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Abstract—The extensive adoption of containerized applications
significantly raises the criticality of managing potential vulnera-
bilities, including privilege escalation within these environments.
While the Bag of System Calls (BoSC) is a common technique
to detect such attacks, tracing system calls in containerized
applications is often inefficient for real-world scenarios. This
paper proposes an eBPF-based solution to trace system calls
in containerized applications and apply the BoSC technique
to identify privilege escalation attempts within containers. We
analyzed the cost of different system call hooking methods and
found that raw tracepoint programs have the least overhead.
Furthermore, we observed a slight increase in overhead when
tracing all executed operations within a containerized application.
Finally, we confirmed that our solution successfully identifies
user efforts to escape containers, concluding that eBPF can be a
powerful tool for containerized system security.

Index Terms—containers, ebpf, bag of system calls, privilege
escalation

I. INTRODUCTION

Linux containers have become increasingly popular in recent
years. Much of this popularity is due to the ability to package
and isolate applications in a portable manner in containers. In
2022, a survey conducted by CNCF (Cloud Native Computing
Foundation) [1] showed that 44% of the respondents reported
using containers for almost all production applications in their
organizations. 35% of the respondents use containers for a
few production systems and 9% are actively evaluating the
technology. Recent data [2] suggest that containerization is
used by almost half of organizations as their main tool for
deploying and managing applications.

The widespread use of containerized applications has in-
creased the urgency to manage vulnerabilities in these environ-
ments, especially the escalation of privileges. Recent data from
a 2023 Aqua Security report indicates that approximately 50%
of organizations that use containers faced a significant security
breach in the previous year, with many incidents directly related
to privilege escalation [3].

Privilege escalation, in which unauthorized access extends
beyond initial permissions, severely threatens the security of
the container and its host [4]. Especially concerning is the
possibility that a breach in one container can cascade to a
system-wide incident [5]. This underscores the vital importance
of robust security mechanisms, complemented by continuous
auditing and monitoring in containerized infrastructures [6].

Techniques such as the Bag of System Calls (BoSC) [7]
have emerged as powerful tools to predict and prevent privilege
escalation attacks. After collecting and analyzing system calls,
the BoSC technique can be used to train classifiers to identify
malicious actions, offering a strengthened security layer in
containerized settings [8] [9] [10] [11]. A vital prerequisite to
using the BoSC technique is to trace all system calls executed
by a monitored application. However, collecting those system
calls is known to be a costly task. This task is typically
achieved with tools such as strace1, which are known to cause
considerable slowdowns in the execution of applications.

In this paper, we propose a solution to this problem using
eBPF2, a Linux technology utilized for kernel instrumentation.
We compare various types of eBPF programs and evaluate
their impact when tracing system calls. Afterward, present an
approach to capture system calls executed within the container
and apply the BoSC technique to identify potential privilege
escalation attempts.

The remainder of this paper is structured as follows. Section
II provides an overview of Linux containers and eBPF. Section
III discusses the current state of the art in detecting the
escalation of privileges in containers. Our proposed solution
is presented in Section IV, while Section V present our
implementation and evaluation, respectively. Finally, Section
VI concludes the paper with final remarks and a discussion of
future work.

II. BACKGROUND

Containers are now an essential part of scalable application
deployment due to their ability to isolate resources and simplify
packaging and deployment. In addition, eBPF has emerged
as a powerful tool for monitoring and securing containerized
environments. This section provides a comprehensive under-
standing of these technologies and explains how they work
together to offer robust, scalable, and secure solutions.

A. Linux Containers

A container is essentially a process that runs on a host
machine but with enhanced isolation features [12]. Linux-based
containers achieve this isolation through three primary kernel
features: namespaces, cGroups, and seccomp. Namespaces

1https://strace.io/
2https://ebpf.io/



isolate various system resources, such as the network stack
and process tree, ensuring that containers cannot interact with
each other’s processes [13]. cGroups control the allocation of
hardware resources such as RAM and CPU to each container.
Seccomp, or Secure Computing, restricts the system calls that a
container can make, thus limiting its access to the host system.

Although containers offer numerous advantages regarding
scalability and resource optimization, they are not without
security challenges. One of the most critical security concerns
in containerized environments is privilege escalation, where
attackers gain unauthorized access to resources beyond their
initial permission level. These vulnerabilities can compromise
the affected container, the host system, and the entire container
cluster. Given the severity and potential impact of privilege
escalation attacks in containers, it is crucial to understand how
to effectively prevent, detect, and mitigate such risks.

B. eBPF

The BSD Packet Filter (BPF) [14] was introduced in 1992 to
enable packet filtering within the kernel of Unix BSD systems.
BPF introduced a virtual machine (VM) equipped with a Just-In-
Time (JIT) compilation engine and a straightforward instruction
set. The Linux operating system kernel has supported BPF since
version 2.5. In kernel version 3.15, a new variant of the BPF
language was introduced. This variant expanded the number
of available registers from two to ten, introduced additional
instructions, enabled the invocation of a controlled set of kernel
instructions, and included various other improvements. These
advances transformed BPF into a versatile in-kernel virtual
machine. This new variant was named Extended BPF (eBPF)
[15], [16].

Initially, eBPF was mainly associated with fast packet pro-
cessing [17] and network monitoring [18]. However, subsequent
advances have made eBPF a valuable program tracing, profiling,
and debugging tool. With the introduction of eBPF, the Linux
operating system provides an extensive range of methods to
carry out tracing operations [19]. eBPF programs are executed
upon triggering predefined hook points within the kernel or an
application. These hook points can encompass various events,
such as network events, system calls, and kernel tracepoints,
among others. Additionally, it is feasible to create kernel or
user probes to associate eBPF programs with locations where
a predefined hook does not already exist [20].

Figure 1 illustrates the typical flow of an eBPF program.
Initially, the user writes an eBPF program in pseudo-C code
format. The program is then compiled by a compiler, often
LLVM clang, into bytecode. Subsequently, another program
employs a system call to load the bytecode into the kernel.
Within the kernel, the bytecode undergoes a verification process
to ensure the safety of the eBPF program. After successful
verification, the bytecode proceeds through a Just-in-Time (JIT)
compilation process, ultimately preparing it for execution.

As of version 6.1 of the Linux kernel, there
are 32 different types of eBPF programs [21,
Version6.1, include/uapi/linux/bpf.h, Line
948]. For this work, the most relevant type of eBPF

programs are BPF PROG TYPE KPROBE (kprobe),
BPF PROG TYPE TRACEPOINT (tracepoint) and
BPF PROG TYPE RAW TRACEPOINT (raw tracepoint).
A kprobe program allows dynamic hooking into any kernel
function. Similarly, tracepoint programs can be attached to
statically predefined hooks (i.e., tracepoints) in the kernel.
Finally, raw tracepoint programs are very similar to tracepoint
programs but are more flexible and require manual parsing of
parameter fields. For that reason, they often perform better.

III. RELATED WORK

This section expands the discussion to address the existing
literature that explores the application of eBPF and other
related techniques to mitigate security challenges in Linux
container environments. Specifically, the focus is on studies
investigating the detection of privilege escalation and security
in containers. Additionally, approaches employing anomaly
detection techniques, such as the Bag of System Calls (BoSC),
are examined, as they have demonstrated efficacy in identifying
malicious behaviors in containerized contexts.

The Bag of System Calls (BoSC) methodology has gained
traction as an effective approach to intrusion detection, partic-
ularly in identifying privilege escalation attempts within Linux
containers [8]. Unlike traditional sequence-based approaches,
which rely on the specific order of system calls [11], BoSC
treats each system call as an individual entity within a bag [9].
This flexibility enables the creation of robust and adaptable
models capable of capturing nuanced behavior patterns of
applications [10]. By employing Machine Learning (ML)
classifiers trained in these BoSCs, the system can effectively
identify general anomalies and specific malicious activities
aimed at elevating privileges [22]. This makes BoSC an
invaluable asset for real-time security monitoring, as it can
rapidly analyze system calls without being hindered by the
need to maintain their sequential order [8].

Abed et al. [8] explored the use of the BoSCs technique to
identify behavioral anomalies in Linux containers. By collecting
system call traces through the strace tool and comparing them
against a pre-established database of normal behavior, the study
aimed to detect anomalies. However, a notable limitation is
that this approach is reactive and identifies anomalies only
after an attack.

Castanhel et al. [23] investigated the potential of analyzing
system call sequences to detect security threats in containerized
applications. The authors used ML algorithms to assess system
call sequences against a custom dataset comprising normal and
anomalous behaviors. Their findings suggest that filtering out
harmless system calls, as classified by the framework proposed
by [24], slightly improves detection accuracy.

Previous studies [8], [23] have highlighted various techniques
and approaches for detecting security threats and malicious
activities in containerized applications. Among these techniques,
system call analysis, particularly the BoSC technique, has
emerged as an effective strategy in different contexts. Our
current proposal aims to address a gap in the existing literature



Fig. 1. eBPF program workflow.

by evaluating the most efficient method for tracing system calls
in containers and using it to apply the BoSC technique.

IV. PROPOSAL

Our solution encompasses two distinct components operating
both in the kernel space and user space. The user space
component serves as a communication channel between the
kernel space component and the user. It detects and notifies the
user any anomalies identified by the kernel space component.

The kernel space component forms the central part of our
solution. It receives events for all system call executions by
hooking into the raw tracepoint/sys enter raw tracepoint. In
addition, this component will parse and construct system call
parameter fields. The extra work of constructing the parameter
fields is needed because raw tracepoint programs do not get that
information ready for use. Even though this is an inconvenience
for the programmer, this is the main reason raw tracepoint
programs are the fastest type of eBPF program available. The
following section, Section V, presents some data on this matter.

Furthermore, the program keeps track of the last N system
calls executed to allow us to apply the BoSC technique and
look for suspicious sets of system calls. This number must
only be large enough to hold the bag of system calls. As a
result, we chose to store the last 100 calls, as that number
should be enough for our experiments. Algorithm1 presents
our method for analyzing system calls in real-time, which is
the subject of this section.

Algorithm 1 Search for Anomalous Set of System Calls
1: function SEARCHFORANOMALOUSSYSCALLSSET
2: syscall← context.current syscall()
3: latest syscalls[index mod 100]← syscall
4: index← index + 1
5: if latest syscalls contains anomalous set then
6: return True
7: else
8: return False
9: end if

10: end function

A. Implementation

The kernel space component is developed in C and is
classified as a BPF PROG TYPE RAW TRACEPOINT
type. The user space component is written in Go and relies on
github.com/cilium/ebpf3 library to load and attach the kernel

3https://github.com/cilium/ebpf/tree/main

space component to the raw tracepoint/sys enter tracepoint.
In addition, we use the tooling provided by this library to
compile the C source file from the kernel space component
into eBPF bytecode and emit a Go file to be used by the user
space component.

The successful operation of our solution depends on the
ability of both kernel and user space components to ex-
change information with each other effectively. Therefore,
communication between elements of our solution is done
via a hash table implemented as an eBPF map of type
BPF MAP TYPE ARRAY. The kernel space component uses
this map to notify the user space component that an anomalous
set of system calls has been detected.

Figure 2 illustrates the workflow of our implementation.
Each time a containerized user application executes a system
call, our kernel space component receives an event and applies
the algorithm presented in Algorithm 1. Once an anomalous
set of system calls is detected, a signal is registered on the
eBPF map, which is read and acted upon by the user space
component. In our implementation, the user space component
logs an event on the system’s logging system. However, our
solution could take on a more active role and terminate the
suspicious process before it causes any harm to the system.

Fig. 2. Architecture of our implementation.

V. EVALUATION

In this Section, we conducted a series of experiments to eval-
uate our proposal. Firstly, we analyze the overhead introduced
by various kinds of eBPF programs while instrumenting two
kernel functions. This information is critical in determining
the appropriate type of eBPF program for our solution. Then,
we assessed the overhead introduced by our proposal when



tracing system calls. Finally, we simulate a scenario where a
user tries to escape a container and verify whether our solution
can detect this privilege escalation attempt.

A. eBPF Overhead
In our initial assessment, we measured the additional

processing time caused by three different eBPF programs
when they were tied into two kernel functions: ”task rename”
and ”fib tab lookup”. As our approach requires analyzing all
system calls, it is crucial to keep any extra processing overhead
to a minimum. We used a benchmarking program whose source
code is available in the Linux kernel tree4 to carry out this
analysis.

The benchmark program performs operations that trigger
the execution of the kernel functions ”task rename” and
”fib tab lookup”. For example, the ”fib table lookup” test
sends UDP packets to the localhost to invoke the homonymous
kernel function. Similarly, the ”task rename” test writes a
string to the ”/proc/self/comm” file to trigger the ”task rename”
kernel function. In addition, the program attaches three types of
eBPF programs capable of tracing system calls to each test and
processor core at different times: BPF PROG TYPE KPROBE
(kprobe), BPF PROG TYPE TRACEPOINT (tracepoint), and
BPF PROG TYPE RAW TRACEPOINT (raw tracepoint).

The benchmark results are shown in Table I. The table has
cells that display the total count of executions for a function
under the Test column. A lower count means the function has
a higher overhead due to tracing. The Base column displays
a baseline count where system calls were not traced. The
Kprobe, Tracepoint, and Raw Tracepoint columns display their
respective eBPF type counts. Based on the results in the table, it
was observed that raw tracepoints outperformed both tracepoint
and kprobes. Therefore, we confirmed that the raw tracepoint
is the most suitable type of eBPF program for our proposal.
Based on this, we conducted the remaining experiments using
raw tracepoints.

In our second experiment, we evaluated the latency of the
getpid() syscall under two distinct conditions: traced with our
raw tracepoint eBPF program and untraced. This approach
allowed us to assess the impact of eBPF tracing on syscall
performance. To do this, we developed a program that measures
the execution time of the getpid() syscall, running it 100,000
times in each scenario. We selected the getpid() syscall to
minimize the influence of disk and network I/O on our
experiments. Moreover, this syscall does not require input and
consistently returns a value of the same size (pid t), making
it an ideal candidate for our evaluation.

The comparison of execution times between the two scenar-
ios is shown in Figure 3. It can be observed that the median
execution time under eBPF tracing is only slightly higher than
that of the baseline. The negligible increase in the median
execution time suggests that our eBPF program monitoring the
getpid() syscall had a minimal impact on overall performance.

The analysis of syscall execution times, captured through a
Cumulative Distribution Function (CDF) plot, reveals distinct

4https://github.com/torvalds/linux

TABLE I
EBPF OVERHEAD BENCHMARK.

Test Base Kprobe Tracepoint Raw Tracepoint

task rename

3634077 2123379 2783954 3290377
3575526 2119257 2775150 3269406
3547105 2118399 2773609 3256166
3552119 2114393 2772998 3238374
3536425 2113806 2753713 3210991
3535852 2108881 2741596 3210334
3502616 2096884 2745746 3210268
3481862 2095712 2734844 3204348
3497963 2057025 2732783 3154480
3436194 2058983 2721204 3126806
3488200 2058618 2701266 3074301
3370600 1942835 2556992 3064059

fib table lookup

227078 217006 219809 225775
227418 216564 218820 224287
224382 212639 218528 221524
222373 211783 214378 220404
222416 211558 213313 220570
221204 210310 212369 219942
219844 209461 212342 217033
219352 209040 211847 213021
217366 209247 205254 212151
215330 208072 204731 211712
212873 205315 205401 211606
207209 202412 203225 208844

Fig. 3. Syscall execution times with and without eBPF tracing.

patterns when comparing scenarios with and without eBPF
tracing. For around 70% of the data points, the execution times
under eBPF tracing closely mirror those observed without
tracing, albeit with a minor overhead. However, beyond around
the 0.7 point in the y-axis, a noticeable shift occurs as the
eBPF line diverges rightward, indicating that for the remaining
30% of the data, we observe longer execution times under
the eBPF tracing. Figure 4 captures this distribution and the
observed shifts.

Finally, we present the results of our third assessment, which
aims to compare the results of redis-benchmark5 when executed

5https://redis.io/docs/management/optimization/benchmarks



Fig. 4. Cumulative Distribution Function of execution times with and without
eBPF tracing.

against a containerized redis-server in two scenarios. The first
scenario involves running redis-server in a container as a
standalone process. In this scenario, we aim to collect data on
how the benchmark performs when no system calls are traced.
The data collected in this scenario will serve as a baseline.
In the second scenario, we examine the performance of redis-
server while tracing its system calls with our eBPF program. By
investigating these scenarios, we aim to understand how eBPF
tracing affects the overall performance of redis-server. Figure 5
presents the number of requests per second (RPS) (y-axis) for
all Redis operations (x-axis) achieved in both scenarios of this
experiment. As evident from the data, the observed overhead
has been minimal despite eBPF tracing introducing an overhead
in all Redis operations.

Fig. 5. Requests per Seconds (RPS) for all Redis operations with and without
eBPF tracing.

The data presented in this subsection suggests that our
eBPF solution introduces a small overhead as the cost of

tracing all system calls executed in a containerized application.
Consequently, we dedicate the following subsection to demon-
strate the effectiveness of our solution in detecting a privilege
escalation attempt.

B. Privilege escalation attempt

In this subsection, we simulate a user trying to escape
a container by entering a different Linux namespace. This
experiment evaluates whether our solution can apply the BoSC
technique in a controlled environment. This experiment is an
initial step toward testing our solution with real-world scenarios.

Fig. 6. Container escape by entering a different Linux namespace.

In this simulation, we use Podman6, a popular container
engine, to create a container in interactive mode and a pseudo-
terminal (TTY). Once the container prompt starts, the user
uses the nsenter tool to switch to the same mount namespace
as (Process ID) PID number 1. In Linux, this PID typically
belongs to the init program, which is the first process launched
at the start of the system boot. This command gives the user
access to the host’s filesystem if successful. Figure 2 provides
a visualization of these steps.

The subsequent task is to pinpoint critical system calls
executed within the nsenter command and indicate an attempt
to break out of the container. Our solution and strace identified
the same sequence of system calls. Listing 1 shows an excerpt
of the strace output. Consequently, the bag of syscalls used
in this experiment includes the openat system call, with the
second argument being ”/proc/1/ns/mnt”, and the setns system
call, with the second argument being ”CLONE NEWNS”
(0x00020000).

openat(AT_FDCWD, "/proc/1/ns/mnt", O_RDONLY) = 3
setns(3, CLONE_NEWNS) = 0
close(3) = 0

Listing 1: Excerpt of strace output for nsenter command.

6https://podman.io



As the concluding phase of our experiment, we initiated our
proposed eBPF program on the host system and executed the
procedures delineated in Listing 2. The purpose of this was
to determine the effectiveness of our solution in detecting a
potential attempt by the user to escape the container using the
nsenter tool.

$ podman run --interactive --tty fedora:38
# nsenter --target 1 -m

Listing 2: Simulation of the user trying to escape a container.

After executing the procedures as intended, we were pleased
to confirm that our solution worked accurately. It successfully
detected and alerted the attempt to escape the container, which
is a testament to the effectiveness of our solution in improving
the security and safety of the container environment.

VI. CONCLUSION

In this work, we evaluated the feasibility of using eBPF
to monitor attempts to escalate privileges in containerized
applications. We proposed an eBPF program to trace system
calls in containerized applications, re-create the execution
sequence of those system calls, and apply the BoSC technique
to identify attempts to escalate container privileges. Our
research indicates that eBPF serves as a robust tool for
monitoring and auditing container behavior. It offers detailed
visibility into container activity and improves the security of
containerized systems.

In future work, several areas can be explored to enhance
the eBPF-based solution for container security. First, future
work can focus on developing rules and policies within the
eBPF program to identify activities carried out by real-world
exploits. This would mitigate the risk of privilege escalation
attacks, improving the security of containerized environments.
Additionally, our solution can be expanded to have a more
active role in the system by taking proactive actions to prevent
an escalation of privilege once it has been identified. An
example of these actions would be to kill the offending process
instead of just generating a passive alert. Lastly, a sequence-
based system call filtering approach could be assessed in
contrast to the BoSC technique used in this work. This would
allow the solution to have a broader range of signatures of
abnormal behaviors.
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