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Abstract—Due to the increasing number of cyberattacks and
respective predictions for the upcoming years with even larger
numbers of occurrences, companies are becoming aware not only
that the digitization of their businesses is essential, but also
that the adoption of efficient cybersecurity strategies is crucial.
Therefore, approaches for a better understanding and analysis
of cybersecurity are essential.

Thus, SecGrid, a Machine Learning (ML) empowered platform
for analyzing, classification, and visualization of cyberattacks is
introduced. SecGrid implements an extensible set of miners to
analyze information from network traces to provide insightful
visualizations of malicious traffic given and to classify automat-
ically different types of cyberattacks by using supervised ML.
Experiments conducted show high overall usability, scalability
in terms of the capacity of the platform to extract information
from large files, and high performance and accuracy during the
classification of cyberattacks.

I. INTRODUCTION

The number of cyberattacks continues to rise in many
sectors due to business competition and cyberwarfare [24].
Most of these attacks negatively impact companies or gov-
ernments [7], such as ransomware being used for extortion,
Distributed Denial-of-Service (DDoS) attacks against business
competitors, and phishing as a door that leads to data leakage.
Analytical approaches are required to understand cyberattacks
better and conduct planning tasks required to handle them.
These approaches include tools for analyzing network traffic,
extracting information for pattern recognition, and visualizing
traffic behavior.

Network traffic analysis has been used for different pur-
poses, e.g., to monitor and execute tasks related to perfor-
mance, accountability, and security. For that, popular tools
[22] capture and analyze network traces (e.g., Packet Capture
(PCAP) files and Netflow records). In the cybersecurity field,
a postmortem analysis (i.e., after the attack occurred) read
traffic log files in order to extract characteristics of the attack,
identify damages, and acquire sufficient knowledge to mitigate
new attacks [12]. However, there still exists a certain lack of
visualization approaches to explain cyberattacks and to support
cybersecurity planning.

Although there are well-known and commercially estab-
lished tools for the analysis of security-relevant data placed

in the market (e.g., Elastic Stack (ELK) and Splunk) [3],
which are popular among Chief Information Security Officers
(CISO), there are open challenges with respect to the security
analysis and opportunities for advanced tools that simplify
the understanding of cybersecurity with a limited need of
dedicated staff and cybersecurity skills. Such tools are not
trivial since providing security reports based on log files is
challenging due to varying information and entropy, such
as the semantic mapping of header fields, correlation of
information, and specific-protocols characteristics.

Besides the support of different tasks (e.g., forensics, edu-
cation, and proactive measures), such a tool can be used as an
ally for data preparation required for the classification of cy-
berattacks empowered by Machine Learning (ML) techniques
[18]. Also, ML-based systems can benefit from insightful
visualizations to represent data in an accessible manner for
different stakeholders without prior knowledge within such a
field. Thus, these approaches can be used during the process
of taking action against further attacks, such as those related
to DDoS attacks and malware infection.

Thus, this paper introduces SecGrid, an open-source plat-
form for postmortem analysis, classification, and visualization
of cyberattacks [5]. SecGrid addresses the lack of integrated
approaches for processing, analyzing, and visualizing complex
datasets of cyberattacks by implementing an extensible set
of miners to process information from network traces (i.e.,
PCAP) and providing visualizations for the analysis of cyber-
attacks. According to demands, both miners and visualizations
are extensible to address different scenarios and requirements.
SecGrid is based on an ML-based approach to automatically
classify traffic given according to its type (e.g., SYN flood
and Ping of Death) or as regular traffic. Experiments were
conducted to evaluate (a) SecGrid’s overall usability, (b) the
miners’ performance and scalability to process information
from different datasets composed of real-world cyberattacks,
and (c) the accuracy of the ML-based attack classification.

The remainder of this paper is organized as follows. Section
II reviews related work. While Section III introduces SecGrid,
Section IV contains the evaluation followed by conclusions
and future work as of Section V.
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II. RELATED WORK

Understanding a cyberattack and its impacts involves the
analysis of large and complex datasets to observe charac-
teristics and relationships. Visualization techniques (both live
and post-mortem) were applied for these purposes along the
years [6], because a visual representation of a dataset provides
insights for a human observer. For example, AfterGlow is a
security visualization tool [17] that facilitates the creation of
graphs (e.g., linked and network graphs) to visualize datasets
to understand relationships between different entries. Further-
more, Wireshark can capture packets and provides a set of
plots to analyze better the traffic captured (e.g., plotting of
TCP flags and network throughput) and to conduct, for ex-
ample, intrusion detection [22]. Currently, the most prominent
approach is ”Elastic Stack”, composed of the integration of
Elastic Search, Logstash, and Kibana [3].

However, most of the current tools are complex (e.g.,
higher level of granularity, hard for non-experts to conduct
an analysis, and many interactions are required to deploy
and obtain insights) to use or too generic in terms of their
visualizations (i.e., not focusing specifically on cybersecurity,
but on more generic monitoring tasks). Thus, their use is
limited only to network experts and professional penetration
testers with particular technical expertise. Besides these fac-
tors, additional limitations are observed in terms of scalability,
since some tools (e.g., Rumint and Wireshark) do not scale
with (very) large PCAP files [17], which becomes a problem
when considering the ever-increasing load of cyberattacks.
This negatively impacts the adoption of cybersecurity mon-
itoring by companies and delays the definition of efficient
cybersecurity strategies, which requires sufficient information
about threats with which businesses are being targeted.

Therefore, efforts are required from both industry and
academia to simplify the process of understanding cyber-
attacks, while empowering decision-makers to adopt better
cybersecurity strategies based on observable events [8]. Today
that becomes even more challenging, given that, for example,
5G becomes a reality together with a highly connected world,
i.e., with more vulnerable devices, complex networks, and
financial incentives for cyberattacks [19].

Besides approaches that support the analysis and visualiza-
tion of security aspects, the combination of ML techniques and
cybersecurity have been applied to the classification of attacks.
A comparative study of different ML techniques and their
performance is introduced in [21]. [15] achieved an accuracy
of 98.6% with a Random Forest classification for DDoS
attacks; however, no other metrics were presented, except for
the false-positive rate of 2.4%. They used a combination of
flow-based and pattern-based features for their classifiers. [14]
achieved a Random Forest classification accuracy of 99.53%,
a precision of 100%, a recall of 99.12%, and an F1 score of
0.9956 in a joint detection solution, which involved multiple
hosts analyzing traffic. Also, [20] achieved an accuracy of
96.6% and an F-Score of 0.969 using the k-Nearest Neighbor
classification. This small investigation of the state-of-the-art

of the ML field for cyberattacks classification indicates a
path to follow since opportunities for novel approaches (e.g.,
considering different features, datasets, and techniques) and
improvements of existing ones are exploited.

III. THE SecGrid PLATFORM

Three main dimensions are defined to represent the re-
quirements of SecGrid: (a) Automation, (b) Usability, and (c)
Scalability and Extensibility. A fully integrated and automated
process is provided to process and store information from
PCAP files containing traffic originating from cyberattacks.
Different levels of abstractions are provided during the analysis
and comparison of attacks, which simplifies identifying char-
acteristics related to a cyberattack for improved cybersecurity
planning and enhanced detection of attacks. Also, a supervised
Machine Learning (ML) approach is used during the analysis
and classification of cyberattacks. Finally, SecGrid’s compo-
nents are designed to be extensible, which means that both the
extracted information and the visualizations can be rendered
according to user-specific demands.
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Fig. 1: SecGrid’s Architecture

SecGrid consists of (i) miners, which are able to decode
PCAP files and extract features from different protocols (e.g.,
Ethernet, IP, TCP, and HTTP), (ii) a web-based interface that
allows users to interact with the platform and access overview
statistics, (iii) a ML model to automatically classify different
attacks traffic, and (iv) visualizations that give insights regard-
ing the datasets under investigation. Besides, a web-based User
Interface (UI) is provided, where users can share their insights
and datasets with interested users, taking into account privacy
concerns (i.e., data anonymization).

As of the architecture of SecGrid (cf. Figure 1) the user
accesses the Web-based interface to analyze a dataset available
(i.e., PCAP file) or upload a new one. The Data Manager
is in charge of handling user requests to store and access
data related to a cyberattack. When the user uploads a new
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dataset, it is forwarded to the components of the Data Layer,
which perform data extraction and processing of all relevant
features of the cyberattack. Finally, these features are available
in a well-defined data structure for the Visualization Module
to build different visualizations according to user interactions.
The Data Layer and the User Layer communicate through the
Communication API. An Integration API allows for external
solutions to request information and reuse available miners,
which provides integration options, such as for systems to
recommend or offer protections against cyberattacks [9], [10].

A. User Layer

The Visualization Module renders the diagrams based on
the result produced by the Data Layer modules. This module
contains three components that work together and can be
implemented as one single integrated module. First, the View
Transformation component receives the results of the mining
process through the Communication API. It then transforms
the properties of the data structures into fitting visualizations,
such as by mapping the number of packets contained in a
result to the values for a y-axis of a bar chart.

These data structure properties can then be further adapted
by the Visual Transformation, which can change the way how
these properties are shown. e.g., given that a user wants to
zoom out, it aggregates certain data points that would be on
the y-axis of a bar chart. Finally, with this configuration, a set
of visualization components can plot the data using different
visualization techniques. For example, a set of TCP ports and
their number of occurrences could be plotted using different
types of charts (e.g., line, bar, histograms, pie). Therefore, the
Visualization Module contains the required components that
allows SecGrid to built interactive visualizations.

Each visualization is described as a template, which can be
feed with different information, thus allowing for reuse of the
same features to visualize different behaviors (e.g., a malware
in its infection phase or a DDoS attack on the application
layer). New visualization templates can be added to enrich
the capacity of SecGrid to plot the information available in
the databases.

Figure 2 provides an overview of the SecGrid Web-based
Interface. At this view, the opened dataset (i.e., Dataset 1) can
be seen on the top left. In the Metrics Tab, a summary of
all extracted information from this dataset is available (e.g.,
number of packets, attack size, and the number of different
sources IPs). All of the visualizations are accessible via the
Visualizations Tab, separated based on the OSI layer model
(e.g., visualizations considering the application, transport, net-
work, and physical layers). After clicking on one visualization,
a new window is added to the dashboard grid, allowing
for the analysis of different information and even datasets
simultaneously. For example, these opened visualizations can
indicate a possible SYN Flooding attack leading to port 80
with a specific origin (e.g., IP addresses and country).

B. Data Layer

The Packet Decoder module reads a PCAP file provided
by the Data Manager and parses packets using the Protocol
Parser, which is in charge of identifying the type of packets
and separate them for further analysis. Then, the Miners
extract specific information from the decoded packets, thus
making the extracted features available to users in different
ways (e.g., as a statistical report or in a set of insightful
visualizations). These modules allow independent miners to
observe some protocols’ packets to analyze them without
fetching packets that they do not need or without being
affected by other miners. The protocols decoded and processed
today by SecGrid include: Ethernet, ARP, IPv4 and v6, ICMP,
TCP, UDP, and HTTP.

TABLE I: Examples of the Miners Implemented by SecGrid

Miner Target Data Outcome

Metrics
Analyzer

Attack duration,
number of packets,

IPs and ports

Overview of metrics associated
to a cyberattack log file

IEEE 802.1Q
Tagging Frame tags Overview over the VLAN

membership of link-layer frames

IP Protocol
Analyzer

IPv4, IPv6
packets

Analysis of the packets
according to the IP protocol

versions being used

Port
Analyzer

UDP and
TCP ports

Overview of the
most used UDP/TCP ports

by number of segments
Top Source

Hosts Extractor Source address Overview of the hosts
sending more traffic and requests

TCP States
Analyzer TCP flags

Analysis of the frequency of
TCP flags in the packets,

such as ACK, SYN, and FIN
Device

Analyzer
HTTP

User Agent
Identifies which type of device
is being used for the request

Browser and
OS Analyzer

HTTP
User Agent

Identifies the browser
and operation system

being used for the request

HTTP
Analyzer

HTTP Verbs
and End-points

Analysis the most used
HTTP requests (i.e., GET and POST)

as well as the end-points
accessed via HTTP protocol

ML-Feature Events emitted
by the Protocol Parser

Listens to all events emitted
by the protocol parser and process

the information required for the
attack classification ML model

This set of miners (cf. Table I) can access packets of a par-
ticular protocol or abstraction. Thus, it allows for independent
feature extractors that focus on producing a visualization result
for one or more attack types. For example, one implements an
autonomous miner to visualize a possible SYN flood attack
and an additional miner for a DNS amplification attack. The
first miner observes packets being emitted in TCP protocol,
and the latter observes an application layer protocol. Then,
they extract relevant features from the packets and finally store
them for analysis. For example, a TCP States miner analyzes
the TCP flags that indicate the connection states, highlighting
the distribution of connection states of the overall observed
packets. The miners then make available the results in a
structured way for the visualizations of such characteristics.
It is important to note that although a set of miners are
provided, it can be extended by implementing new miners
(e.g., JavaScript or Python-based) and linking them with the
Packet Decoder. Thus, SecGrid extensibility allows for further
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Fig. 2: SecGrid’s Graphical Overview (Example)

analysis and insights about different types of cyberattacks and
behaviors, such as traffic related to Wannacry (Ransomware),
Mirai (Botnet), or even a simple port scanning.

Table I lists examples of miners implemented by SecGrid.
All these miners can be applied separately or combined to
extract meaningful information about the traffic available in
a PCAP file. This information can then be combined to
generate different reports and visualizations. For example, the
combination of the TCP States Analyzer, Device Analyzer,
and Port Analyzer can be used to identify Command and
Control (C/C) traffic between IoT devices of a botnet. This
traffic usually shows activity in port 23 (i.e., Telnet), with
most of the packets being SYN packets [11] and occasionally
keep alive packets (e.g., PSH and ACK) can be observed [1].

For the classification of given attack traffic, the ML Handler
acts as a gateway for the SecGrid and the ML algorithms (e.g.,
K-Nearest Neighbour, Random Forest, or Neural Networks).
Thus, when traffic data has to be classified, the Data Manager
sends a request to the ML Handler, which will be in charge of
preparing the data to be used as input for the implementation
classification ML algorithms. Also, the ML Handler manages
the ML Model Data, training and adding new data from the
ML-Feature miner when requested. Details on the implemen-
tation and the ML models being used are presented in the
following sections.

C. Prototype and Implementation

All of the SecGrid’s components and its Web-based in-
terface were developed using Javascript (mostly Node.js and
Vue.js). An instance of a running prototype and its source
code is publicly available at [5]. Integration with the European
DDoS Clearing House pilot is placed [8] to support better the
analysis of one of the most prominent cyberattacks: DDoS
attacks, thus allowing for the exchange of information and
features between SecGrid and the DDoSDB. Thus, SecGrid
and the DDoSDB can communicate via APIs provided by
both solutions. The need for the development of new miners
is because extensibility and control of the different levels of
granularity possible are important when extracting information

to provide insights, novel visualizations, and features for
today’s and next generation of cyberattacks.

One of the most important decisions when implementing the
packet parser of SecGrid is which library to use for network
capture decoding. The final decision for a library based on
Node.js was taken because of different reasons, such as (a)
technical aspects related to the capacity to handle capture files
that are multiple gigabytes large and (b) scalability aspects,
which require well-defined structures to allow all miners to
be easily extendable and optimized. Besides that, to support
the implementation of the different miners, a list of protocol
parsers was initially developed for the SecGrid. Table II lists
protocols that are decoded by platform’s Protocol Parser.
Besides those protocols listed, other protocols and packet types
are already decoded and emitted to miners (e.g., 802.11, IGMP,
SSL, and Websocket). Thus, it is possible to implement miners
to extract features from them according to the demands of the
different scenarios.

TABLE II: Decoded Protocols by SecGrid’s Protocol Parser
Protocol Description Decoding support

Ethernet
This network access layer protocol

was observed most frequently during
the initial investigations

Fully decoded packets can be
obtained and the properties,

including 802.1Q tags,
can be conveniently accessed

ARP
The address resolution

protocol provides resolution
services to the internet layer

Decoding fully supported

IPv4 Version four of
The internet-layer IP protocol

Full access to
all properties in the IPv4 header

IPv6 Version six of the
Internet-layer IP protocol

Limited decoding support. Only the fixed
frame header is decoded with

limited support for extension headers

ICMP (v4) The control protocol
used along IPv4 Decoding fully supported

TCP Widely used connection-oriented
transport-level protocol Decoding fully supported

UDP Widely used connectionless
transport-level protocol Decoding fully supported

HTTP Application-level protocol
Parsers for certain attributes

have been implemented,
e.g. User-Agent strings

BGP
Exchange routing

protocol used by autonomous
systems on Internet

Parsers for BGP messages

Multiple miners implemented by SecGrid provide specific
features for the analysis and understating of cyberattack traffic.
Also, they allow for an easy extension of metrics and scenarios
to be considered, which is useful for different purposes,
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such as research experiments, cybersecurity education, and
companies with specific analysis demands. However, as an
alternative for SecGrid miners, well-known network tools like
tcpdump and SmartSniff can use SecGrid as a more intuitive
visualization and reporting platform. Thus, these powerful
tools can be integrated into the SecGrid dashboard, also
enabling opportunities for SecGrid real-time analysis by using
tools already tested and validated by the cybersecurity market.

D. ML-based Attack Classification Model

Although miners as implemented (cf. Table I provide in-
formation for the analysis of attacks, it is still required
to process this data in order to be used to build the ML
training model. Therefore, a miner ML-Feature was designed
to extract data available by other miners and transform them to
build the ML training model, such as transforming respective
source IP addresses and ports into unique counters, obtaining
the percentages of packet types from packets extracted, and
calculating the inter-packet interval from the array containing
all arrival times of packets.

The special ML-Feature miner listens to all possible events
emitted by the package parser and processes all information
of a time window to provide all relevant features for the attack
classification. Thus, the ML-Feature miner is used to process
the PCAP files in order to generate the required information to
be used in the training phase of SecGrid’s algorithms and also
during the classification of attacks. The training dataset created
and to be used by SecGrid consists of 55,349 records extracted
from different DDoS attack datasets, publicly available at [5].
Thus, as a proof-of-concept, the implementation and training
dataset is provided to classify seven different behaviors within
SecGrid: Regular traffic, SYN Flood, ICMP Flood, UDP
Flood, IP Sweep, Ping-of-Death, and Port Sweep.

Two ML algorithms were implemented in the SecGrid
platform: Random Forest (RF) and k-Nearest Neighbor (k-
NN). The Scikit-learn classifiers [23] were used for these
algorithm implementations, allowing for customization options
and parameter tweaks. The RF classifier used ten estimators,
thus, ten sets of random decision trees were created and
compared to each other. An evaluation was conducted in order
to provide evidence on their accuracy (cf. Section IV-C).

After the classification of these different attacks identified
in a single or multiple PCAP files, SecGrid provides a visu-
alization in which the user observes along time, when regular
traffic or specific attack occurred. This visualization achieves
a clear view of the duration and behavior of attacks identified.
Figure 3 shows on the left the total distribution of the attack
classified in the given time. The darker the lines, the more
intense the classified traffic is. Therefore, solid black lines
highlight intensive traffic (in terms of packets per second),
while gray lines show less expressive traffic. In addition, on
the right side, a pie chart summarizes the percentage of packets
representing each attack classified.

Fig. 3: Visualization of ML-based Classification of DDoS
Attacks Along Time

IV. EVALUATION

The evaluation of SecGrid addressed usability, performance,
scalability, and the ML classification accuracy.

A. Survey and Usability

An online survey was conducted to analyze the usability
of SecGrid. This was based on eight tasks selected to be
performed and followed by a System Usability Scale (SUS)
questionnaire [4]. The survey was conducted anonymously
with 23 participants from different countries and institutions
(both industry and academia), with different levels of scholar-
ship (Bachelors, Masters, and Doctors), and with expertise in
Computer Science-related areas (Computer Networks, Infor-
mation Systems, Software Engineering, and Cybersecurity).
The participants’ age varied from 23 to 60 years, all of them
knowing at least three or more types of cyberattacks. After
filling in the initial information regarding their fields, scholar-
ship, and previous knowledge, each participant was requested
to watch a three-minute video introducing the main features
of SecGrid. The participants were required to answer the
questions as of Table III using SecGrid, resulting in respective
success rate (i.e., how many users answered correctly).

Most of the tasks achieve very high success rates. However,
T5 and T7, even with binary answers (Yes/No), provided
results slightly above 60%. This is because some of the
participants did not use the visualizations provided to answer
the questions but relied mainly upon the overview of statistics
provided by the platform. This resulted in wrong answers since
an SYN Flooding (the correct answer for T5) can be easily
confused with an HTTP flood (most of the wrong answers for
T5) without a more in-depth check. The same happens for T7,
in which some participants did not analyze the whole traffic but
only the most used port (HTTP 80). Therefore, it is essential to
organize both visualizations and statistics to improve usability
and avoid misinterpretation, thus guiding the users to the most
accurate insight possible.

Besides these tasks conducted and according to the an-
swers of the SUS questionnaire, the majority of users found
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SecGrid easy to use (91.3% of the answers) and well-
integrated (91.3%). Also, users were confident to use the
system (82.6%) and would like to use SecGrid frequently
(78.3%). Although most participants’ feedback was positive,
suggestions to improve the usability were provided at the end
of the survey. The suggestion that appeared most frequently
refers to the feature to freely create and save a dashboard
using available visualizations and datasets. Thus, this featured
was implemented additionally to improve the overall usability.
However, other relevant features mentioned by participants can
improve the users’ capacity to gain insights using SecGrid,
such as those related to the analysis of datasets based on
time-series plots, more contextual information, and support
for insights sharing.

TABLE III: Tasks Performed by Users using the SecGrid

Task Answer Success Rate
T1: How many packets are

present in the dataset? 1640892 95.7%

T2: How many hosts
participated in the attack? 2678 91.3%

T3: From which part of the world
were most packets sent? Asia 91.3%

T4: Which destination port received
the largest number of segments? 80 95.7%

T5: Was the traffic only sent to
ports in the ’well-known port range’ (1-1024)? No 69.6%

T6: Which of the following attack
vectors describes the attack in

dataset ”Dataset 1” best?

SYN
Flooding 60.9%

T7: Regarding the HTTP traffic
in the ”Dataset 2”, would you consider
this traffic as being part of the attack?

No 78.3%

T8: Looking at the metrics,
which of the following attack vectors describes

the attack in ”Dataset 2” best?

ICMP
Flooding 69.6%

B. Miners’ Performance and Scalability

In order to investigate the performance of the SecGrid’s
miners and the scalability of the platform, the time to extract
the features from different PCAP files was measured, as well
as the RAM memory and CPU used during the process of
open, extracting, and store information from these files. The
experiments were conducted with SecGrid instantiated in a
container-based application limited to the usage of 2 GB
of RAM running in an Intel Core i7-8650U, with a base
frequency of 1.9 GHz, 16 GB of RAM with a clock speed
of 2.133 GHz. All of the scripts used to generate the results
are available at [5].

For the analysis, we are considering three different datasets
of PCAP files: (a) the DDoSDB [16], which provides data
from collaborators that usually collected the data as a victim,
(b) the IoT-23 [2], a dataset of network traffic from IoT devices
captured by the Stratosphere Laboratory of Czech Technical
University in Prague during the years of 2018-2019, and (c)
the IoT Network Intrusion dataset [13], which contains various
types of network attacks simulated in IoT environments for
academic purposes. The process was conducted as follows.
First, the dataset files were stored locally. Then, for each one
of the dataset log file, the miners of SecGrid were applied to

extract information from that, and the time and memory used
to process each file was recorded. Also, it was recorded if the
datasets were successfully processed or not. Finally, besides
processing each file, the average time to process each dataset
was calculated. This approach was applied in 10 different
rounds to have more statistically accurate results. Thus, 300
PCAP files were tested in total, with a total size of 112 GB
in datasets. The number of files in each dataset is identified
in the experiments using the variable n.

Figure 4 presents the overview of the tests performed with
the SecGrid’s miners. For a better analysis of the results, the
three datasets were separated into four different scenarios (i.e.,
A, B, C, and D) based on their files’ size. Figure 4 (a) shows
the time to process each one of the datasets. It is possible to
see that the response time for smaller files (i.e., those presented
in the IoT-Intrusion dataset) seems to increase linearly. Still,
when comparing other datasets (e.g., DDoSDB), it is possible
to observe that the time required to process files between
100 MB and 1 GB (Scenario C) is higher than to process the
files higher than 1 GB (Scenario D). This happens because
the response time is dependant on the size of the file and
the entropy present on the file (e.g., how much information,
complexities of the packets, and characteristics have to be
extracted). The dataset that showed large files with higher
entropy was the IoT-23 [2]. The average time to analyze the
files with more than 1 GB (Scenario D) in the dataset IoT-23
with high entropy was roughly 2 minutes. However, in this
dataset, the worst scenario observable required roughly 25
minutes (1482.125 seconds) for a file, representing a Gafgyt
Malware traffic, with 22.1 GB of size and very high entropy.
It was not the larger file analyzed but the one that required
more time to be processed.

The RAM memory is another critical resource for the
SecGrid scalability and stability. Therefore, its usage by min-
ers was also measured during the experiments. Figure 4 (b)
provides the average memory used to analyze each one of the
PCAP files. All 300 PCAP files were successfully analyzed,
with the highest recorded memory consumption being around
1 GB for a file of 50 GB of a real-world DDoS attack. On
average, the highest consumption was 277.5 MB for the dataset
of DDoSDB (Scenario C), representing a log file of massive
TCP Flood. Based on the tests performed, it is possible to
ensure that SecGrid can process files up to 50 GB without any
restriction. It was also measured that the Input/Output medium
(e.g., Hard Disk Drive or Solid-state Drive), from which the
PCAP file is read, has to provide read speeds of at least 50
MB/s; otherwise, it might become a bottleneck for files with
huge sizes and high entropy.

C. ML-based Classification Evaluation

For the evaluation of the performance and feasibility of
the ML-based classification implemented inside of SecGrid,
different algorithms and datasets were tested, resulting in an
overall accuracy of 99.9% for both Random Forest (RF) and k-
Nearest Neighbors (k-NN) implemented algorithms. The final
model has a total length of 55,349 records and contained 18
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(a) Average Time to Analyze PCAP Files (b) Average Memory Consumption to Analyze PCAP Files

Fig. 4: Performance Evaluation of SecGrid for 300 PCAP Files

datasets, with most of them containing two to four attacks.
The defined model had a size of 8.9 MB, which was only
a fraction of the original datasets that were often gigabytes
in size. For this, a model is trained using data from different
data sources that include various DDoS attack types. This also
includes regular traffic so that the system does not accidentally
classify regular network states as attacks. The model was
cross-validated using an 80% train and 20% test split. This
cross-validation was performed ten times with a randomized
dataset to split. The reported results in form of Precision,
Recall, F1-Score, and Accuracy. The evaluation procedure was
run with two different setups: without duplicates in the dataset
(i.e., removing all repeated occurrences of a record in the
model) and with duplicates kept.

The results of each evaluation setup are displayed as macro
averages (overall classification of all attacks without distinc-
tion of the records available in the model) and as weighted
averages (calculates the metrics for high and low-occurrence
of records for each attack type in the model separately). This
helps to shows that not balanced occurrences of records can
result in a misrepresentation of attacks in the dataset, which
is masked by the correct classification of other attacks. For
example, in a model comprised of 95% of TCP flood records
and 5% of UDP records, even if the algorithm performs very
poorly for UDP flood classification, the total metrics would
still result in a good classification supported by many TCP
attacks correctly classified. The accuracy was calculated by
rounding a floating-point value, while Precision, Recall and
the F1-Score were calculated by averaging percentage integers.

Table IV summarizes the results of the tests. The Precision,
Recall, and F1-Score in all unweighted tests reached 100%,
from which it is possible to infer that the system performs
very well with attack-types for which many records exist in the
database. Most records consisted of regular traffic, SYN Flood
Attacks, ICMP Flood Attacks, and UDP Flood attacks in this
test. Even though not all attack states were classified correctly,

TABLE IV: Evaluation of Random Forest (RF) and K-Nearest
Neighbors (k-NN) After Cross-validating the Built Model

Method Precision Recall F1-Score
RF with Duplicates 100% 100% 100%

RF with Duplicates (Weighted) 95.1% 92.3% 92.4%
RF without Duplicates 100% 100% 100%

RF without Duplicates (Weighted) 97.9% 95.9% 96.5%
k-NN with Duplicates 100% 100% 100%

k-NN with Duplicates (Weighted) 83.7% 81.2% 82.3%
k-NN without Duplicates 100% 100% 100%

k-NN without Duplicates (Weighted) 85.4% 83.5% 84.3%

the large ratio of attack types classified 100% correctly to
falsely classified types still averaged out to 100%. When
comparing those values to their weighted counterparts, it
becomes clear that the system had trouble classifying attacks
that were not well represented in the dataset, such as IP
Sweeps and Port Sweeps. Therefore, if the dataset had more
records of these underrepresented attack types, the metrics
could be closer to their unweighted counterparts.

All tests that had duplicate records removed performed
better than their counterpart that kept the entire dataset.
Duplicate records shrunk the model data to 43,714 records,
which means a 21% reduction in length. The algorithm RF
performed significantly better in the weighted result scores.
This is because the RF classifier manages to classify low-
occurrence attack types compared to k-NN classification better
correctly. However, both algorithms performed equally well in
classifying the well-represented attack types in the model.

Additionally, the time required to build the model with more
than 50,000 records was 651 ms, with a classification time
of 27 ms for the RF algorithm and 204 ms for the k-NN
algorithm. This shows that, based on the time required for
the classification, real-time analysis is possible, and RF can
be a possible candidate for a production environment. When
comparing these values achieved by SecGrid’s classification
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with other state-of-the-art approaches available in the litera-
ture, it is possible to verify the excellent results achieved by
the SecGrid’s approach, especially from the RF classifier.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced SecGrid, an open-source approach for
the analysis and visualization of cyberattacks. A running pro-
totype and its source code are available at [5]. SecGrid stands
as a planning and support tool to help network operators and
decision-makers to gain insights about possible occurrences,
impacts, and behaviors of cyberattacks (e.g., DDoS, malware
families, or a simple port scan). For that, SecGrid implements
a set of components to process information from log files
(e.g., PCAP files) and present such information in a structured,
interactive, and user-friendly way. Although SecGrid was
designed for postmortem analysis of cyberattacks, real-time
analysis is also possible by integrating real-time monitors with
SecGrid. This depends especially on the complexity of the
traffic (e.g., entropy) and the time to process the information
being provided, which can add a considerable overhead for
scenarios that require real-time analysis in the current version
of the platform.

In conclusion, SecGrid does provide the first integrated
tool in support of a joint approach of processing, analyzing,
and visualizing complex datasets of malicious traffic log
information. The experiments conducted provided evidence
of the benefits and scalability of the tool, such as very high
usability to process and analyze the log files even to non-
cyber security experts and efficiency to process a large amount
of data. For the extraction and classification of cyberattacks,
the SecGrid ML model obtained very high accuracy for the
classification of DDoS attacks within the selected datasets,
thus showing potential to apply the whole methodology (e.g.,
development of miners, definition of the model, and imple-
mentation of the classification techniques) in scenarios with
different cyberattacks.

Future work includes (a) the support of such real-time
traffic by integrating SecGrid with different monitors and
traffic files (e.g., Netflow records and IoT sensors) and (b)
the development of features that allow users to share their in-
sights with others to support cybersecurity information sharing
between interested stakeholders. Besides that, new miners and
visualizations are planned to provide more accurate analysis
for different scenarios and cyberattacks.
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