2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

HashCuckoo: Predicting Elephant Flows using
Meta-Heuristics in Programmable Data Planes

Marcus Vinicius Brito da Silva*T, Alberto Egon Schaeffer-Filho*, Lisandro Zambenedetti Granville*
*Institute of Informatics — Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
TFederal Institute of Para, IFPA, Cameta, Brazil
Email: {mvbsilva, alberto, granville} @inf.ufrgs.br

Abstract—Software-Defined Networking and programmable
networks have lead to the development of novel solutions to
identify and even predict critical network flows (i.e., flows that
can more heavily impact network resources), so they can be
properly handled. However, existing approaches found in the
state-of-the-art typically incur delays because of the switch-
controller communication or depend on thresholds being ex-
ceeded to identify flows of interest (e.g., elephant flows). In
this paper, we present HashCuckoo, an approach to predict
elephant flows that includes: (i) a hash-based mechanism to
start the prediction process at line rate in P4 switches, based
on the Cuckoo Search meta-heuristic; and (ii) a local prediction
mechanism to infer the new flows’ traffic behavior, confirming
the classification, and handling elephant flows on-line before
exceeding traditionally considered thresholds. We evaluate the
trade-offs between HashCuckoo and state-of-the-art solutions,
and show that HashCuckoo reduces elephant flow identification
delay by 57%, from 102 ms to 43 ms, being the first solution
to combine meta-heuristic optimization and prediction that can
operate at line rate in programmable data planes.

Index Terms—Network Management, Elephant Flows, Pro-
grammable Networks

I. INTRODUCTION

Predicting critical flows that may harm network perfor-
mance is a challenging task [1]. Among such critical flows,
we focus on elephant flows, which are characterized by having
traffic size and duration significantly higher than other flows
(e.g., small and mice flows). Because of their characteristics,
elephant flows can substantially impact other flows that share
the same network data path. Also, elephant flows tend to
rapidly deplete the resources of network devices, which can
lead to sub-optimal operation of the network and undesirable
delays, queuing, and packet losses [1].

Software-Defined Networking (SDN) [1] and networks with
programmable data planes [2] enabled novel solutions to
identify and mitigate critical flows using combinations of
both centralized and distributed approaches [1]. A number of
efforts employ mechanisms to identify elephant flows using,
for example, sFlow [3] and managing paths using Open-
Flow [4] in the control plane (i.e., at the controller). Others,
such as HashPipe [5] and our previous work IDEAFIX [6],
identify, respectively, heavy hitters and elephant flows in
programmable data planes using P4 [2] (i.e., at the switches).
Although P4-based approaches reduce the identification time
compared to controller-based approaches (since they minimize

978-1-6654-3540-6/22/$31.00 © 2022 IEEE

the controller-switch communication), thresholds still need to
be first exceeded before a flow can be identified as an elephant
one (reactive approaches). It means that while thresholds are
not reached, elephant flows remain unconstrained, thereby im-
pacting network performance [7]. Therefore, a few approaches
attempt to predict network traffic behavior and identify flows
before exceeding thresholds (proactive approaches). This can
be done by employing prediction methods to make inferences
on the control plane based on statistical models, combining oc-
currences of previous flows [8]. However, the switch-controller
communication can still delay the identification process.

In this paper, we exploit traffic patterns in Internet eXchange
Points (IXP) networks [9] and propose a local prediction
mechanism to improve elephant flow identification in the IXP
programmable data plane. Our proposed mechanism is called
HashCuckoo and consists of two collaborative strategies. First,
we rely on a hash-based mechanism, optimized by a meta-
heuristics called Cuckoo Search Algorithm (CSA) [10], to
preliminarily anticipate elephant flows and perform early mit-
igation in programmable switches at line rate. Second, we
implement a local prediction mechanism to infer the new
flows’ traffic behavior and improve the hash-based mechanism
accuracy, confirming/refuting the anticipated identification to
handle elephant flows on-line before exceeding traditionally
considered thresholds. CSA can solve optimization problems
and compose adaptive solutions based on the cuckoo bird
behavior. The prediction mechanism is based on the Locally
Weighted Regression (LWR) method [11], as used in the state-
of-the-art to predict elephant flows in the control plane [8].

Our main contributions with this work are:

(i) Propose an approach to predict elephant flows in pro-
grammable switches using collaboratively a hash-based
mechanism, based on the CSA meta-heuristic, and a
local prediction mechanism, based on the LWR method;

(ii) Evaluate the performance of our approach and compare

our work against two state-of-the-art solutions;

Compare and analyze the trade-offs between our mecha-

nism and previous work to predict elephant flows based

on centralized and distributed approaches.

(iif)

Differently from the state-of-the-art, our mechanism oper-
ates entirely in the data plane. To the best of our knowledge,
this is the first work to build a prediction mechanism that
operates at line rate completely in the data plane, combining

6337

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

meta-heuristics to anticipate elephant flow identification. This
enables network operators to apply tailored traffic engineer-
ing strategies to handle elephant flows properly, e.g., load
balancing, traffic rerouting. The remainder of this paper is
organized as follows. In Section II, we detail our proposal
to predict elephant flows in programmable data planes, while
in Section III we describe our experimental evaluation. In
Section IV, we discuss related work. Finally, in Section V,
we conclude this paper and discuss future research directions.

II. HASHCUCKOO

To predict and anticipate elephant flow identification in
the programmable networks, we introduce HashCuckoo an
approach that consists of two collaborative strategies. First,
we use a hash-based mechanism to anticipate elephant flow
classification, by analyzing the first packets of a new flow,
and mitigation at line rate using P4 switches. Second, we
implement a prediction module to infer the traffic behavior of
new flows locally in the programmable data plane and confirm
or contest the hash-based classification and mitigation actions.

; Sample Selection | SampleSet. | ocal Prediction
: Module) i Module
Flow 1 1

H H
Manage 1 | Critical Flow 1 Analysis
Hashes 1 Notification i Feedback

A 4
Hash
Classification

5 '
Features 1

Extraction and
Consolidation

Ingress

Fig. 1. HashCuckoo architecture in programmable data planes.

Mitigation

ip-scr - port
ip.dst : port
ip.proto
packet

No Mitigating

Packet Processing Pipeline
P4 Target Switch

Figure 1 illustrates our proposed architecture and workflow.
HashCuckoo’s Packet Processing Pipeline consists of the
following steps. First, for each new traffic flow, after the
first packet goes through the switch Ingress, the Extraction
and Consolidation step collects and stores in local registers
a set of flow data: the flow’s ingressTimeStamp, packet’s
length in bytes, and the flow identification 5-tuple (source
and destination IP addresses and ports, and transport protocol
type). Additionally, the Sample Selection Module (described
in Section II-A) uses the flow features that are incrementally
consolidated (i.e., counting the next packets of the flow) to
manage a hash-based mechanism and optimizes the sample
set used by the Local Prediction Module, as described below.

Next, the Hash Classification step checks whether the flow
identification key (5-tuple) matches flow instances that were
previously identified as elephant ones. If so, the Mitigation
step applies mitigation actions just before the packet Egresses
the P4 switch. As a case study, we used alternative forwarding
paths to mitigate (isolate) elephant flows. However, different
mitigation rules can be adopted according to the policies
defined by the network operator.

In parallel, a notification is sent to the Local Prediction
Module to perform a second, more detailed, and sophisticated

analysis. When receiving a critical flow notification, the Local
Prediction Module infers the behavior of the new flow from a
sample set of the previous flows behavior, using the LWR
method (Section II-B). When the inferences are checked
based on a prediction interval error tolerance, the values are
confronted against local thresholds to characterize the flow
as an elephant one or not, before thresholds are effectively
exceeded. From there, the analysis feedback will confirm or
refute the classification and mitigation actions applied by the
hash-based mechanism to minimize false positives.

We used local thresholds in two moments: first, to confront
the values inferred by the prediction module (described in Sec-
tion II-B) and; second, to apply the filter rule in the Objective
Function (described in Section II-A). However, unlike state-
of-the-art reactive identification approaches, HashCuckoo per-
forms identification before thresholds are effectively exceeded.

A. Hash-based Mechanism and Sample Selection Module

HashCuckoo employs a hash-based mechanism to anticipate
elephant flow identification in the programmable data plane,
using a historical database optimized by the Sample Selection
Module (SSM) based on the Cuckoo Search Algorithm (CSA).

Cuckoo Search [10] is a meta-heuristic algorithm to solve
optimization problems inspired by the cuckoo bird behavior.
Biologically, cuckoo birds do not create their own nests;
instead, they lay their eggs in other birds’ nests at random.
In this case, there is a probability that the host bird will find
the intruder egg and throw it away. Thus, the eggs that survive
are considered the fittest, and so begins the new generation.
CSA considers three assumptions: (i) each cuckoo bird lays
one egg at a time and places it at a randomly chosen nest; (if)
the best nests with high quality eggs (solutions z(*), in time
t) will lead to the next generations (solutions z(**1)); (iii) the
number of available host nests is fixed, a host can discover an
alien egg, and the host bird can either throw the egg away or
abandon the nest to build a new nest.

The SSM manages a set of flow instances previously iden-
tified as elephant ones (i.e., Views). SSM relies on a strategy
based on CSA generations and hierarchical IP address aggre-
gation to manage Views of previous elephant flow instances
stored in the historical database, as illustrated in Figure 2.

Sample Selection Module

Historical CSA Generations

Database

CSA Processor

L, 181.7.20.6

'
' \
V1P Address w 1
lonsang [Aeeregator L, 181.7.20% ! .
L PP
- i 8 I o
i % JI8LEEE v F
' Lysrss 1(Views)
' \ 1
' .

v
Hash-based Mechanism

V. OITo] vedaine
v, [OOIIToqT] acive

Views -
I} mEN | o)
k

Updated/
Vier [TOToTTT0] g

Flow Reports
(Samples)

Target Switch

Fig. 2. Hash-based mechanism management and update.

6338

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

Views are stateful memories (i.e., P4 registers) whose values
are read and written by an indexed position. To access indexed
positions, we map the flow identification key & by the hash
functions hy, as illustrated in Figure 2. To minimize the
possibility of collisions, we adopted a probabilistic structure
based on a bloom filter [12] and multiple hash functions. View
V; is associated with each hour ¢ of the day (0-23 hours), based
on the daily traffic behavior observed in IXP networks [8].
However, alternative Views structures can be adapted. When
V; is active, the previous View V;_; can be updated. Then, V;
can only be updated when the next View V. is active.

Initially, we set all filter memory slots of Views to zero. The
SSM sets to one the indexed slots (V;[h; (k)] = 1) by map-
ping the identification key k, of the previous elephant flows
that occurred in the network, for L hash functions hp (k).
Therefore, when the view V; is active, if identification key &
of the new flow matches (h; (k) = h;(k,)) the filter slots of the
previous elephant flows: V;[h;(k)] = 1,Vj € N|0 < j < L;
we consider it as a critical elephant flow. Thus, mitigation
actions can be applied directly by P4 switches and, in parallel,
a notification is sent to the local prediction module to perform
flow analysis in a subsequent step (described in Section II-B).

We enhance a historical database with flow feature reports
(Samples) obtained directly from the switch packet processing
pipeline, during the Extraction and Consolidation step (Fig-
ure 1) to improve the SSM and enable the CSA’s generations
evolution. Samples consist of the flow identification (i.e., 5-
tuple), byte count, and first/last packet ingress timestamp
stored in dedicated registers. Thus, the SSM can create new
views and avoid the false positives/negatives in the next
generations, using the CSA Objective Function.

The Objective Function has the goal of updating View
samples from two combined rules: reduction and filter. In
reduction, the older samples of a View are discarded if they
exceed the ftime window defined by the network operator
(e.g., seven days). In the filter rule, the current View samples,
and each flow reported as an elephant one within the View
time interval, have their volume and duration characteristics
compared with the (local) thresholds used in that interval.
Therefore, only the samples filtered by the objective function
will be in this View in the next iteration (next generation). The
worst-case algorithm complexity is given by O(s +), where
s is the number of samples in the View, and r is the amount
of reported elephant flows in the View active interval.

B. Locally Weighted Regression Prediction Method

To predict network flows behavior, we use a statistical
method called Locally Weighted Regression (LWR) [11] [13].
LWR allows to predict the value of dependent variables from
a set of independent variables, through localized weighting.
LWR assumes that the neighboring values of the desired point
in a sample range are the best indicators for the prediction [11].
In this paper, the size and duration of previous flow instances
(samples in the model) are the dependent variables, their start
timeStamp are the independent variables, and the new flow
size and duration in the start timeStamp (desired point) are the

predictions of the model. The neighbors are the flow instances
with the start timeStamp closest to the new flow timeStamp.

The LWR method is derived from standard linear regres-
sion [11], as shown in Equation 1, and its main idea consists of
defining the linear model /3 parameters, minimizing the sample
squared errors (y; — f(x;)), weighted locally by w;.

F(Bo, By s Bm) = Y _ wilys — f(24))? (1
i=1

The linear model § parameters, used to predict values, are
obtained (after derivation [13]) according to Equation 2:

F=XTWTwx)" XTWTwy)

where X is an n x (m+ 1) matrix consisting of n data points,
each represented by its m input dimensions and a “1” in
the last column, y is a vector of corresponding outputs for
each data point, W is a diagonal matrix of order n with the
w; weights of each data point, and § is the m + 1 vector
of unknown regression parameters. Thus, prediction of the
outcome of a query point z, becomes: y, = a;qT/é_"

The independent variables xz; are the previous flow (sam-
ples) timeStamp, and z, is the current timeStamp (new flow).
Observing the temporal correlation and daily periodicity (every
24 hours) in the IXP network traffic behavior [9], we define
(in Equation 3) a relative temporal distance d; between each
previous flow and the new flow, assuming that all samples are
in the interval 0 < d; < 24 hours.

d; if d; < 24/2

24 — d)

diquim0d24{ .
otherwise

The weights w; allow establishing the influence of the sam-

ples according to their distance (i.e., age) to the desired point.

Many weighting functions are proposed in the literature [11].

The most widely used weighting fun20ti0n is the Gaussian

kernel [13], defined by: w; = exp (547

Each sample (x;,y;) in the model will receive a weight w;
in the interval [0, 1] according to its relative temporal distance
d; to the desired point (x4,y,). The s parameter scales the
kernel size to determine how local the regression will be.
To adjust the magnitude of the Gaussian kernel, we define
s according to the standard deviation of the samples. This
allows dynamically adapting the Gaussian kernel according to
variance in the traffic behavior of the network.

When sample weights are defined, it is possible to determine
the E parameters of the regression model (Equation 2) and then
predict the new flow volume and duration y,, individually,
according to its start timeStamp (i.e., xq).

After predicting flows parameters, the mechanism performs
the verification of the LWR inferred values. We use prediction
intervals (Equation 4) [13] to assess the quality of predictions.
Prediction intervals I, are expected bounds of the prediction
error at a query point x4, which can be defined as follows:

I=al G+ taysm s’ \/1 + 2T (XTWIWX) Lz, ()

6339

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

where t/2 ,/—p is Student’s t-value of n’ — p’ (Equation 5)
degrees of freedom for a 100(1 —)% prediction bound.

n /

and p = Lm (5)
n

Finally, let’s suppose that the prediction interval is within
the tolerance. In that case, the inferred values are considered
acceptable and immediately confronted with thresholds to
characterize the flow as an elephant one or not earlier (i.e.,
before it actually exceeds the thresholds). When the prediction
interval is larger than the tolerance, the inference is rejected,
as the sample set does not yet have sufficiently correlated
instances with the desired flow. The local prediction module
can then confirm or refute the classification and mitigation
actions applied by the hash-based mechanism.

III. EXPERIMENTAL EVALUATION

In this section we evaluate our proposal to predict ele-
phant flows in programmable data planes. First, we outline
the experimental setup, the workload characterization and
metrics. Then, we divide our evaluation in two steps to
elucidate HashCuckoo’s two mitigation workflows: firstly, in
Section III-D, using immediate mitigation (in which the hash-
based mechanism performs the classification when processing
the flow’s first packet). Next, in Section III-E, when mitigation
actions are applied after the local prediction module analysis.

A. Setup

Figure 3 depicts the topology used in the experiments based
on the AMS-IX [6]. It presents 8 ASes connected to the
IXP network by the programmable edge switches (i.e., P4
switches). Each edge switch implements the HashCuckoo, and
the state-of-the-art hash-based and prediction mechanisms.

Fig. 3. IXP network topology [6]

We used virtual storage and processing to attach a local
prediction module to each P4 edge switch, as shown in
Figure 3. We assume that the switches’ general-purpose sub-
system can execute the local prediction module instructions.
In fact, network devices built using ASICs generally include
a second general-purpose sub-system (e.g., based on CPUs)
to implement the device’s monitoring and control functions,
as well as more complex and uncommon packet processing

functions that the ASIC does not support. Processing in ASICs
is usually called the fast path and, by contrast, the slow path is
the processing done by the general-purpose sub-system [14].
We performed the experiments on a computer with an Intel
Core 17-8565U processor with eight cores of 4.0 GHz; 16 GB
of RAM; and Linux Ubuntu 16.04 LTS. Our prototype! was
implemented in P44 using the software switch BMv22. The
infrastructure was emulated using Mininet version 2.3.

B. Workload

We generated a workload in two scenarios, with distinct
sizes of TCP flows between all connected ASes, using iPerf.
Scenario S1 presents low traffic behavior variation and reg-
ular periodicity, i.e., flows follow a well-defined frequency.
Scenario S2 presents more variation in terms of flow behavior
and periodicity. Flow bandwidth was established at 10 Mbps,
and the duration determined through an exponential distribu-
tion with an average of 60 seconds, and the rate parameter
(A =1/p) with § =20 (S1) and 40 (S2) seconds, for elephant
flows. For small flows, we used an average of 5 seconds and
B =5 and 10 seconds (for S1 and S2, respectively) [15].

The IXP network traffic was distributed periodically for
over nine weeks. Approximately 1,600 hours of previous flows
sampling in the network compose the historical databases,
distributed proportionally among the eight edge switches and
their local prediction modules. The thresholds were defined
in 10 MB and 10 seconds [15]. Lastly, experiments were run
for 10 minutes, were repeated 32 times, and 8,192 flows were
generated per round, of which 12% were elephant flows [9].

C. Metrics

To assess the feasibility of our proposal, we focus on
evaluating three main metrics: (¢) reaction time, (i¢) excess
data, and (#%¢) mechanism accuracy. Reaction time consists
of the interval between the arrival time of the first packet at
the ingress and the moment when the route of the flow is
switched to the alternative path when it is identified as an
elephant one. Excess data consists of the number of bytes
that went through the default path (until a reaction/mitigation
occurs). For accuracy, we consider the percentage of correct
elephant flow predictions, false positives, and false negatives.
For metrics (¢) and (47), lower values are better.

D. Experimental Results - Immediate Mitigation

We evaluated HashCuckoo against IDEAFIX [6], our pre-
vious mechanism to identify elephant flows entirely in pro-
grammable data planes. IDEAFIX counts, in hash tables, flow
size and duration for each ingress packet and compares them
to thresholds to classify elephant flows reactively.

Reaction Time: The results presented in Figure 4(a) show
the time required for HashCuckoo to identify beforehand
a flow as an elephant one or generate a notification for
the local prediction module. We observe in HashCuckoo a
0.51 ms reaction time, while IDEAFIX needed approximately

Thttps://github.com/mvbsilva/HashCuckoo
Zhttps://github.com/p4lang/behavioral-model

6340

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

100

10°
10000.451

10*
103

10%
1

Reaction Time (ms)

510

5 03 0.513
£ 10040

Average Excess Data (MB)

Flows Identified (%)

=1 0.000

S 3

Flows Identified (%)

Z - o o
HashCuckoo IDEAFIX 50 75
Approach

HashCuckoo IDEAFIX
Approach

(a) Reaction time. (b) Excess data.

Memory Space for Hash Mapping (%)

(c) HashCuckoo accuracy.

150 50 75 100 125 150
Memory Space for Hash Mapping (%)

100 125

(d) HashCuckoo and IDEAFIX accuracy.

Fig. 4. Hash-based mechanisms immediate mitigation: (a) Reaction time using only hash-based approaches; (b) Excess data; (c) HashCuckoo accuracy by
varying the hash’s memory space using the two workload scenarios; (d) HashCuckoo accuracy, using the two workload scenarios, against IDEAFIX.

10,000.45 ms, considering a 95% confidence level. We em-
phasize, that for a reaction to occur in IDEAFIX (in the best
case), it is necessary to wait for the thresholds to be effectively
exceeded (as reported in their paper [6], at least 10 seconds).
HashCuckoo reduces elephant flow reaction time as it performs
identification before effectively exceeding thresholds.

Excess Data: Figure 4(b) shows the number of bytes for-
warded through the default path until the flow is identified as
an elephant one and a mitigation policy is applied directly by
the P4 switch. In HashCuckoo, there is no excess data because
the reaction is immediate after the processing of the flow’s first
packet by the hash-based mechanism. IDEAFIX admits at least
12.86 MB of traffic forwarded through the default path until
thresholds are exceeded and it can perform the appropriate
identification and reaction, as mentioned before. These values
show that HashCuckoo significantly reduces the impact on
flows that compete with elephant flows in the same path.

Accuracy: We evaluated HashCuckoo accuracy by varying
the memory space used (on the x-axis, Figure 4(c)) for hash
mapping in the switches for a number of flows injected in the
network (i.e., 8,192), using the two workload scenarios (see
Section III-B). With 50% of available space, the mechanism’s
accuracy is low since false positives and false negatives
achieve values greater than 38% and 19%, respectively, in the
best S1 scenario. This is due to the increased hash collisions.
When the hash mapping space increases (e.g., 100%), false
positives and false negatives decrease (i.e., less than 35% and
18%, respectively, in the worst S2 scenario).

Figure 4(d) illustrates HashCuckoo accuracy, using the two
workload scenarios S1 and S2, against IDEAFIX. As expected,
IDEAFIX admits greater accuracy (i.e., less than 22% and 10%
for false positives and false negatives, respectively, using 50%
memory space) than HashCuckoo. This is because IDEAFIX
identifies a flow as an elephant only after the thresholds have
already been reached, being agnostic to variations in behavior
and periodicity of flows. Thus, even though HashCuckoo
admits lower accuracy, as was expected for a prediction
mechanism, we observed that the reaction time in HashCuckoo
is significantly lower, as discussed above.

E. Experimental Results - Prediction Analysis

We also compared HashCuckoo against our previous mech-
anism that performs elephant flow prediction in the control
plane [8] to analyze the trade-off between centralized and

distributed approaches. This second approach makes similar
predictions using the network’s global view from the control
plane’s historical and global database in the SDN controller.

Reaction Time: Figure 5(a) shows the reaction time to
elephant flows influenced by the number of samples used
in the prediction mechanism. This shows the time needed
to react with the prediction model being generated/trained at
run-time. The average reaction time (in milliseconds) presents
a difference of up to 45% and 57% in the best (= 17 ms)
and worst (= 43 ms) case, respectively, when using the local
prediction module, in the programmable data plane, compared
to the prediction in the control plane. This difference can be
justified by the switch-controller communication latency and
the controller database access.

Excess Data: Figure 5(b) shows that the data plane solution
reduces the number of bytes forwarded through the default
path until the flow is identified as an elephant one, compared
to the control plane solution. In the best and worst cases,
respectively, the excess data reduces from 82.7 KB and 196.5
KB (the control plane solution) to 36.6 KB and 67.2 KB in
the data plane solution, with no overlap in confidence intervals
considering a 95% confidence level. These results indicate
that our mechanism can reduce by at least 55% the effects
of elephant flows on the network QoS.

Accuracy: Figure 5(c) shows the true positives (correct
elephant flow predictions) rate for the prediction mechanism
based on the prediction interval tolerance. When using work-
load scenario S1, both prediction mechanisms achieve better
results. In scenario S2, the accuracy of the prediction mech-
anisms is affected, since the prediction interval is sensitive
to the sample set correlation. The results show a variation
of approximately 28% and 74% between the two approaches,
using conservative tolerance for the prediction interval in both
scenarios, considering a 90% confidence level. It shows that
the method can predict values even in non-regular scenarios.
However, it requires more flexibility in prediction tolerance.

Figure 5(d) shows the trade-off between prediction mech-
anisms on the data and control plane, using S2 scenario
and a prediction interval within a 15% tolerance. Our results
show, at least, 80% of success in elephant flows identification,
out of the total number of elephant flows injected (= 983
flows), with 20% of false positives and 8% of false negatives,
considering a 90% confidence level, and using 4,096 samples
in the prediction model (best-case).

6341

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

s 2250 B U e o e
s79%] R =200 % 80 =
68.1 = o 287
5 2 150 £ 60 [
poras M2 B8 .1 2100 8271 g 40
A - alper
1 1 i \ \ Z 0 ! : ‘ & S
16 64 256 1024 4096 16 64 256 1024 4096 5 15 25 35 45 55 65 75 85 95 16 32 61 128 256 512 102420484096
Number of Samples (previous flows) Number of Samples (previous flows) Prediction Interval Tolerance (%) Number of Samples (previous flows)

(a) Reaction time. (b) Excess data.

(c) True positive predictions. (d) Trade-offs.

Fig. 5. Prediction mechanisms experimental results: (a) Reaction time e (b) Excess data, using data and control plane approaches; (c) True positives rate of
the prediction mechanisms; (d) False positives and reaction time trade-off between prediction mechanisms on the data and control plane.

IV. RELATED WORK

In DevoFlow [16] an SDN/OpenFlow-based [4] identifi-
cation module is used to identify elephant flows, analyzing
the collected data by sFlow [3] according to predefined rules.
However, these approaches perform elephant flow analysis and
identification entirely in the control plane and a reaction occurs
only when thresholds are exceeded. IDEAFIX [6] presents an
attempt to identify elephant flows in programmable data planes
taking advantage of P4 switches to store and analyze the flows’
size and duration. Although IDEAFIX reduces the detection
delay when compared to controller-based approaches, it still
requires flow size and duration to reach certain thresholds for
identification to happen. In our solution, we implement a local
prediction mechanism to infer the traffic behavior of new flows
and identify the elephant ones, before reaching thresholds.

Traffic behavior prediction strategies are alternatives to the
approaches described above to identify elephant flows. A
number of research efforts aim to predict the behavior of
network flows, using Artificial Neural Networks, and Machine
Learning [15]. To anticipate elephant flow identification, the
authors in [8] adopt a prediction mechanism to infer the traffic
behavior in the control plane. However, switch-controller
communication causes delay in the identification process [5].

V. CONCLUSIONS

In this paper, we capitalized on advanced features of P4
switches to build a mechanism that anticipates the identifica-
tion of elephant flows directly in the programmable data plane.
Experimental results showed that our proposed mechanism,
called HashCuckoo, significantly reduces (approx. 57%, in the
worst case) the identification time of elephant flows because
we eliminate the switch-controller latency in the identification
loop. We also evaluated the trade-offs between HashCuckoo
and two state-of-the-art solutions to identify elephant flows to
provide the network operator with insights about the prioritiza-
tion between identification time and the mechanism’s accuracy.
As future work, we will consider other methods based on
machine learning to improve HashCuckoo’s predictions.

ACKNOWLEDGEMENT

This work was supported in part by the Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq) procs. 423275/2016-0 (Universal), 316662/2021-6
(PQ), and 311276/2021-0, by FAPESP procs. 2020/05152-7
(PROFISSA) and 2015/24494-8 (BigCloud), by FAPERGS

procs. 16/2551-0000488-9 (Green Cloud) and 19/2551-
0001645-0, and by Coordenagdo de Aperfeicoamento de Pes-
soal de Nivel Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES

[11 S. Kaur, K. Kumar, and N. Aggarwal, “A review on P4-Programmable
data planes: Architecture, research efforts, and future directions,” Com-
puter Communications, vol. 170, pp. 109-129, 2021.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” in ACM SIGCOMM
Computer Communication Review. ACM, 2014, pp. 87-95.

[3] sFlow. sFlow.org. [Online]. Available: http://www.sflow.org

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” in ACM SIGCOMM Computer Communication
Review. NY, USA: ACM, 2008, pp. 69-74.

[5] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Symposium on SDN Research. ACM, 2017, pp. 164-176.

[6] M. V. B. da Silva, A. S. Jacobs, R. J. Pfitscher, and L. Z. Granville,
“IDEAFIX: Identifying Elephant Flows in P4-based IXP Networks,” in
IEEE Global Communications Conference (GLOBECOM). 1EEE, 2018.

[71 R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner, “Optimal
elephant flow detection,” in IEEE Conference on Computer Commu-
nications (INFOCOM). 1EEE, 2017, pp. 1-9.

[8] M. V. B. da Silva, A. S. Jacobs, R. J. Pfitscher, and L. Z. Granville,
“Predicting Elephant Flows in Internet Exchange Point Programmable
Networks,” in International Conference on Advanced Information Net-
working and Applications. Springer, 2019, pp. 485-497.

[91 A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,

N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett, “Sdx:

A software defined internet exchange,” in ACM SIGCOMM Computer

Communication Review, vol. 44, no. 4. ACM, 2015, pp. 551-562.

X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009 World

Congress on Nature & Biologically Inspired Computing (NaBIC). 1EEE,

2009, pp. 210-214.

W. S. Cleveland and S. J. Devlin, “Locally weighted regression: an

approach to regression analysis by local fitting,” in Journal of the

American statistical association, 1988, pp. 596-610.

S. Xiong, Q. Cao, and W. Si, “Adaptive Path Tracing with Programmable

Bloom Filters in Software-Defined Networks,” in IEEE Conference on

Computer Communications (INFOCOM). 1EEE, 2019, pp. 496-504.

S. Schaal and C. G. Atkeson, “Robot juggling: implementation of

memory-based learning,” IEEE Control Systems, pp. 57-71, 1994.

O. Michel, R. Bifulco, G. Retvari, and S. Schmid, “The programmable

data plane: abstractions, architectures, algorithms, and applications,”

ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1-36, 2021.

Y. Li, H. Liu, W. Yang, D. Hu, X. Wang, and W. Xu, “Predicting inter-

data-center network traffic using elephant flow and sublink information,”

in IEEE Transactions on Network and Service Management, vol. 13,

no. 4. IEEE, 2016, pp. 782-792.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee, “DevoFlow: Scaling flow management for high-

performance networks,” in ACM SIGCOMM Computer Communication

Review, vol. 41, 2011, pp. 254-265.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

6342

