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Abstract—With the emergence of new intelligent applications,
there has been a revolution in information management, mainly
including processing routines, storage, and computing capacity.
Cloud computing is one of the most well-known and popular
paradigms. However, there are still some barriers to cloud
adoption. Edge computing serves as a decentralized extension
and provides solutions that facilitate data processing at the
generation source. This paper discusses the development of
a retinal image pre-processing application for efficient use in
screening systems and the impact that pre-processing has on
network interconnection. Results show that the parallel version
has reduced application execution time by up to ≈ 73%,
decreasing by ≈ 11.5× the bandwidth used, achieving throughput
above 5 images/second with Edge pre-processing, 2.57× higher
than Cloud.

Index Terms—high-performance computing; edge; cloud; pre-
processing; diabetic retinopathy;

I. INTRODUCTION

With the emergence of new intelligent applications, there

has been a revolution in information management, mainly

including processing routines, storage, and computing ca-

pacity. We have seen a significant evolution of computing

paradigms in the last decade. Cloud computing is one of the

most well-known and popular paradigms, and its adoption

continues to accelerate as companies seek agility, flexibility,

and new sources of competitive advantage. According to

Gartner1, about 40% of enterprise workloads will be deployed

on cloud infrastructure and platform services by 2023, 20%

higher compared to 2020. Avoiding it is almost inconceivable,

but there are still some barriers to cloud adoption and the

overwhelming spread of smart devices and appliances, as the

Internet of Things (IoT) pointed out all the limitations of such

a centralized paradigm.

Edge computing serves as a decentralized extension and

provides solutions that facilitate data processing at the source

of generation or closer to the data creators and users, solving

centralization-induced problems such as optimizing latency

requirements, bandwidth savings, and autonomy. For inference

systems, for example, edge devices capture data and send it to

the Cloud for processing, but transferring data from the edge

device to the Cloud can take a long time if the volume of data

1https://www.gartner.com/

is very large. Therefore, it makes sense to process the captured

data locally on the edge node to minimize the transfer time

over the network.

Diabetic Retinopathy (DR) is a progressive disease and

primary retinal vascular complication of diabetes mellitus.

In 2019, 463 million people had diabetes worldwide. This

number can reach 693 million by 2045. The global prevalence

of diabetes in 2019 is estimated at 9.3% (463 million people),

increasing to 10.2% (578 million) in 2030 and 10.9% (700

million) in 2045 [1]. In 2020, a global meta-analysis of 12,620

patients with diabetes showed that the prevalence of DR

reached 35.36%, and the vision of 11.72% of patients was

seriously affected [2].

Complications of DR are often preventable if detected

and treated early. In practice, the clinical features of these

complications are evident in the fundus of the eye on [3]

ophthalmic examinations. Technological advances have en-

abled the development of algorithms for automated detection

of DR and diabetic macular edema in retinal fundus images.

Capturing these images often uses various hardware devices

under different environmental conditions, inducing noise in

the final image. To reduce this heterogeneity, which affects

the diagnosis’s performance, as well as highlight some details

of the images, the pre-processing of the images becomes a

necessary step. From a clinical point of view, about 20%

of retinal images are not used due to poor image quality.

Therefore, before DR screening, the selection of an effective

pre-processing scheme is mandatory [4].

This article aims to show that data pre-processing can be

performed at the edge node and accelerated through paral-

lelism techniques. A simple method of pre-processing retinal

images (locating the center and resizing) was evaluated and

verified its performance in two environments: Cloud and Edge.

The rest of this paper is organized as follows. Section II

provides an overview of network analysis, DR, and retinal

image pre-processing tools. Section III discusses some related

works. We described the implementation methodology and

architectures in Section IV. Section V presents the evaluation

results covering execution performance and image throughput

in sequential and parallel versions. Finally, in Section VI,

conclusions and future work are presented.
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II. BACKGROUND

This Section presents concepts about network traffic analy-

sis tools, Diabetic Retinopathy (DR), and techniques for pre-

processing retinal images.

A. Network traffic analysis

Network traffic analysis aims to capture valuable infor-

mation and material relevant to network management. In

general, network traffic analysis can be defined as the inference

of information from observing data flow in network traffic.

Network analysis is categorized by time (or frequency), criteria

and analysis objectives so that it can be classified into real-

time analysis, batch analysis, or forensic analysis [5].

One popular tool for capturing network traffic is sniffer,

a computer program that watches incoming and outgoing

traffic on network devices. The sniffer captures the packets

addressed to other machines and saves them for later analysis

(or, more rarely, inline). Sniffers are legitimately used by

network or system administrators to monitor and support

network troubleshooting [6]. Although there are hundreds of

sniffers on the market, TCPdump, and Wireshark are the most

used and appreciated tools [7].

TCPdump is a command-line tool for network monitoring,

packet capture, and protocol debugging. TPCdump is free

and open source, running only on Linux-based systems [8].

Typically, TCPdump is used to capture data packets trans-

ferred over the network in the following cases: designing net-

works/protocols, checking that network services are working

correctly, monitoring and making statistics based on traffic [8].

For this purpose, TCPdump provides many options where the

details of the captured packets can be explored and viewed in

various formats.

Wireshark, meanwhile, is an open-source network protocol

analyzer used to collect, troubleshoot, and assist network

administrators by allowing data from a network to be tracked

in real-time and stored for later analysis [9]. Wireshark is

credited for its simple graphical interface, powerful capture

and filtering options, and support for Linux and Windows

platforms. It is also capable of scanning networks Ethernet,
Wi-Fi or even Bluetooth [7].

B. Diabetic Retinopathy

Diabets Mellitus is a metabolic disease characterized by an

abnormal blood sugar or glucose increase. When not appropri-

ately treated, the patient will be subject to complications such

as heart attack, stroke, kidney failure, hard-to-heal injuries, and

vision problems [10]. Vision problems occur because diabetes

affects the circulatory system, including progressive vascular

ruptures caused by chronic hyperglycemia, and can develop

regardless of the severity of the patient, causing what is called

diabetic retinopathy (DR) [11].

DR is a complication arising from the prolonged diabetic

condition, appearing after ten to fifteen years [12]. Hyper-

glycemia causes damage to the tiny blood vessels within

the retina [13]. These blood vessels leak blood and fluid

into the retina, causing problems such as microaneurysms,

hemorrhages, intraretinal microvascular abnormalities, and ex-

udates [14]. Figure 1 illustrates retinas with DR.

Fig. 1. Retinas with Diabetic Retinopathy.

DR can be clinically divided into two stages: prolifera-

tive diabetic retinopathy (PDR) and non-proliferative diabetic

retinopathy (NPDR) [15]. PDR is a more advanced form of

DR marked by the proliferation of fibrovascular tissue leading

to vitreous hemorrhage and retinal detachment [16]. It is

also characterized by the proliferation of retinal vessels, the

growth of which is variable. They are commonly identified

according to their location in the retina, optic disc, or nearby,

and are more likely to proliferate on the posterior surface of

the vitreous and hemorrhage in the vitreous. Also, over time,

new vessels can often contract, resulting in retinal detachment

[17]. NPDR is an early stage of DR characterized by retinal

hemorrhages, and microaneurysms [16].

Regarding clinical classification protocols for PDR and

NPDR, the Global Diabetic Retinopathy Project Group
[18] proposed a five-level disease severity scale: I) No
apparent retinopathy: no abnormalities; II) Mild non-
proliferative diabetic retinopathy: the presence of retinal

microaneurysms; III) Moderate non-proliferative diabetic
retinopathy: more than just microaneurysms, but less than

severe non-proliferative diabetic retinopathy; IV) Serious non-
proliferative diabetic retinopathy: more than 20 intra-retinal

hemorrhages in each of the four quadrants, venous pearling in

at least two quadrants, and intra-retinal microvascular abnor-

malities in at least one quadrant in the absence of PDR; and

V) Proliferative diabetic retinopathy: neovascularization,

vitreous/pre-retinal hemorrhage.

To tracking for the severity level of DR, regular eye exami-

nations are recommended for people with diabetes mellitus, as

timely diagnosis and subsequent management of the condition

are essential to establish early treatment [19], as DR can

develop and progress to advanced stages without producing

any immediate symptoms to the patient, establishing risks,

such as vision loss [15].

C. Pre-processing of retinal images

The image pre-processing step is done to produce an image

with better quality. Most retinal images are not uniformly

illuminated and sometimes have low visual contrast and noise,
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making it difficult to detect lesions [20]. This occurs because

of capture device angle error, eye movement, and others, and

makes the fundus image inadequate for disease diagnosis.

Thus, selecting the appropriate pre-processing method for the

retinal fundus image is a required step [4].

One of the main pre-processing steps is the removal of

noise, which is categorized as: salt and pepper noise (black

and white pixel randomness occurs); Gaussian noise (intensity

value variation with normal gaussian distribution occurs);

and flicker noise (contains random white pixels) [21]. Other

important steps are contrast enhancement, tone correction, and

resizing [4]

Filters used in image pre-processing can be done by linear

and non-linear methods. In the linear method, the algorithm

applies the filter linearly to all pixels without defining which

image is corrupted or uncorrupted. The non-linear method

algorithm, on the other hand, applies the filter by defining

which pixel is corrupted or uncorrupted. The non-linear filter

produces better results compared to the linear filter [21].

III. RELATED WORK

Voets et al. [22] replicates the scientific paper by Gulshan

et al. [23], in which the source code was not published,

only described. To reimplement the original algorithm for RD

detection, the authors used similar images from two datasets:

EyePACS and Messidor-2. They evaluated the gradability of

the images on their own; images considered gradable were

preprocessed as described by the original study’s protocol for

preprocessing and used to train the neural network.

Fatemeh et al [24] propose a new platform called DEFT

(Dynamic Edge-Fabric environmenT) that learns where is the

best to execute each task based on real-time system status and

task requirements. It takes into account behavior from past

performance of the available resources. Silva et al [25] propose

a methodology to evaluate performance trade-offs through

experimental evaluation using two real-life stream processing

use-cases executed on fully-Cloud and hybrid Cloud-Edge

testbeds. The results were compared with state-of-the-art pro-

cessing engines for each environment. Pereira [26] increasing

the efficiency of fog nodes the Edge Computing through of a

priority-based load balancing. Vinay [27] focuses on compu-

tational resources of Edge Computing. The work is located in

mobile antenna base stations, which offer their computational

resources to mobile devices through the adoption of SDN.

There was a decrease of more than 50% in response times

with the proposed work.

IV. METHODOLOGY

The infrastructure of the application testing architecture can

be described as a composition of three layers, as depicted in

Figure 2: (1) Cloud layer, which runs the DR detection model

trained for inference; (2) Storage layer, consisting of a bucket

in Google Cloud Storage that is used to store the data sent

to the Cloud; and (3) Edge layer, consisting of local machine

that performs pre-processing and sending tasks to the Cloud.

Fig. 2. The architecture comprises three layers: Cloud, Storage, and Edge.

The application is implemented in Python and executed in

Shell Script. The application is divided into two modules.

The first module performs all pre-processing of the data at

the edge layer and then sends it to the storage layer in

the Cloud. Differently, the second module does the opposite,

first sending the original data – without any pre-processing

– to the storage layer, and then the Cloud layer takes re-

sponsibility for pre-processing the data. In both modules,

we evaluate the pre-processing and the sending of the data

sequentially and in parallel through processes using Python’s

ProcessPoolExecutor() class. In the parallel applica-

tion, each process receives a portion of the data and performs

specific functions. For example, in the first module, the main

function loads an image from local storage, pre-processes it (as

suggested by the original study [23]) by locating the center and

radius of the bottom of the eye and resizing it to a height and

width of 299 pixels, and then does upload to the bucket
on Google Storage.

The dataset used in the experiments is the APTOS 2019
Blindness Detection available in the Kaggle competition for

diabetic retinopathy2, which was chosen because it has a

reasonable size compared to the others mentioned above,

facilitating our experiments. This database is commonly used

for machine learning applications in DR detection and is

divided into two subsets. In this work, we selected the training

subset containing 3,662 retinal images. The images are in PNG

(Portable Network Graphics) format and have varying sizes

(Figure 5).

The cloud environment consists of a virtual machine type

N1 Standard (16 cores, 60 GB RAM), Linux Ubuntu 20.04

LTS operating system, located in eastern South America. The

storage environment uses Google Cloud Storage provided

through an instance of Firebase. This storage is an object

storage solution with large capacity, high availability, and

redundancy. Cloud Storage for Firebase allows you to ma-

nipulate files securely and easily via its SDK.

The execution environment on Edge comprises a device

with an Intel Core i7-9750 processor with 6 physical cores

(2.60 GHz). This equipment has 16 GB of DDR4 RAM

2https://www.kaggle.com/c/aptos2019-blindness-detection/data
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Memory. We used the operating system Linux Ubuntu 20.04.4

LTS with kernel version 5.13.0-41.

V. RESULTS

In this Section, we present the performance evaluation

achieved by our application on the experimental platform

shown in the previous Section. We present metrics for exe-

cution time and image throughput in sequential and parallel

versions. The results presented in this Section are the average

of at least 10 runs. The relative error was less than 5% using

statistical confidence of 95% by distribution t-Student.

A. Network evaluation

To evaluate the implementation, we first evaluated the

network connection. This evaluation measured the maximum

amount of data that could be sent from the edge node to

the cloud provider. The measurements started with throughput

analysis using the Iperf tool [28]. The results obtained from

this first step are described in Table I.

TABLE I
NETWORK MEASUREMENTS WITH THE IPERF TOOL.

Parameter Edge to Cloud

Interval 60 seconds
Total transferred 406 MBytes
Bandwidth 56.8 Mbits/second

Figure 3 shows the bandwidth and the amount of bytes

transferred every second. Comparing with the measurement

performed with the ipref3 tool, it is noticeable that when

sending the original data, we used all the available bandwidth,

with an average of ≈ 66 Mbps (Figure 3(a)), which can

overload the network. The opposite occurs when sending pre-

processed data, in which we reduce the bandwidth used by

about ≈ 11.5×, with an average of ≈ 5.7 Mbps (Figure 3(b)).

We also observed a variation in the minimum and maximum

transfer peaks for the original data (Figure 3(a)). This is due

to size differences between the files.

B. Performance Evaluation

The application has two modules: one that performs the

pre-processing on the Edge and sends it to the storage in

the Cloud, and another that sends the original data to the

storage and processes it in the Cloud. Therefore, we compare

the sequential execution time between the Edge and Cloud

environments, and we also compare the parallel execution
time between the Edge and Cloud environments. As explained

in the methodology, the parallel version splits tasks between

processes. For both executions, we set 5 processes.

Parallel executions on the Edge and the Cloud show a gain

of ≈ 71.12% and ≈ 73.01%, respectively, compared to the

sequential version. In comparison, the average execution time

of the sequential application on the Edge was ≈ 2, 318.03s,

a gain of ≈ 63.63% compared to the same version running

on the Cloud. In the parallel version, the average execution

(a) Without pre-processing.

(b) With pre-processing.

Fig. 3. Bandwidth used and total transferred.

Fig. 4. Sequential and parallel version execution times: comparing execution
on the Edge and in the Cloud.

time on the Edge was ≈ 669.52s, which represents a gain of

≈ 61.07% compared to the same version running on the Cloud.

As we can see, executions on the Edge perform better than on

the Cloud because they do not overload the network. By pre-

processing the data on the Edge, in addition to decreasing

the total size of the data by ≈ 44 × (decreasing from ≈
8, 204.5 MB to ≈ 185.7 MB), we also save bandwidth for

transferring this data.

We present the application’s throughput in Table II. This

throughput rate represents the number of images pre-processed

and transferred every second. It can be seen that in the cloud

sequential execution model, where the first step is sending the

original data to the Cloud, the throughput is too low. This is

because the dataset has a large variation in the sizes of the
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original images. In Figure 5(a) we demonstrate this variation,

with sizes ranging from ≈ 200 KB to ≈ 7, 500 KB. This

disparity in values significantly impacts execution time and

bandwidth consumption.

TABLE II
THROUGHPUT IN IMAGES/SECOND, IN SEQUENTIAL AND PARALLEL RUNS,

IN EDGE AND CLOUD ENVIRONMENTS.

Edge Cloud

Parallel 5.47 images/second 2.13 images/second
Sequential 1.58 images/second 0.57 images/second

The best result in terms of throughput is obtained in the

parallel version executed on the Edge, reaching ≈ 5 im-

ages/second. This is because the pre-processing step allows

us to normalize the data, reducing the size of each image and

the size variation observed in the original data (30 - 70 KB),

as shown in Figure 5(b).

(a) Without pre-processing.

(b) With pre-processing.

Fig. 5. Frequency histogram of images by size in KB without and with pre-
processing.

VI. CONCLUSION AND FUTURE WORK

This paper presents an application for pre-processing retinal

images for efficient use in tracking systems and the impact

that pre-processing causes on the network. We evaluate a

simple method for pre-processing retinal images and verify

its performance in sequential and parallel versions running in

Cloud and Edge environments.

With pre-processing on the Edge, we reduced ≈ 72% the

execution time and ≈ 11.7× the bandwidth used, achieving

throughput over 5 images/second in the best case, 2.52×
higher than in the Cloud. This is due to the reduction in total

data size, ≈ 44× smaller than the original data.

Our experiments have shown that the data size can neg-

atively influence the application’s execution time. In this

context, parallelism strategies become essential. Network in-

terconnection can also be challenging since the original data

often have large sizes, which congests the connection. Thus,

pre-processing data at the Edge can contribute to bandwidth

savings.

Future work will extend the performance evaluation with

more sophisticated pre-processing techniques. In addition, we

plan to expand the study by evaluating larger and higher-

resolution datasets.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil

(CAPES) – Finance Code 001. This work has been partially

supported by Green Cloud project (2016/2551-0000 488-

9), from FAPERGS and CNPq Brazil, program PRONEX

12/2014, by CNPq/MCTI/FNDCT - Universal 18/2021 under

grants 406182/2021-3, MCTIC/CNPq - Universal 28/2018

under grants 436339/2018-8 and by CIARS RITEs/FAPERGS

project.

REFERENCES

[1] X.-N. Wang, L. Dai, S.-T. Li, H.-Y. Kong, B. Sheng, and Q. Wu,
“Automatic grading system for diabetic retinopathy diagnosis using deep
learning artificial intelligence software,” Current Eye Research, vol. 45,
no. 12, pp. 1550–1555, 2020.

[2] P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin,
S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova et al., “Global
and regional diabetes prevalence estimates for 2019 and projections
for 2030 and 2045: Results from the international diabetes federation
diabetes atlas,” Diabetes research and clinical practice, vol. 157, p.
107843, 2019.

[3] J. Lechner, O. E. O’Leary, and A. W. Stitt, “The pathology associated
with diabetic retinopathy,” Vision research, vol. 139, pp. 7–14, 2017.

[4] A. Chatterjee, N. S. Datta, H. S. Dutta, K. Majumder, and S. Chatterjee,
“A study on retinal image preprocessing methods for the automated
diabetic retinopathy screening operation,” Applications of Artificial In-
telligence and Machine Learning, pp. 375–384, 2021.

[5] P. Asrodia and H. Patel, “Network traffic analysis using packet sniffer,”
International journal of engineering research and applications, vol. 2,
no. 3, pp. 854–856, 2012.

[6] L. Ying-hua, Y. Bing-Ru, C. Dan-yang, and M. Nan, “State-of-the-
art in distributed privacy preserving data mining,” in 2011 IEEE 3rd
International Conference on Communication Software and Networks.
IEEE, 2011, pp. 545–549.

[7] P. Goyal and A. Goyal, “Comparative study of two most popular packet
sniffing tools-tcpdump and wireshark,” in 2017 9th International Con-
ference on Computational Intelligence and Communication Networks
(CICN). IEEE, 2017, pp. 77–81.

[8] T. Solomon, A. M. Zungeru, and R. Selvaraj, “Network traffic mon-
itoring in an industrial environment,” in 2016 Third International
Conference on Electrical, Electronics, Computer Engineering and their
Applications (EECEA). IEEE, 2016, pp. 133–139.

55

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on October 31,2024 at 00:11:06 UTC from IEEE Xplore.  Restrictions apply. 



[9] F. Luo, L. Dong, and F. Jia, “Method and implementation of building
forces protocol dissector based on wireshark,” in 2010 2nd IEEE
International Conference on Information Management and Engineering.
IEEE, 2010, pp. 291–294.

[10] R. Pires and A. Rocha, “Combinação de classificadores para um sistema
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