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Abstract
5G networks have imposed a drastic shift in how mobile telecommunications must 
operate. In order to comply with the new requirements, solutions based on network 
function virtualization (NFV) and network slicing must be carried out. Regarding 
NFV in particular, the trend towards pulverizing the monolithic software in a micros-
ervices-based one carries network management challenges to operators. The deploy-
ment and integration of one or more network management software with the managed 
services is as important as it is delicate, as stringent requirements of 5G applications 
must be respected. In this paper, we propose SWEETEN as a solution for automating 
the deployment and transparently integrating network management solutions from dif-
ferent management disciplines, in this case, monitoring and security. Demonstrating 
its usability through a intelligent healthcare use case, SWEETEN is shown to transpar-
ently provide monitoring and security solutions for a complete network slice, enabling 
compliance with privacy requirements through minimal low-level interventions from 
the network slice tenant. The results show how SWEETEN integration of monitoring 
and security disciplines can assist users in guaranteeing the correct operation of their 
deployments regardless of the underlying software solutions used.
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1  Introduction

Telecommunications have been undergoing massive evolution in the last years with 
the specification and launch of 5G networks. While previous generations mostly 
focused on improving customers data rate, 5G networks cover a wide range of appli-
cations with diverse requirements by offering disruptive improvements in reliability, 
device density, and coverage, to cite a few. In order to comply with such require-
ments, 5G networks must employ modern techniques for network slicing and net-
work function virtualization (NFV) [1].

Since its inception, NFV has drawn attention from academia and industry 
because of the benefits it offers in comparison to traditional middlebox appliances 
(e.g., firewalls, deep packet inspectors (DPIs)). NFV decouples the proprietary hard-
ware from the associated software, enabling the network functions to run on top of 
commodity hardware [2]. This shift enables dynamism and scalability much needed 
for 5G networks, all the while reducing operational costs for mobile carriers. In turn, 
these virtual appliances represented by virtual network functions (VNFs) present 
their own challenges, in particular when a function is pulverized in multiple micros-
ervices that must cooperate to deliver the network service appropriately [3]. In this 
case, the 5G application’s requirements must be carefully considered by the VNF 
manager, for the VNF as a whole and for the individual microservices comprising it.

Network management is a complex process that can include disciplines such as 
monitoring, securing, and configuring network devices. With the virtualization of 
network functions and further with the shift from monolithic software to micros-
ervices-based ones, networks become increasingly reliant on proper management 
of their components [4]. More then ever, individual pieces of the network must be 
properly managed so that the myriad of applications that 5G enables can be truly 
experienced by the end user. Newer well-rounded management solutions such as 
service meshes can provide a variety of network management capabilities to mul-
tiple applications interconnected through microservices. These technologies often 
rely on deploying a separate container with every microservice for the managed 
applications, which interfaces all connections from and to the application container, 
and therefore are known as sidecar proxies [5]. Such solutions, however, are mostly 
fit for complex deployments, and often introduce network overhead (due to the addi-
tional hop per microservice in a flow) that can hinder their adoption depending on 
applications requirements.1 Extreme cases such as edge applications could even 
suffer from the computational overhead from the additional containers deployed. 
Specific requirements for each application must therefore be considered when provi-
sioning the network management capabilities, as there is no one-size-fits-all solution 
for all different applications thus far.

Considering that 5G networks are envisioned to support upcoming mission-crit-
ical applications, security becomes a primary concern. Targets can range from gov-
ernments and industries to ordinary citizens. For example, eavesdropping e-health 

1  https://​medium.​com/@​pklin​ker/​perfo​rmance-​impac​ts-​of-​an-​istio-​servi​ce-​mesh-​63957​a0000b.

https://medium.com/%40pklinker/performance-impacts-of-an-istio-service-mesh-63957a0000b
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devices can leak confidential information regarding their users, and thus impose an 
important security requirement for the setup [6]. Additionally, battery limitations 
from these devices can result in minimal computational overhead being acceptable 
for management solutions. A different application with similar security challenges 
that runs in the cloud, conversely, could make use of more robust management arti-
facts that would incur in greater overhead overall. Since applications and resulting 
requirements can vary significantly, and because there is an increasing number of 
management tools offered for various contexts, correctly choosing and configuring a 
set of tools for each scenario becomes a challenging task even for experts.

In this paper, we present how SWEETEN (aSsistant for netWork managEmEnT 
of microsErvices-based VNFs) can help VNF operators and network slice tenants 
by including management features from multiple disciplines (e.g., monitoring and 
security) in operators’ and tenants’ deployments in a transparent manner. This work 
is a direct evolution on our previous one [7], where managed entities were limited 
to VNFs and only monitoring was implemented as a management discipline. Now 
complete network slices are covered by SWEETEN, which is also able to provide 
both security and monitoring solutions. By augmenting their deployment specifica-
tion with high-level management features request, tenants can enrich their deployed 
entities with automatically chosen and configured management tools and have 
their management needs fulfilled. When deemed necessary, the user can specify 
lower-level configuration parameters in order to fine-tune how the complete solu-
tion should be put together by SWEETEN. Natural language processing (NLP) is 
employed to extract meaningful tags from users deployment descriptions, which are 
then used to provide tailored solutions for each deployment. After the deployment 
phase, the system provides the user with an integrated dashboard and an API that 
allows the operator to manage their VNFs and network slice from a high-level per-
spective, regardless of the specific management tools selection and their interfaces 
at the lower-level. In this respect, SWEETEN’s main contributions presented in this 
paper are:

•	 Automated configuration and deployment of network management tools follow-
ing user’s high-level specification, offering management solutions for novice 
users with ease;

•	 Varying abstraction levels in the specification are allowed, enabling fine-tuning 
of the solution by advanced users;

•	 Integrated dashboard, allowing transparent management for all entities of interest 
regardless of underlying software configured to realize the network management 
required.

We implemented a prototype to evaluate SWEETEN in terms of providing manage-
ment capabilities to an intelligent healthcare use case. In this use case, patients can 
be monitored by a number of resource-constrained Internet of Things (IoT) health 
monitors and other resourceful devices in real-time, enhancing quality of human life 
through the automated execution of mundane tasks [8]. To achieve that, data col-
lected by said devices is sent to a deep learning module hosted in the cloud, which 
processes the data from a patient and triggers alarms when events happen. Due to 



	 Journal of Network and Systems Management (2023) 31:36

1 3

36  Page 4 of 21

the sensitive nature of the traffic exchanges by the healthcare devices, security in 
the terms of privacy is a foremost concern for all communication. It should be noted 
that, since these devices can be resource-constrained, solutions should balance the 
defensive mechanism effectiveness and the overhead they produce. Moreover, IoT 
devices in this use case utilize narrowband IoT (NB-IoT) for their radio-access tech-
nology as it offers improved coverage and efficiency in terms of cost and power con-
sumption [9]. Cloud radio access network (C-RAN) is used to deliver connectivity 
to the application’s devices, imposing stringent latency and data rate requirements 
that must be met throughout the deployment life-cycle and thus implying the need 
for careful monitoring.

By using SWEETEN, the results show that operators can request management 
features and come up with solutions from a high-level perspective, with no need for 
expertise in specific tools and configurations that would typically constitute a bur-
densome work for experts. Through the inclusion of annotations to their specifica-
tion, users receive management solutions configured for their needs. The additional 
management entities deployed represent a significant overhead regarding the deploy-
ment time, but considered acceptable for the benefits offered and due to its infre-
quent occurrence. Minimal computational overhead was also perceived for when the 
solution is deployed, while a much more prominent overhead is present regarding 
network overhead. Notwithstanding, the overhead is much more due to the included 
management entities themselves and not due to SWEETEN usage, and would thus 
also be present if a similar management solution were to be manually included by 
the user, therefore presenting a net gain for the user.

The remainder of this paper is organized as follows. In Sect. 2, we present back-
ground and related work. Then, we describe a proposed architecture in Sect. 3. In 
Sect. 4, we present a use case that illustrates management challenges faced by novel 
applications in 5G networks management. Then, we evaluate our proposal with the 
use case, discussing the results in Sect. 5. Finally, we present our conclusions and 
future work in Sect. 6.

2 � Background and Related Work

Because this study spans over a few non-trivial concepts, contextualizing each of 
them and how they relate to each other is necessary. To this end, Sect. 2.1 presents 
the main characteristics of the microservices paradigm and current efforts towards 
managing software that follows such paradigm. Network slicing as a technique for 
delivering 5G use cases is discussed in Sect. 2.2.

2.1 � Microservices

Monolithic software can be defined as a software composed by modules that 
cannot be executed independently [10]. Software design has generally followed 
a monolithic paradigm in which an indivisible software is responsible for realiz-
ing a complex service in an integrated manner. Monolithic software still can and 
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should be designed through a composition of specialized modules. However, the 
different modules in a software following the monolithic paradigm still rely on 
resource sharing (e.g., memory, CPU) for running in the same machine, which 
tightly ties all the components as one atomic application. While the monolithic 
architecture is viable for many applications, recent off-premise and distributed 
computing offered by cloud services impose the need for a more flexible para-
digm in software design. In the microservices paradigm, systems are designed 
through independent components called microservices, which provide a system 
with cohesive and well-defined functionalities [4]. Context sharing between 
microservices is done through network messaging, allowing microservices to 
be deployed along a distributed infrastructure, as well as completely decoupling 
implementation details and choices (e.g., programming languages) between 
modules. Microservices introduce many benefits regarding continuous integra-
tion and delivery, for example, as updates for individual microservices may be 
gradually rolled out. However, the design also imposes new management chal-
lenges that must assert the correct operation of each microservice, and of the 
composed software as a whole.

Designing and developing software through the microservice paradigm can 
quickly become hard to manage as complex connection schemes are required 
among hundreds of microservices. Service meshes recently emerged as a solu-
tion for that through the automatic management for microservices connections, 
as reviewed in the study by Li et al. [5]. Among their benefits, service meshes 
can provide service discovery for the microservices and load balancing among 
different containers (even using different software versions). On the implemen-
tation side, these solutions usually employ an array of lightweight network prox-
ies, which are deployed alongside the application containers and can provide 
an interface for all incoming and outgoing connections. Some specific scenar-
ios that are much relevant to 5G, such as multi-tenancy, can however present 
specific challenges that were not part of service meshes design. SWEETEN 
is designed to provide management for VNFs and network slices with various 
requirements, such as the minimal computational and network overhead for IoT 
applications, and thus can provide the appropriate management services and 
configuration based on the user specification and high-level feature annotations.

Chowdhury et  al. [3] highlighted the importance for the NFV ecosystem to 
have VNFs designed through a microservice architecture. In Service Function 
Chains (SFCs), for example, having monolithic VNFs incurs in unnecessary pro-
cessing overhead from redundant functionalities. Instead, the redesign of these 
functions through microservices enable fine-grained resource allocation and 
independently scalable components, as elements for the orchestration of VNFs 
in an SFC become also present for the VNF-Components (VNF-C) for any 
VNF. Among the research challenges documented in the literature, the adequate 
monitoring of these functions is underlined, as well as questions pertaining per-
formance profiling and overhead trade-offs, all occurring topics in our present 
research.
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2.2 � Network Slicing

Network slicing refers to the slicing of a single physical network into multiple iso-
lated logical networks [11], and thus has emerged as a cornerstone for evolving 5G 
networks. While 4G and previous generation relied on a one-fits-all architecture 
to serve mobile network costumers, 5G covers a plethora of services with diverse 
requirements, and so the system itself must be customized to meet each customer’s 
needs. With network slicing, the common network infrastructure can be harmo-
niously shared among multiple tenants, allowing their diverse requirements to be 
met while providing isolation between slices. End-to-end network slices can span 
over various network layers and heterogeneous technologies (e.g., RAN, core, and 
cloud), and can facilitate service delivery to customers while also enabling effi-
cient networking and service convergence [12]. Network slicing helps providing the 
much needed dynamism and scalability in 5G networks, as customized end-to-end 
slices can be created on-demand and thus provide a cost-efficient manner to serve 
customers.

Slamnik-Kriještorac et al. [13] presented an extensive survey on the distributed 
and heterogeneous resource sharing that is taking place in 5G networks. The sharing 
model for 5G and other networks proposed by the authors is classified in three dis-
tinct models: technical, business, and geographic. Specifically, the technical model 
is structured in three layers: infrastructure, orchestration, and service. Although 
some management concerns for network slices are discussed, they primarily focus 
on the infrastructure layer, while the examples for service (e.g., Healthcare) and 
orchestration (e.g., Kubernetes) are left for each layer and case to solve individually. 
Our study, in contrast, proposes that the network management should consider all 
layers jointly, and also that this management is a complex task that operators should 
be assisted with when deploying new network slices.

Kist et  al. [14] proposed a virtualization scheme that allows technologies and 
instances for different radio access networks (RANs) to be provided as services 
for network slice tenants. The proposal offers programmability and adaptability for 
service providers while maintaining isolation between tenants and their slices. An 
experimental scenario evaluated by the authors comprised of LTE and NarrowBand-
IoT (NB-IoT) clients showcases how the proposed system allows the provisioning 
and management for virtual RANs (vRANs) for providers’ network slices. The 
management aspect is however limited to the RAN infrastructure, and any addi-
tional required management aspects (e.g., regarding the application, or other VNFs 
included in the slice) are left to be determined and deployed by the slice owner.

Coelho et  al. [15] looked into formally defining the network slice designing 
problem, proposing a framework that considers nested slices and network func-
tions decomposed in smaller services and models the relationship between radio 
splitting, control and data planes isolation, and core network function placement. 
Leveraging the reusability of smaller network function services and network 
slices subnets, a variety of sharing policies that range from total isolation to flat 
sharing can be used to realize 5G services of any class, and fulfilling the stringent 
requirements each of them impose. The study therefore focuses on producing a 
network slice, including necessary network functions, their split and placement, 
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to deliver the demands posed by a number of services. The slice management 
itself, including the appropriate monitoring of the deployed network functions, is 
not covered by the slice design and thus is left for the operator to manually deter-
mine, configure and deploy the appropriate solutions.

Our proposal compliments the related work regarding microservices as we 
consider their specificities within a network slice when delivering a management 
solution, and do so from a high-level perspective. That, on one hand, allows the 
focus for designing and implementing a microservice not to be taken from the 
service itself, and on the other hand maintain management and application as sep-
arate as possible. The proposal’s architecture is further discussed in the following 
section.

3 � SWEETEN Design and Implementation

In this section, we review SWEETEN design, which has been previously intro-
duced and evaluated in the context of network monitoring [7]. Moreover, addi-
tional implementation details are now presented in-depth for all the architectural 
components that comprise the system. An overview of SWEETEN is presented in 
Fig. 1. The remainder of this section presents the system progressively. General 
aspects and user input are discussed in Sect.  3.1. SWEETEN pre-processing is 
discussed in Sect. 3.2. The system’s mapping of management tools and configura-
tions is explained in Sect. 3.3. Finally, the process of deploying the mapped solu-
tion and returning a customized dashboard to the user is discussed in Sect. 3.4.
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Fig. 1   SWEETEN architecture [7]
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3.1 � General Aspects and User Input

SWEETEN can be viewed as an automated assistant intended to help tenants of 
5G slices to meet management requirements for their slice components. In par-
ticular, when these components are designed following the microservices archi-
tecture, network management must be thought of while respecting the modular-
ity and isolation envisioned in this architecture. Moreover, a slice can span over 
thousands of microservices [16], which makes automated management not only a 
benefit but a necessity.

The user input in the designed system consists of a specification for user con-
tainers, which is augmented by the user to contain requests for management fea-
tures. These management features can be of multiple disciplines, namely security, 
monitoring, and administration. Some examples for each discipline are found in 
Table 1.

With respect to the classification for network management features, three 
disciplines are considered, as presented in Table  1. The monitoring discipline 
encompasses all measurements that can be done to assert a network and its com-
ponents are behaving as expected [17]. These measurements can be either pas-
sive (e.g., observing flows in a given interface) or active (e.g., probing a link to 
check latency and throughput available). The security discipline involves all sen-
sitive aspects in a network, including privacy and resilience requirements and the 
means to guarantee them at a certain level [18]. The administration discipline is 
comprised of management tasks and applications that actively alter the network 
behaviour for one or more device. For example, Netconf protocol can be utilized 
to reconfigure switches and routers in a network, altering its behavior dynami-
cally [19].

Having presented the user options for management features requests, an excerpt 
from a user specification with requests for both monitoring and security features is 
presented in Listing 1. While novice users can request high-level management fea-
tures more easily, advanced users can specify lower-level configuration parameters 
that must be observed in the provided solution. This enables operators to promote 
network management capabilities from a high-level perspective, while also being 
able to traverse through lower-level configuration parameters when necessary. An 
example for such parameters addition is presented in Listing 2, where in addition to 
specifying which tool should be used (i.e., Prometheus), configuration for the meas-
urement intervals and the dashboard are provided by the user.

Table 1   Network features and respective tools listings  [7]

Monitoring Security Administration

Flows sFlow, NetFlow, Prometheus Snort (for IDS), OSSEC –
Traffic Prometheus, iPerf, SNMP iptables, nftables Linux tc
Latency SmokePing, OWAMP, TWAMP – Linux tc
Device Kubelet (Kubernetes native) Syslog, antivirus utilities NETCONF, SNMP
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3.2 � User Images Pre‑processing

The user input is received by SWEETEN through the Features Acquirer module. 
This module is responsible for retrieving information on all microservices defined in 
the user specification as well as the management features requested for each micros-
ervice.In addition to the nature of the management desired, requirements for the pro-
duced solution can be derived from requirements tags. To achieve that, each micros-
ervice with a management annotation undergoes three steps: 

1.	 Management feature retrieval, where the requested features and options are 
extracted from the user specification.

2.	 Description enrichment, where the information about the user service is aug-
mented.

3.	 Service tagging, where tags that better describe the service requirements are 
appended to the specification.

Each requested feature obviously can be realized by a number of tools. In order to 
allow the best possible match for tools selection and configuration in a later stage 
within SWEETEN, user’s microservices undergoes a tagging process composed by 
the description enrichment and service tagging processes previously mentioned. 
For each component in the user input for which a feature is requested, SWEETEN 
appends tags that can provide some insight about the type of service and its require-
ments. Tags are later used to differentiate the tools and configuration choices for 
monitoring a cloud-hosted service from an IoT one; for example, while the former 
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can leverage network and processing resources to employ a robust solution, the later 
must realize the management necessities with minimal overhead.

To alleviate the burden for the user, SWEETEN can automatically derive tags 
from the user specification alone without any additional user input. To achieve that, 
the description for each container that composes a service is processed in the service 
tagging step. This description is rarely present and descriptive for most containers, 
so the description is enriched before tags are derived. For the purpose of our proof-
of-concept, the description enrichment process is obtained through a simple Google 
web search query that is automatically requested by the system. This query is com-
posed of the words “define” and the container image name, and the text for the first 
result is considered by the system. The service tagging process can then run the 
enriched description through a Natural Language Processing sub-module to extract 
the aforementioned tags, as described next.

Natural Language Processing (NLP) is an area of computer science that employs 
algorithms for learning, understanding, and producing of human language content 
[20]. NLP has lately been a tool in various areas with promising results, for exam-
ple, by providing enterprises with network security insights and suggesting solutions 
when paired with a neural network model [21].

Among the many available algorithms for NLP, an important aspect that differen-
tiates them is whether they require supervised learning or not. In SWEETEN’s case, 
since we want not only to include current management features but also to allow the 
system to easily evolve and include new ones, unsupervised learning is preferred. 
Our model of choice is based on Latent Dirlecht-Allocation (LDA) [22], an unsu-
pervised machine-learning algorithm that can help find common topics between 
multiple text documents. In this way, we initialize a database with enriched descrip-
tions for three of the top containers for each category in DockerHub,2 and stipulate 
seven different topics to be found. Each topic will contain a weighted list of words 
that indicates the prevalence of the main words for each topic. For a new document, 
i.e., the enriched description for the user microservice that is being processed, LDA 
associates a percentage for each pre-determined topic; later, the relevant words for 
the selected topics (e.g., indicating the resourcefulness of an object) are used to 
determine which solutions SWEETEN should prioritize, as explained next.

3.3 � Management Tools and Templates Mappings

Management features required by the users must be realized by a set of manage-
ment tools. The Tool Mapper module thus is the first one to make selections 
based on the Features Acquirer output. For each feature required by the user, this 
module maps to one or more tools that are capable of realizing such features. 
The listing for these mappings are provided through a Tools Catalogue, which 
has been already pre-populated by an expert. In the event that more than one 
tool are fit for a certain request, tags are considered so that the best fit can be 

2  https://​hub.​docker.​com/.

https://hub.docker.com/
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provided. The algorithm for matching the tags to the available tools is a greedy 
one, so the solution that matches the most tags from the user input is selected 
each time.

Additionally, each tool must be configured and deployed so that it can perform 
the intended task correctly. For example, a firewall must be placed in front of a tar-
geted back-end service, while an active latency monitor must be placed alongside 
the monitored microservice. Moreover, the previously appended tags must be con-
sidered when determining the configuration parameters for a given network man-
agement tool. A second stage for selection is thus performed by the Template Map-
per. A template represents the configuration required by a management tool to be 
deployed, both with respect to the tools internal configurations and with any nec-
essary cluster definition [23]. The configuration aspect is also covered by the tags 
appended to the user input, in a process analogous to the one described for the tools 
matching.

Occasionally, the correct configuration for some management tool might require 
some breaching of microservices architectural design during execution. For exam-
ple, monitoring the active connections for a microservice requires for the the man-
agement tool not only to be placed alongside the managed service, but to share its 
network context too. This is achieved by namespace [24] sharing between managed 
and management services, but which is only performed when necessary. In this way, 
microservices design can be maintained for all applications, and specificities are 
configured and treated with templates designed for such cases.

3.4 � Solution Deployment and User Dashboard

The elements of the solution must be put together in a deployable specification. 
Because we chose to use Kubernetes as the system’s container orchestrator, the 
result is composed of two separate YAML [25] specifications: one for the user ser-
vices that did not require management features, i.e., services that were already part 
of the user specification, but that did not require any management feature; and one 
for the remainder of the user specification plus all the network management tools 
included by SWEETEN. We chose Kubernetes because it is the most widespread 
platform for containers in industry and academia alike [26], which in the one hand 
offers an active community and a rich environment, and the other hand enables 
SWEETEN to be used by a wide audience.

Finally, during the slice lifecycle, the user can manage their services through a 
customized dashboard. Based on the user input, SWEETEN can deploy dashboards 
from different software. An example for a monitoring dashboard by Prometheus 
[27] provided by SWEETEN for a novice user is depicted in Fig. 2, while a more 
advanced Grafana dashboard provided by SWEETEN is depicted in Fig.  3. Non-
visualizing features, such as cryptography introduced by security features, are pre-
sented textually for the user’s knowledge. Additionally, the user can interact directly 
with the configured management container through a terminal, so they can still have 
control after the deployment phase for their slice. Thus, in comparison to our previ-
ous work, the ability to manage a complete network slice instead of being limited to 
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its VNFs, and the inclusion of security coverage in addition to the monitoring ones 
present important advances towards a more complete management assistant.

Fig. 2   User dashboard generated from the novice user’s specification [7]

Fig. 3   User dashboard generated from the experienced user’s specification [7]
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4 � Automated Network Management for an Intelligent Healthcare 
Use Case

5G systems promise a series of disruptive advancements for a myriad of applica-
tions typically classified in three scenarios. Enhanced mobile broadband (eMBB) 
addresses applications centered in multi-media content, services, and data; ultra reli-
able low latency communications (URLLC) encompasses critical applications that 
pose stringent requirements such as remote medical surgery; massive machine type 
communications (mMTC) is characterized by a large number of low-cost devices 
that transmit a low volume of data [28]. Some of the most technically challenging 
applications unite requirements from two or even all three scenarios. Healthcare 
applications can exemplify such a case, where a multitude of health devices of dif-
ferent capabilities and with distinct requirements are used to guarantee the well-
being of patients. This use case is depicted in Fig.  4 and further expanded in the 
following.

Heart rate, respiratory rate, and body temperature monitors are a small sample 
from a large list of monitoring devices that can be utilized in a patient’s health moni-
toring. The number of IoT devices employed in this scenario can grow significantly, 
providing abundant data to track patients physiological characteristics but also 
requiring a more extensive analysis by physicians and other professionals. In this 
context, these applications can be further benefited by the inclusion of intelligent 
algorithms to process and automate decisions, triggering alarms and actions when-
ever abnormalities are detected [8]. Artificial intelligence (AI) techniques based on 
novel models such as big data mining and deep learning can process large amount 
of data at real-time, and then predict and automate tasks at a rate impossible before. 
While the monitoring part must be performed on-premise, i.e., in the healthcare 
center where the patients are located, the burden of collecting and processing all the 
data can be effectively run in the cloud.

Because of the sensitive nature of the data monitored and transferred, security, 
in particular by the means of privacy, is a foremost concern. As hardware solutions 
are not always feasible and as new legislation advances the levels of privacy require-
ments for these applications, guaranteeing a certain security level from a software 
perspective is a necessity. In certain occasions, resourceful devices are used for 
patients’ monitoring, such as 4K cameras that can record their movements, and 
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paired with deep-learning algorithms can detect facial expressions and gestures of 
patients and warn healthcare professionals in the event of an anomaly [8]. However, 
most monitoring IoT devices are constrained in terms of computational power and 
battery, and so possible security solutions should account for these limitations and 
prioritize lighter-weight solutions whenever possible. Less constrained devices, in 
turn, can afford to employ more advanced and intensive defensive mechanisms, and 
the provisioning for each case should reflect these characteristics. As a manual secu-
rity approach is not feasible for complex 5G scenarios, security automation is a key 
principle in securing 5G applications and networks [29].

In recent years, multiple low power wide area (LPWA) radio technologies have 
emerged as options for delivering the scalability required by mMTC applications. 
From the alternatives, NB-IoT has been shown to offer promising results for health-
care applications [30]. NB-IoT is fully compatible with long term evolution (LTE), 
and can be deployed inside a single LTE physical resource block (PRB) of 180 KHz 
or inside an LTE guard band, potentially serving up to 50k end-devices per cell [31]. 
The limited 250 kbps data rate is plenty for hear rate and body temperature monitor-
ing that require only 1 byte for payload every 5 minutes [30], but it is impractical 
for streaming the video from the deployed cameras. Devices as such that require 
extensive bandwidth must connect over standard LTE-A network, which is capable 
of meeting their demands.

Metrics collected by all the devices are reported to a remote radio head (RRH), 
the radio antenna responsible for communications to and from users’ devices. The 
signals must then be processed by the network core, which is performed by the base-
band unit (BBU) in a base station (BS). Previously, these functions would be per-
formed exclusively by specific-purpose hardware. With the recent advances in vir-
tualization and the expansion of NFV architectures, virtual base stations have been 
adopted by pioneering virtual mobile network operators. Such operators do not own 
the required wireless physical infrastructure, but instead lease it from traditional 
mobile network operators. The processing modules for wireless services, in turn, 
can be provided by software running in the cloud, enabling different strategies that 
benefit customers [32]. In the NB-IoT case, low protocol stack processing require-
ments and low latency-sensitivity make C-RAN an attractive alternative, so all the 
BBU processing and higher-layer protocol stacks are implemented by software that 
runs on the cloud [33].

A standard LTE-A BBU can be split in different functions [34]. The different split 
options offer possibilities of alternating between dedicated hardware and function 
virtualization, allowing the flexible adoption of functional split in time and location. 
Noteworthy, 5G specifications pose stringent network requirements for their com-
munications, in particular with respect to data rate and latency. Regarding latency, 
a maximum delay of around 3ms for transmitting and processing the signal is deter-
mined by the hybrid automatic repeat reQuest (HARQ) mechanism adopted in LTE 
[35]. There is thus a stringent requirement (i.e., latency) that must be respected by 
the network slice, and that must be properly monitored too. While our previous work 
considered monitoring challenges for microservice-based VNFs in 5G networks, the 
current study further advances the management scope by including security concerns 
and measurements in the evaluated slice. Moreover, the complete network slice itself 
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is subject of study here, including different radio access technologies and service 
applications, with new features and requirements that they come with.

5 � Results and Discussion

Although there are already some promising NB-IoT solution in development [33, 
36], for stability and reproducibility of our results we do not utilize any specific 
implementation, and simply consider the traffic patterns for these deployments. 
With respect to the security demanded in the user’s specification, SWEETEN can 
leverage the previously populated catalogues and produce different results for each 
requiring application. In the present use case, it is noteworthy that the IoT monitor-
ing devices should try to adopt solutions that incur in minimal overhead because of 
their resource-constrained nature. Tools and configurations provided by experts to 
the system’s catalogues can therefore feature fine-tuned solutions for systems tagged 
as such. This way, a TLS configuration using less resource-intensive ciphers can be 
used for IoT components3, while more resourceful components can utilize a more 
robust solution4. For comparison purposes, normalized results for the different secu-
rity options are presented in Fig. 5 for memory footprint, and in Fig. 6 for network 
overhead.

The results indicate that a small computational overhead is added with respect to 
memory footprint when either the default or the IoT security solution is included. 
Albeit small, it is also noticeable that the security option recommended for IoT out-
performs the default option with respect to overhead. Similar results are also found 
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3  https://​docs.​aws.​amazon.​com/​iot/​latest/​devel​operg​uide/​trans​port-​secur​ity.​html.
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for network overhead. While it is clear that the overhead is much more noticeable 
when comparing either security option (i.e., the default one or the IoT one) to having 
no security deployed, the IoT configuration still leads to lesser overhead in com-
parison to the default configuration. While the user should still be mindful that some 
overhead will be added whenever a security feature is requested, these results show 
how experts knowledge integrated into the system through different configuration 
options can be used to produce a more fine-tuned solution for each case.

Another overhead aspect that we consider is the one added to the deployment 
time of the slice specification. Here, there are two separate types of processing over-
head that must be considered. The first one is the overhead introduced by SWEET-
EN’s processing of the user input until the complete solution is produced, as has 
been explained in-depth in Sect.  3. The second one is the additional deployment 
overhead due to the inclusion of the management services (realized by containers), 
that must be instantiated alongside the original specification. A comparison for these 
times is presented in Fig. 7. We evaluate the system’s scalability through varying the 
number of replicas for each deployment in the slice from one to ten. We divide the 
time in three steps in order to compare the overhead:

•	 Base refers to the deployment of the user’s network slice without any manage-
ment functionalities included.

•	 Complete refers to the deployment of the complete network slice with all man-
agement solutions included.

•	 SWEETEN refers to the overhead added by our prototype processing the user 
specification and delivering a deployable solution.

The results show that SWEETEN’s overhead is approximately constant regard-
less of the replicas count, and it becomes negligible for larger deployments. Larger 
deployments are precisely the ones that should benefit the most from SWEETEN, 
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as the inclusion of management features throughout a complex slice is burdensome 
in comparison to a more simplistic slice. Most of the overhead is introduced by the 
inclusion of the additional containers, with the complete solution taking on average 
94% more time to be deployed. Two noteworthy points here are that: (1) this is not a 
recurring cost, as fresh deployments are less frequent than individual updates, which 
would present a much lighter overhead; (2) the manual inclusion of management 
containers by an expert user would incur in similar overhead for the deployment 
time. Users could minimize this overhead by including the management software 
directly into their containers, but doing so would breach the microservice architec-
ture and possibly do more harm than good in the process. The overhead results are 
also aligned to what we observed previously for a different network slice where only 
monitoring management was featured [7].

We also illustrate how the user receives their monitoring information. An exam-
ple for an excerpt of the dashboard provided for monitoring the throughput is illus-
trated in Fig. 8. Through this interface, the user can easily monitor multiple services 
of their slice and quickly identify problems as they occur. Different resources can 
be configured by the system with different parameters in a transparent manner for 
the user. For instance, a resource-constrained device can be configured with a lower 
sampling rate than a more resourceful device, thus introducing less overhead. The 
user can also edit the graphics in the dashboard and add their own, so they can fine-
tune the solution to best fit their needs.

We also analyze the system performance with respect to the expressiveness 
offered to the user. About four lines of high-level feature specification by the user is 
translated to over 30 lines of management deployment specification with respect to 
security (disregarding the cryptography keys generated and used in the deployment). 
The result is even more prominent with respect to monitoring, where four lines of 
specification are translated into over 100 lines of management specification that add 
the required monitoring features. These findings are inline with what was reported 
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in our previous work [7], further reinforcing the benefits offered by SWEETEN for 
multiple management disciplines.

6 � Conclusion and Future Work

5G networks are in the process of being rolled out around the world and will ena-
ble disruptive applications and services that were not previously feasible. To realize 
that, advances presented by NFV, SDN, and network slicing, for example, must be 
carefully integrated by these networks. With the increasing number of devices and 
services, network management plays a central role in delivering the resources and 
features required by each component. For the same reason (i.e., the increasing num-
ber of networks components), the configuration and management of all the pieces 
must be realized in an automated manner.

In this work, we investigate the assisted management of network slices through 
the use of SWEETEN. Initially proposed as a system to assist VNF operators, 
SWEETEN has been demonstrated in this study as a tool capable of delivering man-
agement solutions across a diverse network slice. Through high-level annotations in 
their slice specification, users are able to effortlessly receive fine-tailored manage-
ment solutions configured for each of their applications and services. The proposed 
use case demonstrates how a network slice for intelligent healthcare can include 
monitoring and security features with ease, even considering the different require-
ments for each application.

Our results show that there is an important expressiveness gain for the user 
through SWEETEN. Assisting the user in properly deploying complex network 

Fig. 8   Example dashboard for throughput monitoring
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slices is a vital point in achieving the dynamism expected from 5G networks. We 
also evaluated the overhead of SWEETEN with respect to deployment time, and 
computational and network overhead. While the deployment time is noticeably 
affected by the additional management services included by SWEETEN, it is not 
a recurring cost (i.e., the slice’s deployment) and is easily offset by the manage-
ment functionalities featured in the slice. In the same way, computational overhead 
was non-negligible, but small enough that it is adequate for the services included. 
Network overhead, however, was much higher when cryptography solutions were 
included in the system, which, while expected, to users’ discretion is needed to 
define whether the overhead is acceptable or not.

In the future, we plan to further develop the system through the inclusion of 
additional management disciplines and solutions. A myriad of different services are 
coming with 5G, and their network requirements can be as varied as the services 
themselves. It is thus important for a management assistant to be able to cover a 
variety of cases so that its usefulness is not limited to a small subset of applications. 
Moreover, we also intend to evaluate different tagging mechanisms for the Features 
Acquirer module, so that a more refined tagging system can help SWEETEN to fur-
ther fine-tune solutions and configurations for every service. Finally, we also intend 
to enrich the deployment options so that management solutions can be deployed to 
an existing network slice.
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