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Abstract The proper execution of Virtualized Network Functions (VNFs) depends
on the employment of platforms specifically created to fulfill multiple Network
Function Virtualization (NFV) requirements (e.g., performance, integration, and
management). However, existing VNF platforms implement different architectures,
thus resulting in proprietary or limited solutions that do not always support im-
portant NFV specifications, such as Network Service Header (NSH). In this work,
we introduce a comprehensive architecture for VNF platforms that supports the
NFV requirements defined by the European Telecommunications Standards Insti-
tute (ETSI), while also enabling the execution of NSH. We implemented a VNF
platform prototype, on which we conducted a case study, and report a series of per-
formance evaluation experiments. Results demonstrate the intrinsic advantages of
supporting NSH and show the flexibility of our architecture in distinct NFV scenar-
i0s.

1 Introduction

Computer networks typically rely on dedicated equipment (i.e., middleboxes) to
perform common network functions (e.g., NAT translation, intrusion detection and
load balancing). However, despite the usual benefits of such middleboxes, includ-
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ing performance and reliability, they offer limited flexibility regarding the design
and deployment of advanced network services. Network Functions Virtualization
(NFV), in turn, is a networking paradigm that leverages virtualization technologies
to decouple network functions from the physical equipment and run such functions
as software that executes on commodity hardware [5].

The adoption of NFV presents several benefits, including higher customization
and the reduction of Capital and Operational Expenditures (CAPEX/OPEX). Mul-
tiple efforts are being conducted to foster the adoption of NFV technologies with
the ultimate goal of encouraging the development of solid foundations that support
advanced NFV solutions.

Essentially, a VNF is divided into two main parts: the Network Function (NF) it-
self and the VNF platform. NF corresponds to the software implementation respon-
sible for packet processing, while the VNF platform is the environment that supports
the execution of NFs. VNF platforms are designed taking into account the need to
enable the creation of multiple network functions while consuming few computing
resources. However, existing VNF platforms (e.g., ClickOS [12] and OpenNetVM
[15]) are not created using standardized architectures, thus resulting in solutions
that are either proprietary or present serious limitations, such as the lack of support
for advanced NFV specifications, in particular Network Service Header (NSH) — a
packet header that enables the creation of dynamic service planes [13].

In this paper, we introduce a comprehensive architecture for VNF platforms that
strictly adheres to ETSI requirements and provides support for NSH. Our key contri-
butions are: i) the development of a VNF platform prototype based on ETSI require-
ments; and ii) the identification of critical features provided by NSH that enables the
development of advanced network services.

The remaining of this paper is organized as follows. Section II presents the back-
ground on NFV along with its main components, basic requirements, and a review
of the literature. In Section III, we propose a architecture for developing VNFs with
support for NSH, and instantiate this architecture by describing a running prototype
platform implemented to support virtualized network functions. In Section IV, we
evaluate the performance of our prototype. Finally, in Section V, we conclude this
paper with final remarks and an outline of future work.

2 Background and Related Work

In this section, we present the background on Network Functions Virtualization
(NFV) and Virtualized Network Function (VNF). We also discuss the characteristics
and limitations of existing VNF platforms.
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2.1 Network Function Virtualization in a Nutshell

NFV aims to implement Network Functions (NFs) in software, so they can run on
commodity hardware by employing common virtualization technologies [5]. Two of
the most relevant standardization bodies are expending considerable energy in defin-
ing models, methodologies, and concepts in this area: the European Telecommuni-
cations Standards Institute (ETSI) and the Internet Engineering Task Force (IETF).

The NFV architectural framework [7] defined by ETSI is composed of three
functional blocks: NFV Infrastructure (NFVI), NFV Management and Orchestra-
tion (NFV MANO), and Virtualized Network Functions (VNF). NFVI is the col-
lection of physical resources (e.g., processing, storage, and network) needed to exe-
cute VNFs. NFV MANO in turn encompasses: the Virtualized Infrastructure Man-
ager (VIM), which controls the physical/software infrastructure; the VNF Manager
(VNFM), which is responsible for VNF lifecycle operations (e.g., instantiation, ter-
mination, scaling, and migrations); and the NFV Orchestrator (NFVO), which en-
ables the management of network services. Finally, the VNF functional block itself
represents the network functions that run on VNF platforms.

The IETF has been working on standardizing the Service Function Chain (SFC)
[8], which consists of multiple VNFs working together in a composition that pro-
vides a network service. In addition to VNFs, a SFC also includes boundary nodes
(i.e., incoming and outgoing points of traffic) and steering specifications. One way
to implement those SFCs is by using the architecture defined in the IETF’s Request
for Comments (RFC) number 7665 [8]. In that RFC, a Network Service Header
(NSH) [13] is employed to enable packets to traverse a specific path of VNFs. Each
VNF, in turn, can either be NSH-aware or not. NSH-aware VNFs make a request to
a proxy element to remove the NSH before processing, after which the proxy ele-
ment is again invoked to update/reinsert the NSH element. Alternatively, VNFs can
process NSH themselves, without relying on external elements.

An NSH encapsulates L3 packets as they are processed by the SFC, and carries
information about the Service Function Path (SFP), the current packet location in
the SFP, and meta-data provided by the VNFs during packet processing. NSH is
subdivided into three meta-headers: Base Header, Service Path Header, and Context
Header. The Base Header provides general information about the protocol itself and
the next meta-headers data. This meta-header (4 bytes), in turn, carries 5 fields (i.e.,
version, O bit, TTL, length, and meta-data type), in addition to reserved space for
future protocol use. The Service Path Header is also formed by 4 bytes and has
2 fields: Service Path Identifier (identifies the SFC’s SFP) and the Service Index
(provides the location of the packet in the SFP). Finally, the Context Header can be
fixed (16 bytes) or variable to carry meta-data information as the SFC is processed.

VNF platforms are specially designed to host VNFs and their associated com-
ponents. The ETSI lists the basic requirements for developing such platforms (e.g.,
hardware independence, elasticity, reliability) [14]. The ETSI also specifies that a
VNF platform must host VNFs independently of the underlying hardware. Further-
more, VNF platforms must provide the flexibility expected from the NFV paradigm
to support the operations of deployment, scaling, and migration.
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Several aspects of VNF platforms, however, are still unexplored in the literature.
For example, the lack of standardization on existing VNFs platforms, mostly created
without a well defined architecture and missing features such as NSH and SFC sup-
port. Existing platforms, detailed next, usually support only a single programming
language, run on very specific hypervisors, do not describe a formal architecture,
and do not fulfill all the above requirements defined by the ETSI.

2.2 VNF Platforms

Many research efforts concentrate on creating VNF platforms that are capable of ex-
ecuting NFs. However, these VNF platforms do not provide support for more recent
NFV specifications, such as NSH. Still, two of the most important VNF platforms
today are ClickOS and OpenNetVM, described next.

ClickOS [12] is an optimized platform for running NFs based on Mini-OS,
netmap, and Click Modular Router. ClickOS uses paravirtualization techniques
along with several modifications in both Xen and VALE to support fast packet 1/O,
being able to saturate 10GbE links with a single processing core. Alas, the ClickOS
architecture is monolithic and inflexible and supports only a single packet accelera-
tion tool for sending and receiving network traffic to an indivisible NF.

OpenNetVM [15] is a simplified platform that uses containers to execute VNFs
on commodity servers along with the packet acceleration framework DPDK [9].
OpenNetVM meets the ETSI scalability requirements because of its lower overhead
due to the use of containers, which are a lightweight solution in comparison with vir-
tual machines. The OpenNetVM architecture consists of a packet acceleration tool
interconnecting VNFs with Virtualized NICs (VNICs). NFs are created as a single
component within a proprietary framework and are deployed on a container core.
OpenNetVM also provides an internal router implemented using shared memory,
which steers network traffic between multiple VNFs.

Both ClickOS and OpenNetVM unfortunately lack support for important VNF
elements (e.g., VNFCs and NSH). The ClickOS architecture is straightforward and
does not have any native management method, providing only a minimalist envi-
ronment to execute simple NFs. Despite OpenNetVM’s internal traffic router, the
platform is restricted to a single packet acceleration tool and a single packet pro-
cessing framework, both deployed on a container core and managed by an external
native agent. Furthermore, these platforms do not meet all of the requirements speci-
fied by the ETSI. ClickOS, for example, can only be executed on the Xen hypervisor
and every control operation is performed locally through the XenStore. Also, Open-
NetVM presents limitations related to NF instantiation (due to hardware device shar-
ing), portability (migrations are only possible between compatible infrastructures),
and security issues with containers (single kernel sharing) [11].
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3 VNF Platform Architecture and Prototype

In this section, we introduce an architecture for VNF platforms which supports SFC
chaining using NSH. The proposed architecture is designed to be flexible and tech-
nology agnostic. Ultimately, we expect this architecture to serve as a template for
designing new systems and re-engineering existing ones.

3.1 Architecture Overview

Currently, there is no de facto standard for the design and development of VNF
platforms, from neither industry nor academia. VNF platforms, however, must be
developed to meet multiple strict requirements (e.g., portability, performance, inte-
gration, management, and scalability), in order to fulfill the needs of modern net-
works. Furthermore, the NFV area is evolving, with new technologies being created
continuously. Therefore, it is essential to design flexible solutions that support new
NFV Enablers (i.e., existing frameworks and technologies that contribute to the de-
velopment and implementation of NFV) from an ever increasing number of players
in the NFV market. VNF platforms must also be created with integration in mind.
There are several systems (OSS/BSS, Hypervisors) and elements (NFVI, VNFM,
EMS) that must work together with multiple VNFs in order to adequately provide
virtualized network services [7].
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Fig. 1 VNF Platform Architecture

In this context, we propose a generic and flexible architecture for VNF platforms,
(Figure 1). The proposed platform consists of multiple modules, deployed on a host
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operating system (called here VNF Core): an module responsible for management
access of Virtual Network Interfaces (vNIC), being the main point of input/output of
packets from the architecture, a module consisting of a framework for development
and execution of network functions, a management agent responsible for configura-
tion of the host operating system and the other modules and, finally, a NSH Proces-
sor which provides an abstraction for the network functions regarding the existence
of NSH packets.

Network Service Header (NSH) is a new service plane protocol, specified by
IETF, inserted onto packets/frames to provide service function paths [13]. Despite
its advantages, NSH is not always employed to steer traffic across multiple VNFs.
In order to support the cases where NSH is employed or not, we introduced the
NSH Processor, which is responsible for manipulating the NSH fields that may be
modified when a packet is traversing a network path (i.e., the Service Index - SI; and
Context Header - CH). The proposed NSHP also provides the following operations:
NSH removal, NSH reinsertion, CH retrieval, and CH update.

Packets are then received by the development frameworks used to implement net-
work functions. Basically, these frameworks include applications (e.g., Click Mod-
ular Router [10] and Vector Packet Processing [3]), programming languages (e.g.,
C, C++, Python), libraries (e.g., Scapy, libtins, libnet), or even single routines that
support the construction and handling of network packets.

All the described modules are controlled by an management agent, which is re-
sponsible for monitoring and controling the execution of VNFs. Once a VNF is
executing, the retrieve operations can be used to gather information about the VNF
instance (e.g., VNF ID, network interfaces), measuring performance indicators from
the VNF Core (e.g., CPU, memory, and network usage), and providing information
from the extended agents deployed in the VNF platform.

3.2 NFV Enablers

As a proof of concept of the proposed architecture previously presented, we im-
plemented a prototype that consists of a VNF platform that employs modern and
well-accepted NFV enablers. In this context a NFV enabler is any technology used
as a basis for the development of NFV ecosystems [5], such as hypervisors, packet
acceleration frameworks, virtual routers, and operating systems. Specifically, we
employed the following technologies in our solution:

e Click Modular Router — a well-known packet processing framework that pro-
vides an extensive list of network elements, native support for packet acceleration
frameworks, and built-in control methods. The Click framework has been exten-
sively investigated in academia and employed in several efforts to develop VNF
platforms, such as ClickOS [12], Click-on-OSv [4], and the platform proposed
by Bu et al. [2];

¢ Intel Data Plane Development Kit (DPDK) — a packet acceleration framework
that provides high throughput with reduced resource consumption (by using PCI
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passthrough and zero-copy) and supports multiple network interface cards (in-
cluding paravirtualized ones, such as virtio and netfront);

o RESTful Web Services — an architectural style for the provisioning of Web
Services (WSs) with simplified access to resources. RESTful web services are
lighter than traditional SOAP-based WSs and are used here as the basis for the
management agent to export performance statistics regarding the VNF platform,
and to receive management requests from an external VNFM or EMS.

Furthermore, we have chosen Debian as the operating system for the VNF Core.
Although this operating system is not explicitly designed to support the NFV re-
quirements (e.g., performance), this decision enabled us to focus on the develop-
ment of the internal modules without concerns about software compatibility, thus
enabling the analysis of the architecture from the functional point-of-view. How-
ever, the development of NFV platforms for production environments should benefit
from more recent solutions such as OSv, CoreOS, MiniOS, and Alpine.

3.3 Platform Prototype

For handling the vNICs, we initially chose DPDK. However, the platform also sup-
ports L2 Sockets to provide increased flexibility. These two options are available
and can be selected according to the specific needs of the operator'. Although we
have employed these two solutions, other solutions (e.g., PF_RING, and netmap)
could be used without significant implementation efforts.

The NSH Processor operates as a proxy during the platform execution and can
be enabled by the network operator. When enabled, packets first pass through the
NSHP in order to remove NSH before steering the packets to the network function
(i.e., CMR or Python-based NFs/VNFCs), and for NSH reinsertion before forward-
ing processed packets back to the VNIC (i.e., DPDK or L2 Sockets). The NFs, when
necessary, can access the NSH Context Header to retrieve or replace content using
specific libraries we developed (both in Python and CMR)?. Notice that, during the
NSHP reinsertion operation, the Service Index field is updated.

The Management Agent was developed as a RESTful WS and is able to con-
trol (through system calls and CMR’s control socket) all the internal components of
the platform. For monitoring, Glances® was used to recover system-wide statistics,
while a custom REST API was developed to meet the management requirements
as specified in [1], such as providing information regarding the VNF (e.g., func-
tion description, system state, logs) and supporting the reconfiguration of running
functions. These operations can be accessed either directly by network operators

! The polling method of DPDK is inefficient regarding to CPU resources, while L2 Sockets are not
able to achieve high throughput.

2 By the time of writing, we opted to support only Context Headers of fixed-length [13].
3 https://nicolargo.github.io/glances/
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(through the integrated EMS) or by external EMS and VNF Managers (by using
REST calls to the management interface).

To initiate the platform, the network operator must first provide (through the
Management Agent) a VNF Package that contains the network function implemen-
tation, its descriptor, and settings to initialize the internal modules properly. These
settings are used, for example, to enable/disable the NSH Processor. After the ini-
tial platform configuration, the NF lifecycle operations (e.g., start, stop, status, and
monitoring) become available to the network operator. The platform prototype sup-
ports three execution scenarios: NSH packets with NSH unaware NF, NSH packets
with NSH aware NF, and packets without NSH.

4 Evaluation

To evaluate our proposed architecture, a case study of the prototype presented in
Section 3.2 are presented. An Intel Core i7-4790K @3.60Ghz server with §GB RAM
DDR4 running Debian 8 was used. The prototype platform was configured to use
L2 Sockets for input/output and NFs developed using both Python3 and/or CMR
frameworks. All the experiments were repeated 30 times, considering a confidence
level of 95%.

4.1 NSH for VNFs Intercommunication and SFC Steering

We used NSH to improve an existing NFV-based solution to mitigate DDoS attacks
called DeMONS [6]. In DeMONS, six separate VNFs were employed to detect ma-
licious traffic and steer it through separate channels with different bandwidth ca-
pacities. These VNFs are Manager, Priority Classifier, Firewall, Allocator, Traffic
Policing, and Router. The Manager is responsible for orchestrating the environment
execution, for example, by monitoring the network load to scale running VNFs. The
Priority Classifier, the Firewall, and the Allocator are responsible for identifying
and classifying benign traffic, and blocking malicious traffic. Finally, both the Traf-
fic Policing and the Router are responsible for applying user-defined policies (e.g.,
partial dropping and traffic shaping) on the suspicious flows.

In the original DeMONS, the first three VNFs (i.e., Priority Classifier, Firewall,
and Allocator) are connected through a static path and share the traffic reputation
through the Manager (acting as a central point of communication). The Priority
Classifier uses Intrusion Detection System (IDS) techniques to generate the traffic
reputation, and classifies the incoming flows with values ranging from O to 1. Rep-
utation 0 means a malicious flow, reputation 1 indicates a benign flow, and values
between those limits indicate unclassified traffic. After the classification, the traffic
is forwarded to the Firewall, which queries the Manager to verify the traffic reputa-
tion, blocks 0 marked flows, and forwards the rest to the Allocator. The Allocator,
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in turn, steers the traffic to a high priority tunnel (that guarantees QoS for high repu-
tation flows) or to a low priority tunnel (that can be overloaded with low reputation
flows). Figure 2-A presents the original DeMONS implementation design.
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Fig. 2 DDoS Mitigation NFV Solution (DeMONS)

DeMONS was deployed using the IETF’s SFC architecture (i.e., Classifier and
Service Function Forwarder) [8] and the VNF Platform prototype developed in this
work. NSH was used to enable in-band control for sharing flow reputations and to
orchestrate the traffic steering across all the employed NSH aware VNFs (i.e., the
SFC). The reputation table (originally at the Manager) is now maintained by the Pri-
ority Classifier and shared between the VNFs through the NSH Context Header. In
case of benign traffic, the Service Index is decremented by two in order to forward
the packets directly to the Allocator, thus skipping the Firewall. Finally, the Allo-
cator gets the reputation value directly from the flow packet by using the NSH’s
Context Header. Figure 2-B presents the adapted DeMONS implementation design.
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The use of NSH led to performance improvements in DeMONS due to redesign
and the embedded mechanism to exchange control data. The first experiment was
executed to evaluate the execution time overhead introduced by retrieving and pro-
cessing the reputations in both original and modified DeMONS. Two versions of the
Packet Filter VNFC were developed in order to operate in both scenarios (NSH and
Non-NSH), and were instrumented to measure the elapsed processing time for each
packet. Iperf was used to generate the network traffic (UDP packets of 1470 Bytes),
with the results presented in Figure 3.

100

Non-NSH DeMONS
NSH Demons ——
10
]
0.1
100 200 500 700

1000

Time (ms)

Packets

Fig. 3 Reputation Retrieval Processing Time Overhead

In the Non-NSH DeMONS, the reputation retrieval process consists in contact-
ing the Manager (through a UDP Socket) to discover the reputations. This opera-
tion is performed for all the network packets traversing the VNFC. When NSH is
employed, on the other hand, the reputation value is included in the NSH Context
Header of each packet by the Priority Classifier. In this case, the Packet Filter just
needs to open this header to retrieve the information. As suspected, the same op-
eration (reputation retrieval) leads to significant differences in terms of processing
time (in favor to NSH-based), which may affect other performance indicators (e.g.,
throughput and packet loss). An important observation is that no major differences
occurred for packets with different sizes.

The use of a Service Function Forwarder in the NSH DeMONS scenario also
demonstrated interesting opportunities for improving the traffic steering overall.
This SFC element (e.g., an OpenFlow Switch or a P4-enabled device) steers the net-
work traffic according to the Service Index value present in the NSH Service Path
Header. In this way, it is possible to manipulate the VNF execution order by updat-
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ing the NSH Service Index according to decisions taken during VNF processing.
For our case study, the Firewall VNF only processes the malicious traffic in order to
collect statistics (e.g., number of discarded packets) and then discards the packets.
In addition to not processing benign flows — when malicious traffic is nonexistent
(i.e., no attack occurring) — it is possible to temporarily disable the Firewall VNF,
thus saving computational resources.

5 Conclusion and Future Work

Network Functions Virtualization (NFV) has been attracting great interest from both
industry and academia. However, despite all the advancements in the field, there
are still opportunities for research, development, and standardization. For example,
there are no widely accepted definitions for the internal architecture of the platforms
responsible for executing NFs, neither the processing of NSH inside those VNFs.
This leads to a scenario where several platforms (e.g., ClickOS and OpenNetVM)
have been created without integration concerns in mind, the result is that none fulfills
the complete set of NFV requirements.

This work proposed an architecture for VNF Platforms with NSH support. We
specified the basic modules for building a platform, as well as identified existing
NFV enablers that can be employed during such development. We also presented a
platform prototype that employs the proposed architecture to support the execution
of disparate network functions. Finally, we conducted a performance evalution to
identify the advantages of employing NSH. The experiment shows the advantages
of using NSH when designing SFCs. First, the NSH Context-Header enables the
functions to communicate and change information in-band. Second, the Service In-
dex field allows the creation of dynamic SFCs, without the need to a priori set the
path of VNFs, thus enabling traffic steering to be executed by using common solu-
tions (e.g., Open vSwitch, P4-enabled equipment). Future work includes the inves-
tigation on how the current VNF/SFC descriptors (e.g., TOSCA) have to be adapted
to support NSH, and improve the prototype by supporting novel packet processing
frameworks (e.g., VPP) and other virtual network technologies (e.g., netmap).
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