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Abstract—This paper presents a P4 implementation of the
(1-D) Discrete Wavelet Transform (DWT) method. As a mathe-
matical tool for analyzing signals such as packet-level traces, the
DWT divides a given signal into different frequency components
and analyzes each component with a resolution matched to its
scale. We develop an efficient online algorithm that circumvents
various limitations of existing P4-programmable data plane
devices and performs the DWT decomposition entirely in the
data plane. Our evaluation of a hardware implementation (i.e.,
Netronome NFP-4000 SmartNIC) of the algorithm shows that it
results in only minimal throughput overhead (less than 1% for
average-sized packets) and operates within constraints imposed
by the limited available data plane resources. As an application,
we use our lightweight P4 implementation of the DWT and
describe a novel threshold-based approach for detecting periodic
behavior in a signal in real-time, at line rate in the data plane
(40 Gbps). We illustrate our approach with different examples of
synthetic and real-world packet-level traffic traces that exhibit
periodic patterns of either benign or malicious origins.

I. INTRODUCTION

The recent proliferation of Internet-connected devices,
systems, and services and dramatic changes in Internet
usage [1] are among the main reasons for the continued
exponential growth in Internet traffic. To carry out tasks such
as detecting nefarious network activities or distinguishing
these activities from benign behavior, network operators
are required to collect and analyze enormous amounts of
network measurement data. The analysis of such data may
impose timing constraints (e.g., non-real-time vs. real-time),
determining the type of methods at the operators’ disposal,
such as traditional statistical analysis techniques [2]-[5],
information theory-based approaches [6], [7], and machine
learning algorithms [2]. These methods can be further
separated into time-domain [8], frequency-domain [2], [9], and
wavelet-domain techniques, and some of them can be adapted
for streaming data analysis. Analyzing streaming data allows
operators to consider different features (e.g., packet counts in a
time interval) required for inferring certain network activities,
computing them in high throughput scenarios [5] and at line
rate [2] without having to store the data under analysis.

One practical use of signal processing for analyzing stream-
ing data is to infer periodic activities within network traffic.
Such activities are often indications of recurring patterns in
network usage and can be either malicious or benign. Inferring
periodic activities of unknown origins will typically trigger a
detailed post-mortem and offline forensic analysis by the net-
work operator to identify the observed periodic activities’ root
cause(s). Examples of such efforts include detecting anomaly
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Fig. 1: Wavelets analysis for periodicity detection in P4.

behavior [3], [10], reconstructing the signal of a network
communication [11], and analyzing the energy spectrum [12].
However, traditional signal processing techniques such as the
Discrete Fourier Transform (DFT) are known to have a high
computational overhead that prevents them from being used
for real-time periodicity detection in high throughput scenar-
ios [2], [10]. Their practical use in this context is therefore
limited to performing post-mortem analysis tasks [9], [11].

In contrast, the Discrete Wavelet Transform (DWT) method
can be used to analyze time-series data with low computa-
tional overhead by leveraging their intrinsic ability for time-
frequency localization, i.e., dividing the data into different
frequency components and analyzing each component with
a resolution matched to its scale. Used in prior works [3]-
[5], [13] to analyze networking traffic data, the DWT method
is an especially promising technique for analyzing streaming
data where the “signal” is given in the form of packet-level
network traces. Not only does it allow for the simultaneous
analysis of the signal at different scales, but the method can
be naturally parallelized and performed at line rate to enable
real-time signal analysis.

Despite its low computational overhead, implementing the
DWT method to process high-volume traffic streams at line
rate poses significant challenges. Using off-the-shelf commod-
ity hardware to perform the necessary time-frequency localiza-
tion of the incoming traffic is, in general, inefficient as it can
introduce additional overhead that offsets the benefits of using
the DWT. In turn, recent advances in programmable data plane
technologies (e.g., P4 [14]) present unique opportunities to use
techniques such as the DWT for line rate traffic processing in
the data plane. However, P4’s limited support for commonly
used arithmetic operations makes it difficult to implement the
DWT method in P4 and run it on actual hardware.

This paper presents a P4 implementation of the DWT
method to perform a signal’s time-frequency localization di-
rectly in the data plane. Figure 1 provides an overview of
our solution, in which a P4-enabled programmable device is
running an efficient algorithm that we designed to perform
the DWT decomposition. We compute the energy function
to analyze each decomposition level of the DWT, and use a
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threshold-based heuristic to automatically alert the network
operator of identified periodic behavior. To circumvent the
limitations imposed by existing P4-enabled devices, we rely on
a number of mathematical modifications that reduce the need
for complex arithmetic operations. Our solution has a small
memory footprint in the data plane and results in only minimal
throughput overhead (less than 1% for average-sized packets).
Finally, we show with several performance and security use
cases how our proposed solution correctly identifies periodic
behavior in both synthetic and real-world packet traffic traces.

II. BACKGROUND

The Discrete Wavelet Transform (DWT) method uses wave-
forms to “localize” a signal in both frequency and time.
In addition to pinpointing the specific times when each
frequency occurs in the signal [15], the DWT has lower
computational complexity than the more traditional Fourier
transform method—O(n) vs. O(nlogn) [2], [15], where n
is the number of samples in the signal—making it more
appealing for analyzing signals in high-throughput settings
such as network traffic.

To decompose a signal, the DWT uses a low-pass filter
(a.k.a., scaling function or father wavelet) and a high-pass
filter (a.k.a., wavelet function or mother wavelet). These filters
are convolved with k data points at a time (depending on the
size of the filters), encoding high- and low-frequency informa-
tion into two distinct levels of decomposition and effectively
sub-sampling the original signal by half. The encoded data
points generated by the high-pass and low-pass filters are
referred to as the detail and approximation coefficients, re-
spectively. We can apply the DWT decomposition recursively
m times using the approximation coefficients at level j — 1 as
input to level j (1 < 7 < m) to analyze frequencies at a finer
granularity. The original signal corresponds to level zero.

The original DWT method was proposed alongside a simple
set of wavelet filters known as the Haar wavelet [13]. Here, we
also use the Haar wavelet and leave the application of other
wavelets filters such as the Daubechies wavelets [3] for future
work. We define the Haar wavelet low-pass and high-pass
filters as (1/v/2,1/+/2) and (1/v/2, —1//2), respectively [16]
and consider a time series Xo 5,k = 0,1,2,... representing
the input signal. For scale one of the DWT decomposition,
we multiply these values with consecutive samples in the
input signal and then add the resulting products to compute
the approximation and detail coefficients, respectively. More
generically, we describe the approximation and detail coeffi-
cients for scale j, 7 > 1, at position k by Equations 1 and 2,

respectively.
1

V2
1

V2
A. Periodicity Detection: An Energy-Function Analysis

XK= (Xj—1,26 + Xj_1,2k41) (1)

dj (Xj—1,26 — Xj_1,2041) 2)

Most of the existing methods for analyzing recurring pat-
terns in networking require storing a high volume of network

traffic data and mining it post-mortem. Due to the high compu-
tational complexity of these methods [15], this type of analysis
can take a long time. However, mining traffic in today’s high-
speed networks to detect patterns in communication requires
analyzing measurements at line rates with methods that have
low computational complexity. Compared to most existing
approaches, the DWT method with its low computational
complexity and broad applicability to different problems is
especially well suited for the high-throughput conditions and
real-time requirements imposed by modern-day networks.

In particular, the energy function of the detail coefficients
has been used to detect periodic signals in different scenarios
(e.g., for studying network congestion and its impact on TCP
retransmissions [16]). The energy function E; is defined as

1 .
By=<- Ml i=12...m 3)
Ik

where j is the decomposition level, and NN; is the number of
coefficients at level j. Computing the energy of the detail co-
efficients at each decomposition level allows us to examine the
temporal properties in the signal from high to low frequencies
as the level of the wavelet decomposition increases.
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Fig. 2: Using the energy function to detect periodicity.

Feldmann et al. [17] show that plotting the function g(j) =
log,(E;) can be used as a means to detect periodicities in
a signal. As each decomposition level filters out a specific
frequency range in the original signal, a particular periodicity
manifests as a sudden decrease in g(j). Figure 2 shows an
example with five different signals. Y1 is white noise with no
periodicity. Y2-Y5 are mixtures of white noise with a periodic
signal of period 8, 10, 16, and 20, respectively. The figure
shows that while g(j) decreases for Y2-Y5 near the point
marking the signal’s period, ¢g(j) remains flat for Y1.

III. ONLINE DWT DECOMPOSITION

We consider a signal where each sample is indexed and rep-
resents the number of packets of a flow in a fixed time interval.
A flow refers to all the packets that match a rule specified by
the network operator, e.g., all packets with a given destination
port or IP address. Implementing the DWT transform for such
signals in P4 presents significant challenges. First, P4 does not
allow loops and does not support all the arithmetic operations
required to evaluate Equations 1, 2 and 3. Second, processing
in P4 is asynchronous, meaning that we need a packet arrival
to trigger a computation. Finally, computing and storing the
signal and the approximation coefficients at different levels
may impose significant processing and storage overheads.
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A. Arithmetic Operations

At first sight, Equation 3 presents additional hurdles for
its implementation in P4, including the division by a number
N that varies over time for each level of the decomposition
and floating-point operations (division by 1/2). However, by
expanding the equation to different levels, we can simplify
it to the point where these operations are no longer needed.
First, we assume without loss of generality that the length
of the signal is a power of two, i.e., N = 2" for some n, so
N; = N/27, where j represents the level of the decomposition
or the signal when 7 = 0. Then, we can write Equation 3 as

NE; :2j712|Xj—1,2k_Xj—1,2k+1‘2 “
k

For conciseness, let A; ., = Xj_120 + X;j—1,20+1, Where
X is the signal for j = 0 or the approximation coefficients
for j > 1 as defined in Section II. A;,, is a parameterized
version of the expression inside the parenthesis of Equation 1,
ie., Aij is the approximation coefficient without the V2
normalization factor. For 5 > 2, we can expand Equation 4,

using the definition of A;,, and Equation 1 as

NE; =2772% " |Aj 10k — Aj_1 o] ®)
%

Also, since we have A;_19p = X;j—24r + X2 4k+1 and
Aj 12841 = Xj—2,4k+2 +Xj_2 ak+3, we can compute Equa-
tion 5 using only additions, subtractions, and multiplications.
Moreover, we can efficiently implement multiplication of a
number by itself or by a power of two using only shift and
addition operations. Finally, since we are only interested in
finding points where g(j) decreases, we do not need to divide
the right-hand side of Equation 5 by N.

B. Asynchronous Computation and Resource Usage

To build a signal on a P4 switch, we need to execute an
action to count the number of packets in a sampling interval.
However, the switch runs an action only when a packet arrives
and matches an operator-defined rule. If no packet arrives
during long periods, we have a signal with multiple consec-
utive samples equal to zero. Since P4 does not allow loops,
we cannot simply iterate over these samples to compute the
approximation and detail coefficients of the DWT transform
and propagate them to calculate the other decomposition lev-
els. Also, storing the signal’s samples and the approximation
and detail coefficients for each decomposition level would
consume a large amount of memory in the switch and limit the
length of the signal and the number of flows we could analyze.

We leverage the simplification of the energy function we
developed in Section III-A to develop an efficient algorithm
that stores for each signal only a sliding window W; with
two approximation coefficients and the cumulative sum S; =
Yo lAi—1ok — Aj,1,2k+1|2 for each level j. We also store
the index (L) of the sample that was last processed by the
switch, totaling 3xMAX LEVEL+1 integers per flow, where
MAX_ LEVEL is the maximum number of decomposition
levels. To compute the k-th approximation coefficient at level
7, we need the coefficients (or signal samples if 7 = 1) with

Algorithm 1 Online DWT Decomposition and Energy Function.

1: procedure ONLINEDWT(

L: Index of the previously measured sample,

R: Index of the currently measured sample,

s: Number of packets in the current sample)
2 if ISEVEN(L) and ISEVEN(R) then PROPAGATEL(L, R, 1)
3 else if ISEVEN(L) and ISODD(R) then PROPAGATELR(L, R, 1, s)
4: else if ISODD(L) and ISEVEN(R) then PROPAGATEL(L+1, R, 1)
5: else if ISODD(L) and ISODD(R) then
6: PROPAGATELR(L + 1, R, 1, s)
7
8

Wo 1sEven(R) 70:1 < 8
L+ R

9: procedure PROPAGATEL(L, R, j7)
10: if R — L < 2 then

11: if R— L =1 and ISODD(L) then

12: BRANCHODD(L, j)

13: else

14: DECOMPOSE(%, )

15: if j < MAX_LEVEL then PROPAGATEL(Z, & j + 1)

16: procedure PROPAGATELR(L, R, j, s)
17: if R— L =1 then

18: if j=1then Wy 1 < s

19: DECOMPOSE(%, j + 1)

20: if ISODD(L) then BRANCHODD(Z 5 + 1)
21: else

22: BRANCHEVEN(L, R, j)

23: Wo,1 < s

24: BRANCHODD(R, j)

25: procedure BRANCHODD(indezx, j)

26:  DECOMPOSE(2dez j)

27:  if j < MAX_LEVEL and IsODD(242%) then
28: BRANCHODD(24eZ j 4 1)

29: procedure BRANCHEVEN(L, R, j)
30: if R — L < 2 then

31: if IsODD(L) then BRANCHODD(L, j)

32: else

33: DECOMPOSE(%, )

34: if j < MAX_LEVEL then BRANCHEVEN(Z, & j 4 1)
35: procedure DECOMPOSE(indezx, j)

36: W 1sEven(indez) 20 : 1 < Wi—1,0 + Wj—11

37. Sj — Sj + (ijl,O — W]',Ll)Q
38: if a(Sj_1 < (5 —3)) —B(S; € (j —2)) > 0 then
39: GENERATEALARM(j — 1)

indices 2k and 2k 4 1 at level j — 1 (See Equations 1 and 5).
We can map this dependence of the approximation coefficients
to a tree structure where signal samples are the leaves, and the
coefficients are the internal nodes of a binary tree, as illustrated
in Figure 3. Note that to calculate the coefficient of an internal
node, we always need the values of its two children. Since
our algorithm performs online computations, some samples or
coefficients might not be available when trying to compute
the approximation coefficient and the cumulative sum of the
energy function at the next level at a specific time. Also, to deal
with the case where the switch does not receive any packet for
a flow during several sampling intervals, we introduce samples
with a value set to zero. Therefore, the arrival of a packet at
the switch may trigger the computation of the coefficients at
several levels as a new sample may complete an entire subtree.
For example, the availability of sample 7 in Figure 3d allows
the computation of the approximation coefficients 3 at level 1,
1 at level 2, and O at level 3.

Algorithm 1 shows the pseudocode to decompose a signal
using the DWT transform, compute the energy function for
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Fig. 3: Examples of signal decompositions and computations of the energy function.

each decomposition level, and generate an alarm when it
detects a periodicity in a signal. To simplify the explanation,
we present the algorithm with recursive functions to traverse
the decomposition tree. Although P4 does not support recur-
sion, we can implement the algorithm by simply expanding
the recursive functions MAX LEVEL times. We evaluate the
maximum number of levels we can support on a programmable
NIC in Section IV. Line 1 shows the main function of the
algorithm that is invoked every time the switch receives a
packet that marks the end of a sampling interval. Figure 3a
illustrates a signal with nine samples indexed from 0 to 8
that triggers the call to function OnlineDWT with L = 2,
R =8, and s = 4. We use L and R and the fact that all
samples between them are zero to define four different cases
depending on whether L and R are even or odd: EvenEven,
EvenOdd, OddEven, and OddOdd (Figures 3a-d).

Due to limited space, we only describe the EvenEven case,
but note that similar arguments apply when considering the
remaining cases as detailed by Algorithm 1. We use Figure 3a
to illustrate how the algorithm works with an example where
L = 2 and R = 8. Function On1ineDWT calls PropagatelL
(Line 9) to propagate sample L (saved in W) to the
next levels because its sibling (e.g., sample with index 3 in
Figure 3a) for computing the approximation coefficient was
not available in the previous invocation of On1ineDWT. As R
is even and its sibling is not available yet, the algorithm does
not propagate sample 2 to the next levels and just updates
Wo,0 with the current sample (Line 7) and L with R (Line 8)
for a future invocation of OnlineDWT. The PropagatelL
function recurses with L and R divided by two (Line 15) to
map them to the proper nodes of the decomposition tree at the
next level. This recursion stops when j reaches MAX LEVEL
(Line 15) or when the difference between L and R becomes
less than two (Line 10). In this last case, the propagation
has reached a level where either L is equal to R, and there
is nothing more to propagate, or we call Branchodd if L
is odd at that level of the decomposition. When index at
BranchOdd is odd at a level, it means we have a sample that
completes a pair of children for computing an approximation
coefficient, so the Branch0Odd function recurses while index
is odd in the subsequent levels, computing the approximation
coefficients until j reaches MAX LEVEL or the function
reaches a node with index even that does not have its sibling
yet to compute the next approximation coefficient.

To detect periodicity in a signal, we use a heuristic that
divides the energy at level ;7 — 1 by the energy at level j and
checks if the result is greater than a threshold. If the energy de-

creases suddenly from level j—1 to level j, then EJ 1 / E; will
be greater than one. More specifically,
where o and g are integers and o > 3. Using Equgltlon 5 and
the definition of S;, we rewrite this formula as 2775 > Z
Substituting the multiplication by powers of two with shlft
operations, we can rewrite the equation as /3 ( 1< (j-3)—
a(S; < (j—2)) > 0, which is the same as Llne 38 of Algo-
rithm 1. Line 39 generates an alarm the first time the condition
in Line 38 becomes true. In Section IV, we determine « and
[ empirically for a set of use cases we evaluate in this paper.

IV. EVALUATION

To evaluate the performance and applicability of our ap-
proach, we first implement our algorithm in P4 with Micro-C
and load it into a Netronome NFP-4000 SmartNIC to assess its
overhead. Next, we determine the threshold for our periodicity
heuristic and use publicly available traces of periodic traffic to
analyze the energy function plot. To support reproducibility,
the artifacts of our work are available at [18].

A. Performance

Setup. We use two servers with two Intel(R) Xeon(R)
Silver 4114, each with 128 GB of RAM and a dual-port
Netronome NFP-4000 40 GbE NIC directly connected on a
sender-receiver configuration. The SmartNICs have a limit of
8k instructions per flow-processing core, allowing us to use at
most 17 levels of decomposition. The receiver’s SmartNIC re-
ceives packets, processes them according to Algorithm 1, and
forwards them back to the sender. The sender sends packets
and collects the throughput results. To quantify the throughout
overhead of our implementation, we consider different packet
sizes (from 64 to 1500 bytes) and different number of decom-
position levels (from 1 to 17), and report experimental results
for two different sampling intervals (250us and 1s).

Results. Starting with the extreme case where all packets
are of minimal size (i.e., 64 bytes), Figures 4a and 4b show the
SmartNIC throughput (in Mpps) for up to 17 decomposition
levels (in red) for the sampling intervals 250us and ls,
respectively. In both cases, level O (in black) denotes the
throughput for basic packet capture without any decomposition
(i.e., constructing per-sample signal), and the baseline (in
blue) is measured by simply forwarding packets to their
destination. The SmartNIC provides 64-bits integer packet
timestamps composed of two 32-bits variables, one for seconds
and the other for nanoseconds. To compute accurate sampling
intervals, we implemented a set of shift and multiplication
operations to perform integer divisions using constants. As a
result, when using a 250us sampling interval, the throughput
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Fig. 5: Performance results varying packet size using 17 levels.

overhead for construction of the signal is roughly 17% when
compared to the baseline (see level 0 in Figure 4a). However,
this overhead drops to less than 5% when the sampling interval
is 1s (see level O in Figure 4b), mainly because in this case,
calculating accurate timestamps requires fewer operations.
Figure 4 also shows that our algorithm manages to compute
the DWT using very few resources. In particular, we observe
that the performance overhead for the different decomposition
levels (red bars) is small — roughly 12% compared to construct-
ing the signal (black bar). This result indicates that accurately
constructing the input signal (i.e., placing samples in the
correct interval) is responsible for most of the throughput over-
head. When the sampling interval is 1s, the overhead is neg-
ligible because the SmartNIC provides timestamps already at
the required granularity and there are fewer cases when the al-
gorithm has to propagate coefficients to the subsequent levels.
All previous results assume a worst-case scenario where all
packets are of minimal size (i.e., 64 bytes). In Figure 5, we
consider more realistic scenarios and analyze the throughput
overhead of our algorithm with 17 levels of decomposition
for packet sizes that vary from 64 to 1500 bytes. When the
sampling interval is 250us (Figure 5a), we notice that for
packets of size 512 bytes and larger, the throughput overhead
of our algorithm becomes negligible. In fact, assuming
averaged-sized packets in the Internet to have 900 bytes [19],
we observe a throughput overhead of less than 1% when
compared to the baseline. For a sampling interval of 1s
(Figure 5b), the throughput overhead is practically zero when
compared to the baseline behavior of the SmartNIC.

B. Applicability

Setup. To apply our algorithm in practice, it is first
necessary to define an appropriate threshold to be used in
Line 38. To this end, we examine the examples considered
in Figure 2 (see Section II), dividing the energy value at
one level by that at the next level. Figure 6a shows that for
a non-periodic signal such as Y1, after some initial phase,
the ratios between successive scales converge to a value

Fig. 7: Energy function plots for use cases from Table I.

of around 0.5. In contrast, for periodic signals such as Y4
(Figure 6b), the ratios between levels 4/5 (dip in energy
evident in Figure 2) converge to a value larger than 6. Based
on those observations, we consider a heuristic threshold value
of 1.5 (¢ =3 and 8 = 2 in Algorithm 1).

TABLE I: Network traffic use cases.

# Use Cases Period Trace Length  Sampling Interval
1 Normal link RTT [17] ~24ms 14 750us

2 Congested link RTT [17] ~1.3s 33’ 325ms

3 Heartbleed [20] ~1s 200 125ms

4 Cobalt strike [21] ~60s 17 4s

5 Trickbot (a) [22], (b) [23] ~300s 291°, 161° 20s

To experiment with our algorithm, we next surveyed the
literature for security and performance use cases with intrinsic
periodic behavior and summarize the examples we found in
Table I. Performance use cases (1-2) capture the RTT of pack-
ets in benign traffic over a normal link and a congested link,
respectively. The security use cases (3-5) consist of different
attacks that generate malicious traffic such as Heartbleed and
Cobalt strike. We analyze each use case’s traffic separately.
Also, for each use case we rely on a different sampling interval
to facilitate presentation. While a larger sampling interval
limits the applicability for fine-grained periodicity, it simply
shifts the dips in the energy function to smaller levels. We
illustrate this behavior for the Heartbleed use case in Figure 7a.

Results. Figure 7b shows the energy function plots for all
use cases. Each use case corresponds to a different line, and the
relevant sampling interval is as specified in Table I. As shown
in Section II, the second X-axis at the top of the plot represents
the period of each decomposition level when multiplied by the
sampling interval. In all use cases, the drop in the energy plot
happens in the correct periodic interval where it generates an
alarm. For instance, the Heartbleed attack (use case 3 in 7b)
has a period of 1s and a sampling interval of 125ms. Hence,
we see a decrease in the energy function plot between levels
3-4, which indicates a periodicity of 8 x 125ms = 1s.

These results highlight that our algorithm is both accurate
and versatile with respect to detecting periodic behavior. For
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example, it can capture fine-grained periodic behavior such as
the 24ms RTT pattern in a regular link (use case 1) using a
750us sampling interval as well as coarser periodicities such
as the 300s cycle of the Trickbot attack (use case 5) using a
20s sampling interval. Moreover, because of its demonstrated
efficiency (see Section IV.A), the algorithm is highly effective
in leveraging modern data plane technologies to detect periodic
patterns in real-time.

V. RELATED WORK

Periodicity detection in network traces. Prior works
use real-world network traces with periodic components to
evaluate Hurst parameter estimation methods [24], focus on
detecting botnets using time- and frequency-based metrics to
capture the very coarse-grained periodicity [25], and rely on
the autocorrelation of their network traffic signals, producing
periodic-based features for a random forest classifier [26].
Another study [27] examines periodicity in network traf-
fic by tokenizing flows and looking for cycles in tokens
from individual packets. These efforts are mainly concerned
with performing post-mortem analyses of the traffic, and the
proposed methods are typically not amenable to processing
streaming-type data in programmable data planes.

Signal processing in networking. Several works use signal
processing techniques to analyze network traffic traces. Some
works use DWT coefficients to propose an anomaly detection
classification model [3] and analyze changing patterns in time
series with the entropy of IP addresses [4]. The BAlet [5]
framework detects anomalous BGP updates by leveraging the
DWT to decompose a signal of localized BGP update counts.
Whisper [2] is a machine learning-based intrusion detection
system that leverages frequency domain-based input features
(i.e., using the DFT). These efforts do not detect periodic
behavior and do not consider any data plane implementation.

Statistical analysis in programmable data planes.
Several recent papers propose statistical analysis approaches
directly in the data plane. [28] relies on a P4 implementation
of entropy to detect DDoS attacks and [6] presents methods
for estimating logarithmic and exponential functions in P4
to track traffic entropy. Gao et al. [29] implement several
statistical techniques (e.g., mean, variance) in P4 and gather
them in a library. Our work contributes to these ongoing
efforts and adds a P4 implementation of the DWT and a data
plane-based periodicity detection technique to this library.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a P4 implementation of the DWT
method and uses it to develop an energy function-based
method for detecting periodic patterns in an incoming signal in
real-time, at line rate in the data plane. Our P4 implementation
of the DWT is based on an efficient online algorithm that
overcomes the limitations of existing P4-programmable data
plane targets by exploiting mathematical properties of the
DWT decomposition. Using this new data plane capability
afforded by our P4 implementation of the DWT, our novel
energy function-based method for detecting periodic behavior
in signals such a packet-level network traffic traces in real-time

can be used to automatically alert network operators. Deter-
mining appropriate thresholds for our method and developing
a dashboard for facilitating an efficient post-mortem analysis
whereby operators can determine the alerts’ root cause(s) so as
to decide whether the automatically detected periodic patterns
are malicious or benign is part of our future work.
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