
Enabling Self-Driving Networks
with Machine Learning

Arthur Selle Jacobs∗, Ronaldo Alves Ferreira†, Lisandro Zambenetti Granville∗,
∗Federal University of Rio Grande do Sul, Brazil. †Federal University of Mato Grosso do Sul, Brazil.

Abstract—This work aims to enable self-driving networks
by tackling the lack of trust that network operators have in
Machine Learning (ML) models. We assess and scrutinize the
decision-making process of ML-based classifiers used to compose
a self-driving network. First, we investigate and evaluate the
accuracy and credibility of classifications made by ML models
used to process high-level management intents. We propose a
novel conversational interface (LUMI) that allows operators to
use natural language to describe how the network should behave.
Second, we analyze and assess the accuracy and credibility of
existing ML models’ for network security and performance. We
also uncover the need to reinvent how researchers apply ML
to networking problems, so we propose a new ML pipeline
that introduces steps to scrutinize models using techniques from
the emerging field of eXplainable Artificial Intelligence (XAI).
Finally, we investigate whether there is a viable method to
improve the trust of operators in the decisions made by ML
models that enable self-driving networks. Our investigation led
us to propose a new XAI method to extract explanations from
any given black-box ML model in the form of decision trees while
maintaining a manageable size, which we called TRUSTEE. Our
results show that ML models widely applied to solve networking
problems have not been put under proper scrutiny and can easily
break when put under real-world traffic. Such models, therefore,
need to be corrected to fulfill their given tasks properly.

Index Terms—Self-Driving Networks, Machine Learning, Ex-
plainability, Intent-Based Networking

I. INTRODUCTION

As modern networks grow in size and complexity, they also
become increasingly prone to human errors [1]. This trend has
driven both industry and academia to automate management
and control tasks, aiming to reduce human interaction with the
network and human-made mistakes [2][3]. Ideally, researchers
envision a network design that is not only automatic (i.e., de-
pendent of human instructions) but autonomous (i.e., capable
of making its own decisions). Autonomous networking has
been a goal sought for years, with many different concepts,
designs, and implementations, but it was never been fully
realized, mainly due to technological limitations [1]. Recent
advances in Artificial Intelligence (AI) and Machine Learning
(ML) introduced a breath of fresh air into this concept,
reemerging as the re-branded concept of self-driving networks,
in view of its autonomous car counterparts.

While the concept of a self-driving network has no standard-
ized definition, with each company and researcher having its
own vision and architecture [1][4][5], a few design elements
are common in all instances. As no standard definition has
been adopted as standard by the community, we rely on the
following definition of a self-driving network, summarizing the

main aspects found in the literature: a self-driving network is
an autonomous network capable of acting according to high-
level intents from an operator and automatically adapting to
changes in traffic and user behavior. To achieve that vision,
a network would need to fulfill four major requirements:
(i) understand high-level intents that dictate its behavior, (ii)
monitor itself based on input intents, (iii) predict and identify
changing patterns from monitored data, and (iv) adapt itself
to new behaviors without the intervention of an operator. In
Figure 1, we present a high-level design of a self-driving
network that summarizes the features and requirements found
in the literature.

Network Substrate

Monitor

...
...

Operator LearnProcess

(1) Intent (6) Decisions

(2) Validation
(3 & 7) Configs (5) Data(4) Behavior

...
...

...

Fig. 1: Self-driving network design.

This self-driving network design is composed of two man-
agement loops. On the left side of Figure 1, we see the
first management loop (1, 2, 3, and 4), which starts with an
operator (1) specifying high-level intents, in natural language,
that dictate how the network should behave—e.g., defining
goals related to quality of service, security, and performance–
without worrying about the low-level details that are necessary
to program the network to achieve these goals (a.k.a. Intent-
based Networking — IBN) [6]. Enabling operators to freely
use natural language to describe network intents requires
the network to employ state-of-the-art ML techniques from
Natural Language Processing (NLP) [7], which are always
prone to generate errors and misclassifications. Hence, after
extracting relevant information from input intents, a self-
driving network would then (2) validate the extracted data
with the operator before (3) compiling them into actual
configurations and deploying them to the network substrate.
To close the first management loop, the network would then
monitor itself according to the described intents and collect the
behavior of traffic to (4) present it for operators to verify if the
implemented behavior corresponds to the initial goals. On the
right side of Figure 1, the second management loop (5, 6, and



7) begins after intents are deployed into the network substrate,
where devices are instrumented with monitoring capabilities to
collect usage and traffic data. Such data is then (5) analyzed
and processed to (6) produce (autonomous) decisions using
trained ML models, which would ideally adapt and re-train
themselves constantly as new data is collected. Decisions made
by such ML models would then be (7) processed and compiled
into configurations to fine-tune the network behavior (akin
to 3), closing the second management loop. For instance,
decisions from ML models may include the identification of
attack traffic that needs to be blocked or mitigated or even
resource usage optimizations based on traffic load. Notice
that, despite also relying heavily on error-prone ML tech-
niques, given the time frame and frequency such decisions
and configuration deployment would occur to keep up with
incoming traffic, it would be impossible to include human
validation on this second management loop, in contrast with
the first one. In addition, another key aspect to keep in mind
is that self-configurations made based on decisions from ML
models in the second management loop can undermine and
contradict the configurations made through network intents in
the first management loop. The possibility of such conflicts
arising, coupled with the inability to include human-in-the-
loop validations, raises the stakes for any decision made by
ML models in the second management loop.

As both management loops in the self-driving network
presented in Figure 1 rely heavily on ML models to make
decisions and classifications that directly impact the network,
one particular issue becomes prominent with this design: trust.
Applying ML to solve networking management tasks, such as
the ones described above, has been a popular trend among
researchers recently [8]. However, despite the topic receiving
much attention, industry operators have been reluctant to take
advantage of such solutions, mainly because of the black-
box nature of ML models that produce decisions without
any explanation or reason. Given the high-stakes nature of
production networks, it becomes impossible to trust an ML
model that may take system-breaking actions automatically,
and most important to the scope of this thesis, a prohibitive
challenge that must be addressed if a self-driving network
design is ever to be achieved.

II. PROBLEM STATEMENT AND RESEARCH QUESTIONS

The present thesis [9] addresses the issue of enabling
self-driving networks with ML, tackling the problem of the
inherent lack of trust in ML models that empower it by
assessing their decision-making process. To that end, we must
first investigate and evaluate the accuracy and credibility of
classifications made by ML models used to process high-level
intents. Then, we must analyze and assess the accuracy and
credibility of decisions made by ML models used to self-
configure the network according to monitored data. Lastly, we
must investigate whether there is a viable method to improve
the trust of operators in the decision made by ML models
in both management loops. To pave the road towards solving
the problem above, we formulated three research questions

that guided the development of the thesis. The first research
question concerns the use of ML techniques to parse relevant
information from input network intents and compile them into
a network configuration that fulfills the given intents.

RQ-1: In a self-driving network, can operators trust
decisions and classifications made by current Machine
Learning models used to configure the network based on
high-level intents? To answer this question, we propose an
end-to-end intent-based network management system with a
conversational interface that allows operators to use natural
language to define desired intents for the network.

RQ-2: In a self-driving network, can operators trust
decisions and classifications made by current Machine
Learning models used to self-configure the network based
on monitored data analysis? We survey the existing literature
on the use of ML techniques for network security and scru-
tinize several use-cases to analyze the credibility of decisions
made by highly-accurate ML models that enable a self-driving
network.

RQ-3: Is there a feasible way to increase operator
trust in the decision-making process of Machine Learning
models that configure a self-driving network? We introduce
a novel model-agnostic XAI method to produce explanations
from any given black-box ML model in the form of decision
trees, which domain experts can use to spot issues in the
decision-making process of the black-box model.

III. MACHINE LEARNING FOR IBN

Deploying policies in modern enterprise networks poses
significant challenges for today’s network operators. Since
policies typically describe high-level goals or business intents,
the operators must perform the complex and error-prone job of
breaking each policy down into low-level tasks and deploying
them in the physical or virtual devices of interest across the
entire network. Recently, IBN has been proposed to solve this
problem by allowing operators to specify high-level policies
that express how the network should behave (e.g., defining
goals for quality of service, security, and performance) without
having to worry about how the network is programmed to
achieve the desired goals [6]. Ideally, IBN should enable an
operator to simply tell the network to, for example, “Inspect
traffic for the dorm”, with the network instantly and cor-
rectly breaking down such an intent into configurations and
deploying them in the network. Supporting IBN is one of the
core principles of a self-driving network as it reduces human
intervention to a necessary minimum, which also reduces the
number of errors introduced by human mistake.

In its current form, IBN has not yet delivered on its promise
of fast, automated, and reliable policy deployment. One of
the main reasons for this shortcoming is that, while network
policies are generally documented in natural language, we
cannot currently use them as input to intent-based manage-
ment systems. Despite growing interest from some of the
largest tech companies [3] and service providers [10], only
a few research efforts [11] have exploited the use of natural
language to interact with the network, but they lack support



for IBN or other crucial features (e.g., operator confirmation
and feedback). However, expressing intents directly in natural
language has numerous benefits when it comes to network
policy deployment. For one, it avoids the many pitfalls of
traditional policy deployment approaches, such as being forced
to learn new network programming languages and vendor-
specific Command-Line Interfaces (CLI), or introducing hu-
man errors while manually breaking down policies into con-
figuration commands. At the same time, its appeal also derives
from the fact that it allows operators to express the same
intent using different phrasings. However, the flexibility makes
it challenging to generate configurations, which must capture
operator intent in an unambiguous and accurate manner, a feat
not easily achieved when relying on ML models to extract
information from natural language.

We contribute to the ongoing IBN efforts by describing the
design and implementation of LUMI [12], a system that en-
ables an operator “to talk to the network” focusing on campus
networks as a use case. LUMI takes as input an operator’s
intent expressed in natural language, correctly translates these
natural language utterances into configuration commands, and
deploys the latter in the network to carry out the operator’s
intent. We designed LUMI in a modular fashion, with the
different modules performing, in order: information extraction,
intent assembly, intent confirmation, and intent compilation
and deployment. Our modular design allows for easy plug-and-
play, where existing modules can be replaced with alternative
solutions, or new modules can be included. As a result,
LUMI’s architecture is extensible and evolvable and can easily
accommodate further improvements or enhancements.

A. LUMI in a Nutshell

Client

[ x : 
 (ipDst =10.1.2.0/24)
-> .* dpi .*
]

Merlin program:
define intent id:

add middlebox(’dpi’)
for endpoint(’dorm’)

“Is this right?”
define intent id:

add middlebox(’dpi’)
for endpoint(’dorm’)

Nile intent:
{

}

middlebox: [’dpi’],
target: [’dorm’]

Tagged Entities:

Information
Extraction

(Section 2.2)

Intent
Assembly

(Section 2.3)

Intent
Deployment
(Section 2.5)

Intent
Confirmation
(Section 2.4)

“Hey, Lumi! Inspect 
traffic for the dorm.”

Internet

GatewayDPI

(10.1.2.0/24)

Dorm
Config

Servers

Fig. 2: The four modules of LUMI.

Figure 2 illustrates the high-level goal of LUMI with the
intent example “Hey, Lumi! Inspect traffic for the dorm”
and shows the breakdown of the workflow by which LUMI
accomplishes the stated objective. Below, we provide a brief
overview of the four key components that define this workflow
(i.e., the LUMI pipeline) and the contributions we make in
addressing the various challenges described above.

First, for the Information Extraction module, we rely on
machine learning to extract and label entities from the op-
erator utterances and implement them using a chatbot-like
conversational interface. We build on existing ML algorithms

for Named Entity Recognition (NER) [7] to extract and label
entities from the operator’s natural language utterances. In par-
ticular, we implement NER using a chatbot-like interface with
multi-platform support and augment the existing algorithm so
that LUMI can learn from operator-provided feedback.

Second, the extracted entities form the input of the Intent
Assembly module, where they are used to compose a network
intent. We introduce the Network Intent Language (Nile) [13],
use it as an abstraction layer between natural language intents
and network configuration commands for LUMI, and illustrate
its ability to account for features critical to network man-
agement such as rate-limiting or usage quotas. Nile closely
resembles natural language and reduces the need for operators
to learn new policy languages for different types of networks.

Third, as part of the Intent Confirmation module, the output
of the Intent Assembly module (i.e., a syntactically-correct
Nile intent) is presented to the network operator, and their
feedback is solicited. If the feedback is negative, the system
and the operator iterate until confirmation, with the system
continuously learning from the operator’s feedback to im-
prove the accuracy of information labeling over time. Finally,
once the system receives confirmation from the operator, the
confirmed Nile intent is forwarded to the Intent Deployment
module. This module’s main task is to compile Nile intents
into network configuration commands expressed in Merlin and
deploy them in the network.

We evaluate LUMI’s accuracy in information extraction,
investigate LUMI’s ability to learn from operator-provided
feedback and measure both the compilation and deployment
times in a standard campus topology. Using our own datasets
consisting of synthesized intents as well as real-world in-
tents derived from network policies published by 50 different
campus networks in the US, we show that LUMI can extract
entities with high precision, learn from the feedback provided
by the operator, and compile and deploy intents in less than
a second. In addition to an in-depth evaluation of LUMI, we
also report our main findings of a small-scale user study, with
26 subjects. The study was performed to get feedback from
subjects on the perceived value of using natural language for
network management with LUMI and soliciting user feedback
during the intent confirmation stage.

We implemented our prototype of LUMI using a combi-
nation of tools and libraries (e.g., Google Dialogflow, Scikit-
learn library). The full implementation and all datasets used
in our evaluation are available on the project’s website [12].
Together, the results of our evaluation and user study show that
LUMI is a promising step towards realizing the vision of IBN
of achieving fast, automated, and reliable policy deployment.
By allowing operators to express intents in natural language,
LUMI makes it possible for operators to simply talk to their
network and tell it what to do, thus simplifying the jobs of
network operators and also saving them time.

B. Selected Results

Evaluating systems like LUMI is challenging because of (i)
a general lack of publicly available datasets that are suitable



for this problem space (several operators we contacted in
industry and academia gave proprietary reasons for not sharing
such data), and (ii) difficulties in generating synthetic datasets
that reflect the inherent ambiguities of real-world Natural
Language Intents (NLIs).

To deal with this problem, we created two hand-annotated
datasets for information extraction. The dataset alpha is “semi-
realistic” in the sense that it is hand-crafted, consisting of 150
examples of network intents that we generated by emulating
an actual operator giving commands to LUMI. In contrast, the
campi dataset consists of real-world intents we obtained by
crawling the websites of 50 US universities, manually parsing
the publicly available documents that contained policies for
operating their campus networks, and finally extracting one-
phrase intents from the encountered public policies. From
those 50 universities, we were able to extract a total of 50
different network intents. While some universities did not
yield any intents, most universities published network policies
related to usage quotas, rate-limiting, and ACL, and we were
able to express all of them as Nile intents. We manually tagged
the entities in each of these 200 intents to train and validate
our information extraction model.

We used both datasets, separately and combined, to evaluate
our NER model, with a 75%-25% training-testing random
split. The small size of each dataset precludes us from
performing conventional cross-validation. Table I shows the
results for the datasets alpha dataset, campi, and a combi-
nation of them and illustrates the high accuracy of LUMI’s
information extraction module. Given the way we created
the training examples for the alpha dataset, the excellent
performance in terms of Precision, Recall, and F1-score is
reassuring but not surprising. In creating the intents, we paid
attention to extracting all entities defined in LUMI and also
creating multiple intents for each entity class.

TABLE I: Information extraction evaluation using the alpha
and campi dataset.

Dataset # of Entries Precision Recall F1

alpha 150 0.996 0.987 0.991
campi 50 1 0.979 0.989

alpha + campi 200 0.992 0.969 0.980

At the same time, despite the largely unstructured nature
and smaller number of intent examples in the campi dataset,
the results for that dataset confirm the above observation. Even
though the example intents were not designed with the NER
model in mind, LUMI’s performance remains excellent and
is essentially insensitive to the differences in how the intent
examples were generated. We attribute this success of LUMI at
the information extraction stage to both continued advances in
using machine learning for natural language processing and the
fact that the complete set of LUMI-defined entities is relatively
small and at the same time sufficiently expressive.

By demonstrating that LUMI can successfully deal with
a wide range of network policies, this section represents a

promising step towards realizing the vision of intent-based
networking with natural language. Given the minimal human
interaction from operators when expressing network intents
to manage a self-driving network, it is possible to rely on
humans to verify classifications from ML models applied to
extracting relevant information from natural language intents,
and correct them when necessary by providing feedback. This
feedback loop enables operators to verify and, therefore, trust
decisions and classifications made by such models.

IV. MACHINE LEARNING FOR NETWORK SECURITY

In the last few years, we have witnessed a growing tension in
the networking community. Recent research has demonstrated
the superiority of AI and ML models over simpler rule-based
heuristics in identifying complex network traffic patterns for
a wide range of network problems [14], [8]. At the same
time, we have seen reluctance among operators when it comes
to adopting these ML-based research artifacts in production
settings [15]. The black-box nature of most of these proposed
solutions is the primary reason for this lack of enthusiasm.
More concretely, the inability to explain how and why these
models make their decisions renders them a hard sell compared
to existing simpler but typically less effective rule-based
approaches.

This tension is not unique to networking problems but ap-
plies more generally to any learning models, especially when
their decision-making can have severe societal implications
(e.g., healthcare, credit rating, job applications, the criminal
justice system). At the same time, this tension has also driven
recent efforts to “crack open” the black-box learning models,
explaining why and how they make their decisions (e.g.,
“interpretable ML”, “explainable AI (XAI)”, and “trustworthy
AI”). However, to ensure that these efforts are of practical use
in particular application domains of AI/ML, such as network
security, is challenging and requires further qualifying notions
such as (model) interpretability or trust (in a model) [16] and
also demands solving several fundamental research problems
in these new areas of AI/ML.

In this section, we focus on the application of AI/ML to
network security and the challenges that it poses. For one,
there exists an obvious mismatch between the black-box nature
of some of the most commonly considered AI/ML models
and what network practitioners expect from or look for in a
new technology like AI/ML. While black-box learning models
are inherently incapable of providing insights into their “inner
workings” or underlying decision-making process, operators
and security experts are particularly keen on gaining a basic
understanding of how these proposed models work in practice
so they can be trusted in real-world production settings.

For this thesis, we equate “an end user having trust in an
AI/ML model” with “an end user being comfortable with re-
linquishing control to the model” [16]. Given this specific def-
inition of what it means for an AI/ML model to engender trust,
we next address research challenges related to quantitatively
deciding when an end user is comfortable with relinquishing
control to a given AI/ML model. To this end, a focus of this



section is on determining whether or not a given AI/ML model
suffers from the problem of underspecification [17].

The problem of underspecification in modern AI/ML refers
to determining whether the success of a trained model (e.g.,
high accuracy) is indeed due to its innate ability to encode
some essential structure of the underlying system or data
or is simply the result of some inductive biases that the
trained model happens to encode. In practice, inductive bi-
ases typically manifest themselves in an inherent inability
for out-of-distribution (o.o.d.) generalizations (i.e., test data
distribution is unknown and different from the training data
distribution) which, in turn, often reveals itself in the form
of specious learning strategies (e.g., shortcut learning [18] or
spurious correlations [19]). Such inductive biases imply that
their presence in trained AI/ML models prevents these models
from being credible or trustworthy; that is, they generalize
as expected in deployment scenarios. Thus, for establishing
the specific type of trust in an ML model considered in this
section, it is critical to identify these inductive biases, and this
section takes a first step towards achieving this ambitious goal.

A. TRUSTEE

To detect underspecification issues in learning models for
network security problems, we develop TRUSTEE (TRUSt-
oriented decision TreE Extraction) [20]. TRUSTEE provides
a means for carefully inspecting black-box learning models
for the presence of inductive biases. Figure 3 shows how
TRUSTEE augments the traditional ML pipeline to examine the
trustworthiness of a given ML model. Specifically developed
with network security in mind, TRUSTEE takes a given black-
box model and the dataset that has been used to train that
model as input and outputs a “white-box” model in the form
of a high-quality decision tree (DT) explanation.

Select Model

Collect Data

x y

Train
x y

Test

Model Evaluation TRUSTEE
Explain Analyze

High-fidelity & 
Low-complexity

DT Extraction

Trust Report
Generation

Model design
and training

Evaluate model
with test data

Fig. 3: TRUSTEE overview.

Importantly, in synthesizing these decision trees,
TRUSTEE’s focus is first and foremost on ensuring their
practical use, which, in turn, requires leveraging domain-
specific observations to strike a balance between model fidelity
(i.e., accuracy of the decision tree) and model complexity.
Here, complexity refers to the decision tree’s size and aspects
of the tree’s branches. In particular, when viewing the tree’s
branches as decision rules, we are concerned with their
explicitness/intelligibility and coverage; that is, we require
these rules to be readily recognizable by domain experts, be
largely in agreement with the experts’ domain knowledge, and
describe how the given black-box model makes a significant
number of its decisions.

TRUSTEE also outputs a trust report associated with the
decision tree explanation, which operators can use to de-
termine whether there is evidence that the given black-box
model suffers from the problem of underspecification. If such
evidence is found, the information provided in the trust report
can be used to identify components of the traditional ML
pipeline (e.g., training data, model selection) that need to be
modified to improve upon an ML model that TRUSTEE has
found to be untrustworthy.

While our work contributes to the rapidly growing ML
literature on model explainability/interpretability and is in-
spired by ongoing developments in this area, our efforts
and objectives differ from existing approaches in a number
of significant ways. First, given the inherent complexity of
learning problems for networking, the existing approaches of
replacing black-box models with “white-box” models such as
decision trees are generally impractical. For example, among
existing methods that are concerned with local interpretability
(i.e., can at best explain the decisions of a trained AI/ML
model in a local region near a particular data point; e.g., see
SHAP [21], LEMNA [22]), are not suitable for examining the
various instances of the underspecification problem. Second,
though our effort is inspired by prior work that focus on global
interpretability (i.e., explains how a trained ML model makes
decisions as a whole [23] [24]), they are also not suited for the
problem at hand. These methods are either only applicable to a
specific class of learning models (e.g., reinforcement learning)
or suffer from poor fidelity. In their current form, these existing
methods are all insufficient for providing the level of model
explainability that we demand so that network operators can
decide if they are comfortable with relinquishing control to a
given black-box model.

B. Use Cases Summary

We apply TRUSTEE to scrutinize a number of recently pub-
lished black-box models that have been developed for network
security-related problems and are accompanied by publicly
available artifacts that are required for assessing whether the
models are credible. All datasets, models, and results presented
in this section are made publicly available [20].

Table II summarizes our use cases. The first use case
illustrates how an apparently high-performant neural network
learns shortcuts to distinguish between two types of traffic
(VPN vs. Non-VPN). It highlights the importance of having
an in-depth understanding of the data used to train a model.
The second use case analyzes a black-box model (i.e., random
forest) trained using the synthetic dataset CIC-IDS-2017 [25]
and shows that the developed model is vulnerable to o.o.d.
samples. This use case cautions against an over-reliance on
synthetic datasets that often include measurement artifacts that
commonly-considered black-box models exploit to achieve
high accuracy. The third use case analyzes an approach that ad-
vocates using bit-level feature representations of the input data
instead of carefully engineered and semantically meaningful
features [26]. This use case warns against the indiscriminate
use of the high-dimensional feature spaces that result from



TABLE II: Case Studies.

Problem Dataset(s) Model(s) Trustee Fidelity Type of inferred inductive bias

Detect VPN traffic ISCX VPN-nonVPN dataset 1-D CNN 1.00 Shortcut learning
Detect Heartbleed traffic CIC-IDS-2017 RF Classifier 0.99 Out-of-distribution samples
Detect Malicious traffic (IDS) CIC-IDS-2017, Campus dataset nPrintML 0.99 Spurious correlations
Anomaly Detection Mirai dataset Kitsune 0.99 Out-of-distribution samples
OS Fingerprinting CIC-IDS-2017 nPrintML 0.99 Potential out-of-distribution samples
IoT Device Fingerprinting UNSW-IoT Iisy 0.99 Likely shortcut learning
Adaptive Bit-rate HSDPA Norway Pensieve 0.99 Potential out-of-distribution samples

such representations because they allow black-box models to
identify and exploit spurious correlations between features.
The fourth use case concerns the application of a complex
ensemble of neural networks [27] to perform traffic anomaly
detection (e.g., Mirai attack). By showing that this model is
also vulnerable to o.o.d. samples, we corroborate previously-
reported criticism of this model [15] and support it with further
evidence. We also used TRUSTEE to analyze other ML-based
models for networking and network security problems in the
literature, which we briefly describe in the thesis. Because of
a lack of space, we do not show the decision tree explanations
extracted from the models nor their validation, but they can
be found at [20].

The use cases analyzed show that ML models widely
applied to solve networking problems fail to fulfill their tasks
when put under minimal adverse circumstances. Since it is
unfeasible for an operator to verify every decision in a zero-
touch management loop manually, our results indicate that
operators are, in fact, correct not to trust ML models to config-
ure the network based solely on monitored data automatically.
However, by employing a new research pipeline for AI/ML
provided by TRUSTEE, one can expose decisions made by
black-box ML classifiers and therefore increase trust in those
decisions. Given this knowledge of the “inner-workings” of
ML models, operators can choose to relinquish control to the
ML model if they agree with the decision made by the model.

V. CONCLUSIONS

This thesis has investigated the use of ML techniques in the
general design of a self-driving network. The indiscriminate
use of ML to solve network management tasks raises an
inherent lack of trust in the black-box classifiers among
network practitioners. To tackle this problem this lack of trust,
this thesis analyzed and evaluated the decision-making process
of ML-based classifiers that compose a self-driving network.
We also propose a novel method to uncover the “inner-
workings” of any given black-box ML model, which operators
and domain experts can leverage to gain trust in decisions
made by such ML models. Our results indicate that ML models
employed to extract information from natural language intents
can be trusted, with minimal safeguarding and human-in-
the-loop verification. However, ML models that automatically
solve network security and performance problems have not
been put under proper scrutiny and can easily break when put
under stress, failing to fulfill their given tasks properly.

ACKNOWLEDGEMENTS

This work was supported in part by the Brazilian CNPq
proc. 142089/2018-4 (Arthur’s fellowship), and by FAPESP
procs. 2015/24494-8 and 2020/05152-7.

REFERENCES

[1] N. Feamster et al. Why (and How) Networks Should Run Themselves.
ANRW ’18. ACM, 2018.

[2] J. Apostolopoulos. Improving Networks with Artificial Intelligence, Oct
2020. https://blogs.cisco.com/networking/improving-networks-with-ai.

[3] Juniper Net. What Is Intent-Based Networking? https://juni.pr/3Vnfz5s.
[4] Huawei. Huawei Core Network Autonomous Driving Network White

Paper, Nov 2019. Accessed at 2022-07-06.
[5] N. Foster, et al. Using Deep Programmability to Put Network Owners

in Control. SIGCOMM CCR, 50(4), October 2020.
[6] A. Clemm, et al. Intent-Based Networking - Concepts and Definitions.

Internet-draft, Internet Engineering Task Force, December 2019.
[7] D. Jurafsky et al. Speech and Language Processing. 3rd edition, 2019.
[8] R. Boutaba, et al. A comprehensive survey on machine learning for

networking: evolution, applications and research opportunities. Journal
of Internet Services and Applications, 9(1), 2018.

[9] A. S. Jacobs, et al. Enabling Self-Driving Networks with Machine
Learning, 2022. PhD Thesis. Avaialble at https://bit.ly/3UhFlXq.

[10] H. H. Liu. The Practice of Network Verification in Alibaba’s Global
WAN, May 2021. https://bit.ly/3XNjfiw.

[11] R. Birkner, et al. Net2Text: Query-Guided Summarization of Network
Forwarding Behaviors. NSDI ’18. USENIX, 2018.

[12] A. S. Jacobs, et al. Hey, Lumi! Using Natural Language for Intent-Based
Network Management. USENIX ATC 21, July 2021.

[13] A. S. Jacobs, et al. Refining Network Intents for Self-driving Networks.
SIGCOMM CCR, 48(5), January 2019. Best Paper Award.

[14] A. S. Jacobs, et al. Artificial neural network model to predict affinity
for virtual network functions. NOMS ’18, April 2018.

[15] D. Arp, et al. Dos and Dont’s of Machine Learning in Computer
Security. In USENIX Security 22, August 2022.

[16] Z. C. Lipton. The Mythos of Model Interpretability: In Machine
Learning, the Concept of Interpretability is Both Important and Slippery.
Queue, 16(3), June 2018.

[17] A. D’Amour, et al. Underspecification Presents Challenges for Credi-
bility in Modern Machine Learning, 2020.

[18] R. Geirhos, et al. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11), Nov 2020.

[19] M. Arjovsky, et al. Invariant Risk Minimization, 2020.
[20] A. S. Jacobs, et al. AI/ML for Network Security: The Emperor Has No

Clothes. ACM CCS ’22, 2022. Best Paper Honorable Mention.
[21] L. S. Shapley. A Value for n-Person Games. Princeton U. Press, 2016.
[22] W. Guo, et al. LEMNA: Explaining Deep Learning Based Security

Applications. ACM CCS ’18, 2018.
[23] O. Bastani, et al. Verifiable Reinforcement Learning via Policy Extrac-

tion. NIPS’18. Curran Associates Inc., 2018.
[24] H. Lakkaraju et al. ”How Do I Fool You?”: Manipulating User Trust

via Misleading Black Box Explanations. ACM AIES ’20, 2020.
[25] I. Sharafaldin., et al. Toward Generating a New Intrusion Detection

Dataset and Intrusion Traffic Characterization. In ICISSP, 2018.
[26] J. Holland, et al. New Directions in Automated Traffic Analysis. ACM

CCS ’21, 2021.
[27] Y. Mirsky, et al. Kitsune: An Ensemble of Autoencoders for Online

Network Intrusion Detection. NDSS‘18, 2018.


