VIRTUALIZATION IN THE CLOUD

Lisandro Zambenedetti Granville, Rafael Pereira Esteves, and
Juliano Araujo Wickboldt

Institute of Informatics, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil

2.1 THE NEED FOR VIRTUALIZATION MANAGEMENT
IN THE CLOUD

Cloud infrastructures are aggregates of computing, storage, and networking resources
deployed along centralized or distributed data centers devoted to support companies’
applications or, in the case of services being offered through the Internet, to support cloud
customers’ applications. Companies such as Google, Amazon, Facebook, and Microsoft
rely on cloud infrastructures to support various services such as Web search, e-mail,
social networking, and e-commerce. By leasing physical infrastructure to external cus-
tomers, cloud providers encourage the development of novel services and, at the same
time, generate revenue to cover deployment and operation costs of clouds. Cloud resource
sharing is then critical for the cloud computing model.

To allow multiple customers, cloud providers rely on virtualization technologies
to build virtual infrastructures (VIs) comprising logical instances of physical resources
(e.g., servers, network, and storage). The provisioning of VIs must consider requirements
of both cloud providers and customers. While the main objective of cloud providers is

Cloud Services, Networking, and Management, First Edition.
Edited by Nelson L. S. da Fonseca and Raouf Boutaba.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

23



24 VIRTUALIZATION IN THE CLOUD

to generate revenue by accommodating a large number of VIs, customers, in their turn,
have specific needs, such as storage capacity, high availability, processing power (usually
represented by the number of leased virtual machines or VMs), guaranteed bandwidth
among VMs, and load balancing. Inefficiencies in the provisioning process can lead
to negative consequences for cloud providers, including customer defection, financial
penalties when service-level agreements (SLAs) are not satisfied, and low utilization
of the physical infrastructure. In summary, management of physical and VIs is vital to
enabling proper cloud resource sharing.

Current cloud provisioning systems allow customers to select among different
resource configurations (e.g., CPU, memory, and disk) to build a VI. Customers are the
main responsible for choosing the resources that will better fit their application’s needs.
The cloud provider, in turn, either (a) allocates resources for the VI on physical data cen-
ters, or (b) rejects the allocation if there are not enough resources to satisfy the customers’
requirements. Cloud providers run allocation algorithms to find the best way to map VIs
onto the physical substrate according to well-defined objectives, such as minimizing the
allocation cost, reducing energy consumption, or maximizing residual capacity of the
infrastructure. Mapping virtual to physical resources is commonly referred to as embed-
ding and has been extensively studied in the context of network virtualization [1-3].

Embedding is an example of a network virtualization aspect that needs to be prop-
erly managed. Choosing the appropriate embedding algorithm, and deciding when it
should be triggered (e.g., when new VI requests arrive or when on-the-fly optimiza-
tions of the physical substrate are needed) is a management activity that needs to be
consciously performed by the cloud management operator or team. Other virtualization
management aspects encompass operations such as: monitoring, to detect abusing appli-
cations/customers; configuration, to tune VI and physical substrate; and discovery, to
identify collaborating VIs that would be better placed closer to one another. In addition to
management operations, virtualization management requires understanding of the diver-
sity of target elements because both VI and physical substrate are quite heterogeneous
in regard to the resources they use/offer. That impacts the management operations them-
selves, since, for example, monitoring and configuring a physical server can be quite
different than monitoring and configuring network devices and traffic. Operations and
target elements are thus two important dimensions of cloud virtualization management.

In this chapter, we cover the management of virtualization in the cloud. Our observa-
tions primarily take the perspective of cloud providers who need to manage their substrate
and hosted VIs to guarantee that the services offered to customers are operating prop-
erly. Virtualization management is a quite new discipline because virtualization itself, at
least as it has been employed these days, is also quite recent. Management is achieved by
borrowing techniques from other areas, such as network management and parallel pro-
cessing. We concentrate our discussion on the two management dimensions mentioned
before, i.e., management operations and target elements. Although other dimensions
do exist, we will focus on the operations and elements because they are the essential
dimensions a cloud manager needs to take into account in the first place.

The remaining of this chapter is organized as follows. In Section 2.2, we review
some basic concepts of virtualization in cloud computing environments. In Section 2.3,
we describe the main elements of a virtualized cloud environment. In Section 2.4, we list

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

BASIC CONCEPTS 25

the main virtualization-related operations that need to be supported by a cloud platform.
In Section 2.5, we review some of the most important efforts towards the definition of
open standard interfaces to support virtualization and interoperability in the cloud. In
Section 2.6, we list some of the most important efforts currently targeted to build tools
and systems for virtualization and cloud resource management. Finally, in Section 2.7, we
list key challenges that can guide future developments in the virtualization management
and also mention some ongoing research in the field.

2.2 BASIC CONCEPTS

Clouds can be public, private, or hybrid. Public clouds offer resources to any interested
tenant (e.g., Amazon EC2 and Windows Azure). Private clouds usually belong to a single
organization and only the members of that organization have access to the resources.
Hybrid clouds are combinations of different types of cloud. For example, a private cloud
that needs to temporarily extend its capacity can borrow resources from a public cloud,
thus forming a hybrid cloud.

Cloud services are organized according to three basic business models. In infras-
tructure as a service (IaaS), cloud providers offer logical instances of physical resources,
such as VMs, virtual storage, and virtual links to interested tenants. In platform as a
service (PaaS), tenants can request a computing platform including an operating sys-
tem and a development environment. The software as a service (SaaS) model offers
end-applications (e.g., Google Drive and Dropbox) to customers. Other models, such as
network as a service (NaaS) are also possible in the cloud, but are not found so frequently
in the literature [4].

Virtualization is the key technology to enable cloud computing. Virtualization
abstracts the internal details of physical resources and enables resource sharing. Using
virtualization, a physical resource (e.g., server, router, link) can be shared among different
users or applications. The core of cloud computing environments is based on virtual-
ized data centers, which are facilities consisting of computing servers, storage, network
devices, cooling, and power systems.

Virtualization can be accomplished by different technologies according to the target
element. Server virtualization, for example, relies on a layer of software called hyper-
visor, also known as VM monitor. The hypervisor is the component responsible for
actually creating, removing, copying, migrating, and running VMs. Virtual links, in turn,
can be created by configuring Ethernet VLANSs between the physical nodes hosting the
virtual ones. Multiprotocol label switching (MPLS) label switched paths (LSPs) and
generic routing encapsulation (GRE) tunnels are other candidates to establish virtual
links.

Participants in the cloud comprise two main roles: the cloud provider, also known
as infrastructure provider, owns the physical resources that can be leased to one or more
tenants, also known as service providers, who build VIs composed of virtual instances
of computing, storage, and networking resources. A VI can be also referred to as a cloud
slice. After the instantiation of a VI, tenants can deploy a variety of applications that will
rely on these virtual resources.

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

26 VIRTUALIZATION IN THE CLOUD

A cloud platform is a software that allows tenants to request and instantiate VIs.
Tenants can specify the amount of resources to build their VIs and the specific charac-
teristics of each resource, such as CPU and memory for computing, disk size for storage,
and bandwidth capacity for links. The cloud platform then interacts with the underlying
virtualization software (hypervisor) to create and configure the VI. In order to facilitate
resource management and allow interoperability, cloud platforms offer specific interfaces
for applications running in VIs. Such interfaces define operations that can be executed
in the cloud platform.

2.3 VIRTUALIZED ELEMENTS

As stated in previous sections, virtualization plays a key role in modern cloud comput-
ing environments by improving resource utilization and reducing costs. Typical elements
that can be virtualized in a cloud computing environment include computing and stor-
age. Recently, virtualization has been extended also to the networking domain and can
overcome limitations of current cloud environments such as poor isolation and increased
security risks [5]. In this section, we describe the main elements that can be virtualized
in a cloud computing environment.

2.3.1 Computing

The virtualization of computing resources (e.g., CPU and memory) is achieved by server
virtualization technologies (e.g., VMWare, Xen, and QEMU) that allow multiple vir-
tual machines (VMs) to be consolidated in a single physical one. The benefits of server
virtualization for cloud computing include performance isolation, improved application
performance, and enhanced security.

Cloud computing providers deploy their infrastructure in data centers compris-
ing several virtualized servers interconnected by a network. In the TaaS model, VMs
are instantiated and allocated to customers (i.e., tenants) on-demand. Server virtualiza-
tion adds flexibility to the cloud because VMs can be dynamically created, terminated,
copied, and migrated to different locations without affecting existing tenants. In addition,
the capacity of a VM (i.e., CPU, memory, and disk) can be adjusted to reflect changes in
tenants’ requirements without hardware changes.

Cloud operators have flexibility to decide where to allocate VMs in the physical
servers considering diverse criteria such as cost, energy consumption, and performance.
In this regard, several VM allocation schemes have been proposed in the literature that
leverage VM flexibility to optimize resource utilization [6-8, 10-12, 20].

2.3.2 Storage

Storage virtualization consists of grouping multiple (possibly heterogeneous) storage
devices that are seen as a single virtual storage space. There are two main abstractions to
represent storage virtualization in clouds: virtual volumes and virtual data objects. The

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

VIRTUALIZED ELEMENTS 27

virtualization of storage devices as virtual volumes is important in this context because it
simplifies the task of assigning disks to VMs. Furthermore, many implementations also
include the notion of virtual volume pools, which represent different sources of available
virtualizable storage spaces to allocate virtual volumes from (e.g., separate local physical
volumes or a remote Network File System or NFES). On the other hand, cloud storage of
virtual data objects enables scalable and redundant creation and retrieval of data objects
directly into/from the cloud. This abstraction is also often accompanied by the concept
of containers, which in general serve to create a hierarchical structure of data objects
similar to files and folders on any operating system.

Storage virtualization for both volumes and data objects is of utmost importance
to enable the elasticity property of cloud computing. For example, VMs can have their
disk space adjusted dynamically to support changes in cloud application requirements.
Such adjustment is too complex and dynamic to be performed manually and, by virtu-
alizing storage, cloud providers offer a uniform view to their users and reduce the need
for manual provisioning. Also, with storage virtualization, cloud users do not need to
know exactly where their data are stored. The details of which disks and partitions con-
tain which objects or volumes are transparent to users, which also facilitates storage
management for cloud providers.

2.3.3 Networking

Cloud infrastructures rely on local and wide area networks to connect the physical
resources (i.e., servers, switches, and routers) of their data centers. Such networks are
still based on the current IP architecture that has a number of problems. These problems
are mainly related to the lack of isolation, which can allow that one VI or application
interferes with another, resulting in poor performance or, even worse, in security prob-
lems. Another issue is the limited support for innovation, which hinders the development
of new architectures that could suit better cloud applications.

To overcome the limitations of current network architectures, virtualization can also
be extend to the cloud networks. ISP network virtualization has been a hot topic of inves-
tigation in recent years [13, 14] and is now being considered in other contexts, such as
cloud networking. Similar to virtualized ISP networks, in virtualized cloud networks,
multiple virtual networks (VNs) share a physical network and run isolated protocol
stacks. A VN is part of a VI that comprises VN nodes (i.e., switches and routers) and
virtual links.

The advantages of virtualization of cloud networks include network performance
isolation, improved security, and the possibility to introduce new protocols and address-
ing schemes without disrupting production services. Figure 2.1 shows how virtualization
can be tackled in cloud network infrastructures. In the substrate layer, physical nodes
and links from different network administrative domains serve as a substrate for the
deployment of VNs. Physical nodes, at the core of the physical networks, represent net-
work devices (e.g., switches and routers) that internally run virtual (or logical) routers
instantiated to serve VNs’ routing necessities.

In the virtualization layer, virtual nodes and links are created on the top of the sub-
strate and combined to build VNs. A VN can use resources from different sources,

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

28 VIRTUALIZATION IN THE CLOUD

O Physical node & Virtual node (first level) @ Virtual node (second level)
—— Physical link - - - Virtual link

Figure 2.1. Virtualized cloud network infrastructure.

including resources from other VNs, which in this case results in a hierarchy of VNs.
VNs can also be entirely placed into a single physical node (e.g., physical end-host).
In this case, since virtual links are not running on top of any physical counterpart, iso-
lation, and performance guarantees should be offered, for example, through memory
isolation and scheduling mechanisms. In another setup, VNs can spread across differ-
ent adjacent physical infrastructures (i.e., different administrative domains). In this case,
network operators, at the substrate layer, must cooperate to provide a consistent view of
the underlying infrastructure used by networks from the virtualization layer.

2.3.4 Management

The management of cloud infrastructures plays a key role to allow cloud providers to effi-
ciently use the resources and increase revenue. At the virtual level, each VI can operate
its own management protocols, resource allocation schemes, and monitoring tools. For
example, one tenant can use Simple Network Management Protocol (SNMP) to manage
his/her VIs, while other can use NETCONF or Web services.

Different resource allocation schemes tailored for specific cloud applications define
how virtual resources are mapped in the data center. Adaptive, application-driven
resource provisioning allows multiple tenants and a large diversity of applications to
efficiently share a cloud infrastructure.

Monitoring is another management aspect that can be virtualized. Once a new VI is
created, a set of monitoring tools need to be configured [15] in order to start monitoring
the computing resources that form the VI. The set of monitoring tool configurations and

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

VIRTUALIZATION OPERATIONS 29

the corresponding monitored metrics is referred to as a monitoring slice. Every VI is
coupled with a monitoring slice [16]. To monitor the computing resources that form Vs,
cloud operators generally use in their monitoring slices tools with native support to cloud
platforms.

2.4 VIRTUALIZATION OPERATIONS

Virtualization operations are structured according to the components described in the
previous section: computing, storage, networking, and management. A non-exhaustive
list of the main virtualization operations derived from existing cloud platforms
[9, 17-19, 21] is described next.

* Computing (Virtual Machines)

o Create/Remove: defines/undefines the internal representation of a VM with its
specified characteristics (e.g., CPU, memory, and guest image).

o Deploy/Undeploy: defines/undefines a VM within the hypervisor of a node of
the cloud infrastructure, including the transfer/removal of the image file.

o Start/Stop/Suspend/Resume: basic operations to handle the state of the guest
operating system.
o Migrate: undefines a VM in one node and defines it on another. The destination
node needs to be specified.
> Modify: modifies the attributes of a VM.
o Snapshot: creates a snapshot of a VM.
° Restore: restores a VM from a snapshot.
o List: lists currently deployed VMs.
* Computing (Images)
o Create/Remove: defines/undefines a guest operating system image at the main
repository of the platform, including the transfer/removal of the file.
* Storage (Virtual Volumes)
° Create/Remove: allocates/deletes chunks of storage on nodes.
° Attach Volume to VM: attaches a volume file to a given VM.
* Storage (Virtual Volume Pools)

° Create/Remove: defines/undefines a pool for storing virtual volumes (typically
a local or remote/NFS directory).

> Add Volume: adds a virtual volume to a volume pool.
* Storage (Virtual Data Objects)
> Create/Remove: allocates/deletes storage for data objects on nodes.
o Upload/Download: transfers the actual data in and out of the cloud environment.

o Stream: sends the content out to the general public, sometimes even adopting
massive scale distribution employing concepts of Content Delivery Networks
(CDNs).

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

30 VIRTUALIZATION IN THE CLOUD

* Storage (Virtual Containers)
o Create/Remove: defines/undefines a container for storing data objects.
> Add Data Object: adds a virtual data object to a container.

* Networking (Virtual Links)

> Create/Remove: defines/undefines the internal representation of a virtual link
that connects point-to-point virtual interfaces of two virtual devices (i.e., VMs
or virtual routers).

o Establish/Disable: establishes/disables the virtual link within the network,
enabling/disabling traffic to flow between the connected devices.

o Configure: configures additional parameters of a virtual link (e.g., bandwidth).
* Networking (Virtual Routers)

o Create/Remove: defines/undefines the internal representation of a virtual router
that has multiple virtual ports to interconnect multiple virtual interfaces of
virtual devices.

o Deploy/Undeploy: deploys/undeploys the virtual router into a node of the
infrastructure.

> Add/Edit/Remove Routes: defines/modifies/undefines routes for a virtual router.
* Management (Virtual Devices)

o Monitor/Unmonitor: deploys/undeploys the monitoring infrastructure required
to monitor a given virtual device.

o Get Monitoring Information: fetches monitoring information within the moni-
toring system for a given virtual device.

* Management (Events)

o Create/Remove: defines/undefines the internal representation of an event that
belongs to a specific slice or operates in global scope.

° Deploy/Undeploy: deploys/undeploys the event on the monitoring infrastructure
to be triggered on demand.

* Management (Physical)

o Discover Resources: this is actually a collection of operations to discover
nodes and network topology available on the infrastructure. This collection also
retrieves information about resource allocation on these physical elements.

o Get Monitoring Information: fetches monitoring information within the moni-
toring system for a given physical device (e.g., node or switch).

2.5 INTERFACES FOR VIRTUALIZATION MANAGEMENT

Today, there are many heterogeneous cloud platforms that support the provisioning of
virtualized infrastructures under a plethora of different specifications and technologies.
Each cloud provider chooses the platform that suits it better or designs its own platforms
to provide differentiated services to its tenants. The problem with this heterogeneity is

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

INTERFACES FOR VIRTUALIZATION MANAGEMENT 31

that it hinders interoperability and causes vendor lock-in for tenants. In order to allow the
remote management of virtual elements, many platforms already offer specific interfaces
(e.g., Amazon EC2/S3, Elastic Hosts, Flexiscale, Rackspace Cloud Servers, and VMware
vSphere) to communicate with external applications.

To cope with this variety of technologies and support the development of platform-
agnostic cloud applications, some proposals use basically two different approaches: (1)
employing proxy-style APIs in order to communicate with multiple providers using a
set of technology-specific adapters and (2) creating standardized generic interfaces to be
implemented by cloud platforms. The first approach has a drawback of introducing an
additional layer of software in cloud systems, which results in overhead and increased
latency. Nevertheless, there are libraries and tools that are widely employed, such as
Apache Deltacloud and Libcloud, which are further discussed in the next section. The
second approach, on the other hand, represents a more elegant solution to the problem
by proposing some sort of lingua franca to communicate among cloud systems. The
problem with standardization is to make participants to agree onto the same standard
[22]. Ideally, a standardized interface should be open and extensible to allow widespread
adoption by cloud management platforms and application developers. In this section,
we review some of the most important efforts towards the definition of open standard
interfaces to support virtualization and interoperability in the cloud.

2.5.1 Open Cloud Computing Interface

The Open Cloud Computing Interface (OCCI) [23] introduces a set of open, commu-
nity-driven specifications to deal with cloud service resource management [24]. OCCI
is supported by the Open Grid Forum and was originally conceived to create a remote
management API for TaaS platforms allowing interoperability for common tasks, such as
deployment, scaling, and monitoring virtual resources. Besides the definition of an open
application programming interface (API), this specification also introduces a RESTful
Protocol for exchanging management information and actions. The current release of
OCCI is not anymore focused only in IaaS and includes other cloud business models,
such as PaaS and SaaS.

The current version of the specification’ is designed to be modular and extensible,
thus it is split in three complementary documents. The OCCI Core document (GFD.183)
describes the formal definition of the OCCI Core Model. This document also describes
how the core model can be interacted with renderings (including associated behav-
iors) and expanded through extensions. The second document is OCCI Infrastructure
(GFD.184), which contains the definition of the OCCI infrastructure extension for the
TaaS domain. This document also defines additional resource types, their attributes, and
actions that each resource type can perform. The third document, OCCI HTTP Render-
ing (GFD.185), defines means of interacting with the OCCI Core Model through the
RESTful OCCI API. Moreover, this document defines how the OCCI Core Model can
be communicated and serialized over HTTP.

T As of the ending of 2013, the current version of OCCI is v1.1 (release date April 7, 2011)

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

6/200T OT/I0PLIO’

1N -sB1) AQ 24 SSZHOBTTT

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

32 VIRTUALIZATION IN THE CLOUD

The OCCI Infrastructure document describes the modeling of virtual resources in
IaaS as three basic element types: (1) compute that are information processing resources,
(2) storage that are intended to handle information recording, and (3) network repre-
senting L2 networking elements (e.g., virtual switches). Also, there is an abstraction for
creation of links between resources. Links can be of two types: i.e., Network Interface
or Storage Link, depending on the type of resource they connect. It is also possible to
use this specification to define Infrastructure Templates, which are predefined virtual
resource specifications (e.g., small, medium, and large VM configurations). Moreover,
the OCCI HTTP Rendering document complements these definitions by specifying man-
agement operations, such as creating, retrieving, updating, and deleting virtual resources.
The document also details general requirements for the transmission of information over
HTTP, such as security and authentication.

OCCl is currently implemented in many popular cloud management platforms, such
as OpenStack, OpenNebula, and Eucalyptus. There are also base implementations in
programming languages, such as rOCCI in Ruby and jclouds in Java, and automated
compliance tests with doyouspeakOCCI. One particular effort aims to improve the inter-
cloud networking standardization by proposing an extension to OCCI, called Open Cloud
Networking Interface (OCNI) [25]. There is also a reference implementation of OCNI
called pyOCNI, written as a Python framework including JSON serialization for resource
representation.

2.5.2 Open Virtualization Format

The Open Virtualization Format (OVF) [26], currently in version 2.0.1, was introduced
late in 2008 within the Virtualization Management initiative of the Distributed Man-
agement Task Force (DMTF), aiming to provide an open and extensible standard for
packaging and distribution of software to be run in VMs. Its main virtue is to allow
portability of virtual appliances onto multiple platforms through so-called OVF Pack-
ages, which may contain one or more virtual systems. The OVF standard is not tied to
any particular hypervisor or processor architecture. Nevertheless, it is easily extensible
through the specification of vendor-specific metadata included in OVF Packages.

OVF Packages are a core concept of the OVF specification, which consist of sev-
eral files placed into one directory describing the structure of the packed virtual systems.
An OVF Package includes one OVF Descriptor, which is an XML document containing
metadata about the package contents, such as product details, virtual hardware require-
ments, and licensing. The OVF Package may also include certificates, disk image files,
or ISO images to be attached to virtual systems.

Within an OVF Package, an Envelope Element describes all metadata for the VMs
included in the package. Among this metadata, a detailed Virtual Hardware Descrip-
tion (based on CIM classes) can specify all types of virtual hardware resources required
by a virtual system. This specification can be abstract or incomplete, allowing the vir-
tualization platform to decide how to better satisfy the resource requirements, as long
as the required virtual devices are deployed. Moreover, OVF Environment information
can be added to define how the guest software and the deployment platform interact.

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

INTERFACES FOR VIRTUALIZATION MANAGEMENT 33

This environment allows the guest software to access information about the deployment
platform, such as the values specified for the properties defined in the OVF Descriptor.

This standard is present in many hypervisor implementations and has shown to be
very useful for migrating virtual systems information among many hypervisors or plat-
forms, since it allows precise description of VMs and virtual hardware requirements.
However, it is not within the objectives of OVF to provide detailed specification for com-
plete VIs (i.e., detailing interconnections, communication requirements, and network
elements).

2.5.3 Cloud Infrastructure Management Interface

The Cloud Infrastructure Management Interface (CIMI) [27] standard is another DMTF
proposal within the context of the Cloud Management initiative. This standard defines
a model and a protocol for managing interactions between cloud laaS providers and
tenants. CIMI’s main objective is to provide tenants with access to basic management
operations on laaS resources (VMs, storage, and networking), facilitating portability
between different cloud implementations that support this standard. CIMI also specifies a
RESTful protocol over HTTP using both JSON or XML formats to represent information
and transmit management operations.

The model defined in CIMI includes basic types of virtualized resources, where
Machine Resources are used to represent VMs, Volume Resources for storage, and Net-
work Resources for VN devices and ports. Besides, CIMI also defines a Cloud Entry
Point type of resource, which represents a catalog of virtual resources that can be queried
by a tenant. A System Resource in this standard gathers one or more Network, Volume,
or Machine Resources, and can be operated as a single resource. Finally, a Monitoring
Resource is also defined to track progress of operations, metering, and monitoring of
other virtual resources.

The protocol relies on basic HTTP operations (i.e., PUT, GET, DELETE, HEAD,
and POST) and uses either JSON or XML to transmit the message body. To manipulate
virtual resources, there are four basic create, read, update, and delete (CRUD) opera-
tions. It is also possible to extend the protocol by creating or customizing operations to
manipulate the state of each particular resource. Moreover, the CIMI specification can
also be integrated with OVF, in which case VMs represented as OVF Packages can be
used to create Machine Resources or System Resources.

Today, implementations of the CIMI standard are not so commonly found as OCCI
or OVF are. One specific implementation that is worth noting is found within the Apache
Deltacloud® project, which exposes a CIMI REST API to communicate with external
applications supporting manipulation of Machine and Volume Resources abstractions.

2.5.4 Cloud Data Management Interface

The Cloud Data Management Interface (CDMI) [28] is a standard specifically targeted
to define an interface to access cloud storage and to manage data objects. CDMI is

2 http://deltacloud.apache.org/cimi-rest.html

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 pue Swi L 841 385 *[r20g/TT/e0] uo ARIqIT2uUIUO AB11M NS 00 8pURID O 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

34 VIRTUALIZATION IN THE CLOUD

comparable to Amazon’s S3 [29], with the fundamental difference that it is conceived
by the Storage Networking Industry Association (SNIA) to be an open standard targeted
for future ANSI and ISO certification. This standard also includes a RESTful API run-
ning over HTTP to allow accessing capabilities of cloud storage systems, allocating and
managing storage containers and data objects, handling users and group access rights,
among other operations.

The CDMI standard defines a JSON serializable interface to manage data stored in
clouds based on several abstractions. Data objects are fundamental storage components
analogous to files within a file system, which include metadata and value (contents).
Container objects are intended to represent grouping of data, analogous to directories in
regular file systems; this abstraction links together zero or more Data objects. Domain
objects represent the concept of administrative ownership of data stored within cloud
systems. This abstraction is very useful to facilitate billing, to restrict management oper-
ations to groups of objects, and to represent hierarchies of ownership. Queue objects
provide first-in, first-out access to store or retrieve data from the cloud system. Queu-
ing provides a simple mechanism for controlling concurrency when reading and writing
Data objects in a reliable way. To facilitate interoperability, this standard also includes
mechanisms for exporting data to other network storage platforms, such as iSCSI, NFS,
and WebDAV.

Regarding implementations, CDMI is also not so commonly deployed in most pop-
ular cloud management platforms. SNIA’s Cloud Storage Technical Working Group
(TWG) provides a Reference Implementation for the standard, which is currently a work-
ing draft and provides support only for version 1.0 of the specification. Some independent
projects, such as CDMI add-on for OpenStack Swift and the CDMI-Serve in Python,
have implemented basic support for the CDMI standard but do not present much recent
activity.

Besides all the aforementioned efforts to create new standardized interfaces for
virtual resource management in cloud environments, other approaches, protocols, and
methods have been studied and may be of interest in particular situations [30]. Moreover,
many organizations, such as OASIS, ETSI, ITU, NIST, and ISO, are currently engaged
with their cloud and virtualization related working groups on developing standards and
recommendations. We recommend the interested reader to look at DMTF’s maintained
wiki page Cloud-Standards.org® to keep track of future standardization initiatives.

2.6 TOOLS AND SYSTEMS

In this section, we list some of the most important efforts currently targeted to build tools
and systems for virtualization and cloud resource management. Initially, we describe
open source cloud management platforms, which are in fact complete solutions to deploy
and operate private, public, or hybrid clouds. Afterwards, we discuss some tools and

3http://cloud—standards.org/

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

TOOLS AND SYSTEMS 35

libraries to perform specific operations for virtual resource management and cloud
integration.

2.6.1 Open Source Cloud Management Platforms

2.6.1.1 Eucalyptus. Eucalyptus started as a research project in the Computer
Science Department at the University of California, Santa Barbara, in 2007, within a
project called Virtual Grid Application Development Software Project (VGrADS) funded
by the National Science Foundation. This is one of the first open source initiatives to build
cloud management platforms that allow users to deploy their own private clouds [18].
Currently, Eucalyptus is in version 3.4 and comprises full integration with Amazon Web
Services (AWS)—including EC2, S3, Elastic Block Store (EBS), Identity and Access
Management (IAM), Auto Scaling, Elastic Load Balancing (ELB), and CloudWatch—
enabling both private and hybrid cloud deployments.

Eucalyptus architecture is based on four high-level components: (1) Node Controller
executes at hosts and is responsible for controlling the execution of VM instances; (2)
Cluster Controller works as a front-end at the cluster-level (i.e., Availability Zone) man-
aging VM execution and scheduling on Node Controllers, controls cluster-level SLAs,
and also manages VNs; (3) Storage Controller exists both at cluster-level and at cloud-
level (Walrus) and implements a put/get SaaS solution based on Amazon’s S3 interface,
providing a mechanism for storing and accessing VM images and user data; and (4) Cloud
Controller is the entry-point into the cloud for users and administrators, it implements an
EC2-compatible interface and coordinates other components to perform high-level tasks,
such as authentication, accounting, reporting, and quota management.

For networking, Eucalyptus offers four operating modes: (1) Managed, in which the
platform manages layers 2 and 3 VM isolation, employing a built-in DHCP service. This
mode requires a switch to forward a configurable range of VLAN-tagged packets; (2)
Managed (no VLAN), in which only layer 3 VM isolation is possible; (3) Static, where
there is no VM isolation, employs a built-in DHCP service for static IP assignment; and
(4) System, where there is also no VM isolation and, in this case, no automatic address
handling since Eucalyptus will rely on an existing external DHCP service. In version
4.0, released in April 2014, Eucalyptus has introduced new functionality for networking
support through a new Edge Networking Mode.

The main technical characteristics of the Eucalyptus platform as the following:

* Programming Language: Written mostly in C and Java
Compatibility/Interoperability: Fully integrated with AWS
Supported Hypervisors: vSphere, ESXi, KVM, any AWS-compatible clouds

* Identity Management: Role-Based Access Control mechanisms with Microsoft
Active Directory or LDAP systems

* Resource Usage Control: resource quotas for users and groups
* Networking: Basic support with four operating modes
Monitoring: CloudWatch

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

6/200T OT/I0PLIO’

1N -sB1) AQ 24 SSZHOBTTT

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

36 VIRTUALIZATION IN THE CLOUD

* Version/Release: 3.4.1 (Released on December 16, 2013)
* License: GPL v3.0

2.6.1.2 OpenNebula. In its early days OpenNebula was a research project at
the Universidad Complutense de Madrid. The first version of the platform was released
under an open source license in 2008 within the European Union’s Seventh Framework
Programme (FP7) project called RESERVOIR—Resources and Services Virtualization
without Barriers (2008-2011). Nowadays, OpenNebula (version 4.4 Retina released
December 3, 2013) is a feature-rich platform used mostly for the deployment of pri-
vate clouds, but is also capable of interfacing with other systems to work as hybrid or
public cloud environment.

OpenNebula is conceptually organized in a three-layered architecture [31]. At the
top, the Tools layer comprises higher level functions, such as cloud-level VM scheduling,
providing CLI and GUI access for both users and administrators, managing and sup-
porting multi-tier services, elasticity and admission control, and exposing interfaces to
external clouds through AWS and OCCI. At the Core layer, vital functions are performed,
such as accounting, authorization, and authentication, as well as resource management
for computing, storage, networking, and VM images. Also at this layer, the platform
implements resource monitoring by retrieving information available from hypervisors to
gather updated status of VMs and manages federations, enabling access to remote cloud
infrastructures, which can be either partner infrastructures governed by a similar platform
or public cloud providers. At the bottom, the Drivers layer implements infrastructure and
cloud drivers to provide an abstraction to communicate with the underlying devices or
to enable access to remote cloud providers.

OpenNebula allows administrators to set up multiple zones and create federated VIs
considering different federation paradigms (e.g., cloud aggregation, bursting, or bro-
kering), in which case each zone operates their network configurations independently.
From the user’s viewpoint, setting up a network in the OpenNebula platform is restricted
to the creation of a DHCP IP range that will be automatically configured in each VM.
The administrator can change the way VMs connect to the physical ports of the host
machine using one of many options, that is, VLAN 802.1Q to allow isolation, EBtables
and Open vSwitch to permit implementation of traffic filtering, and VMware VLANS,
which isolate VMs running over VMware hypervisor. It is also possible to deploy Vir-
tual Routers from OpenNebula’s Marketplace to work as an actual router, DHCP, or DNS
server.

The main technical characteristics of the OpenNebula platform as the following:

* Programming Language: C++ (Integration APIs in Ruby, JAVA, and Python)

* Compatibility/Interoperability: AWS, OCCI, and XML-RPC API

* Supported Hypervisors: KVM, Xen, and VM Ware

s Identity Management: Sunstone, EC2, OCCI, SSH, x509 certificates, and LDAP
* Resource Usage Control: resource quotas for users and groups

* Networking: IP/DHPC ranges customizable by users, many options for adminis-
trator require manual configuration

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

6/200T OT/I0PLIO’

1N -sB1) AQ 24 SSZHOBTTT

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

TOOLS AND SYSTEMS 37

* Monitoring: Internal, gathers information from hypervisors
* Version/Release: 3.4.1 (Released on December 3, 2013)
* License: Apache v2.0

2.6.1.3 OpenStack. OpenStack started as a joint project between Rackspace
Hosting and NASA around mid 2010, aiming to provide a cloud-software solution to
run over commodity hardware [19]. Right after the first official release (beginning of
2011), OpenStack was quickly adopted and packed within many Linux distributions,
such as Ubuntu, Debian, and Red Hat. Today, it is the cloud management platform with
the most active community counting on more than 13,000 registered people from over
130 countries. OpenStack is currently developed in nine parallel core projects (plus four
incubated) all coordinated by the OpenStack Foundation, which is embodied by 9,500
individuals and 850 different organizations.

The OpenStack architecture consists of a myriad of interconnected components,
each one developed under a separate project, to deliver a complete cloud infrastructure
management solution. Initially, only two components were present, Compute (Nova) and
Object Storage (Swift), which respectively provide functionality for handling VMs and a
scalable redundant object storage system. Adopting an incremental approach, incubated/
community projects were gradually included in the core architecture, such as Dashboard
(Horizon) to provide administration GUI access, Identity Service (Keystone) to support
a central directory of users mapped to services, and Image Service (Glance) to allow
discovery, registration, and delivery of disk and server images. The current release of
OpenStack (Havana) includes advanced network configuration with Neutron, persistent
block-level storage with Cinder, a single point of contact for billing systems through
Ceilometer, and a service to orchestrate multiple composite cloud applications via Heat.

As for networking, a community project called Quantum started in April 2011 and
was targeted to further develop the networking support of OpenStack by employing VN
overlays in a Connectivity as a Service perspective. From release Folsom on, Quantum
was added as a core project and renamed Neutron. Currently, this component lets admin-
istrators to employ from basic networking configuration of IP addresses, allowing both
dedicated static address assignment and DHCP, to complex configuration with software-
defined networking (SDN) technology like OpenFlow. Moreover, Neutron allows the
addition of plug-ins to introduce more complex functionality to the platform, such as
quality of service, intrusion detection systems, load balancing, firewalls, and virtual
private networks.

* Programming Language: Python

* Compatibility/Interoperability: Nova and Swift are feature-wise compatible to

EC2 and S3 (applications need to be adapted though), OCCI support (under

development)

Supported Hypervisors: QEMU/KVM over libvirt (fully supported), VMware and

XenAPI (partially supported), many others at nonstable development stages

* Identity Management: Local database, EC2/S3, RBAC, token-based, SSL, x509
or PKI certificates, and LDAP

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

6/200T OT/I0PLIO’

1N -sB1) AQ 24 SSZHOBTTT

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

38 VIRTUALIZATION IN THE CLOUD

* Resource Usage Control: configurable quotas per user (tenant) defined by each
project
* Networking: several options via Neutron component, extensible with plug-ins

* Monitoring: simple customizable dashboard relies on information provided by
other components

Version/Release: Havana (Released on October 17, 2013)
* License: Apache v2.0

2.6.1.4 CloudStack. CloudStack started as a project from a startup company
called VMOps in 2008, later renamed Cloud.com, and was first released as open source
in mid 2010. After Cloud.com was acquired by Citrix, CloudStack was relicensed to
Apache 2.0 and incubated by the Apache Software Foundation in April 2012. Ever since,
the project has developed a powerful cloud platform to orchestrate resources in highly
distributed environments for both private and public cloud deployments [21].

CloudStack deployments are organized into two basic building blocks, a Manage-
ment Server and a Cloud Infrastructure. The Management Server is a central point of
configuration for the cloud (these servers might be clustered for reliability reasons). It
provides a Web user interface and API access, manages the assignment of guest VMs to
hosts, allocates public and private IP addresses to particular accounts, manages images,
among other tasks. A Cloud infrastructure comprises distributed Zones (typically, data
centers) hierarchically organized into Pods, Clusters, Hosts, Primary and Secondary Stor-
age. A CloudStack Cloud Infrastructure may also optionally include Regions (perhaps
geographically distributed), to aggregate multiple Zones, and each Region is controlled
by a different set of Management Servers, turning the platform into a highly distributed
and reliable system. Moreover, a separate Python tool called CloudMonkey is available
to provide CLI and shell environments for interacting with CloudStack-based clouds.

CloudStack offers two types of networking configurations: (1) Basic, which is an
AWS-style networking providing a single network where guest isolation can be achieved
through layer 3 means, such as security groups and (2) Advanced, where more sophis-
ticated network topologies can be created. CloudStack also offers a variety of NaaS
features, such as creation of VPNs, firewalls, and load balancers. Moreover, this tool
provides the ability to create a Virtual Private Cloud, which is a private, isolated part of
CloudStack that can have its own VN topology. VMs in this VN can have any private
addresses since they are completely isolated from others.

* Programming Language: Mostly Java
Compatibility/Interoperability: CloudStack REST API (XML or JSON)

Supported Hypervisors: XenServer/XCP, KVM, and/or VMware ESXi with
vSphere

s Identity Management: Internal or LDAP

* Resource Usage Control: Usage server separately installed provides records for
billing, resource limits per project

* Networking: two operating modes, several networking as a service options in
advanced configurations

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

6/200T OT/I0PLIO’

1N -sB1) AQ 24 SSZHOBTTT

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

TOOLS AND SYSTEMS 39

* Monitoring: some performance indicators available through the API are displayed
to users and administrators

* Version/Release: 4.2.0 (Released on October 1, 2013)
* License: Apache v2.0

2.6.2 Specific Tools and Libraries

The following describes some tools and libraries mainly designed to deal with the diver-
sity of technologies involved in cloud virtualization. Unlike cloud platforms, these tools
do not intend to offer a complete solution for cloud providers. Nevertheless, they play a
key role in integration and allow applications to be written in a more generic manner in
terms of virtual resource management.

2.6.2.1 Libcloud. Libcloud is a client Python library for interacting with the
most popular cloud management platforms [32]. This library originally started being
developed within Cloudkick (extinct cloud monitoring software project, now part of
Rackspace) and today is an independent free software project licensed under the Apache
License 2.0. The main idea behind Libcloud is to create a programming environment
to facilitate developers on the task of building products that can be ported across a wide
range of cloud environments. Therefore, much of the library is about providing a long list
of drivers to communicate with different cloud platforms. Currently, Libcloud supports
more than 26 different providers, including Amazon’s AWS, OpenStack, OpenNebula,
and Eucalyptus, just to mention a few.

Moreover, this library also provides a unified Python API, offering a set of com-
mon operations to be mapped to the appropriate calls to the remote cloud system. These
operations are divided into four abstractions: (1) Compute, which enables operations
for handling VMs (e.g., list/create/reboot/destroy VMSs) and its extension Block Stor-
age to manage volumes attached to VMs (e.g., create/destroy volumes, attach volume
to VM); (2) Load Balancer, which includes operations for the management of load bal-
ancers as a service (e.g., create/list members, attach/detach member or compute node)
and is available in some providers; (3) Object Storage, which offers operations for creat-
ing an environment for handling data objects in a cloud (list/create/delete containers or
objects, upload/download/stream object) and its extension for CDNSs to assist providers
that support these operations (e.g., enable CDN container or object, get CDN container
or object URL); and (4) Domain Name System (DNS), which allows management oper-
ations for DNS as a service (e.g., list zones or records, create/update zone or record) in
providers that support it, such as Rackspace Cloud DNS.

2.6.2.2 Deltacloud. Deltacloud follows a very similar philosophy as compared
to Libcloud. It is also an Apache Software Foundation project—Ileft incubation in
October 2011 and is now a top-level project—and is similarly targeted to provide an inter-
mediary layer to let applications communicate with several different cloud management
platforms. Nevertheless, instead of providing a programming environment through a spe-
cific programming language, Deltacloud enables management of resources in different

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

6/200T OT/I0PLIO’

1N -sB1) AQ 24 SSZHOBTTT

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

40 VIRTUALIZATION IN THE CLOUD

clouds by the use of one of three supported RESTful APIs [33]: (1) Deltacloud classic,
(2) DMTF CIM]I, (3) Amazon’s EC2.

Deltacloud implements drivers for more than 20 different providers and offers sev-
eral operations divided into two main abstractions: (1) Compute Driver, which includes
operations for managing VMs, such as create/start/stop/reboot/destroy VM instances, list
all/get details about hardware profiles, realms, images, and VM instances; and (2) Stor-
age Driver, providing operations similar to Amazon S3 to manage data objects stored in
clouds, such as create/update/delete buckets (analogous to folders), create/update/delete
blobs (analogous to data files), and read/write blobs data and attributes.

2.6.2.3 Libvirt. Libvirt is a toolkit for interacting with multiple virtualization
providers/hypervisors to manage virtual compute, storage, and networking resources.
It is a free collection of software available under GNU LGPL and is not particularly
targeted to cloud systems. Nevertheless, Libvirt has shown to be very useful to handle
low level virtualization operations and is actually used under the hood by cloud platforms
like OpenStack to interface with some hypervisors. Libvirt supports several hypervisors
(e.g., KVM/QEMU, Xen, VirtualBox, and VMware), creation of VNs (e.g., bridging
or NAT), and storage on IDE, SCSI, and USB disks and LVM, iSCSI, and NFS file
systems. It also provides remote management using TLS encryption, x509 certificates,
and authentication through Kerberos or SASL.

Libvirt provides a C/C++ API with bindings to several other languages, such as
Python, Java, PHP, Ruby, and C#. This API includes operations for managing virtual
resources as well as retrieving information and capabilities from physical hosts and
hypervisors. Virtual resource management operations are divided into three abstractions:
(1) Domains, which are common VM-related operations, such as create, start, stop, and
migrate; (2) Storage, for managing block storage volumes or pools; and (3) Network,
which includes operations such as, creating bridges, connecting VMs to these bridges,
enabling NAT and DHCP. Note that network operations are all performed within the
scope of a single physical host, that is, it is not possible to connect two VMs in separate
hosts to the same bridged network, for example.

2.7 CHALLENGES

Because virtualization management in the cloud is still in its infant days, important
challenges are in place. In this section, we list key challenges that can guide future devel-
opments in the virtualization management area. We also mention some ongoing research
in the field.

2.7.1 Scalability

Although the benefits of virtualization enables the cloud model, from the manage-
ment perspective, virtualization impacts the scalability of management solutions. The

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

6/200T OT/I0PLIO’

1N -sB1) AQ 24 SSZHOBTTT

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

CHALLENGES 41

transition from the traditional management of physical infrastructures to virtual one is not
smooth in terms of scale because few physical devices can host a much larger number of
virtual device, each one requiring management actions. The number of management ele-
ments immediately explodes because such number not only duplicates but is proportional
to the number of virtual devices each physical one supports. Traditional management
applications have not been conceived to support a so drastic increase in the number of
elements, and as a consequence, such solutions do not scale.

Novel management approaches need to be considered, or traditional approaches
need to be adapted (if possible) to the cloud context and scale. The problem is also exacer-
bated because the managed environments (i.e., clouds) are much more dynamic, having
new elements created very quickly, while older elements can be destroyed frequently
too. Virtual servers can go up and down (even forever) quite fast, which is unusual for
traditional management solutions. Adaptation is then required not only because of the
new scales of cloud environments but also because they are much more dynamic than
traditional IT infrastructures. Very distributed solutions have to be investigated, like the
usage of peer-to-peer for management [34]. Autonomic management also becomes an
alternative, in order to reduce human intervention as much as possible [35].

2.7.2 Monitoring

Monitoring is a permanent challenging task in the cloud because of the large number
of resources in production cloud data centers. Centralized monitoring approaches suffer
from low scalability and resilience. Cooperative monitoring [36] and gossiping [37] aim
to overcome these limitations by enabling distributed and robust monitoring solutions for
large scale environments. The goal is to minimize the negative impact of management
traffic on the performance of the cloud. At the same time, finding a scalable solution for
aggregating relevant monitoring information without hurting accuracy is a challenge that
needs to be tackled by monitoring tools designed specifically for cloud data centers.

Usually, monitoring generates more management data than other activities. With
virtualization in the cloud, and the aforementioned scalability issues, the overwhelm-
ing amount of monitoring data can hinder proper observation of the cloud environment.
As such, monitoring considering big data techniques may be a possible path to follow.
Compressing of data structures [38], for example, can be convenient to find a reasonable
balance between amount of data and analysis precision.

2.7.3 Management Views

Since cloud computing creates an environment with different actors with particular man-
agement roles, such different actors need different management views. Operators of a
cloud infrastructure need to have a broader, possibly complete view of the physical infras-
tructure, but should be prevented of accessing management information that are solely
related to a tenant application, because of privacy issues. Cloud tenants also need to have
access to management information related to their rented VI, but must also be isolated

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

42 VIRTUALIZATION IN THE CLOUD

from accessing management information of both other tenants and physical infrastructure
operator.

Different management views are already supported in traditional solutions, but in
the case of cloud environments, trust relationships between cloud provider and tenants
become more apparent. Since the management software runs in the cloud itself, tenants
accessing their management view need to trust the cloud provider assuming that sensi-
tive information is not available to the cloud operator. Tenants can also employ their own
management system operating at his/her local IT infrastructure. In this case, manage-
ment interfaces and protocols that connect the tenant management solution and remote
managed virtual elements need to be present.

2.7.4 Energy Efficiency

Efficient energy management aims to reduce the operational cost of cloud infrastructures.
A challenge in optimal energy consumption is to design energy-proportional data center
architectures, where energy consumption is determined by server and network utilization
[39, 40]. ElasticTree [39], for example, attempts to achieve energy proportionality by
dynamically powering off switches and links. In this respect, cloud network virtualization
can further contribute to reduce power consumption through network consolidation (e.g.,
through VN migration [41]).

Minimizing energy consumption, however, usually comes with the price of perfor-
mance degradation. Energy efficiency and performance is often conflicting, represent-
ing a tradeoff. Thus, designing energy-proportional data center architectures factoring
in cloud virtualization, and finding good balance between energy consumption and
performance are interesting research questions.

2.7.5 Fault Management

Detection and handling of failures are requirements of any cloud, especially because in
cloud environments failures of a single physical resource can potentially affect multiple
customers’ virtual resources. Because failures also tend to propagate, the damage caused
by a faulty cloud physical device impacts much more severely the cloud business. In
additional, the lack of faults in physical devices is not always a synonym that there is not
faulty virtual devices. As such, the traditional fault management needs to be expanded
to consider faulty virtual devices too.

Most existing architectures rely on reactive failure handing approaches. One draw-
back is the potentially long response time, which can negatively impact application
performance. Ideally, fault management should be implemented in a proactive manner,
where the management system predicts the occurrence of failures and acts before they
occur. In practice, proactive fault management is often ensured by means of redundancy,
for example, provisioning backup paths. As such, offering high reliability without incur-
ring excessive costs or energy consumption is a problem requiring further exploration.

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

CHALLENGES 43

2.7.6 Security

Security issues are challenging in the context of cloud virtualization because of the
complex interactions between tenants and cloud providers. Although the virtualization
of both servers and networks can improve security (e.g., limiting information leak-
age, avoiding the existence of side channels, and minimizing performance interference
attacks), today’s virtualization technologies are still in their infancy in terms of secu-
rity. In particular, various vulnerabilities in server virtualization technologies, such as
VMWare [42], Xen [43], and Microsoft Virtual PC and Virtual Server [44] have been
revealed in the literature. Similar vulnerabilities are likely to occur in programmable
network components too. Thus, not only network virtualization techniques give no guar-
anteed protection from existing attacks and threats to physical and VNs, but also lead to
new security vulnerabilities. For example, an attack against a VM may lead to an attack
against a hypervisor of a physical server hosting the VM, subsequent attacks against
other VMs hosted on that server, and eventually, all VNs sharing that server [45]. This
raises the issue of designing secure virtualization architectures immune to these security
vulnerabilities.

In addition to mitigating security vulnerabilities related to virtualization technolo-
gies, there is a need to provide monitoring and auditing infrastructures, in order to detect
malicious activities from both tenants and cloud providers. It is known that data center
network traffic exhibits different characteristics than the traffic of traditional data net-
works [46]. Thus, appropriate mechanisms may be required to detect network anomalies.
On the other hand, auditability in cloud virtualization should be mutual between tenants
and cloud providers to prevent malicious behaviors from either party. However, there is
often an overhead associated with such infrastructures, especially in large-scale clouds.
In Ref. [47], the authors showed that it is a challenge to audit Web services in cloud
environments without deteriorating application performance. Much work remains to be
done on designing scalable and efficient mechanisms for monitoring and auditing cloud
virtualization.

2.7.7 Cloud Federations

The federation of virtualized infrastructures from multiple cloud providers enables
access to larger scale infrastructures. This is already happening with virtualized net-
work testbeds, allowing researchers to conduct realistic network experiments at large
scale, which would not have been possible otherwise. ProtoGENI [48] is an example of
federation that allows cooperation among multiple organizations. However, guarantee-
ing predictable performance for participating entities through SLA enforcement has not
been properly addressed by current solutions and remains an open issue.

Cloud federations cannot be considered a wide reality in the cloud marketplace.
Competition possibly prevents cloud providers to cooperate among one another in feder-
ated environments, but the lack of proper technologies devoted to materialize federations
of clouds certainly does not improve the current situation either. As in other areas, solu-
tions to federate different resources already exist, but an integrated, global solution to

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

44 VIRTUALIZATION IN THE CLOUD

support federating heterogeneous resources between heterogeneous cloud providers also
needs further investigation.

2.7.8 Standard Management Protocols and Information Models

The VR-MIB module [49] described a set of SNMP management variables for the man-
agement of physical routers with virtualization support. However, it did not progress
in the IETF standardization track. More recently, the VMM-MIB module [50] is pro-
gressing, but it is limited to manage virtualization of servers (network devices are not
explicitly considered); VMM-MIB is also devoted mainly for monitoring, and configura-
tion is weakly supported. In general, the situation of SNMP-based management solutions
for cloud environments are still weak.

Other existing management protocols are considered. NETCONF [51], for example,
would be more appropriate for configuration aspects, while NetFlow/IPFIX [52] could be
expanded for virtual router monitoring. The WS-Management [53] suite, in turn, is more
appropriate for server management. A myriad of proprietary solutions is also present in
the market, but the large diversity of management interfaces and protocols forces cloud
operators to deal with too many different technologies. Although a protocol that fits every
need is unlikely to exist or be largely accepted/adopted, there is a clear lack in this area
today, which represents an interesting opportunity for research and standardization.

REFERENCES

1. M. Chowdhury, M.R. Rahman, and R. Boutaba. ViNEYard: Virtual Network Embedding
Algorithms with Coordinated Node and Link Mapping. IEEE/ACM Transactions on Networ-
king, 20(1):206-219, February. 2012.

2. M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking Virtual Network Embedding: Substrate
Support for Path Splitting and Migration. ACM Computer Communication Review, 38(2):17—
29, April 2008.

3. X.Cheng, S. Su, Z. Zhang, K. Shuang, F. Yang, Y. Luo, and J. Wang. Virtual Network Embed-
ding Through Topology Awareness and Optimization. Computer Networks, 56(6):1797-1813,
2012.

4. A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s Inside the Cloud? An Archi-
tectural Map of the Cloud Landscape. In Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing (CLOUD °09), pages 23-31, Washington, DC,
2009. IEEE Computer Society.

5. M. F. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani, Q. Zhang, and
F. Zhani. Data Center Network Virtualization: A Survey. I[EEE Communications Surveys and
Tutorials, 15(2):909-928, 2012.

6. Q. Zhu and G. Agrawal. Resource Provisioning with Budget Constraints for Adaptive
Applications in Cloud Environments. In Proceedings HPDC 2010, Chicago, 1L, 2010.

7. M. E. Frincu and C. Craciun. Multi-objective Meta-heuristics for Scheduling Applications
with High Availability Requirements and Cost Constraints in Multi-Cloud Environments. In
Proceedings of the Fourth IEEE International Conference on Utility and Cloud Computing
(UCC), pages 267-274, Victoria, NSW, December 2011.

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

REFERENCES 45

8.

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Rao, X. Bu, K. Wang, and C.-Z. Xu. Self-adaptive Provisioning of Virtualized Resources in
Cloud Computing. In Proceedings SIGMETRICS 2011, 2011.

OpenNebula. The Open Source Solution for Data Center Virtualization, 2008. http://www.
opennebula.org. Accessed on November 2013.

J. Rao, Y. Wei, J. Gong, and C.-Z. Xu. DynaQoS: Model-free Self-Tuning Fuzzy Control of
Virtualized Resources for QoS Provisioning. In /9th IEEE International Workshop on Quality
or Service (IWQoS), pages 1-9, San Jose, CA, June 2011.

J.Rao, X. Bu, C.-Z. Xu, and K. Wang. A Distributed Self-learning Approach for Elastic Provi-
sioning of Virtualized Cloud Resources. In Proceedings IEEE MASCOTS 201 1, pages 45-54,
Singapore, July 2011.

J. Z. W. Li, M. Woodside, J. Chinneck, and M. Litoiu. CloudOpt: Multi-goal Optimization of
Application Deployments across a Cloud. In Proceedings CNSM 2011, pages 1-9, October
2011.

. A.Khan, A. Zugenmaier, D. Jurca, and W. Kellerer. Network Virtualization: A Hypervisor for

the Internet? IEEE Communications Magazine, 50(1):136—-143, January 2012.

N. Chowdhury and R. Boutaba. Network Virtualization: State of the Art and Research
Challenges. IEEE Communications Magazine, 47(7):20-26, July 2009.

J. Montes, A. Sanchez, B. Memishi, M. S. Pérez, and G. Antoniu. GMonE: A Complete
Approach to Cloud Monitoring. Future Generation Computer Systems, 29(8):2026-2040,
2013.

M. Carvalho, R. Esteves, G. Rodrigues, L. Z. Granville, and L. M. R. Tarouco. A Cloud Mon-
itoring Framework for Self-Configured Monitoring Slices Based on Multiple Tools. In 9th
International Conference on Network and Service Management 2013 (CNSM 2013), pages
180-184, Ziirich, Switzerland, October 2013.

Amazon. Amazon elastic compute cloud (Amazon EC2), 2013. http://aws.amazon.com/ec2/.
Accessed on May. 2013.

Eucalyptus. The Open Source Cloud Platform, 2009. http://open.eucalyptus.com. Accessed
on November 2013.

Rackspace Cloud Computing. OpenStack Cloud Software, 2010. http://openstack.org.
Accessed on December 2013.

S. Islam, J. Keung, K. Lee, and A. Liu. Empirical Prediction Models for Adaptive Resource
Provisioning in the Cloud. Future Generation Comp. Syst., 28(1):155-162, January 2012.
Apache Software Foundation. Apache CloudStack: Open Source Cloud Computing, 2012.
http://cloudstack.apache.org. Accessed on December 2013.

S. Ortiz. The Problem with Cloud-Computing Standardization. IEEE Computer, 44(7):13-16,
2011.

Open Grid Forum. Open Cloud Computing Interface, 2012. http://occi-wg.org/. Accessed on
September 2012.

A. Edmonds, T. Metsch, A. Papaspyrou, and A. Richardson. Toward an Open Cloud Standard.
Internet Computing, IEEE, 16(4):15-25, 2012.

H. Medhioub, B. Msekni, and D. Zeghlache. OCNI—Open Cloud Networking Interface. In
22nd International Conference on Computer Communications and Networks (ICCCN), pages
1-8, Nassau, Bahamas, 2013.

Distributed Management Task Force (DMTF). Open Virtualization Format (OVF)
Specification—Version 2.0.1, Ago 2013. http://dmtf.org//standards/cloud. Accessed on
December 2013.

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

46

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

VIRTUALIZATION IN THE CLOUD

Distributed Management Task Force (DMTF). Cloud Infrastructure Management Interface
(CIMI)—Version 1.0.0, 2013. http://dmff.org/standards/cloud. Accessed on May 2013.
Storage Networking Industry Association (SNIA). Cloud Data Management Interface
(CDMI)—version 1.0.2, June 2012. http://www.snia.org/cdmi. Accessed on December 2013.
Storage Networking Industry Association (SNIA). S3 and CDMI: A CDMI Guide for S3
Programmers—version 1.0, May 2013. http://www.snia.org/cdmi. Accessed on December
2013.

R. P. Esteves, L. Z. Granville, and R. Boutaba. On the Management of Virtual Networks. /[EEE
Communications Magazine, 51(7):80-88, 2013.

R. Moreno-Vozmediano, R. S. Montero, and 1. M. Llorente. IaaS Cloud Architecture: From
Virtualized Datacenters to Federated cloud infrastructures. /[EEE Computer, 45(12):65-72,
2012.

Apache Software Foundation. Apache Libcloud a Unified Interface to the Cloud, 2012. http:
/Mibcloud.apache.org/. Accessed on December 2013.

Apache Software Foundation. Apache DeltaCloud an API that Abstracts the Differences
between Clouds, 2011. http://deltacloud.apache.org/. Accessed on December 2013.

L. Z. Granville, D. M. da Rosa, A. Panisson, C. Melchiors, M. J. B. Almeida, and
L. M. Rockenbach Tarouco. Managing Computer Networks Using Peer-to-Peer Technologies.
Communications Magazine, IEEE, 43(10):62-68, 2005.

C. C.Marquezan and L. Z. Granville. On the Investigation of the Joint Use of Self-* Properties
and Peer-to-Peer for Network Management. In 2011 IFIP/IEEE International Symposium on
Integrated Network Management (IM), pages 976-981, 2011.

K. Xu and F. Wang. Cooperative Monitoring for Internet Data Centers. In /EEE International
Performence, Computing and Communications Conference (IPCC), pages 111-118, Austin,
TX, December 2008.

F. Wuhib, M. Dam, R. Stadler, and A. Clemm. Robust Monitoring of Network-Wide Aggre-
gates through Gossiping. IEEE Transactions on Network and Service Management, 6(2):
95-109, 20009.

L. Quan, J. Heidemann, and Y. Pradkin. Trinocular: Understanding Internet Reliability
Through Adaptive Probing. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM (SIGCOMM ’13), pages 255-266, Hong Kong, China, 2013. ACM, New York.
B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and N. McK-
eown. ElasticTree: Saving Energy in Data Center Networks. In Proceedings USENIX NSDI,
April 2010.

H. Yuan, C. C. J. Kuo, and I. Ahmad. Energy Efficiency in Data Centers and Cloud-based
Multimedia Services: An Overview and Future Directions. In Proceedings IGCC, Chicago,
IL, August 2010.

Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford. Virtual Routers on
the Move: Live Router Migration as a Network-Management Primitive. ACM Computer
Communication Review, 38:231-242, August 2008.

VMware. VMware Shared Folder Bug Lets Local Users on the Guest OS Gain Elevated
Privileges on the Host OS. VM Ware vulnerability. http://securitytracker.com/alerts/2008/Feb/
1019493.html, 2008.

Xen. Xen Multiple Vulnerabilities. Xen vulnerability. http://secunia.com/advisories/26986,
2007.

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=

REFERENCES 47

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Microsoft. Vulnerability in Virtual PC and Virtual Server Could Allow Elevation of Priv-
ilege. Virtual PC Vulnerability. http://technet.microsoft.com/en-us/security/bulletin/MS07-
049, 2007.

J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the Hypervisor Attack Surface
for a More Secure Cloud. In Proceedings of the 18th ACM conference on Computer and
Communications Security (CSS), pages 401-412, Chicago, IL, October 2011.

T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data Center Traffic Charac-
teristics. ACM SIGCOMM Computer Communication Review, 40(1):92-99, 2010.

A. Chukavkin and G. Peterson. Logging in the Age of Web Services. IEEE Security and
Privacy, 7(3):82—-85, June 20009.

ProtoGENI. ProtoGENI, Dec 2013. Available at: http://www.protogeni.net/trac/protogeni
(Dec. 2013).

E. Stelzer, S. Hancock, B. Schliesser, and J. Laria. Virtual Router Management Informa-
tion Base Using SMIV2. Internet-Draft draft-ietf-ppvpn-vr-mib-05 (obsolete), June, 2013.
http://tools.ieff.org//html/draft-ietf-ppvpn-vr.mib-05. Accessed on December 2014.

H. Asai, M. MacFaden, J. Schoenwaelder, Y. Sekiya, K. Shima, T. Tsou, C. Zhou, and H. Esaki.
Management Information Base for Virtual Machines Controlled by a Hypervisor. Internet-
Draft draft-asai-vmm-mib-05 (work in progress), October 13, 2013.

R. Enns. RFC 4741: NETCONF Configuration Protocol, December 2006. http://tools.ietf.
org//html/rfc4741. Accessed on December 10, 2014.

B. Claise, B. Trammell, and P. Aitken. RFC 7011: Specification of the IPFIX Protocol for the
Exchange of Flow Information, September 2013. http://tools.ieff.org//html/rfctoll. Accessed
on December 2014.

Distributed Management Task Force (DMTF). Web Services for Management (WS-
Management) Specification. DMTF, Ago 2012.

o1y papeo|uMOq ‘Z40°SS9ZY06TTT8L6/200T 0T

1un - B33 Aq ZUP"SSIZHOBTTTSL6/Z00T OT/OPAIOD”

0 PUR SULS L U3 885 *[202/TT/E0] U0 ARIqIT 3UIO ABIIM 'INS 0Q 8pURID ORI 0

559017 SUOWLLIOD ARSI 3IGE1Idce 3L Aq POUDAOB 828 S ILE VO ‘55N JOSOINI 0§ ARIIT SUIIUO ABIIM U


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2F9781119042655.ch2&mode=



