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Abstract
Network function virtualization (NFV) is a key 

networking concept whose benefits include scal-
ability, flexibility, and cost-effective service pro-
visioning. In NFV, service function chains (SFCs) 
adaptable to customers’ needs are created by 
chaining virtualized network functions (VNFs). 
VNFs and SFCs are sensitive elements that, if 
compromised, would affect network security. 
The detection of compromised VNFs and SFCs 
is imperative, and although anomaly detection 
can be used in such a context, there is a lack of 
research work on the use of anomaly detection in 
NFV. In this article, we exploit the use of anomaly 
detection mechanisms to identify suspicious VNFs 
and SFCs. We introduce, into a widely accepted 
NFV architecture, an NFV security module (NSM) 
that, by analyzing VNFs and SFCs’ operations, 
detects anomalies possibly resulting from security 
attacks. To prove the concept, three mechanisms 
have been implemented and deployed in NSM 
to observe how anomaly detection performs, 
given quantitative and qualitative information. We 
found out that anomaly detection is effective for 
VNF and SFC security and, in the case of using 
entropy as anomaly detection technique, it pres-
ents accuracy of up to 98 percent without harm-
ing NFV environment operations.

Introduction
Network function virtualization (NFV) has been 
explored by both industry and academia, boost-
ing innovation for network provisioning and man-
agement, and reducing operational and capital 
expenditures (OPEX and CAPEX). According to 
the European Telecommunications Standards 
Institute (ETSI) definition, NFV comprises the vir-
tualization of functions originally performed by 
dedicated devices into software [1]. Such “soft-
warized” functions — called virtualized network 
functions (VNFs) — are central to the NFV archi-
tecture. Virtualizing network functions through 
NFV brings flexibility to service delivery, given that 
customers’ demands can be individually consid-
ered and dynamically adjusted through a chain of 
VNFs, called service function chain (SFC) (or VNF 
forwarding graph, following ETSI nomenclature).

With the increasing deployment of NFV-en-
abled networks and NFV ecosystems consolida-
tion, NFV security started to be explored [2]. Both 
virtualization and networking-related vulnerabil-

ities are present in NFV environments, resulting 
in different types of threats (Fig. 1). Also, undis-
closed vulnerabilities (i.e., zero-day threats) — con-
stantly sought by security companies — enlarges 
the number of potential threats. Naturally, the 
consequences of an attacker exploiting NFV vul-
nerabilities can be devastating.

In NFV, observing anomalies considering both 
network and virtualized information helps identify 
threats and detect ongoing attacks. Therefore, 
compromised VNFs and SFCs need to be quickly 
detected, allowing network operators to apply 
suitable countermeasures, avoiding major harms 
to service delivery and customers’ privacy. Taking 
in to account the wide variety of NFV environ-
ments and the fact that anomaly detection mech-
anisms are appropriate tools to identify threats in 
different network contexts [3], the investigation 
of anomaly detection to increase NFV security 
would be expected. To the best of our knowl-
edge, however, no other study has addressed the 
use of anomaly detection in VNFs and SFCs. 

In this article, we investigate the effectiveness 
of using anomaly detection mechanisms for NFV 
security, focusing on VNFs and SFCs. First, we pro-
vide an overview of NFV adoption and evolution, 
highlighting aspects related to NFV security. We 
then revisit anomaly detection when employed 
in diverse network environments, which provides 
the foundation to use it in NFV. As a means to 
exploit anomaly detection in VNFs and SFCs, we 
then introduce an architectural framework called 
NFV Security Module (NSM). Then, taking into 
account realistic scenarios defined by ETSI, we 
present and discuss the characteristics of NFV 
threats, introduce the implementation of three 
anomaly detection mechanisms using NSM, and 
evaluate such mechanisms in the realistic scenari-
os. Finally, we close this article presenting conclu-
sions and directions for future work.

Related Work
After ETSI released the first NFV white paper, 
followed by its NFV architectural framework [4], 
different NFV initiatives from industry, academia, 
and standardization groups emerged. From indus-
try, we highlight Telefónica OpenMANO, Cisco 
NFVI, and AT&T ECOMP. At the time, companies 
were focused on realizing NFV as soon as possi-
ble, with security aspects addressed timidly.

Proposals like UNIFY, addressing service 
orchestration and automated service chaining; and 
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T-NOVA, focused on automated NFV manage-
ment and orchestration (MANO), also emerged 
from academia. Later, FENDE was published [5], 
the fi rst NFV marketplace and ecosystem with sup-
port for VNF distribution, execution, and SFC com-
position. Security only appeared in more recent 
works, such as the NFV security survey focused 
on 5G networks [6], defining a threat taxonomy 
specifi cally for NFV-based 5G scenarios.

Open initiatives such as the Open Platform for 
NFV (OPNFV) and The Linux Foundation Open-O 
project started with the goal of developing open 
source NFV solutions. Later, ECOMP and Open-O 
merged to create the real-time VNF orchestration 
platform ONAP, with a dedicated security coor-
dination committee responsible for coordinating 
security-related activities such as managing iden-
tifi ed vulnerabilities. Despite the security concern, 
anomaly detection for NFV was not considered as 
a potential solution for NFV security.

From the standardization side, the Internet 
Engineering Task Force (IETF) established the SFC 
Working Group (SFCWG) and the NFV Research 
Group (NFVRG), both aiming at NFV-related chal-
lenges. ETSI announced NFV Security, identifying 
potential security vulnerabilities in NFV, making 
clear the importance of NFV security. Recently, 
ETSI released security enhancements for its NFV 
MANO architecture considering communica-
tion-related security aspects. SFCWG released the 
latest version of its SFC protocol security draft, 
but again not considering anomaly detection as 
an enabler for NFV security.

NFV solutions supported the development of 
security-related VNFs and SFCs (i.e., NFV was a 
security enabler). However, no eff orts toward secur-
ing NFV environments themselves (i.e., NFV as the 
target of security) were observed. As such, despite 
the advantages of using anomaly detection for net-
work security [3], anomaly detection was not con-
sidered for NFV environments’ security. We argue 
that anomaly detection is suitable for NFV environ-
ments’ security due to several reasons, including:
1. NFV off ers a central control point of the net-

work environment (i.e., NFV orchestrator).
2. NFV supports the easy collection of VNFs 

and SFC information.
3. NFV includes a dedicated MANO plane to 

enable automated actions.
Thus, the remainder of this article addresses this 
opportunity.

AnoMAlY detectIon For netWork securItY
Anomalies are “patterns in data that do not 
conform to expected behavior” [3]. Such non-
conforming patterns may result from problems 
in system operation (e.g., denial of service) and 
information leakage. The employment of anomaly 
detection in networking environments is based 
on the computation of a score that identifi es the 
expected behavior of monitored information or a 
set of information. When such a score is not the 
one expected, it represents an anomaly. Anom-
alies detected in NFV environments can be as a 
result of events related to VNFs and SFCs, such 
as missing elements and misconfiguration. Such 
events can result from threats that, if exploited, 
may lead to service interruption and compromise 
the NFV environment. There are four main anom-
aly detection technique groups [3]:

1. Supervised training
2. Statistical modeling
3. Spectral theory
4. Information theory
Each group is more suitable for diff erent informa-
tion patterns and network environments.

Supervised training techniques require train-
ing datasets with regular behavior of the mon-
itored system to enforce the proper training of 
the anomaly detection solution; they are often 
used to detect bulk anomalies in traffic flows. 
For example, reinforcement learning algorithms 
applied to identify malicious flows must know 
the regular behavior of the network to receive a 
reward or penalty after concluding an analysis, 
which will then be used to improve its knowledge 
about potential malicious activities [7]. However, 
given that VNFs and SFCs are deployed, migrated, 
and removed frequently, signifi cant training data-
sets are unlikely to exist, thus preventing super-
vised training techniques as a viable option for 
NFV anomaly detection. In comparison, statistical 
modeling techniques require precise characteri-
zation of both anomalous and regular behaviors. 
These techniques are often applied in intrusion 
detection systems where both regular and mali-
cious behavior can be well characterized through 
mathematical models, which are hard to achieve 
in NFV [8]. Ultimately, both supervised training 
and statistical modeling miss the ability to detect 
potential unknown threats in NFV environments.

Despite their high accuracy, spectral theory 
techniques have high computational complexity, 
and also need anomalous and regular instances 
to be separable in the lower-dimensional embed-
ding of the data; that is, normal and anomalous 
data must present a variation high enough to be 
separated. Spectral theory techniques have been 
applied to network intrusion detection systems 
with high computational capacity, such as cloud 
computing systems where dedicated servers can 
be employed to execute spectral-theory-based 
algorithms. In comparison, neither training data-
sets nor statistical models are required by infor-
mation theory techniques, which also present 
less complexity than spectral theory techniques, 
demanding fewer resources to run in acceptable 
time. For instance, entropy-based techniques can 
be employed in diff erent environments, requiring 
only the set of monitored information to char-
acterize the network environment, using it as a 
baseline for further anomaly detection analyses 
[3]. Such characteristics make information theory 
a strong candidate to be employed in NFV envi-
ronments, with two main requirements: 
1. Wide view of the NFV environment, since 

anomaly detection mechanisms require 
information regarding all NFV elements 
being monitored

FIGURE 1. Threats aff ecting NFV environments [11].
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2. Non-blocking information access, since 
anomaly detection runs in parallel with the 
NFV environment operation.
Motivated by the lack of solutions to cover the 

security attributes presented, NFV environments’ 
potential vulnerabilities, and anomaly detection 
valuable results, we first introduced an architec-
tural framework that allows designing and imple-
menting anomaly detection mechanisms for NFV 
environments [9]. Now, we advance our previous 
investigation by: 
1. Improving the proposed NFV Security Mod-

ule (NSM) architecture to better fi t in diff er-
ent scenarios

2. Using realistic evaluation scenarios based on 
ETSI defi nitions

3. Adding new anomaly detection mechanisms 
to improve detection accuracy considering 
diff erent types of data

4. Extending the evaluation performed

ProvIdIng AnoMAlY detectIon cAPAbIlItIes
to nFv envIronMents

The NFV security module (NSM) extends ETSI’s 
NFV architecture to support anomaly detection. 
The lower portion of Fig. 2 depicts ETSI’s NFV 
original elements, with an NFV infrastructure 
(NFVI) composed of physical and virtual resourc-
es (e.g., memory, CPU, network). These resourc-
es are consumed by VNFs, and each running 
VNF is managed by an element management 
system (EMS).

MANO (Fig. 2, bottom right) interacts with 
physical and virtual resources via the virtual infra-
structure manager (VIM), and with EMSs via VNF 
managers (VNFMs). While the VIM is responsible 
for resource management, VNFMs are responsi-
ble for VNF and SFC life cycle management. The 
NFV orchestrator (NFVO) orchestrates the NFV 

environment interacting with VNFMs and VIM. 
Catalogues store important information about 
network services, VNF images, NVFI, and NFV 
instances. The network operator manages VNFs 
and SFCs using operations and business support 
systems (OSS/BSS) that interact with the NFVO.

NSM (Fig. 2, top) communicates with the 
NFVO to:
1. Retrieve VNFs and SFCs information needed 

in anomaly detection analysis
2. Notify the NFVO when anomalies are 

detected
An anomaly detection analysis is triggered 

either when an NSM internal interval expires or 
whenever the NFVO requests an analysis (e.g., 
when the NFVO touches VNFs or SFCs). NSM 
was designed considering:
1. Running VNFs and SFCs information 

acquired by the NFVO (monitored informa-
tion)

2. Information stored in the catalogs defi ned by 
ETSI and managed by the NFVO (catalogued 
information)
The Orchestrator Abstraction Driver (OAD)

creates an abstraction layer hiding from other 
NSM components the specificities of different 
NFVOs. OAD retrieves VNF and SFC information 
and forwards it to the Adapter. The Adapter then 
converts it into a format suitable for the anomaly 
detection mechanism in the Analyzer considering 
its implementation.

Anomaly detection is performed in the Analyz-
er using information received from the Adapter 
and information available in the Values and Alerts 
databases. If no anomaly is detected, the Ana-
lyzer ends the analysis and updates the Values 
database. However, if an anomaly is detected, 
the Analyzer forwards the detection information 
to the Filter.

The Filter identifi es whether anomalies report-
ed by the Analyzer are threats. If an anomaly 
results from legitimate behavior, the Values data-
base is updated and the analysis ends. Otherwise, 
if a threat is identified, the Filter forwards the 
associated information to the Advisor. If the Filter 
is unable to determine whether an anomaly is a 
threat, the anomaly is classifi ed as resulting from a 
potential threat, and that information is forwarded 
to the Advisor. 

For each detected (potential) threat, the Advi-
sor, by using recommendation algorithms, com-
putes mitigation actions to suggest to NFVO. 
The suggested actions seek to mitigate potential 
threats or known attacks that may be related to 
the threat occurrence. Then the Advisor issues 
alerts composed of:
1. Identifi ed (potential) threats
2 Aff ected VNFs and SFCs
3. Suggested actions
Such alerts are recorded at the Alerts database 
and forwarded to NFVO, who will decide wheth-
er or not to execute the suggested actions.

Values and Alerts offer stored information 
back to the other components to further improve 
anomaly and threat detection. For example, the 
Analyzer can use the information stored in Values 
to learn and enhance future analysis. These com-
munications close the interactions between the 
NSM internal components. Still, NSM and NFVOs 
operate together to seek VNFs’ integrity, availabil-

FIGURE 2. Detailed NSM architectural framework integrated with ETSI NFV.
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ity, and confidentiality. Further details regarding 
NSM can be found in [10].

cAse studY
Our case study is based on an environment 
where an NFVI provider manages sets of VNFs 
and SFCs owned by both that provider itself as 
well as third-party virtual network service provid-
ers. These third-party providers rent the NFVI pro-
vider’s infrastructure to host some (or all) of their 
VNFs and SFCs. This scenario is referred to as 
“hosted virtual network operators” by ETSI NFV-
SEC [11]. In this scenario, both the NFVI opera-
tor and customers own VNFs, although all SFCs 
are controlled by the NFVI operator using NFV 
MANO regardless of the VNFs’ owner, as depict-
ed in Fig. 3.

In Fig. 3, three SFCs and their specific paths 
through the operator’s NFVI servers are depicted. 
For instance, SFC 1’s endpoint is inside the NFVI, 
indicating a service consumed by the NFVI pro-
vider itself (e.g., predictive caching for content 
delivery networks), so an additional SFC can be 
created to deliver the service to a given customer 
when requested. To carry out our evaluation, we 
also assume that:
• VNFs and SFCs are free of bugs.
• Network connections are stable.
• There is no human intervention during the 

anomaly detection process.
• NVFI is able to accommodate all VNF and 

SFC demands.
The following aspects are outside the scope of 
this study:
• VNF and SFC validation and verifi cation
• Threats associated with human error in net-

work operation
• Infrastructure errors (resources and network)
• Dependability attributes (i.e., maintainability 

and reliability)

AnoMAlY detectIon MechAnIsMs
The anomaly detection mechanisms designed 
and implemented use both monitored and cata-
logued information during the analysis, calculating 
both monitored information entropy and cata-
logued information entropy. Diff erent Shannon’s 
information-entropy-based anomaly detection 
mechanisms were designed and implemented, 
considering two types of data: 
1 Qualitative, values interpreted as properties 

and attributes (i.e., qualities), such as VNF 
identifi ers

2 Quantitative, values numerically analyzed and 
processed, such as the customers’ bandwidth.

Both information types are analyzed separately.
While small variations in quantitative informa-

tion may occur and not indicate an anomaly, tiny 
variations in qualitative information could indi-
cate an inconsistency related to a potential threat. 
This way, one quantitative detector — numerical 
entropy-based detector (NED) — and two qual-
itative detectors — single entropy-based detec-
tor (SED) and merged entropy-based detector 
(MED) — were implemented. The main reasons 
to use Shannon’s information entropy are its low 
complexity (O(n)), resulting in low impact in the 
NFV environment; and its wide dissemination and 
adoption across diff erent research areas [3].

A previous investigation showed that SED has 

fast execution time and proven eff ectiveness [9]. 
However, SED may present false negatives when, 
for example, the amount of missing elements 
matches the amount of unregistered elements in 
the monitored information. Such a situation may 
cause SED’s monitored information entropy to 
remain unchanged in comparison to SED’s cata-
logued information entropy, even when anoma-
lies are occurring. MED was designed to prevent 
false negative detections, refi ning the qualitative 
information entropy calculation by merging cata-
logued and monitored information into a merged 
list. As such, merged information entropy diff ers 
from catalogued information entropy whenev-
er unregistered or missing elements occur in the 
monitored information. An example of a missing 
element is a VNF identifier not present in the 
monitored information of an SFC, but present in 
the catalogued information. Similarly, an unregis-
tered element could be an additional port in the 
VNF monitored information that is not present in 
the catalogued information of that VNF.

For quantitative information, merging moni-
tored and catalogued information is not manda-
tory due to their discrete nature, which makes it 
virtually impossible for the same entropy varia-
tions to appear in two diff erent analyses. Howev-
er, distinct entropy results may appear from every 
evaluation, making entropy-to-entropy compari-
son ineff ective. NED was designed to overcome 
this issue, analyzing the monitored information 
entropy considering historical catalogued infor-
mation entropies. For quantitative information, 

FIGURE 3. Hosted virtual network operators scenario example with three SFCs.
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anomalies are detected by analyzing whether 
the monitored information entropy fits into the 
interval composed of the mean of historical entro-
py values plus/minus its standard deviation. In 
addition, a parameter (b) is defined to adjust the 
interval size. The higher the b value, the more per-
missive the detector is, with b = 1 corresponding 
to no changes. The mechanisms receive as param-
eters the input data resulting from an adapted 
algorithm (described in detail earlier) and, in the 
case of NED, a b value. As such, it is imperative 
for datasets to be consistent because the anomaly 
detection accuracy relies on the integrity of the 
data used as input. The detectors’ Python imple-
mentation is available at https://github.com/Com-
puterNetworks-UFRGS/nsm.

Threats, Potential Attacks, and Risks
An anomaly results from the occurrence or 
change of a particular set of circumstances (i.e., 
from an event). When a new or newly discov-
ered event has the potential to harm a system, 
it represents a threat [12]. A threat may be 
the result of different attacks, representing a 
risk to the NFV environment. Table 1 presents 
the threats, potential attacks, risks, and related 
security attributes considered in the case study. 
We have selected those threats because they 
can affect VNFs and SFCs in different scenarios. 
Threats are detected at both the VNF and SFC 
levels. Depending on the type of threat detect-
ed, it is possible to generate a cascade effect on 
other VNFs that are part of the same SFC. This 
cascade effect can also be detected since it gen-
erates even greater anomalies.

The threat “Missing SFC element”may indicate 
a DoS attack, compromising the availability of 
NFV service provisioning. “Unauthorized band-
width allocation”may indicate a potential attack 
of privilege escalation, associated with the risk 
of users receiving privileges above those stipu-
lated and compromising the integrity security 
attribute. “Unauthorized/modified VNF”may indi-
cate both man-in-the-middle and privilege escala-
tion attacks. While man-in-the-middle represents 
risks of unauthorized users accessing VNFs and 
SFCs and information leakage — compromising 
the confidentiality security attribute — the privi-
lege escalation attack may indicate risks of users 
receiving privileges above those stipulated and 

network congestion — an integrity break. “Uncat-
alogued/modified connection point and virtual 
link”may be related to multiple attacks too (i.e., 
man-in-the-middle and privilege escalation). While 
the first attack may represent a risk of informa-
tion leakage to unauthorized users or attackers 
— compromising confidentiality — the second has 
a potential risk of users receiving privileges above 
those stipulated, compromising the integrity secu-
rity attribute.

Considering that every non-conforming pattern 
detected on VNF and SFC catalogued/monitored 
information results in an anomaly that may be 
related to a threat, every operation related to VNF 
and SFC is considered by the proposed solutions. 
In summary, our solutions are agnostic regarding 
the operation that generates the anomaly.

Evaluation
An algorithm was designed to create the datasets 
that were analyzed by NSM in our experiments, 
adapting the algorithm of Rankothge et al. [13] to 
operate as follows. The algorithm receives as input:
1. The average number of SFCs (defined as 

100, reflecting large-scale enterprise net-
works, with SFCs composed of 2 to 7 
VNFs [14]).

2. The average number of VNFs (the number 
of VNFs for a given customer considered 
follows a truncated power-low distribution 
with exponent 2, minimum 2, and maxi-
mum 7 [13]).

3. The threat event likelihood (defined as 60 
percent based on enterprise reports [15]).

4. The legitimate event likelihood (also 60 per-
cent). Both events’ likelihoods follow a nor-
mal distribution.
The algorithm generates snapshots composed 

of two datasets:
1. Monitored data
2. Catalogued data
Each snapshot contains a timestamp, and each 
line of the datasets contains: SFC identifier, VNFs 
composing the SFC, connection points, virtual 
links, and user’s allocated bandwidth. Whenever 
a new event (legitimate or threat) occurs, a new 
snapshot is generated. Legitimate events can be 
the registration of a new SFC or VNF, reallocation 
of users’ bandwidth, and VNFs re-routing within 
an SFC (i.e., changes in connection points of vir-
tual links), among others. In turn, threats are rep-
resented by events related to Table 1. When NSM 
operation starts (triggered by an event or a time 
interval), it considers the most recent datasets.

Our analysis compares NSM detection results 
with generated datasets, observing the accuracy 
of the detection mechanisms and the detection 
time of each trigger. We argue that accuracy and 
detection time are the most important outcomes 
when it comes to anomaly detection. Other 
parameters such as execution time and resource 
consumption could also be analyzed, but since 
these parameters may be affected by the network 
and hardware employed, accuracy was chosen to 
prove the effectiveness of the proposed mecha-
nisms. For the analysis of the detection time of 
each trigger, a single detection mechanism is used 
(MED), since the execution time of the different 
mechanisms implemented is negligible when 
compared to the detection time of the triggers.

FIGURE 5. Detection time comparison of both triggers.

Our analysis compares NSM 
detection results with gen-
erated datasets, observing 

the accuracy of the detection 
mechanisms and the detec-

tion time of each trigger. 
We argue that accuracy and 
detection time are the most 
important outcomes when it 
comes to anomaly detection.

BONDAN_LAYOUT.indd   22BONDAN_LAYOUT.indd   22 2/13/22   10:46 PM2/13/22   10:46 PMAuthorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on September 29,2022 at 03:52:47 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • February 2022 23

Detection Accuracy: False positive rate (FPR) 
and true positive rate (TPR) are considered for 
this evaluation. NED starts its analysis with 100 
entropy values available in the Values database, 
as mentioned earlier, and three values of b are 
considered:
•	 1 (no change)
•	 0.5 (half-size)
•	 2 (double-size)
A receiver operating characteristic (ROC) curve 
is presented in Fig. 4, which shows TPR on the 
y-axis and FPR on the x-axis: the closer to the top 
left corner, the higher the detector accuracy. As a 
baseline for comparison, a random detection line 
is presented together with detectors’ results.

MED presents higher accuracy in all cases 
(around 98 percent), followed by NED with b = 
1, SED, and NED with b = 2 and b = 0.5. MED’s 
great results can be ascribed to the merged list 
composition, which minimizes false negative 
occurrences by calculating the merged informa-
tion entropy.

With 95 percent on average, NED accuracy 
is slightly lower than MED, which results from 
scenarios where small variation in the monitored 
allocated bandwidth may not be detected, mainly 
at the start of NED execution, when few moni-
tored values are available to compute the mean 
and standard deviation to define the monitored 
elements’ entropy. Thus, NED can present a high 
number of false positives until it has a certain 
number of samples. Afterward, the tendency is for 
the number of false positives to fall.

NED accuracy decreased using a bigger b (2) 
because of the higher tolerance when using a 
higher b. This means that greater entropy changes 
might be considered normal by NED although 
they might be anomalies. Still, using a smaller b 
may excessively limit analyzed samples, resulting 
in regular information potentially being consid-
ered anomalous.

Detection Time: Consider two NSM detection 
triggers: NSM internal interval and NFVO analysis 
request. The first trigger is referred to as Interval, 
while the second one as Request. A period of 60 
minutes was considered, using MED because of 
its higher accuracy for qualitative information.

In the Request analysis, NSM is configured to 
execute whenever a new legitimate event occurs, 
such as new VNF registration or configuration 
changes in existing VNFs. Such events’ occurrenc-

es (regular or anomalous) varies from 1 to 10 per 
hour, following the 60 percent likelihood defined. 
In the Interval analysis, intervals to analyze the 
monitored information are configured in NSM 
from 1 to 60 minutes. Figure 5 depicts the results 
obtained. 

As the trigger interval increases, the anom-
aly detection delay increases linearly consider-
ing the Interval trigger. With the Interval trigger, 
anomalies are detected two times faster than 
using the polling interval on average. In turn, the 
time to detect anomalies with the Request trigger 
decreases logarithmically as the number of notifi-
cations per hour increases linearly. Both Request 
and Interval triggers present the same detection 
time (12 min) when a polling interval of 24 min 
and 5 notifications per hour are used. In highly 
dynamic scenarios where VNFs’ and SFCs’ infor-
mation changes often, using the Request trigger 
activates NSM more often, so anomalies could be 
detected faster without performing unnecessary 
analysis, which may occur when using short inter-
vals for the Interval trigger.

The effectiveness of the Interval trigger relies 
on the interval configured. While short intervals 
may detect anomalies faster, this implies more 
NSM executions. In turn, while higher intervals 
imply fewer NSM executions, anomalies might 
take longer to detect. The Request trigger can be 
configured with different strategies, such as exe-
cuting anomaly detection whenever the NFVO 
acquires information from VNFs and SFCs (moni-
toring events). However, processing time of both 
NSM and NFVO may increase with such a strat-
egy, and NFVOs should support operations par-
allelism over monitored information: acquire it, 
forward it to NSM, receive the anomaly detection 
results back, and evaluate the application (or not) 
of the suggested actions.

Conclusion and Future Research
This article discusses the advancements related 
to NFV environments’ security, from its definition 
to recent proposals regarding NFV in emerging 
network environments. An NFV security module is 
presented to investigate anomaly detection effec-
tiveness for NFV security. We analyze if threats 
related to security attributes could be properly 
detected using anomaly detection, which leads to 
the design, development, and evaluation of three 
distinct entropy-based anomaly detection mecha-

TABLE 1. Anomalies and threat characteristics.

Threat Potential attack Risk Security attribute

Missing SFC element DoS Service stops working or does not work 
properly Availability

Unauthorized bandwidth 
allocation Privilege escalation Users receive privileges above those 

stipulated, network traffic congestion Integrity

Uncatalogued/modified 
VNF

Man-in-the-middle Unauthorized users access VNFs and 
SFCs; information leakage Confidentiality

Privilege escalation Users receive privileges above those 
stipulated, network congestion Integrity

Uncatalogued/modified 
connection point and 

virtual link

Man-in-the-middle Information leakage to unauthorized 
users or attackers Confidentiality

Privilege escalation Users receive privileges above those 
stipulated Integrity

With 95 percent on average, 
NED accuracy is slightly 
lower than MED, which 

results from scenarios where 
small variation in the mon-
itored allocated bandwidth 

may not be detected, mainly 
at the start of NED execution, 
when few monitored values 
are available to compute the 
mean and standard deviation 

to define the monitored 
elements’ entropy.
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nisms. A case study with a realistic NFV scenario 
was considered for our experiments, allowing us 
to conclude that anomaly detection effectively 
identifies potential threats in NFV environments, 
presenting accuracy of up to 98 percent among 
the entropy-based mechanisms designed. Also, 
two detection triggers are analyzed (Request 
and Interval), presenting both linear and loga-
rithmic detection times depending on the trigger 
and configuration used. As future research, new 
mechanisms can be designed and evaluated using 
NSM, considering real-time resource consumption 
by container engines and virtual machines.
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