
On the Transition of Legacy Networks to SDN - An
Analysis on the Impact of Deployment Time,

Number, and Location of Controllers
Diogo Ferreira Thé Pontes
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Abstract—SDN has emerged as an alternative networking
paradigm separating the control plane from the data plane. In
real-world scenarios, the transition from a traditional network to
an SDN one is usually done in incremental steps, due to the costs
and bureaucracy of new hardware’s acquisition and deployment
in companies. This transition involves the deployment of SDN-
ready switches and hardware to run the software responsible
for managing the control plane, i.e., the controller. Many studies
on how to properly place and reduce the number of controllers,
known as the Controller Placement Problem (CPP), have been
conducted, but only a few of them exploited the CPP on hybrid
(traditional/SDN) networks. In hybrid networks, we identified a
gap in the minimum number of controllers required for a hybrid
SDN to operate, considering a different number of transition
steps and the heuristic to place these controllers within the
network. Therefore, in this paper, we propose three heuristic
approaches based on graph invariant for choosing the node to
place a new controller reducing its number on a network that
starts legacy, becomes hybrid, and ends fully SDN-enabled at the
end of a finite transition step horizon. The proposed heuristics
are compared against an optimized model and have been proven
useful in scenarios where the network administrator does not
have full control over the network evolution. Also, we found that
the optimal multi-step network upgrade requires, on average, the
same amount of controllers of a one-step migration, but it has
to have full knowledge on each transition change of the hybrid
network. Finally, we show that the performance of the heuristic
approaches is related to the network topology and characteristics,
such as traffic and physical switches distribution.

Index Terms—controller placement problem, software-defined
networking, network planning

I. INTRODUCTION

Software-Defined Networking (SDN) provides a logically
centralized network provisioning, programmability, and low
cost of operations, emerging as an alternative to meet today’s
stringent network requirements [1] [2]. SDN requires a new
type of software component usually deployed in dedicated

processing hosts: the controllers. These controllers are respon-
sible for managing network flows and providing the network
state bringing benefits such as optimized routing and enhanced
network performance [3], contributing to meet costumers’
Quality of Experience (QoE).

The deployment of SDN in an organization is a process that
does not happen at once. Instead, the legacy network gradually
evolves towards a fully-capable SDN [4]. In the meantime,
several intermediate versions of a hybrid legacy/SDN network
exist. In this evolution, each new version of the network
evolves from the previous version influenced by diverse fac-
tors, such as budget, device capabilities, network policies,
management strategies, and administrative domains. In this
paper, we are interested in observing the gradual adoption
of SDN in networks operated by different and independent
management teams. In such a network, each team can take
SDN deployment decisions independently from each other.
For example, this happens at some universities, where each
department or institute has the flexibility to make local im-
provements in its internal network with its own budget. In the
enterprise world, this can be observed on a company where
each branch controls when to upgrade their subnetwork that
connects to the headquarters.

The SDN controller [5] is a critical component of an SDN
network. Naturally, the SDN design’s decisions regarding this
matter have a direct impact on network performance, load,
and costs [6]. Considering this, we highlight three cornerstone
decisions about SDN controllers: (i) the minimum amount
of installed controllers to reduce costs without harming the
network performance; (ii) the controllers location, taking into
account the network demand; and (iii) when a new con-
troller should be deployed, following the network evolution
timeline [7]. Deploying an SDN considering these design
decisions is not simple, mainly when it should consider them978-3-903176-32-4 © 2021 IFIP



all together, leading to the so-called Controller Placement
Problem (CPP). Decisions (i) and (ii) have been extensively
addressed in the literature. Decision (iii), however, is largely
overlooked, but we argued that an organization cannot properly
deploy SDN ignoring an evolutionary approach. Following an
instantaneous deployment, as usually assumed in the literature,
is not realistic. There are many studies considering the Con-
troller Placement Problem [8]. However, the majority focus
to tackle CPP as a single-objective optimization problem,
working with features like cost, resilience, and latency [9].
Others try to model hybrid networks using hardware that is
not produced yet [10]. Nevertheless, decisions regarding the
minimum amount, the best location, and timing to place a
controller have been analyzed separately without considering
their relationship. To the best of our knowledge, this is the first
analysis of the CPP addressing the relationship among these
mentioned cornerstone decisions in a hybrid network.

In this paper, we address the controller placement problem’s
issue, considering the minimal number of controllers required
to transition a traditional network to a hybrid SDN until it
becomes a fully deployed SDN. Our solution makes decisions
regarding the time, placement, and minimal amount of SDN
controllers required to meet latency and load constraints. The
main contributions of this paper are listed as follow:
• A characterization of the controller placement problem

regarding timing, number, and location of controllers in
Hybrid SDN;

• An analytical model to evaluate the tradeoff limits related
to the number, location, and timing to deploy controllers
in a Hybrid SDN; and

• An experimental analysis of the tradeoff of timing, num-
ber, and controllers’ location in Hybrid SDN.

The remaining of this paper is organized as follows. In
Sec. II, we summarize and discuss related work. In Sec.
III, we present our system model. In Sec. IV, we define
our optimization model. In Sec. V, an experimental model
is presented. Afterward, in Sec. VI, we present and discuss
results from our experiments. Finally, in Sec. VII, we conclude
our work by presenting conclusions and future work.

II. RELATED WORK

This section presents the most relevant related works to ad-
dress the controller placement problem’s issue. Amir Hossein
Fakhteh, Vahid Sattari-Naeini, and Hamid Reza Naji [11] work
focus on an algorithm for migrating from a traditional to a
software defined network, focusing on maximizing network
control ability and flexibility while minimizing the cost of this
transition. The authors use closeness-centrality and neighbor
eccentricity invariant from graph theory to heuristically select
the best nodes to upgrade, then place the controller based on
the cluster’s position weighted by the number of upgraded
switches in the clusters. Like our work, in [11] exploits the
CPP on hybrid SDN but they only deal with one controller’s
location, and it assumes the network transition is predictable
and controlled by the network manager. Differently, our work
deals with multiple controllers on networks where the manager
does not have centralized control over the switches upgrade,

creating randomized scenarios to evaluate the average case.
Since the main feature of an SDN is the capability to repro-
gram the whole control plane according to the manager’s own
will at any time, we aim for the minimization of the number
of controllers that produce long-term improvement optimizing
the network planning instead of its performance.

Levente Csikor et al. [12] virtualizes the SDN switches,
developing new hardware coupled to legacy switches to make
them SDN. This solution proved to cost less and have better
data plane performance for small businesses compared to
existing SDN deployment, but it might not be a definitive long-
term solution. It provides one way to upgrade a legacy to an
SDN network. Our work aims towards a fully SDN as the final
result with higher biasing on the network’s topology despite
small to large businesses. Also, our results are generalized to
achieve the average case not specific to a single-use case.

Damu Ding et al. [13] proposes a solution for composing
and monitoring a network with legacy and SDN switches. The
authors aim to incrementally deploy SDN switches in an ISP
network to maximize the number of distinct flows monitored.
To achieve this objective, the authors proposed an algorithm
and a novel network-wide heavy-hitter detection that worked
well on networks with few legacy switches. Both the heavy-
hitter detection and the incremental deployment algorithm
outperformed existing approaches considering the network
update’s hierarchical plan. Similarly, we define a finite horizon
of incremental discrete steps to model our transitioning from
legacy to full deployed SDN network. Nevertheless, we do
a step further by characterizing the tradeoff of placement,
number, and time to deploy SDN controllers for the average
case, randomizing the legacy switches that will become SDN
enabled.

Tamal Das and Mohan Gurusamy [7], [9] have two works
that introduce CPP to add controllers incrementally in a
network over a period of time. In [7], they evaluate their
solution in terms of various performance metrics, such as
the number of controllers, cost savings, and latency. The
proposed model focuses on optimizing placement costs and
switch-controller latency, considering rising network traffic
and falling costs of SDN hardware and maintenance. This is
done by first minimize the control placement cost, assuming
a latency threshold, and then, with the output of the first
stage, they reduce the worst-case control latency. In [9], they
formulate CPP on hybrid SDN, aiming to maximize the control
channel resilience. Unlike this work, we consider optimizing
controller-switch latency an odd objective, given that the
network performance is related to demand, and there are
no guarantees we’re minimizing the signaling round-trip-time
between controller and switches to enhance network operation.
Thus, we evaluate CPP to the average case of a given topology
modeling the controller-switch latency as a constraint.

Considering the literature presented, most of the work focus
on optimizing one objective, such as latency or resilience, but
they do not discuss the tradeoffs involving time, number and
location of controllers creating a research gap: quantify the
tradeoff involving timing, number and location of controllers
in the transition of a legacy network to SDN taking into ac-



count switch-controller latency and controller load constraints.
This paper covers this gap, considering the average case where
the network evolution is not predictable. This result is then
used as a baseline to compare three heuristics that we propose
for choosing the controller located in the same hybrid SDN
scenario, as presented in the next sections.

III. SYSTEM MODEL

This section presents the system model and further def-
initions for the controller placement problem used in this
work. Table I gathers all the notation used in this section.
Our model starts through the legacy network definition, which
is represented by the set of N = {1, 2, ..., N} nodes, i.e.,
switches. Each pair of nodes (n,m) constitutes a connected
edge when {(n,m) ∈ N | n 6= m; ε(n,m) = 1}, where
ε(n,m) stands for the edge function and assumes the value of
1 only when both nodes n and m have a physical connection
between them, and 0 otherwise. The edge function can be
iterated considering all nodes’ permutation N to generate the
binary matrix of the set edges V = {0, 1}N×N . Finally,
a network topology can be defined by the directed graph
G(N , V ).

The upgrade of a legacy network G(N , V ) to SDN enabled
is accomplished in a finite horizon of T = {1, 2, ..., T}
discrete transitions t :→ IN. Each transition step t ∈ T is de-
termined as an upgrade of at least one or more legacy nodes to
SDN. A binary matrix X = {∀t ∈ T ,∀n ∈ N |Xtn ∈ {0, 1}}
is used to track which nodes are becoming SDN, where Xtn

is only equal to 1 when node n at transition step t is SDN
enabled. After a node n becomes SDN enabled, it will never
turn back into legacy equipment again. Hence X(t+1)n =
{1 | Xtn = 1)} property holds for any configuration of X .

TABLE I: Notation used in the paper.

Notation Parameter
G(N , V ) Network graph

σ Maximum load in one controller
Kn Load (number of packets) of node n
L Matrix of latencies from the set of nodes N
Lnm Shortest path latency between n and m nodes
δ Maximum switch-controller latency threshold
N Set of nodes
T Finite horizon of transition steps
T Cardinal of the set of transition steps
V Set of edges
X Binary matrix
Xtn Defines if a node n is SDN at transition step t

ε(n,m) Connection representation between n and m nodes

Both legacy and SDN enabled nodes receive traffic as a
networking load, represented by the vector K = {∀n ∈
N | Kn ∈ ZZ+}. Each element Kn is a positive integer value
of absolute packets number received at node n. Since the
control of legacy equipment is held locally, only SDN enabled
nodes generate signaling workloads. Although the signaling
workload should be presented in packets in, available data
sets from the literature give only network workload values.
To tackle this issue, we are using the representation of the

signaling workload as a direct function of the packets received
per node as f(Kn) ∈ ZZ+ packet in. A deployed controller
will process a maximum workload of σ ∈ ZZ+ packet in
summed from all assigned SDN nodes.

The network defined in G(N , V ) has its latency denoted
by the matrix L = {∀(n,m) ∈ N|Lnm ∈ IR+}, where each
element Lnm is equal to a positive real number representing
the aggregated latency resulting from the shortest path problem
solution between nodes n and m, otherwise 0 when n = m.
Also, all SDN control signaling communication latency must
be kept below a threshold of δ to meet QoS requirements,
referred to as maximum switch-controller propagation la-
tency [8].

The system model described was designed to represent most
real network scenarios with general topologies, considering
key performance indicators, such as traffic and latency. More-
over, a finite horizon comprising transition steps was also in-
troduced to map a legacy network’s upgrade into a fully SDN-
enabled network. The proposed model can also represent most
of the literature network data sets, such as those considered
in our work, NSFNet, GEANT2, and SYNTH50 [14]. Next,
considering the system model proposed, we define the CPP
problem.

IV. PROBLEM DEFINITION

In this section, we describe the CPP problem definition. We
start by defining the main decision variables, followed by the
constraints and objectives of a CPP. Finally, a Binary Inte-
ger Linear Problem (BILP) definition is proposed discussing
differences to the models found in the literature.

The main objective of the CPP is to minimize the number
of controllers. Our model’s different aspect is to reduce the
number of controllers considering the transitioning of a legacy
network until it becomes full SDN enabled. As a consequence,
decisions regarding the controller placement are described by
the binary variables ytn, where

ytn =

{
1; Controller in node n is in transition step t;
0; Otherwise.

Similarly, every assignment decision of an SDN switch to
one controller can be mapped using binary variables ztnm,
where

ztnm =

{
1; Node n assigned to controller m in step t;
0; Otherwise.

Considering each binary variable at step t, we can decide
when a node n starts to host an SDN controller with ytn, and
which nodes m it is serving with ztnm. Each decision must
be made considering different constraints, such as presented
below.

1) Constraints:
• The controller needs either to run in new hardware or

be virtualized in existing hardware. Hence it is more
convenient, due to existing infrastructure, to place a
controller where we already have a switch. Thus, this



constraint allows a controller to be placed (ytn = 1) only
if node n at step t is SDN (Xtn = 1).

ytn ≤ Xtn,∀n ∈ N ,∀t ∈ T . (1)

• The SDN switches send packet in messages to the
controllers every time a packet arrives with an unknown
header, i.e., with fields that do not fit in any forwarding
rule already installed. Therefore, the latency (Lnm) in
seconds between controller at the node m and an SDN
node n, when assigned (ztnm = 1) must be below a delay
budget of δ seconds to keep QoS requirements.

ztnm × Lnm ≤ δ, ∀t ∈ T ,∀n ∈ N ,∀m ∈ N . (2)

• Every SDN switch requires to be assigned to a con-
troller to operate, receiving forwarding rules. For the
tth transition step, an SDN enabled (Xtn = 1) node
n must be assigned to one and only one controller m
(
∑N

m=1 ztnm = 1).

N∑
m=1

ztnm = Xtn,∀t ∈ T ,∀n ∈ N . (3)

• Since the latency for the paired SDN node and the
controller will be negligible, it is natural to enforce that
the hosting switch is connected to the hosted controller.
Therefore, the node n hosting a controller (ytn = 1) at
step t will always be assigned to its hosted controller
(ztnn = 1).

ztnn = ytn,∀t ∈ T ,∀n ∈ N . (4)

• An SDN node must be assigned to a controller that must
exist in another node. Thus, this constraint ensures that
an SDN switch n will only be assigned (ztnm = 1) to a
node with a controller (ytn = 1) at step t.

ytn − ztnm ≤ 1,∀t ∈ T ,∀n ∈ N ,∀m ∈ N . (5)

• Due to hardware limitations, controllers can only handle
a certain workload of packet in messages per second.
This constraint ensures that the summation of packet in
received (Kn) from all assigned nodes (

∑N
n=1 ztnm) must

be lesser equal to the controller workload capacity σ.
N∑

n=1

ztnm ×Kn ≤ σ, ∀t ∈ T ,∀n ∈ N . (6)

• Buying, placing, or replacing a controller generates mon-
etary cost. In our model, once a controller is placed
(ytn = 1), it can not be removed or replaced, and it stays
in the same spot until the end of all future transition steps
(y(t+1)n = 1).

−1 ≤ ytn − y(t+1)n ≤ 0,∀n ∈ N ,∀t ∈ T | t < T. (7)

Constraint (2) deals with the location aspect in our model.
Considering the decision variables and constraints, the objec-
tive function of the CPP can be defined as a minimization of
the number of controllers, as defined by the Equation 8.

2) CPP optimization problem::

min

T∑
t=1

N∑
n=1

ytn (8)

s.t.
(1), (2), (3), (4), (5), (6), and (7).

In Equation (8), the installation of a new controller is
characterized by the first occurrence of the variable ytn,
i.e., for a given node n, it is the smallest value that t can
assume, where ytn = 1. This is how we deal with the
time part. Due to the propagation effect caused by constraint
(7) that turns all y(t+1)n = 1 until t = T − 1 from
its first occurrence, the minimization can be generalized to
the occurrence of all variables ytn throughout all transition
steps. Thus, our objective is the generalized minimization of
controllers’ occurrence for each SDN node in G(N , V ). As the
proposed model is a Binary Integer Linear Problem (BILP),
it reduces to a combinatorial problem with non-polynomial
complexity. Although combinatorial, our problem presents a
linear objective and constraints, and it’s the solution can be
found with linear-programming solvers, such as C-PLEX1 or
OR-Tools2.

To solve the optimization problem proposed, it must know
all information available before the start. It means the number
of transition steps is finite and known. It is also known which
nodes will be upgraded to SDN at each stage. However,
in unplanned, uncontrolled, or real scenario deployments,
these statements cannot behold. For instance, in a University
environment, different departments may choose the number
and the legacy nodes that will be upgraded without prior
notification to the Network Operation Center (NOC). Thus,
NOC managers may not have all the required information to
solve this optimization problem. Thereby, they will not be able
to plan how optimally distribute and install new controllers
at the University infrastructure. Consequently, the network
managers will have to assume a sub-optimal strategy or some
policy to deploy new controllers for the whole University.
They will follow this approach in order to keep some control
level of the academic network flows, despite the different
department upgrade decisions.

V. PROPOSAL

Solving the optimization problem proposed turns feasible
to identify the minimum number, the placement, and at which
transition step controllers must be installed for a given topol-
ogy. However, this approach turns infeasible for uncontrolled
scenarios, where the steps of the transitions occur without
previous planning. In this case, we propose three heuristic
solutions for choosing where to place a new controller, each
one based on a different policy considering a graph invariant.
These controller placement policies are:
• Most Connected Node (MCN );
• Highest Eccentricity Node (HEN ); and

1C-PLEX-IBM Inc.-https://www.ibm.com/br-pt/analytics/cplex-optimizer
2OR-Tools - Google Inc. - https://developers.google.com/optimization



• Highest Load Node (HLN ).
In the MCN policy, the node with the highest degree

available is selected. This selection aims to decrease the
average hop number between placed controllers and nodes,
considering the intuition from [15]. Unlike the previous policy,
HEN selects the node with the highest eccentricity, i.e., this
policy maximizes the distance from the chosen node to all
others in the topology. Lastly, the HLN policy selects a
node based on its load (packet in/s). Since the load is a
direct function of the switch traffic experienced, placing a new
controller on the highest load node will decrease signaling
traffic and lower switch-controller latency.

Before implementing each policy, we propose Algorithm 1
that presents the Controller Location Mapping (CLM) algo-
rithm. This algorithm is responsible for identifying if a new
controller is required or not. This decision is based on the
arrival of new SDN nodes, the network load and the switch-
controller latency restrictions. CLM is also responsible for
calling the Controller Node Chooser (CNC) algorithm (line
3) presented in Algorithm 2. The CNC will select an SDN
node to install a new controller, based on one of the three
available policies.

Algorithm 1: Controller Location Mapping (CLM)
input : N , t and policy
output: A list l of controllers location mapped for

current t
1 map switches(t);
2 while any SDN switch is not mapped and limit count

< N do
3 node = controller node chooser(N , t, policy);
4 insert controller(node, t);
5 map switches(t);
6 end
7 if any SDN node is not mapped then
8 stop;
9 end

10 return l;

The CLM algorithm receives as input the set of nodes N ,
the current transition step t, and the policy in use. The policy
value can be one of the defined selection heuristics as MCN ,
HEN , and HLN policies. Since we defined that a new step
t means an upgrade of one or more switches, every execution
of Algorithm 1 starts by calling the map switches() function
(line 1). This function re-configures the switch-controller
assignment mapping for the current step t. Since the load on
a controller depends only on the switches mapped to it, re-
mapping switches process to the controllers located in different
places does not affect the controller load, only the switch-
controller latency. In case one or more SDN switches remain
without being assigned, due to latency or load constraints, the
algorithm enters into the while loop (line 2). Thus, CLM will
select a node, based on the current running policy (line 3),
to place the controller (line 4), until all SDN switches are
assigned. The mapping process is updated considering a new

controller placed (line 5) or new SDN switches (line 1). At
the end of execution, CLM returns all controllers’ place and
the switch-controller mapping for the current step (line 10). If
there are SDN switches not assigned to any controller at the
end of execution, the problem is infeasible.

Algorithm 2: Controller Node Chooser (CNC)
input : N , t and policy
output: Chosen node

1 for n← 1 to N do
2 if (n is SDN on t) and (n does not have a

controller placed on it) then
3 if metric(n, policy) > highest value then
4 chosen node = n;
5 highest value = metric(n, policy);
6 end
7 end
8 end
9 return chosen node;

Algorithm 2 presents the CNC implementation. It receives
as input parameter the set of nodes N , the current transition
steps t, and the used policy. Based on the policy and the
current transition step t (line 2), the CNC iterates over all
SDN nodes (line 1), considering for it the SDN nodes without
a controller installed on it (line 2). For each node, CNC will
check if its node position maximizes the policy metric value
(line 3). At the end of the execution, the algorithm will return
(line 9) the SDN node which maximizes the evaluated policy
metric value (lines 3 to 5).

All proposed algorithms were implemented using the
Python programming language. This language allowed us to
use a specific and optimized library for graph analysis, called
NetworkX3. NetworkX was used to build the network graph
topology and to compute graph operations, such as node
degree and eccentricity. Also, the optimization problem was
solved using OR-Tools from Google Inc. Next, we present the
results gathered considering different data sets.

VI. PERFORMANCE EVALUATION

To evaluate the optimization problem comparing to the
selected heuristics, we used three data sets [14]: (i) NSFNet
(14 nodes), (ii) GEANT2 (24 nodes), and (iii) SYNTH50
(50 nodes). The selected data sets topologies are illustrated
in Figure 1. We conduct experiments considering the op-
timization and the three proposed heuristics with NSFNet
and GEANT2. Afterwards, to test each heuristic in a more
challenging environment, we selected a data set of N = 50
nodes, the SYNTH50 [14]. However, since SYNTH50 presents
a high number of nodes and consequently an even higher
number of variables to be considered, the optimization solver’s
execution time becomes impractical and their results are not
shown.

The NSFNet data set was surveyed and detailed described
in [16]. Since all the considered data sets follow the same

3NetworkX https://networkx.github.io



(a) NSFNet topology (b) GEANT2 topology (c) SYNTH-50 topology

Fig. 1: Data sets topologies

methodology, the mean latency experienced among nodes
is averaged as 40ms, precisely in [16, Figure 7]. In this
sense, we adopted the value for maximum switch-controller
latency to the normalized value of 0.25, which corresponds
to approximately 10ms in these scenarios. Also, we adopted
a 20000 packet in/s for the maximum controller capacity
according to [17]–[20]. More details are presented in Table II.

TABLE II: Results scenario parameters.

Parameter NSFNet GEANT2 SYNTH50
N 14 24 50
T {1, 5, 10} {1, 5, 10, 15, 20} {1, 5, 10, 15, 20}
Lnm [0, 1.55684] [0, 0.734737] [0, 0.734347]
δ 0.25 0.25 0.25
Kn [0, 14340] [0, 9221] [0, 16217]
σ 20000 20000 20000
Xtn Random Random Random

As can be seen in Table II, each of the data sets presents a
different topology and configuration. N represents the number
of nodes. T is the set of transition steps. δ and σ are the
maximum switch-controller latency and maximum controller
workload constraints, respectively. Lnm and Kn are the range
of the values for normalized latency and number of packets
per second in the data set. Xtn is the randomly generated SDN
switch transition for each step.

Throughout our experiments, we divided the network load
in two categories: optimized load and heavy load. For the
optimized load, we rely on the results of the overhead re-
duction strategy developed in [21] work, which characterizes
the number of packet in in terms of number of packets. We
performed a linear interpolation on the graph in [21, Figure
8] resulting in a function we used to convert the number of
packets in the data sets to packet in messages presented in
Figure 2, which we refer to as load. The heavy load is where
one packet in the network corresponds to one packet in in
the controller. The load on a switch is the sum of the absolute
number of packets transmitted from all adjacent switches to
this switch.

For a generalization of the network changes, the upgrade
plan is randomly created with one or more legacy switches
becoming SDN every transition step until all become SDN-
enabled. We ran 35 rounds of each experiment to achieve
95% confidence interval. To evaluate the impact of time, each
experiment is evaluated for different transition step horizons

spanning in the set T ′ = {1, 5, 10, 15, 20}. Given that one step
means at least one upgrade of a legacy node to SDN-enabled,
we stop experimenting with the highest value that t′ ∈ T ′ can
assume that is smaller than the total number of nodes per data
set. For example, NSFNet is a 14-nodes network data set, we
executed the experiment until t′ = 10.
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Fig. 2: Load [packet in/s] as a function of the network
throughput [packets/s]

We will first present the results of the experiments for
the data sets. They are divided in optimized and heavy load
scenario. Since the average controller load is complementary
to the minimum number of controllers, we decided to omit
them.

A. Optimized load results analysis

The main metric presented throughout our experiments is
the average number of controllers at the end of the finite
horizon of transition steps. In Figure 3, we have in the vertical
axis, the average number of controllers being presented. In
the horizontal axis, we have the cardinal value of different
sets of transition steps T being presented. Each value of
T contains a group of bars, one for each heuristic and the
optimization solution. Since T = 1 means a transition from
legacy to SDN in a single step, the Xtn variables are always
1 for every switch. In this case, the results for both optimized
and heuristic approaches have no variations, for there is no
insertion of uncertainty caused by the random steps present in
other cases. Thus, there is no error bars on the first columns
of every result being presented. Also, given that the heuristics



are suboptimal, without readjustments, they can converge to
suboptimal solutions that do not necessarily have the best
result.

As expected, the proposed optimized model always requires
the lowest amount of controllers and has a higher controller
utilization reaching a concise average value of 4 controllers
for the NSFNet displayed in Figure 3a. Compared to the
optimization, the best heuristic for this use case is HLN ,
reaching the average value of 5.56 controllers, about two
controllers more than the optimization. On the other hand, the
worst heuristic to be considered is HEN , with 10 controllers
required for the worst case and about 6.20 in the best case,
about 3 controllers more than the optimization. The MCN
policy presents a similar demeanor to the HEN heuristic.

Given that NSFNet is a small network of 14-nodes not
fully connected, placing the controller at the most loaded
node in HLN brings benefits regarding controllers processing
workload locally. Whereas, using the highest eccentricity from
HEN does not exploit the same benefit and increase the
chance of latency restriction violation, such as presented in
the range of Lnm in Table II. Another important point is that
with the increasing of the number of transition steps, the three
heuristics start to present similar results, enabling to use any of
the policies considered for a network with the same topology
and a large deployment time.

In Figure 3b, the GEANT2 minimum number of controllers
is depicted by the optimization, presenting an average of 3.4
controllers in the worst case. The best policy for the GEANT2
network is the HEN heuristic, presenting seven controllers in
the worst case and 5.4 in average at best. On the other hand,
the worst policy is the HLN presenting 15 controllers at worst
and achieving the same value of 9 controllers as the MCN
for 20 transition steps.

As GEANT2 presents a highly connected topology, placing
the controllers at the nodes with the highest eccentricity, such
as in HEN , allows the assignment between controllers and
SDN switches to be better executed reducing the number
of hops between them. Nevertheless, a heuristic based on
highest load, such as HLN , underperform in GEANT2 due
to its highly connected topology reducing diameter among
controllers, increasing the number of hops per assignment, and
increasing the chance to violate latency restrictions. Also, it
means that the load of an individual node is similar to the
others in GEANT2, which is the opposite of what happens to
the NSFNet, such as observed in Table II in Kn. To confirm
such a statement, we execute experiments with the SYNTH50.
Also, it is worth mentioning that the increase of transition
steps reduces the difference from one heuristic to another, but
differently from the NSFNet, the HEN policy for GEANT2
remains better despite the higher deployment time.

SYNTH50 is a highly connected topology with 50 nodes.
As mentioned, the number of variables increases dramatically
turning the optimization execution time infeasible. Thus, only
the policies MCN , HEN and HLN have results considering
this data set. As it can be seen, the HEN policy presents
the best values among the three heuristics with 9 controllers
required at worst. The MCN , in turn, presents the highest

results requiring 33 controllers at worst, reducing accordingly
to the increasing of the number of steps achieving the average
of 19 controllers at best. HLN falls in between HEN and
MCN , presenting an average of 14.2 controllers at best.

The results presented for SYNTH50 corroborate with the
statement that a highly connected topology will require a
smaller number of controllers when placing controllers in
nodes with higher eccentricity. In this case, we can conclude
that for optimized load scenarios, the HEN policy is recom-
mended for highly connected topologies. Also, for lesser con-
nected topologies, the HLN will present better results when
planning to install new controllers in the network. Besides,
a deployment time with several transition steps can balance
the performance among the policies selected. However, highly
connected topologies will still benefit with smaller number of
controllers using the HEN policy.

B. Heavy load results analysis

Similar to the previous results, Figure 4 shows the results
obtained regarding the average number of controllers for the
heavy load scenario. In Figure 4a, regardless of the value of
transition steps, the optimized model and HLN have the same
number of controllers. MCN and HEN , in turn, have almost
the same results. Since the NFSNet presents high traffic per
node according to the range Kn in Table II, using the heavy
load function that increases the load linearly to the traffic
experienced, the average number of controllers are dominated
by the load constraint. In this case, almost all switches of
the network require to be installed with a controller, which is
confirmed by the average value of 13 controllers at best by
the optimization for a 14 nodes network, such as NFSNet.

In Figure 4b, the average number of controllers of the
GEANT2 topology is shown. Given that GEANT2 is highly
connected with small traffic per node, its results are not
dominated by the load constraint, such as occurred with the
previous network. Even under heavy load, the best policy is
the HEN with 8.5 controllers in the worst-case scenario. On
the other hand, the policy that requires the highest number of
controllers is HLN with 15 and 10 controllers for the worst
(i.e., , 1 transition step) and best case (i.e., , 20 transition
steps), respectively. MCN , in turn, performs a little better than
HLN , but presents the same behavior through the transition
steps. As previously analyzed for the optimized load scenario,
the same occurs for the heavy load scenario, where the higher
number of transitions serve to balance the heuristics results.
However, HEN is still a better heuristic despite the number
of transition steps, which is also confirmed by the variability
analysis, where the confidence intervals are not overlapped.

The next analysis concerns SYNTH50 topology for the
proposed heuristics, Figure 4c. The MCN policy resulted
in the highest number of controllers, while HEN was the
smallest with 28 controllers on average. The difference in the
number of controllers between policies was more significant
in the optimized load scenario from Figure 3 than in the
heavy load displayed in Figure 4. Despite the SYNTH50 being
a highly connected network, its high traffic per node also
generated high load, making the average number of controllers
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Fig. 4: Number of controllers in scenarios under heavy load

more sensible to the load constraint. This means that the
results are almost the same despite the heuristic adopted or
the number of transitions considered.

As a final observation, the heavy load scenarios depict a
very poorly controlled network environment from which each
data packet occurring creates a packet in message to the
controller. The signaling cost is the same as the data traffic
which is rather very unlikely to occur in reality. At the same
time, since we are not assessing nor optimizing the control
feature of the SDN network, our results cover this kind of
scenario for completeness.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an optimization model to the
Controller Placement Problem for the transitioning from a
legacy network to hybrid until becomes fully deployed SDN.
Given that the solution for the optimization problem requires
full acknowledgment of each change of the transition of a
network, we propose three alternative policies based on graph
invariant with different heuristics to select the best candidate
node to host a controller, namely (i) Most Connected Node;
(ii) Highest Eccentricity Node; and (iii) Highest Load Node.
The results showed that the optimal result has little impact
throughout the transition from legacy to SDN. However, the
policies results have a great influence of the total number of
transitions enabling the number of controllers to be balanced at
the end of a high number of transitions. Also, we detected that
highly connected topologies can greatly reduce the number of
controllers required when planned with the Highest Eccentric-
ity Node policy. Finally, lesser connected topologies require

lesser controllers when planned using the Highest Load Node
policy for a small deployment time, i.e., few transition steps.

Given this information, we recognize some limitations to
the wide use of our model in real network scenarios. First,
a controller cannot be migrated to another place once it is
placed. We know that it might be cheaper to move a controller
to another place instead of buying a new one. However, since
we focus on a network operated by different and independent
management teams, installing a controller in one department
and then revoking it back might generate conflict between
them. Second, we assume that the controller can be installed
in the chosen place. Sometimes there is no infrastructure or
budget to place and maintain this equipment in every switch lo-
cation. Finally, network migration is random. Some companies
can be able to trace a plan for upgrading their network to SDN.
On the other hand, since we are considering networks managed
by independent teams, the moment a department upgrades their
switches depends on several variables, such as their needs,
budget, infrastructure, and bureaucracy. So, we decided that a
random switch migration would fit better in our study case.

As future work, we suggest exploring an optimization model
on a centralized network, where the network migration plan
is part of the output. Optimization with different objectives,
such as resilience and load balancing, can also be explored.
Also, the map switches function from Algorithm 1 can be
improved for optimized results in terms of load balancing.
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