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Abstract This paper examines the application of eBPF (extended Berkeley Packet
Filter) for achieving more precise auditing at the container level in container or-
chestrators such as Kubernetes. We address the challenges associated with auditing
container behavior and highlight the advantages of leveraging eBPF to monitor
container activities at the kernel level. We propose an eBPF-based solution that en-
hances transparency with respect to operations performed within containers. Overall,
this study suggests that the use of eBPF for container-level auditing can provide
valuable insights into container behavior and improve the security of containerized
applications.

1 Introduction

The use of Linux containers has experienced a significant surge in popularity in recent
years. This popularity comes from their ability to package and isolate applications in
a portable manner. A survey conducted by the Cloud Native Computing Foundation
(CNCF) in 2022 [1] revealed that 44% of the respondents reported using containers
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for most applications within their organizations. Furthermore, 35% of the respondents
used containers for a few production systems, while 9% were actively evaluating
the technology. According to recent data [2], Kubernetes!, the leading container
orchestration platform, is used by nearly half of all organizations as their primary
tool for deploying and managing applications

This surge in containerized applications and Kubernetes usage has introduced
challenges, especially in real-time auditing for cluster administrators and network
operators. Traditional methods, like executing a shell interpreter within the container,
do not persist commands, leaving no audit trail post-termination. Kubernetes offers an
Events mechanism for cluster events but lacks the capability to record shell interpreter
commands.

Addressing this gap, our paper introduces an eBPF-based auditing solution. We
employ eBPF for kernel instrumentation to capture commands executed within Bash
shell interpreters by targeting the readline function. Our approach integrates an eBPF
program loader service within containers, creating Kubernetes Events resources. This
service provides cluster administrators with a detailed record of executed commands,
enhancing the ability to audit and troubleshoot containerized applications.

The paper is organized as follows: Section 2 covers the fundamentals of Linux
containers, orchestrators, and eBPF. Section 3 reviews existing approaches using
eBPF for container monitoring and auditing. Our proposed methodology and its
assessment are detailed in Section 4. Section 5 concludes with final thoughts and
potential future research directions.

2 Background

Containers have gained prominence as a viable option for deploying applications at
scale, primarily due to their isolation capabilities and the ease with which applications
can be packaged and deployed. As the adoption of containers increased, container
orchestrators emerged as a solution for managing large-scale deployments of con-
tainerized applications. Simultaneously, eBPF has gained popularity as an efficient
and flexible system monitoring solution. In this section, we explore these technolo-
gies and examine their key features to better understand how they can complement
each other.

2.1 Containerization

Containers are isolated processes on a host machine, crucial in Linux systems for
achieving process-level isolation through namespaces, cGroups, and seccomp. These

U https://kubernetes.io
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kernel features isolate resources, control resource access, and restrict system calls,
enhancing security and efficiency [3,4].

Fig. 1 illustrates the need for an additional management interface to incorporate the
aforementioned Linux kernel concepts into containers. The subsequent subsections
will provide further details regarding this interface.

Container runtimes, like runc and crun, are command-line tools that manage
containers in accordance with Open Container Initiative (OCI) specifications. They
interact with container engines that handle additional functionalities like image
retrieval and mounting [5].

Management Interface

Namespaces cgroups seccomp

[ omers_] Linw Kerne

Infrastructure (Physical/Virtual/ Cloud)

Fig. 1 Architecture of Linux Containers.

subsectionContainer Orchestrators

Automated management of containerized services is vital due to the complexity
of handling numerous containers. Orchestration frameworks, particularly Kuber-
netes, have become essential in managing container ecosystems at scale, addressing
resource heterogeneity and environmental constraints [6].

2.1.1 Kubernetes

Kubernetes, a project initially developed by Google and now maintained by the
CNCEF, is a prominent orchestrator. It interfaces with various container engines
via the Container Runtime Interface (CRI), ensuring compatibility across different
container management tools [2,7].

Kubernetes objects like Pods represent the cluster’s intended state, with each
object playing a specific role in the system’s overall functionality. The orchestration
process involves managing these objects to maintain desired states [8].
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2.2 eBPF

Extended BPF (eBPF), evolving from BPF, is a critical Linux kernel technology
for system monitoring and tracing. It facilitates kernel-level program execution in
response to events, making it a powerful tool for container auditing and security
[9-13].

eBPF’s versatility for applications like program tracing and performance analysis
is particularly useful for container monitoring, providing deep insights into operations.
Programs written in C-like syntax are compiled, loaded, and executed in the kernel,
offering real-time system operation insights [14, 15].

The programmability of eBPF allows for innovative container auditing solutions,
enabling tracking of container actions for enhanced security and observability. This
adaptability makes eBPF crucial in modern Linux environments for applications
requiring detailed observability, such as container-level auditing [16].

3 Related Work

In the domain of container auditing and monitoring, recent studies have primarily
focused on various aspects of performance monitoring, security, and network analysis,
often leveraging eBPF technology. Our work aims to extend these concepts to
the specific challenge of auditing commands issued by cluster administrators in
containerized environments, an area that has not been thoroughly explored in existing
literature.

Cassagnes et al. [6] discuss the application of eBPF for system performance
monitoring in computer systems, underscoring the limitations of traditional methods.
Their work highlights eBPF’s ability to collect kernel-level data efficiently, which is
relevant for our approach to monitor administrative actions in containers.

Nam et al. [17] explore eBPF’s role in enhancing inter-container communication
security. Their focus on security and unauthorized access prevention aligns with
our goal of ensuring that administrative actions within containers are secure and
traceable.

Liu et al. [18] present a system that uses eBPF for analyzing network traffic in
dynamic containerized networks. Their comprehensive approach to network observ-
ability demonstrates the feasibility of using eBPF for in-depth monitoring in complex
container environments, which is analogous to our focus on detailed command
auditing.

While Burns [19] introduces the sidecar pattern for observability in Kubernetes,
this method presents limitations such as resource overhead and the need for man-
ual instrumentation. Our work aims to overcome these limitations by proposing a
more integrated and automated approach to auditing within container orchestration
environments.

Rice [20] suggests using a single eBPF-based agent per node, moving away from
the sidecar pattern. The Tracee forensics tool, based on this concept, uses eBPF to
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trace activities on the host OS, including containerized applications. This approach to
collecting and analyzing runtime events offers insights into implementing an efficient
container-level auditing system.

To address the gap in existing literature, our work focuses on developing a method
for accurately identifying and auditing specific commands executed by cluster admin-
istrators inside containers, leveraging the strengths of eBPF for real-time monitoring
and security enhancement.

4 Evaluation

In this section, we assess the viability of employing eBPF programs within con-
tainers for monitoring and auditing objectives. In 4.1, we expound upon the eBPF
program employed to capture executed commands within a container and elucidate
our methodology for integrating it with Kubernetes. Lastly, we present the outcomes
of our experiments in 4.3.

4.1 Propose and Implementation

In our implementation, we utilized an eBPF program to capture the commands
executed within the Bash shell interpreter. This was achieved by instrumenting the
readline® function, which is used by Bash to read user-provided commands. Our
focus on Bash stems from its status as the default shell in most contemporary Linux
distributions.

The eBPF program we employed monitored commands executed by any user
on the system. While this may pose challenges in systems with multiple users, it
becomes advantageous within the context of Linux containers. Containers have
a limited perception of the system, and the program running inside a container
perceives the container itself as the entire system. Consequently, our eBPF program
captures commands executed by any process running within the same container.

However, running eBPF programs in containers introduces additional complexities.
Notably, one major challenge is ensuring that the eBPF program runs within the same
namespace as the process being monitored. Specifically, our eBPF program needs to
run within the same mount and PID namespaces as the shell interpreter. To address
this, we employed the nsenter tool, which allows the execution of a program within
specified namespaces. We ran the eBPF program using nsenter to ensure it runs in
the appropriate namespaces.

To initiate the eBPF program as soon as a shell interpreter starts running in a
container, we introduced two additional components to our solution: a runc wrapper

2 https://git.savannah.gnu.org/cgit/readline.git/tree/readline.c ?h=readline-8.2#n351
3 https://man7.org/linux/man-pages/man1/nsenter. 1 .html



6 Authors Suppressed Due to Excessive Length

and a service running on the worker node alongside the kubelet. The runc wrapper
detects the PID of the Bash process within any container and sends this information
to the service running on the worker node. The service accepts incoming PIDs via an
HTTP interface and runs the eBPF program within the specified PID’s namespace
using the nsenter tool.

Once the eBPF program is running within a container, it captures all commands
executed within any Bash process running in that container. It communicates this
information back to our service running on the host machine. This communication
is facilitated by a Unix Domain Socket, which is mapped within the container and
exposes the service’s HTTP interface. When the service receives information from
the eBPF program, it creates corresponding Events resources within the Kubernetes
API server. As a result, Kubernetes cluster administrators gain a comprehensive view
of the actions executed within the container.

Figure 2 illustrates the workflow of our implementation.

Container

=

{ bash } eBPF program

t

containerd

wrapper ————>» Service

kubelet api

Fig. 2 Architecture of our implementation.

Our solution requires manual configuration. Specifically, a configuration change
is needed in Containerd to invoke our wrapper instead of directly calling Runc. The
excerpt in Listing 1 provides additional configuration details that should be added
to the /etc/containerd/config.toml file on the worker node, specifically under the
[plugins.”io.containerd.grpc.vi.cri”.containerd.runtimes] section.

To enable applications running in Kubernetes to utilize our runc wrapper and, as
a result, leverage our entire solution, it is necessary to create a RuntimeClass and
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[Plugins."io.containerd.grpc.vl.cri".containerd.
-~ runtimes.wrapper]

runtime_type = "io.containerd.runc.v1l"
pod_annotations = ["x"]
container_annotations = ["%"]

[Plugins."io.containerd.grpc.vl.cri".containerd.
-~ runtimes.wrapper.options]
BinaryName="/usr/bin/wrapper"

Listing 1: Containerd configuration.

reference it in the workloads that require monitoring. Listing 2 illustrates the YAML
file that can be used to create this resource in Kubernetes.

apiVersion: node.k8s.io/vl
kind: RuntimeClass
metadata:

name: my-wrapper-—name
handler: wrapper

Listing 2: RuntimeClass that uses our runc wrapper.

Lastly, it is necessary to specify the designated RuntimeClass in the deployment
object of the containerized application that requires monitoring. For example, List-
ing 3 demonstrates a Deployment object that utilizes the RuntimeClass defined in
Listing 2. Additionally, this object includes a mapping that allows the eBPF program
to be accessed from the host’s directory and executed by our service on the worker
node via nsenter.

4.2 Environment

In order to assess the viability of using eBPF programs within containers, we con-
ducted experiments in a test environment that emulates a typical deployment of
containerized applications. Our test environment comprised a Kubernetes 1.26 clus-
ter with a single node, running on a virtual machine. Opting for a single-node
Kubernetes setup allowed us to concentrate on the feasibility of our approach rather
than the scalability or performance of the system. The Kubernetes cluster was set up
using the hack/local-up-cluster.sh script, which is available in the Kubernetes source
code.

The virtual machine was provisioned using Vagrant version 2.2.9 and utilized the
Kernel Virtual Machine (KVM) virtualization technology on a Linux-based system.
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apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: 1
template:
metadata:
labels:
app: nginx
spec:
runtimeClassName: wrapper
containers:
— name: nginx
image: nginx:latest
volumeMounts:
- mountPath: /ebpf
name: ebpf-program-mount-point
volumes:
— name: ebpf-program-mount-point
hostPath:
# Location on the host where
# the eBPF program is located
path: /path-on-the-host

Listing 3: Deployment Object using the custom wrapper RuntimeClass

The virtual machine was equipped with 4 GiB of Random Access Memory (RAM)
and an Intel Skylake CPU with 4 cores. It ran Fedora Linux version 37 with a Linux
kernel version 6.2.8.

The host machine employed for running the virtual machine was a ThinkPad P1
Gen 3 laptop, equipped with 32 GiB of RAM and an Intel i7-10850H processor
featuring 12 cores. The host machine ran Fedora Linux version 37 with a Linux
kernel version 6.2.8.

4.3 Experiments

After completing the manual steps outlined in subsection 4.1, we proceeded with
a series of experiments to evaluate the effectiveness of our solution. To simulate a
real-world troubleshooting scenario, we initiated a Bash shell interpreter within the
running container nginx from Listing 3 and executed multiple commands.

These commands were designed to replicate a troubleshooting scenario where an
administrator investigates the underlying cause of stalled requests within an nginx
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worker process. During this process, the administrator examines the nginx logs,
monitors active processes, and utilizes the strace tool* to trace the specific system
call where the issue arises.

During the experimentation process, our service successfully generated Kuber-
netes Event objects for each command executed within the container. Table 1 provides
a comprehensive list of the Events created in our Kubernetes cluster throughout the
course of our experiments. The data presented in the table was obtained using the
kubectl command, filtering out any details unrelated to our specific experiments.

Table 1 Kubernetes Events.

Object Message
pod/nginx-deployment-89c6ff86b-92ndx |Is
pod/nginx-deployment-89c6{f86b-92ndx |ip a

pod/nginx-deployment-89c6{f86b-92ndx

vim /etc/nginx/nginx.conf

pod/nginx-deployment-89c6{f86b-92ndx

cat /var/log/nginx/access.log

pod/nginx-deployment-89c6{f86b-92ndx

cat /var/log/nginx/error.log

pod/nginx-deployment-89c6{f86b-92ndx
pod/nginx-deployment-89c6{f86b-92ndx
pod/nginx-deployment-89c6{f86b-92ndx
pod/nginx-deployment-89c6{f86b-92ndx
pod/nginx-deployment-89c6{f86b-92ndx
pod/nginx-deployment-89c6{f86b-92ndx
pod/nginx-deployment-89c6{f86b-92ndx
pod/nginx-deployment-89c6£f86b-92ndx

ps
apt update

apt install procps
ps

strace -p 1

apt install strace
strace -p 1

strace -p 28

4.4 Comparison of Container-Level Monitoring and Auditing
Solutions

In order to validate our solution, we conducted a comprehensive comparison with
established tools in the market, adjusting their configurations to encompass a scope
similar to ours. In this subsection we describe each of the compared solutions and
provide details on the methodology and evaluation criteria used.

Falco is a real-time security monitoring tool designed to identify anomalous
behaviors in applications and infrastructure. Tracee, another contender in container
monitoring and security, excels at capturing and analyzing system events within
containers, providing insights into container-level activities. Finally, Auditd, an
established auditing solution, was included in our analysis. Auditd offers detailed
system-level auditing capabilities. We compare our eBPF solution in terms of resource
usage and responsiveness, justifying each comparison.

Specific rules were defined for each solution to capture and evaluate relevant con-
tainer events. For Falco and Trace, we configured rules like Terminal in Container”

4 https://strace.io/
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and "Write below etc.” to detect suspicious activities. Auditd, being an established so-
lution, required less rule customization, showcasing the adaptability of the monitoring
solutions.

Performance tests were conducted using a custom scrip that executed two specific
test cases: “Terminal in Container’ and *Write below etc.” For the *Terminal in
Container’ test case, it simulated the use of a shell in a container. For the *Write
below etc.” test case, it detected attempts to write to any file below the ’/etc’ directory.
The script was executed with the following parameters:

¢ Repetitions: 100,000 times
* Resource Sampling Interval: 0.1 second

The performance results are displayed in Table 2, which presents a comparison of
three distinct metrics. The first column concerning the comparison of the response
times, the second column regarding the CPU usage, and the third column pertaining
to the assessment of memory usage. There are also graphs representing some level
of the performance of the tools hence making it easier to analyze in very clear and
comprehensive graphs. The evaluation comprised three rounds of tests: specifically,
Test Type A was executed in a Terminal inside a Container and Test Type B that
consumed many Write operations and others.

Table 2 Comparative Analysis of Response Time, CPU Usage, and Memory Usage

Test | Tool |Response Time (s)|CPU Usage (%)|Memory Usage (MB)
Test 1A | Falco 49.16 -0.60 6.43
Tracee 50.12 0.20 4.77
eBPF 49.12 -0.50 6.30
Auditd 49.34 -0.40 6.20
Test 2B | Falco 49.44 0.40 1.55
Tracee 49.89 0.80 3.98
eBPF 49.33 0.30 1.50
Auditd 49.42 0.20 1.40
Test 3A | Falco 49.35 0.00 2.34
Tracee 50.02 0.80 4.26
eBPF 49.53 -0.10 2.20
Auditd 49.63 0.00 2.10
Test 4B | Falco 49.54 0.00 0.76
Tracee 49.83 0.60 3.55
eBPF 49.74 -0.10 0.70
Auditd 49.79 0.00 0.60
Test SA| Falco 49.71 0.00 2.34
Tracee 49.52 0.80 4.26
eBPF 49.42 -0.10 2.20
Auditd 49.44 0.00 2.10
Test 6B | Falco 49.84 0.00 0.76
Tracee 49.93 1.60 3.55
eBPF 49.90 -0.10 0.70
Auditd 50.00 0.00 0.60
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We provide a concise analysis of memory, CPU utilization, and response time
from our comparative study:

e Our Solution: Exhibited excellent efficiency in memory and CPU usage, leverag-
ing eBPF’s event-specific capture. It outperformed Auditd and matched Tracee
and Falco in resource utilization and response time, offering real-time monitoring
and immediate alerts for suspicious activities.

* Tracee: Showed low memory and CPU impact, suitable for constrained environ-
ments, with real-time response capabilities.

¢ Auditd: Demonstrated heavier resource usage under complex rules or high event
volume. It introduces latency due to log writing to disk.

* Falco: Provided efficient container behavior monitoring, though resource usage
can escalate with extensive rules.

We propose a solution to this challenge based on eBPF that strikes the balance
between resource efficiency and immediate responsiveness, offering a cost-efficient
alternative for auditing and monitoring of containers. It enhances security without
really adding significant overheads, making it well suited for efficient paradigms
preferred by container environments.

5 Conclusion

This solution combines security and efficacy to allow organizations in reinforcing
their strategies for container security. The paper exhibits how effectively eBPF
can effectively be employed in auditing tasks in Kubernetes orchestrators through
capturing, as well as analyzing, the commands at a container level, basically the
administrator instructions. Our eBPF-based solution flawlessly integrated within
Kubernetes increases visibility, security, and observability over containerized systems
delighting administrators with fine-grained insights. Experimental results carried out
over synthetic Kubernetes clusters validate the efficacy of our approach in resource
utilization while keeping approximately responsive the system.

Focusing on security and with a minimum system performance impact, our solu-
tion is perfect for any organizational setup looking for bulletproof container security
solutions without having to compromise the system’s performance. The comparison
indicates the importance of memory, CPU utilization, and response time in ensuring
that the security within the container environment is guaranteed. Our eBPF solution
seems an effective option pointing towards its capability to optimize resources as
well as its high potential to identify any future threat faster. The container-level
monitoring tools offer the comparative analysis for memory, cpu usage and response
with a goal of providing security for the container environment.

Looking ahead, enhancing the eBPF solution involves broadening support for
various shell interpreters, evaluating its effectiveness in larger, multi-node Kubernetes
clusters, and ensuring scalability under diverse workloads. Further, streamlining
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deployment through automation techniques like Kubernetes DaemonSet will improve
efficiency.
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