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Abstract. Computer networks and their services have become increas-
ingly dynamic with the introduction of concepts such as Network Func-
tions Virtualization (NFV) and cloud computing. To understand and
configure such a complex network to their best interests, users must use
several management tools that they are not necessarily familiar with.
In this paper, we present an architecture that provides network man-
agement for distributed applications as easy-to-use micro-services. Our
solution is based on container virtualization technologies to offer, to the
user, the maximum benefit through minimal cost. We present a proof-of-
concept for our architecture through a use case. Our results show that
acceptable overhead is added when deploying a solution for a distributed
application, and negligible overhead is added by the management tools
when the user application is under heavy stress.
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1 Introduction

Conventional computer networks are relatively static in terms of physical struc-
ture with respect to network topology, functionality, and protocols. These net-
works extensively employ physical middleboxes to perform key network func-
tions, such as routing, firewalling, and load balancing. The administration of such
networks relies on network management solutions, based for instance on SNMP,
NETconf, and Netflow, that are typically implemented through distributed ar-
chitectures, following the static structure of the underlying managed network.

The adoption of plentiful middleboxes in a network increases the overall num-
ber of devices to be managed, and because middleboxes are implemented with
proprietary hardware, the inclusion of new network functions, including their
proper configuration and maintenance, often requires a manual, thus costly, ef-
fort from the network operator. To address these middleboxes limitations, Net-
work Functions Virtualization (NFV) is an emerging technology that relies on
virtualization to implement and deploy Virtual Network Functions (VNFs) [5].
By decoupling the proprietary hardware from the associated software, NFV



enables functions to be run on top of commodity hardware, reducing opera-
tional costs and increasing network dynamicity and scalability. To achieve that,
NFV is often realized with Virtual Machines (VMs), or, recently, with emerging
lightweight virtualization technologies based on containers [3]. When compared
to VMs, VNFs materialized through container virtualization can be deployed
faster and more efficiently [6]. Containers can create and replicate customized
environments, offering isolation for running applications. Because of its enhanced
performance, Docker [13] has been largely adopted in industry and academia.
Nevertheless, the capacity to deploy, manage, and orchestrate NFV container-
based application in network environments that are heterogeneous and dynamic
remains an open challenge [15].

The dynamic nature of future networks and the ephemeral function virtual-
ization that follows along present new challenges and opportunities for network
management [7]. Likewise, the ever-growing infrastructures based on the cloud-
fog-edge paradigm is inherently dynamic with respect to hosted services [11].
Moreover, the distributed nature of the cloud paradigm can be leveraged by dis-
tributed applications [4]. Cloud applications can enjoy this synergy by being de-
signed through a micro-service paradigm, in which the application is decomposed
in smaller interconnected functions [1]. As of now, the burden to deploy, config-
ure, and monitor network management tools for any new application is on its
owner, usually, and is not a light one to carry out. Picking the right management
tools for each application and guaranteeing their correct functioning throughout
scaling events, for example, can become a more difficult task than providing the
application itself. Service providers, tenants, and end-users of cloud computing
could therefore benefit from the automation of these management tasks.

In this paper, we present an architecture designed to provide network man-
agement for distributed applications as micro-services. In our architecture, a
tenant or customer can pick network management tools for the network infras-
tructure serving one or more applications of interest when deploying those ap-
plications, and the desired tools are then deployed and configured automatically,
transparently to the user. By using container virtualization to deploy the desired
management tools, minimal overhead is added to the operation. To assess the
feasibility of our proposal, we present an use case for an implementation of our
architecture. Our results show that the deployment of a solution with the user
application and the necessary network management tools adds an acceptable
overhead when compared to the deployment of the user application by itself.
A performance analysis of the user application under stress also indicates that
negligible overhead is added by the management modules, thus being a valuable
tool to understand and manage distributed applications when it is most needed.

The remainder of the paper is organized as follows. In Section II, we present
the background and related work. Then, we describe the proposed architecture
in Section III. In Section IV, we explain how network management architectures
are mirrored in our solution templates. Then, we present a use case and discuss
the results regarding the architecture’s implementation in Section V. Finally, in
Section VII, we present our conclusions and future work.



2 Background and Related Work

The present article proposes micro-service based network management for dis-
tributed applications. Thus, it is necessary to present background on micro-
service and container as well as some particularities of the chosen implementa-
tion. Besides that, we discuss some related works.

Container is a set of one or more processes organized separately from the
system. All files required for the execution of such processes are provided by
a separate image. In practice, containers are portable and consistent through-
out the migration between development, testing and production environments.
The containers are light and start very quickly [14]. Docker is an example of
open platform for lightweight container virtualization platform which exploit
improvements in kernel-level namespace support in Linux. These namespaces
provide isolation between the host and the container as well as among different
containers. Docker is aided by a set of tools and workflows which can be used
by developers to deploy and manage containers [8].

Micro-service is an architectural style largely based on decoupled auton-
omous services that can be developed, deployed and operated independently
of each other. Micro-services lead to various challenges in relation to team or-
ganization, development practices and infrastructure [12]. In this context, the
container architecture proves to be a feasible implementation of micro-services.
This tendency to use micro-services architecture has been shown to be allied to
the structure of containers in at least 5 essential reasons [1]: to reduce complexity
using small services, to scale, remove and deploy parts of the system easily, to
improve the flexibility of using different structures and tools, to increase overall
scalability, and to improve the resilience of the system.

Ciuffoletti [2] proposed the automated specification and implementation of a
monitoring infrastructure in a container-based distributed system. In this work,
a simple monitoring infrastructure model was defined to provide an interface be-
tween the user and the cloud management system. This model defined a monitor-
ing infrastructure, comprising multiple instances of two basic components, one
for measurement and one for data distribution. A proof of concept demonstra-
tion was described through the Docker hub, and consisted of two multi-threaded
Java applications that implement the two basic components. The reference ar-
chitecture of the monitoring subsystem is composed of two entities: one that
manages data, one type of proxy, another that produces data.

Jaramillo et al. [8] presented a case study to discuss how Docker can ef-
fectively help leverage the micro-services architecture with an actual working
model. Our work differs from the above by meeting the challenge of observabil-
ity, i.e., microservices architecture needs a way to visualize the health status of
all services in the system to quickly locate and respond to any problem that oc-
curs. The architecture we present, deploy containers with network management
tools associated with micro-services available in another set of containers where
the applications are installed. Thus, this scheme can monitor, register and man-
age the network of containers of the main applications avoiding their failures, or
even tracking the reason for failures through their records.



Jha et al. [9] carried a study on the performance evaluation of Docker con-
tainers that perform a heterogeneous set of micro-services at the same time. This
study concludes that running multiple micro-services within a container is also a
viable deployment option, as it gives comparable (sometimes better) performance
than the baseline, except for running multiple similar types of micro-services.

Lv et al. [10] proposed a machine learning-based container scheduling strat-
egy for micro-services architecture to adjust the number of containers accurately
and quickly in real time, specially when the service load suddenly fluctuates.
Data obtained from experiments are used to train a random forest regression
model for the prediction of the required service containers in the next time win-
dow. By adjusting the number of containers to balance the load pressure of the
services, the proposed algorithm saves significant time comparing to traditional
algorithms as well as other machine learning algorithms.

3 Network Management as a Micro-service

The aforementioned popularization of cloud computing services and similar dis-
tributed computing architectures has enabled the growth of distributed applica-
tions. Applications and macro-services can be modularized in lower-level inde-
pendent services, which are themselves interconnected in a way to provide the
application with high-level functionality. For example, the service for a Word-
press Web page can be split in a service running a Web server application and
another service running the required database; in another example, a critical ser-
vice can be replicated among several geo-distributed computing nodes, adding
load-balancing and fault-tolerance capabilities to the service with ease. Clients
of cloud computing services can then leverage the scalability and robustness of-
fered by the cloud infrastructure transparently, while maintaining their focus on
the application itself.

Troubleshooting distributed applications malfunctioning, however, is rarely
an easy task. In the previous Wordpress example, a slow response time from
the server could be due to a problem in the web server, in the database, or in
the communication between them. In this case, the application owner may be
well-equipped to monitor how each service is running, but understanding the
communication between them could require the installation and configuration
of additional network management tools. Similarly, other network management
features desired by the application owners, such as security in the form of a
firewall or a deep packet inspector, would have to be deployed and configured
on top of the application by its owner.

In order to aid application owners with little expertise in the network man-
agement discipline, we introduce an architecture that offers the deployment and
configuration of such management tools as a micro-service for the user. Our pro-
posal is that application owners should only specify the network management
features desired, in addition to the application itself, and would have the low-
level work performed by our architecture. Additionally, in order to comply with
containerization and micro-services paradigms, management tools should be de-



ployed by the platform only when required, and isolation between application
containers and management containers should be maintained whenever possible.
With these requirements in mind, we design an architecture that is able to pro-
vide network management as a micro-service for distributed application owners.
Our architecture and its functioning are presented in Figure 1.
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Fig. 1: Proposed architecture, including modules and their interaction.

The User of our architecture is the owner of a distributed application who
wants to add one or more network management features effortlessly. Their input
to the system is composed of a relationship of their regular application and
the management features they expect for each service. The user input is passed
through the Template Selector module.

The Template Selector is a module responsible for interpreting the user
expectation regarding network management, and translating them in a relation-
ship between the application modules and the required network management
tools, which is mapped through a template. The Template Selector can be im-
plemented to work with different abstraction levels, from low-level configuration
parameters to high-level intents. In this work, we implement this module to work
with low-level configuration parameters as a proof-of-concept, but the module
can be expanded to include different abstraction levels with no impact in the
remainder of the architecture. In our architecture, if a user’s application is com-
posed of a Web server and a database, for example, and they inform their need
to monitor the latency from the Web server to their database, the Template
Selector will map the request in a template that includes One-Way Ping (OW-
Ping) and OWAMP, client and server for determining one-way latency, to be de-
ployed and configured alongside the Web server and the database, respectively.
To achieve that, the Template Selector will query the Management Template
Catalogue for a template that fits these requirements. If such a template is
available in the catalogue, a complete deployment specification containing both
the user’s and the management’s applications will be provided. Additionally to
the management tools required, every available template is also composed of a
central monitoring container; when needed, this container also offers users an in-
terface to interact with the management features they previously asked for. The
following section covers network management templates specificities in-depth.



The Deployer receives the deployment specification and processes it, deter-
mining how containers should be distributed, which namespaces must be shared
(and by which containers), and any other network configuration needed for the
solution to be deployed. When the solution is produced, the Deployer queries the
Container Image Catalogue for the images needed. Users can provide their
own application images when needed, but images for some prominent network
management tools are already pre-configured in the system. When the solution
is ready to be instantiated, the Deployer triggers the Container Orchestrator
to deploy the containers. Open-source platforms such as Kubernetes and Docker
Swarm are example of container orchestrators, allowing the management and
orchestration of Docker Engine clusters. Any additional configuration necessary
is performed by the Deployer before returning a user interface to the user.

4 Network Management Architectures as Instantiable
Templates

Network management is a discipline that includes, for example, network con-
figuration, fault analysis, performance monitoring, and security assurance. The
management of complex networks is thus not to be solved by a single tool but
rather by the careful selection and combination of network management software.
Their diverse purpose means that network management tools greatly differ with
respect to their computational and architectural requirements, e.g., a misplaced
firewall is a useless firewall. A typical network management architecture is com-
posed by management agents, that interact directly with managed devices to col-
lect management information and oftentimes set configuration parameters, and
a central management entity (e.g. an SNMP manager) that monitors and acts on
the data collected by agents. Being a distributed application itself, the network
management architecture can also be organized as a set of micro-services.

To fulfill user expectations regarding network management features, the ap-
propriate set of tools must be chosen. Since requirements for management tools
differ from each other, careful thought is required in their deployment. In this
context, our architecture introduces instantiable templates for network manage-
ment architectures. An instantiable template contains the information required
so that management containers can be deployed alongside the user application
containers, their positioning, and any other configuration needed to realize the
management function correctly. Experts can develop new templates as needed,
and the new templates can be fed to the architecture’s template catalogue.

An important aspect that differentiate templates is with respect to container
isolation. Container isolation between user application and network management
tools should be maintained whenever possible. This is realized by the definition
of a complete and exclusive set of namespaces for each container deployed, pro-
viding resource isolation between processes and containers running in a single
system. Usually, in the micro-service paradigm, complete isolation between con-
tainers is a welcome feature. However, by carefully breaching certain isolation
aspects between specific management tools and the user application they are



expected to manage, we can leverage the benefits of the micro-service paradigm
while performing the network management deployment needed to realize users’
desired features. In this case, two or more containers will share a subset of names-
paces, allowing the network management tool to properly perform its function.

To illustrate the different template compositions, consider the following 4
common network management tasks that our system can realize (Figure 2):
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Fig. 2: Set of instantiable templates, from least to most intrusive.

(a) Monitoring the latency between two containers of the user application: for
latency sensitive applications, deploying instances of a tool such as OWAMP,
one at each of the hosts where the application containers reside, and connect-
ing them through the same local network as their application counterparts
can be enough to provide the intended latency measures. Complete isolation
between management and user application is maintained, in this situation.

(b) Securing an application through the use of a firewall: the incoming traffic
must be routed through the firewall. Only the firewall position in the network
is relevant to the deployment of this solution, and thus containers remain
isolated. However, traffic must be rerouted and potentially modified through
the new firewall function, which could affect the application performance.

(c) Monitoring all network traffic between two containers of an application: Net-
Flow or similar tools can be used to realize the desired monitoring. However,
deploying the containerized agent tool in its own network namespace would
be useless, since it would be only monitoring itself. Instead, they must be
deployed in the same network namespaces (and host, therefore) of the user
applications, so it can correctly perform the desired function. A collector
that centralizes monitoring agents data must also be included in the tem-
plate, but does not require any special isolation or positioning configuration
relative to the application containers.



(d) Monitoring and configuring parameters of two containers of an application:
this can be done through SNMP, for example, implicating a more intrusive
namespace sharing between containers, since SNMP must access network,
mount, and other information that would otherwise be isolated. Both appli-
cation and management containers thus reside in the same set of namespaces,
isolated from other systems but not from each other.

5 Use Case: Flow Monitoring for a Distributed
Application

In this section, we discuss a use case for a proof-of-concept of our architecture
and evaluate its results. The proposed scenario is described in Subsection 5.1
and results are discussed in Subsection 5.2.

5.1 Scenario Description

We consider the use case of a user that needs to run a simple Web application.
The back-end of their application is deployed in a distributed architecture, where
a Web server runs as a micro-service and responds to clients requests, and a
database runs as a separate micro-service, as shown in Figure 3a. When needed,
the Web server operates on the database over the network, since both services
do not necessarily run on the same host. We use a simple Wordpress instance
running over Apache for the Web server micro-service, and the database micro-
service is deployed with MySQL. In our scenario, the user informs their desire
to monitor existing network flows in both of their services.
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Fig. 3: Proposed use case, and solution realized by our architecture.

Our architecture interprets the user’s input, and identifies the need to deploy
a management architecture based on NetFlow to meet the user’s requirements.
Based on the selected template, three containers for management will be de-
ployed along the user application (Figure 3b). Two fprobe containers will each
monitor one of the user’s containers, and report their monitoring to a centralized
collector. As per the selected template, the network namespaces for the appli-
cation containers will be shared with the fprobe containers. The collector also



offers a processed list of network flows to the user; an experienced user can also
directly interact with the management tools and logs, and perform themselves
any in-depth analysis they so wish. The proposed solution is shown in Figure 3b.

5.2 Performance Evaluation

Our proof-of-concept is analyzed with respect to two performance aspects. First,
we measure the time elapsed to provision of network management containers and
their configuration, in comparison to having the user application being deployed
by itself. Some overhead here is thus expected, albeit acceptable, since this is
a one-time only cost over the life cycle of the application. Second, we must
measure the network and computational overhead for having the management
tools running alongside the user application. Since users are probably interested
in solving bottleneck issues in their system, minimal overhead must be added by
our solution for this bottleneck not to be any further narrowed.

Regarding the deployment time, the user application by itself and the com-
plete solution have been deployed 35 times each. To assess the scalability of
our solution, the experiment is extended to include an increasing number of
application replicas, i.e., multiple instances of the described application, which
could be used by an user for fault tolerance or load balancing, for example. Fig-
ure 4 presents the time results for all cases. In this test, images for both user
application and management solution are available in a local Container Image
Catalogue, thus minimizing the network bandwidth effect of having the Deployer
download remotely.
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Fig. 4: Deployment time for deploying user application by itself, and with man-
agement tools included by our solution.

The results presented in Figure 4 indicate that deploying the user application
by itself (i.e., without additional replicas) takes on average 7.41 s to be fulfilled,
whereas deploying the complete solution takes on average 12.99 s. Deploying
the complete solution therefore results in a 75.3% overhead to the deployment
time for a single replica, and proportionally less overhead is added when more
replicas are included (64.34% for 16 replicas). The almost imperceptible error
bars (for 95% confidence) also indicate the low variance observed throughout the



experiment. Although there is a noticeable overhead added, we argue that the
time for deployment is a one-time cost for the user, thus offset by the benefits
offered by our solution.

Another important analysis is regarding the overhead introduced for when
the user application is being stressed. In this case, to assess the network and
computational impact of management tools we instantiate an increasing number
of clients that perform requests to the Web server. In order to evaluate how
the system fares under different load levels, the number of concurrent clients
increases from 0 to 250, and the interval between each client requests are chosen
randomly from 0 to 2 seconds. We monitor the increase in CPU and RAM usage
by all containers in our deployment, and the total traffic generated by the user
application and by the management tools deployed.
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Fig. 5: Computational overhead for the system under increasing stress.

Figure 5a shows the results regarding the CPU usage. It is noticeable that the
CPU usage for the Web server container (wp wordpress) explodes from the start,
reaching its maximum from 50 concurrent clients onwards, and taking as much
CPU resource as possible in order to process all client requests. A similar trend is
observed for the database container (wp db), albeit the maximum CPU used by
it is closer to the 60% mark, and occurs at the 100 clients mark. The two results
are expected, since the increase in demand for the Web server will rapidly make
it consume all available resources; a fraction of these requests will also trigger
some operation to the database, thus resulting in an increase for it as well.
Most importantly, it is noticeable that the CPU usage by all the management
containers (collector, probe-db, probe-wordpress) remains negligible and stable
throughout the experiment. This result is important because it indicates that
the network management solution can be useful to the application owner when
they need it the most, without burdening the system performance itself.

Results with respect to the RAM usage are presented in Figure 5b. The
results show for the most part a similar trend to what was observed regarding
the CPU usage. RAM usage by the Web server container quickly outgrows all
the others combined in order to fulfill all the clients requests. The memory used



by the database in this case is stable throughout the experiment. As with the
CPU, the most important result is that the RAM usage by all the management
containers is negligible and stable, regardless the number of concurrent clients.
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Fig. 6: Accumulated traffic between application containers, application and users,
and network management tools.

Finally, we analyze the results with respect to the traffic generated in the sce-
nario, as presented in Figure 6. Network traffic has been divided in three groups
for this analysis: intra application, which is the traffic between the Web server
and the database; to/from users, which is the Web server communication with
the users requesting its service; and management, which is all traffic generated
or consumed by any of the three management containers. Results are shown in
terms of total traffic being exchanged by each group, and some values do not
start at 0 because traffic have been exchanged prior to the start of the experi-
ment. The increase in the traffic to/from users is the most prominent, which is a
straightforward result for the increase in clients throughout the experiment. As
a secondary result, Web server and database communication increases, although
not as much as in the clients case. Regarding the management overhead, it is
noticeable how little impact is added to the overall communication of the system,
with the traffic remaining close to 0 throughout the experiment. Paired with the
previous result regarding CPU and RAM, we can conclude that the system’s
performance (i.e., the user application) is not affected by the management tools
deployed even when under stress. Thus, our solution is fit to assist application
owners in dealing with malfunctions of their system.

6 Conclusions and Future Work

Network management plays an important role in the success of new, dynamic
network paradigms. Therefore, the need to automate management solutions and
offer them as an easy-to-use service to users is pivotal. In the case of distributed
applications, understanding how modules communicate over the network can be
the difference between making or breaking an application, but determining the
correct tools for each case requires some network knowledge one might not have.



In this paper, we presented an architecture that can easily deploy network
management tools for distributed applications. Through our architecture, appli-
cation owners can indicate what type of management features they expect for
each module of their application, and the selection and configuration of manage-
ment tools is performed automatically. Because our solution is designed using
the micro-service paradigm, negligible run-time overhead is added to the user
application, and a low-cost overhead in deployment time is offset by the benefits
our solution offers. In future work, we expect to further enrich our architecture,
with the development of the other modules, and the improvement of the ones
that are already in place.
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