pereira, Reasoning with logic programming, 1111, Lecture
Notes in Computer Science (Springer-Verlag, 1996).

March 12, 2003 14:6 WSPC/111-IJCIS 00073

270 A. L. C. Bazzan et al.

2. S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, Blast, J. Mol
Biol. 215 (1990) 403–410.

3. W. Amanfu, C. N. Weng, R. F. Ross and H. J. Barnes, Diagnosis of mycoplasmal
pneumonia of swine: Sequential study by direct immunofluorescence, Am. J. Vet.
Res. 45 (1984) 1349–1452.

4. M. Andrade, G. Casari, A. de Daruvar, C. Sander, J. Schneider, R. Tamames, A.
Valencia and C. Ouzounis, Sequence analysis of the Methanococcus Jannaschii genome
and the prediction of protein function, Comput. Appl Biosci. 13 (1997) 481–483.

5. M. A. Andrade, Tools for automated protein annotation, Protein Sequence Analysis
in the Genomic Post=Era, eds. R. Casadio and L. Masotti (Clueb, Bologna, Italy,
2001).

6. M. A. Andrade, N. P. Brown, C. Leroy, S. Hoersch, A. de Daruvar, C. Reich, A.
Franchini, J. Tamames, A. Valencia, C. Ouzounis and C. Sander, Automated genome
sequence analysis and annotation, Bioinformatics 15 (1999) 391–412.

7. R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman, E. Birney, M. Biswas, P. Bucher,
L. Cerutti, F. Corpet, M. D. R. Croning, R. Durbin, L. Falquet, W. Fleischmann, J.
Gouzy, H. Hermjakob, N. Hulo, I. Jonassen D. Kahn, A. Kanapin, Y. Karavidopoulou,
R. Lopez, B. Marx, N. J. Mulder, T. M. Oinn, M. Pagni, F. Servant, C. J. A. Sigrist
and E. M. Zdobnov, The interpro database, an intergrated documentation resource
for protein families, domains and functional sites, Nucleic Acids Research 29, 1 (2001)
37–40.

8. C. H. Armstrong, M. J. Freeman and L. Sands-Freeman, Crossreactions between
Mycoplasma hyopneumoniae and Mycoplasma flocculare: Practical implications for
the serodiagnosis of mycoplasmal pneumonia of swine, Isvael J. Med. Sci. 23 (1987)
654–656.

9. P. Baldi and B. Soren, Bioinformatics: The Machine Learning Approach (The MIT
Press, Cambridge, MA, 1998) 351p.

10. A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S. Eddy, S. Griffiths-Jones,
K. Howe, M. Marshall and E. L. Sonnhammer, The pfam protein families database,
Nucleic Acids Research 30, 1 (2002) 276–280.

11. R. J. Bayardo, J., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Un-
nikrishnan, A. Unruh and D. Woelk, InfoSleuth: Agent-based semantic integration
of information in open and dynamic environments, Proc. ACM SIGMOD Int. Conf.
Management of Data (ACM press, New York, 1997) 195–206.

12. A. L. C. Bazzan, S. Ceroni, P. M. Engel and L. F. Schroeder, Automatic annatation of
keywords for proteins related to Mycoplasmataceae using machine learning techniques,
Bioinformatics 18, S2 (October 2002) S1–S9.

13. D. Benson, D. J. Lipman and J. Ostell, Genbank, Nucleic Acids Research 21 (1993)
2963–2965.

14. M. Borodovsky and J. D. McIninch, Genemark: Parallel gene recognition for both
dna strands, Computer & Chemistry 17, 9 (1993) 123–133.

15. N. P. Brown, C. Leroy and C. Sander, Mview: A web compatible database search or
multiple alignment viewer, Bioinformatics 14 (1998) 380–381.

16. K. Bryson, M. Luck, M. Joy and D. Jones, Applying agents to bioinformatics in
geneweaver, Proc Fourth Int. Workshop on Collaborative Information Agents, Lecture
Notes in Computer Science (Springer-Verlag, 2000).

17. P. bucher and A. Bairoch, A generalized profile syntax for biomolecular sequences
motifs and its function in automatic sequence interpretation, A. R., B. D., K. P., L. R.,
and S. D., Proc. 2nd Int. Conf. Intelligent Systems for Molecular Biology (ISMB’94)
(AAAI Press, Menlo Park, 1994) 53–61.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 271

18. G. Casari, C. Ouzounis, A. Valencia and C. Sander, Genequiz ii: Automatic function
assignment for genome sequence analysis, First Ann. Pacific Symp. Biocomputing,
1996.

19. P. Clark and T. Niblett, The cn2 induction algorithm, Machine Learning 3 (1989)
261–283.

20. W. W. Cohen, Fast effective rule induction Proc. 12th Int. Machine Learning Conf.
(Morgan Kaufman, CA, 1995) 115–123.

21. K. Decker, X. Zheng and C. Schmidt, A multi-agent system for automated genomic
annotation, Proc. Int. Conf. Autonomous Agents (ACM Press, Montreal, 2001).

22. S. S. Dritz, M. M. Chengappa, J. L. Nelssen, M. D. Tokach, R. D. Goodband, J. C.
Nietfeld and J. J. Staats, Growth and microbial flora of nonmedicated segregated,
early weaned pigs from a commercial swine operation, J. Am. Vet. Med. Assoc. 208

(1996) 711–715.
23. R. Durbin and J. Thierry-Mieg, Ac. elegans database, Documentation, code, and data

available from anonymous FTP servers at lirmm.lirmm.fr, cele.mrclmb.cam.ac.uk and
ncbi.nlm.nih.gov.

24. T. Etzold, A. Ulyanov and P. Argos, Srs: Information retrieval system for molecular
biology data banks, Methods Enzymol. 266 (1996) 114–128.

25. L. Falquent, M. Pagni, P. Bucher, N. Hulo, C. Sigrist, K. Hofmann and A. Bairoch,
The prosite database, its status in 2002, Nucleic Acids Research 30 (2002) 235–238,
PubMed: 11752303.

26. M. J. Freeman, C. H. Armstrong, L. Freeman-Sands and L. Lopez-Osuna, Serological
cross-reactively of porcine reference antisera to Mycoplasma hyopneumoniae, M. floc-
culare, M. hyorhinis and M. hyosyoviae indicated by the enzyme-linked immunosor-
bent assay, complement fixation and indirect hemagglutination tests. Can. J. Comp.
Med. 48 (1984) 202–207.

27. T. Gaasteland and C. W. Sensen, Fully automated genome analysis that reflects user
needs and preferences: A detailed introduction to the magpie system architecture,
Biochemie 78 (1996) 302–310.

28. R. F. Goodwin, Apparent reinfection of enzootic-pneumonia-free pig heards: Early
signs and incubation period, Vet. Res. 115 (1984) 320–324.

29. R. F. Goodwin, A. P. Pomeroy and P. Whittlestone, production of enzootic pneumonia
in pigs with mycoplasma, Vet. Rec. 77 (1965) 1247–1249.

30. P. Green, Ancient conserved regions in gene sequences, Crrent Opinions in Structural
Biology (1994) 404–412.

31. N. L. Harris, Genotator: A workbench for sequence annotation, Genome Research 7,
7 (1994) 754–762.

32. J. G. Henikoff, S. Henikoff and S. Pietrokovski, New Features of the bocks database
serves, Nucleic Acids Research 27, 1, 1994.

33. K. Higo, Y. Ugawa, M. Iwamoto and T. Korenaga, Plant cis-acting regulatory dna
elements (place) database, Nucleic Acids Research 27, (1999) 297–300.

34. S. C. Hoersch, N. P. Leroy, M. A. Brown, M. A. Andrade and C. Sander, Genequiz
web server: Protein functional analysis through the web, 2000.

35. K. Hofmann, P. Bucher, L. Falquet and A. Bairoch, The prosite database, its status
in 1999, Nucleic Acids Research 27, 1, 1999.

36. I. Iliopoulos, S. Tsoka, M. A. Andrade, P. Janssen, B. Audit, A. Tramontano, A.
Valencia, C. Leroy, C. Sander and C. A. Ouzounis, Genome Sequences and Great
Expectations, 2002.

37. P. Karp, What we do not know about sequence analysis and sequence databases,
Bioinformatics 4, 9 (1998) 753–754.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

272 A. L. C. Bazzan et al.

38. R. D. King, S. Muggleton. R. A. Lewis and M. J. Sternberg, Drug design by machine
learning: The use of inductive logic programming to model the structure-activity
relationships of trimethoprim applogues binding to dihydrofolate reductase, Proc Natl.
Acad. Sci. 89 (1992) 11322–11326.

39. R. D. King and M. J. Sternberg, Machine learning approach for the prediction of
protein secondary structure, J. Mol. Biol. 216 (1990) 441–457.

40. E. F. Kirkness and A. R. Kerlavage, Tje tigr human cdna database, Methods Mol.
Biol. 69 (1997) 261–268.

41. M. Kobisch and N. F. Friis, Swine mycoplasmoses, Rev. Sci. Tech. Off. Int. Epizoot.
15 (1996) 1569–1606.

42. E. Kretschmann, W. Fleischmann and R. Apweiler, Automatic rule generation for
protein annotation with the c4.5 data mining algorithm applied on swiss-prot, Bioin-
formatics 17 (2001) 920–926.

43. D. Kulp, D. Haussler, M. G. Rees and F. H. Eeckman, A generalized hidden Markov
model for the recognition of human genes in dna, Proc. Conf. Intelligent Systems in
Molecular Biology ’96 (AAAI/MIT, St Louis, Missouri, 1996).

44. T. Lengauer, The accessibility of data for bioinformatics, Bioinformatics 15, 2 (1999)
91–92.

45. A. Lukashin and M. Borodovsky, Genemark.hmm: New solutions for gene finding,
Nucleic Acids Research 26, 4 (1998) 1107–1115.

46. A. Lupas, M. Van Dyke and J. Stock, Coils, Science, 252 (1998) 1162–1164.
47. J. Macauley, H. Wang and N. Goodman, A model system for studying the integration

of molecular biology databases, Bioinformatics 14 (1998) 575–582.
48. D. Maes, M. Verdonck, H. Deluyker and A. De Kruif, Enzootic pneumonia in pigs,

Vet. Quart. 18 (1996) 104–109.
49. C. J. Mare and W. P. Switzer, Mycoplasma hyopneumoniae, a causative agent of virus

pig pneumonia, Vet. Med. 60 (1965) 841–845.
50. S. Mller, U. Leser, W. Fleischmann and R. Apweiler, Edittotrembl: A distributed

approach to high-quality automated protein sequence annotation, Bioinformatics 15

(1999) 219–227.
51. H. Numa, K. Sakata, Y. Nagamura, B. A. Antonio, A. Idonuma, Y. Shimizu, I. Ho-

riuchi, T. Matsumoto, T. Sasaki and K. Higo, Ricegaas: An automated annotation
system for rice genome, Genome Informatics (2001) 496–497.

52. P. Auer, R. Holte and W. Maass, Theory and applications of agnostic pac-learning
with small decision trees, Proc 12th Int. Machine Learning Conf. (Morgan Kaufmann,
1995).

53. W. R. Pearson and D. J. Lipman, Fasta, Proc. Natl. Acad. Sci. 85 (1998) 2444–2448.
54. E. Pennisi, Keeping genome databases clean and up to date, Science 286 (1999)

447–50.
55. R. C. Prati, J. A. Baranauskas and M. C. Monard, Uma proposta de unificação da

linguagem de representao de conceitos de alsorithmos de aprendizado de máquina
simbólicos, Technical Report 137, ICMC-USP, 2001.

56. V. J. Promponas, A. J. Enright, S. Tsoka, D. Kreil, S. Leroy, C. Hamodrakas, C.
Sander and O. C. A. biasdb/cast Bioinformatics 16, 10 (2000) 915–922.

57. J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann, 1993).
58. S. Razin, D. Yogev and Y. Naot, Molecular biology and pathogenicity of mycoplasmas,

Microbiol. Mol. Biol. Rev. 62 (1988) 1094–1156.
59. R. F. Ross, Mycoplasmal Diseases, 7th edn., 1992.
60. B. Rost, R. Casadio, P. Fariselli and C. Sander, Transmembrane helices predicted at

95% accuracy, Protein Sci. 4, 3 (1994) 521–533.

March 12, 2003 14:6 WSPC/111-IJCIS 00073

Atucg — An Agent–Based Environment 273

61. B. Rost and S. Sander, Prediction of residue solvant accesibility, 20 (1994) 216–226.
62. B. Rost, C. Sander and R. Schneider, Predictprotein, Computer Application in the

Biosciences (CABIOS) 20 (1994) 53–60.
63. K. Sakata, H. Ngasaki, A Idonuma, W. Watanabe, M. Kise and T. Sasaki, Ricehmm:

Gene domain prediction program for rice genome sequence, Abstracts 4th Ann. Conf.
Computational Genomics (2001) 31.

64. S. Salzberg, A. Delcher, S. Kasif and O. White, Microbial gene identification using
interpolated markov models, Nucleic Acids Research 26, 2 (1998) 544–548.

65. C. Sander and R. Schneider, Maxhom, Proteins 9 (1991) 56–69.
66. M. Scharf, R. Schneider, G. Casari, P. Bork, A. Valencia, C. Ouzounis and C. Sander,

Genequiz: A workbench for sequence analysis, Second Int. Conf. Intelligent Systems
for Molecular Biology, 1994.

67. L. F. Schroeder and A. L. C. Bazzan, A multi-agent system to facilitate knowledge dis-
covery: An application to bioinformatics, Proc. Workshop Bioinformatics and Multi-
Agent Systems (BIXMAS’2002) Bologna, Italy (2002) 441–50.

68. L. F. Schroeder, A. L. C. Bazzan, J. Valiati, P. M. Engel and S. Ceroni, A compar-
ison between symbolic and non-symbolic machine learning techniques in automated
annotation the “keywords” field of SWISS-PROT, eds. A. L. C. Bazzan and A. de
Carvolho, I brazilian Workshop on Bioinformatics, Porto Algre, Rs, 2002. Soc. Bras.
de Computação (SBC), 80–87.

69. D. B. Searls, Biotk: Componentry for genome informatics graphical user interfaces
COMBIS, 1995. http://www.cbil.upenn.edu/ dsearls/bioTk paper/paper.html

70. J. Tamames, C. Ouzounis, C. Sander and A. Valencia, Prediction of protein functional
class, FEBS Lett. 389 (1996) 96–101.

71. A. Thomas and M. H. Skolnick, A probabilistic model for detecting coding regions in
dna sequences, IMA J. Math. Appl. Medicine and Biology 11 (1994) 149–160.

72. J. C. Wootton and S. Federhen, Analysis of compositionally biased regions in sequence
databases, Methods Enzymol. 266 (1996) 554–571.

73. K. C. Worley, P. culpepper, B. A. Wiese and R. F. Smith, Beauty-x: Enhanced blast
searches for dna queries, Bioinformatics (1998) 890–891.

74. Y. Xu, R. J. Mural, M. B. Shah and E. C. Uberbacher, Recognizing exons in genomic
sequence using grail ii, ed. J. Setlow, Genetic Engineering: Principles and Methods
(Plenum Press, 1994).

75. A. Zaha, Projeto rede sul de anlise de genomas e biologia estrutural, 2001, (in
Portuguese).

76. E. M. Zdobnov, R. Lopez, R. Apweiler and T. Etzold, The ebi srs server — New
features, Bioinformatics 18, 8 (August 2002) 1149–1150.

