
Client-Transparent and Self-Managed MQTT
Broker Federation at the Application Layer

José Fernando de Lacerda Machado Jr.∗, Marco Aurélio Spohn†, Lisandro Zambenedetti Granville∗
∗Institute of Informatics - Federal University of Rio Grande do Sul - Porto Alegre, Brazil

†Federal University of Fronteira Sul - Chapecó, Brazil
lacerda.machado@ufrgs.br, marco.spohn@uffs.edu.br, granville@inf.ufrgs.br

Abstract—The use of IoT devices for monitoring and automa-
tion became very disseminated. Also, and as a consequence, IoT
scalability issues evolved into one of the main challenges on large
deployments. One of the most adopted architectures for the com-
munication between IoT devices and other information systems
is based on the Publish/Subscribe paradigm, mainly embraced
by MQTT-capable devices. Some implementations aimed to solve
scalability challenges on those environments, mainly using clus-
tering solutions, while a few considered federation approaches.
Existing solutions are predominantly proprietary, lacking public
documentation, and may be considered incipient. In the present
work, we propose a client-transparent and self-managed solution
for scaling MQTT brokers using federation approach through a
python-written wrapper, providing federation functionalities and
message routing without customization of regular brokers. While
clustering solutions usually target throughput improvement, the
federation approach explores higher availability through dis-
tributed architecture. We present a validation to expose our
solution’s flexible availability and its capability to deal with
topology change issues.

I. INTRODUCTION

The MQ Telemetry Transport (MQTT) protocol has been
widely adopted on Internet of Things (IoT) devices commu-
nication [1] [2], not only because of its low data overhead
but also because of its reliability and strong standardization.
That is due not only to MQTT’s maturity but also to its ease
of implementation. As a result, the adoption and deployment
of MQTT-enabled devices and the solutions based on the
platform became popular [3].

MQTT employs the Publish/Subscribe (P/S) paradigm
where a broker intermediates the communication between
publishers (e.g., IoT devices) and subscribers (e.g., other
devices or applications that consume the publishers’ offered
information). Because IoT devices (playing the role of ei-
ther publishers or subscribers) usually suffer from limited
resources (battery capacity, processing power, and communi-
cation support), MQTT-based solutions aim at dealing with
the limitations of IoT deployed setups [4]. Scaling up such
systems by supporting an increasing number of publishers and
subscribers also has to consider scaling up MQTT brokers
to avoid them becoming bottlenecks in environments with
varying amounts of flowing information. There exist several
solutions for MQTT-based setups that employ clustering [5]
[6] [7] as a technique to deal with the brokers’ scalability
issue. Unfortunately, most of those solutions are only available
in commercial products. As an alternative to the clustering

techniques, the use of federation techniques [8] are being
considered, but still less mature than clustering.

Although attempts to solve the scalability problem in MQTT
are in place, as mentioned above, the central fact is that
MQTT implementations with improved scalability are scarce
and often limited to proprietary products. As such, scaling up
MQTT environments by employing a public, freely available
solution is still a need. Implementing such functionality is thus
an opportunity and potential game-changer, providing elastic
capabilities for a broad set of application scenarios.

In a previous work [9], we proposed a self-managed MQTT
federation that offers the first movement toward building and
maintaining an overlay mesh network of autonomous brokers.
Clients (i.e., publishers, and subscribers) communicate over
this self-organizing mesh network with low control overhead.
The materialization of the above solution can range from a
more intrusive one (i.e., requiring changes to the broker) to the
one in which the federation mechanism, which internally also
relies on the P/S paradigm, stays exclusively at the application
layer (i.e., brokers remain unchanged) [10].

In this paper, we advance our previous research by present-
ing the design, implementation, and case study of a federation
module for MQTT as a wrapper. Our solution, written in
Python 3.8 and attached to a Mosquitto 3.1.1 MQTT broker,
is flexible, easy-to-implement, and better scales up because
of our self-managed federation approach. Our implementation
seeks to be the least intrusive possible to the ordinary MQTT
environment.

The remainder of this paper has the following organization.
In Section II, we review related work. In Section III, we
introduce our MQTT wrapper and detail how a set of wrappers
in the mesh network federate. We show our implementation
and case study in Section IV. In Section V, we conclude this
paper with final remarks and future work.

II. RELATED WORK

Several research efforts have addressed scaling up P/S
systems, some based on clustering and others based on feder-
ation strategies. Bakker and Pattenier [11] present federation
strategies on networked systems. They focus on two leading
solutions: federation for connection-oriented networks and
federation for connection-less networks, as those based on
TINA-C NRA (Telecommunications Information Networking

Architecture Consortium - Network Resource Architecture),
mainly employed in telecommunications environments.

Uramoto and Maruyama [12] present the InfoBus Re-
peater application, conveying a unique approach for scaling
up MQTT environments throughout a bus. The application,
written in Java, acts as a middleware that allows intercommu-
nication between group members. When a member joins the
bus, it informs its status as a publisher, subscriber, or both.
The bus is a single point of failure and a bottleneck, providing
limited scalability.

Bass [13] carried out a structured analysis of a P/S federated
network approach for critical infrastructure environments. The
work evaluates assembling models, the compliance of existing
solutions, and the security aspects and characteristics of pos-
sible topologies. Although it is primarily theoretical, the work
delivers a broad view of possible scenarios and solutions for
assembling federated networks of sensors.

Thean et al. [14] presents a work based on clustering MQTT
brokers to deal with edge computing demands. They propose
an architecture for scaling a cluster of container-based MQTT
brokers on the edge of the environment, each acting as a
bridge to the brokers placed on a cloud infrastructure. Even
though their solution provides enhanced scalability results, the
container orchestrator remains a single point of failure.

In previous work, we [8] presented a generic approach for
federating MQTT brokers following a mesh-assembling mech-
anism over an overlay network. The solution includes an over-
lay mesh network that provides the primary communication
system, allowing the arrangement of topic meshes, reaching all
clients for any federated topic, regardless of where the client
connects. A new mesh forms whenever the first subscriber
connects to any broker. All brokers with subscribers for the
same topic, and any broker that interconnects them, integrate
the topic mesh. A mesh has a core broker that coordinates
the mesh construction and maintenance. The routing of topic
messages begins by forwarding them toward the corresponding
topic core, but as soon as the message reaches a mesh member,
the message spreads throughout the mesh.

Afterward, we [10] proposed an implementation based on an
endogenous approach [9]. The solution employs the native P/S
mechanism for managing the meshes and routing of messages.
Subscribers must send a beacon message to advertise them-
selves, but the federation of brokers is primarily transparent
to the clients.

III. FEDERATION PROPOSAL

We present a self-managed wrapper-based federation solu-
tion coded in Python and integrated into the Eclipse Mosquitto
3.1.1 MQTT broker. A wrapper is software capable of interact-
ing with the MQTT broker transparently. For that, the wrapper
monitors the broker’s log, which has its data redirected to a
topic called $SYS. The wrapper gathers data from all topics,
being possible to monitor specific topics and subtopics for later
forwarding its data to all federated members. This strategy
makes it possible to adapt this solution to other known MQTT
broker implementations capable of redirecting log data to

a specific topic. Each broker to be federated shall have a
wrapper attached and be responsible for communicating with
the neighboring set of brokers and wrappers.

The wrapper follows the principles of the federation mech-
anism proposed by [8], on which the brokers federate through
their neighbors, building a mesh. Each federated broker for-
wards messages through the mesh, allowing communication
between brokers that are not neighbors. Information needed to
manage the federation includes a broker identification number
(BrokerID), the distance in hops to the core broker (i.e.,
the broker that coordinates the mesh), the mesh membership
flag (signaling whether the broker is in a given mesh), a
list of neighboring brokers, and the desired mesh redundancy
(achievable when the overlay topology allows).

A. Architecture
The main element of our architecture is the wrapper that

interacts with the broker and allows communication with
neighboring wrappers and their related brokers. The wrapper
interacts with the broker monitoring its logs and all the topics
and subtopics, so we assume that the wrapper can access all
data generated on the broker.

The wrappers interact with other wrappers through network
sockets, allowing data exchange. We chose UDP for transport-
ing data between brokers, as a missing packet may arrive on a
wrapper through different paths, so delivery confirmation is not
critical. The main goal is to deliver data published on a given
topic on a broker with a federated wrapper by forwarding it to
another broker through its wrapper where there are connected
subscribers to that given topic. Figure 1 presents the schematic
architecture.

Fig. 1. System’s architecture overview

B. Behavior
The wrappers’ federation process encompasses two main

phases. First, the federation assemblage, regarding the overlay
infrastructure that provides communication among federated
wrappers. Second, the mesh building and maintenance provide
the means for transporting data between wrappers connected
to brokers with publishers and subscribers. Regular topics with
subscribers will be called federated topics.

1) Federation Assemblage: Federation assemblage assumes
that every wrapper knows its neighbors’ IP addresses. Periodi-
cal hello messages are exchanged between neighbor wrappers
to keep track of their online status. Announcement messages
with an identification number (BrokerID) for the wrapper
are also sent periodically, which are forwarded through their
neighbors to the other interconnected wrappers, allowing the
assemblage of the overlay network (i.e., nodes learn about all
federated brokers and their distances). As the announcements
propagate, the wrapper nodes settle collisions by randomly
selecting a new ID.

As the federation starts, there is a need to elect a core
wrapper to coordinate the updates on the federation topology
and other management matters. The election is based on the
BrokerID number, winning the node with the lowest ID. This
core wrapper will be called the management core.

2) Topic meshes: Topic meshes are the meshes of wrappers
where there are subscribers to a given topic. They start
along the federated network. When a wrapper detects a first
subscriber for any topic for which there is no mesh, the
wrapper advertises itself as the core for the new mesh. Through
a core announcement message, wrappers learn how to reach
any previously established core. Management and topic cores
are similar, with the latter being the reference point for
starting topic meshes, while the former orchestrates the overlay
network. The node with the lowest ID wins the dispute in a
core announcement contention.

If there is a topic core on a topic with a new subscriber, the
wrapper sends a mesh membership announcement toward the
topic core. If there are two or more paths towards the core with
the same distance, it is possible to handle redundancy. The
new membership may trigger intermediate wrappers to join the
mesh to keep it connected. As for publications, the topic core is
the reference target: the wrapper sends the message toward the
core, and once reaching it or a mesh member first, the message
spreads throughout the mesh. Wrappers keep a local cache to
avoid sending the same message indefinitely, considering that
the same publication may arrive through different paths.

IV. IMPLEMENTATION AND VALIDATION TESTS

In our implementation, we have used Python version 3.8,
supported by libraries providing MQTT functions such as
threading, serialization, and socket connections. The Paho-
MQTT library is also used and plays the most crucial role
in the solution, allowing the interaction between the wrapper
and the broker and entitling monitoring of subscriptions and
messages on topics.

The wrapper has five main functional groups and the initial
data setup, with this latter including information regarding IP
addresses and ports, constants, initial broker identification, and
the list of neighbors. By default, wrapper instances communi-
cate through UDP port 10500.

The first functional group handles low-level network-related
activities, such as packet sending and receiving. For perfor-
mance purposes, we used UDP on the transport layer. There
are two main functions - packet sending and packet receiving.

Packets that need to be redirected are also handled over these
functions.

The second functional group handles the operational func-
tions. Packets have a function identifier and are handled ac-
cording to their message types. A packet’s structure comprises
a message type field, followed by the data regarding that
particular message.

(’fd’, (14, 1, (’10.81.180.217’, 7535)))

There are ten different types of messages: hello (hl), hello
back (hb), federate (fd), reconsider (rc), core announcement
(ca), topic core (tc), reconsider topic core (rt), topic subscribe
(ts) topic message (tm) and topology update (tu). Federate,
core announcement, and topic core announcement have de-
tailed information on message sequence numbering for control
purposes. For instance, the structure of a federation message
is as follows:

(’fd’, (14, 1, (’10.81.180.217’, 7535)))
(seq, dist, (ip, id)

The fd field indicates the message type, followed by a
tuple that carries the announcement sequence number, the hop
distance from the announcer, and its BrokerID - which also
consists of a tuple holding the IP address and the node’s virtual
ID. The source broker defines the sequence number, while the
distance field changes as the message moves farther from the
source.

A group of processes runs as daemons. These processes
are responsible for the hello, federation, core announcements,
MQTT broker monitoring, and maintenance. By default, nodes
transmit federation and core announcements every 20 s and
hello messages every 5 s. The latter group comprises addi-
tional functions, such as log generating, cache flushing, and
debugging.

The environment for validating our solution consisted of
a regular desktop computer (4th generation quad-core i7 with
8GB of RAM) running Linux Mint 20.3 and Oracle VirtualBox
6.1.38 hypervisor with a Ubuntu 22.04 virtual machine guest,
using 4GB of RAM and 35GB of disk space. LXD 5.0 was
used to host LXC containers inside the virtual machine, using
the mainstream Ubuntu 20.04 LTS image. Each container had
Mosquitto 3.1.1 installed alongside Python 3.8.10, with Paho-
MQTT 1.6.1 library installed through Pip.

For redirecting log messages generated by Mosquitto to
the $SYS topic, /etc/mosquitto/mosquitto.conf
needed to be configured with the lines below:

log_dest topic
log_type all

Each container had only one network interface installed,
named ’eth0’, connecting to a virtual bridge ’lxdbr0’ on the
Ubuntu 22.04 host (this is necessary because the solution
uses the network interface name to gather its IP address).
Each broker/wrapper set on the network corresponds to one

container instance. The configuration regarding the neighbors
is in a list in the wrapper, as mentioned before. Example:

neigh = [(’10.81.180.180’),
(’10.81.180.217’)]

A. Environment remarks and considerations

LXC delivers a handful of scenarios better than a Docker-
based environment because it provides a complete operating
system experience with minimal memory and processing foot-
print. Also, Docker needs a new image of the application
to be generated each time the source code is changed. With
LXC, creating new instances and cloning running instances is
straightforward, making scaling the system a trivial task.

B. Validation and testing

For validation purposes, we used the scenario proposed in
[8] (Figure 4). The validation aims to check the assemblage of
the overlay network and identify whether the wrapper behaves
as desired, handling federated topics and message routing.

After configuring and starting all the wrappers on network
nodes, the nodes populate their federation list. Figure 2 shows
the node’s three federation lists (n = is the list of neighbors,
f = is the list of federated nodes, followed by the broker IP
and node’s ID, then the management core).

Fig. 2. Node’s 3 federation list

The next step consists of simulating a topic subscrip-
tion and observing the federated topic evolution. We start
with a subscriber at node zero. Figure 3 depicts the
node’s five debugging outputs, showing the federated topic
mytopic/example_subtopic, and the core for that
given topic is node zero - the node that we have the subscriber
attached to. Publications for the related topic are forwarded
toward node zero and flood the mesh once reaching it.

To test publication routing, we did a publication on node
four, monitoring the wrapper, gathering the publication, and
sending it toward the core through node one. Next, a pub-
lication starts on node five, which has route redundancy
towards the core. In this case, we randomly choose one of the
neighbors in the message-forwarding process. In all situations
under consideration, the publications successfully reach the
subscriber.

C. Performance analysis

When analyzing our solution’s performance, it is impera-
tive to differentiate the key performance indicators between

Fig. 3. Example of a federated topic with a subscriber attached to node 0

clustering and federation. Clustering relies on aggregating
computational resources as a single block, having the load
balancer as the main bottleneck and single point of failure.
On the other hand, the federation relies on orchestrating
distributed resources with multiple access points. Therefore,
one could argue that the federation first targets the service’s
high availability, while clustering aims at high throughput.

The performance analysis evaluates the message delivery
reliability while dealing with changes to the overlay topology.
For the case studies, we consider the analysis starting after an
initial configuration for the federation of brokers is running.

The first test consists of running a subscriber for a non-
existent topic. The corresponding node advertises itself as the
core for the new topic. The topic mesh construction begins as
new subscribers for the same topic connect to different nodes.
To test the message routing, a client starts publishing from a
node outside the mesh. Initially, messages are directed toward
the core, spreading throughout the mesh once reaching the
core or a mesh member.

We evaluate the core election process by simultaneously
instantiating two subscribers to the same topic in separate
nodes. For a while, two core announcements wander around
the federation, but eventually, the core with the greater ID
gives way to the one with the minor ID. Once nodes learn
about the remaining core, the mesh construction process
converges. In the case of network partitioning, there will be
two different scenarios. In the first, the slice that kept the
existing core will rely on it to identify disconnected nodes,
and the remaining nodes will be informed to update their
databases. In the second, the remaining brokers on the coreless
slice will identify that they are not receiving core information
updates and will orchestrate a new core election.

V. CONCLUSIONS

This work presents a new variant for the federation approach
introduced in previous works [8]–[10]. Our solution differs
by adopting a wrapper cooperating with the broker while
communicating to other wrappers running on neighboring
brokers. This proposal is ongoing work and lacks function-
alities available on a regular Mosquitto MQTT broker, such
as QoS controls and authentication, which are part of future
work. However, we achieve our main objective: to provide and
evaluate a self-managed federation of MQTT brokers.

We noticed that the initial federation process (i.e., related
to the overlay network) requires more time than anticipated. It

Fig. 4. Validation topology

shows it is worth improving all the topology-related services,
from the initial overlay establishment to all the resulting
maintenance. We are working on new mechanisms for better
handling joining and leaving the federation network.

Monitoring active subscribers is still an open issue. For now,
we assume the connection between a subscriber and the broker
is stable and remains connected indefinitely. On the other
hand, intermittent connecting clients might get new IDs when
reconnecting, which becomes a broader monitoring burden.

The present work opens an extensive list of possibilities
for improving the federation of MQTT brokers. Compared
to other solutions, mainly proprietary market-driven solutions,
our solution covers a particular domain, and the initial proto-
type shows our proposal’s potential. The increased availability
comes from the self-managing mesh approach, which is central
to our work. In case of network partitioning or general
connectivity problems, the service is still available for the
clients in the same partition. As partitions merge again, the
system converges quickly with reduced control overhead.

REFERENCES

[1] M. Houimli, L. Kahloul, and S. Benaoun, “Formal Specification, Ver-
ification and Evaluation of the MQTT Protocol in the Internet of
Things,” in International Conference on Mathematics and Information
Technology (ICMIT), Adrar, Algeria, Dec. 2017, pp. 214–221.

[2] N. Naik, “Choice of Effective Messaging Protocols for IoT Systems:
MQTT, CoAP, AMQP and HTTP,” in IEEE International Systems
Engineering Symposium (ISSE), Vienna, Austria, Oct. 2017, pp. 1–7.

[3] M. Kashyap, V. Sharma, and N. Gupta, “Taking MQTT and NodeMcu
to IOT: Communication in internet of things,” Procedia Computer
Science, vol. 132, pp. 1611 – 1618, 2018, international Conference
on Computational Intelligence and Data Science. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050918308585

[4] I. Made Wirawan, I. Dwi Wahyono, G. Idfi, and G. Radityo Kusumo, “Iot
communication system using publish-subscribe,” in 2018 International
Seminar on Application for Technology of Information and Communi-
cation, 2018, pp. 61–65.

[5] HiveMQ, “HiveMQ website,” https://hivemq.com, 2022, accessed: 2022-
04-19.

[6] EMQX, “EMQX website,” https://emqx.com, 2022, accessed: 2022-08-
19.

[7] VerneMQ, “VerneMQ website,” https://vernemq.com, 2022, accessed:
2022-08-19.

[8] M. A. Spohn, “Publish, subscribe and federate!” Journal of Computer
Science, vol. 16, no. 7, pp. 863–870, Jul 2020. [Online]. Available:
https://thescipub.com/abstract/jcssp.2020.863.870

[9] M. Spohn., “An endogenous and self-organizing approach for the
federation of autonomous mqtt brokers,” in Proceedings of the 23rd
International Conference on Enterprise Information Systems - Volume
1: ICEIS,, INSTICC. SciTePress, 2021, pp. 834–841.

[10] N. K. Ribas and M. A. Spohn, “A new approach to a self-
organizing federation of mqtt brokers,” Journal of Computer Science,
vol. 18, no. 7, pp. 687–694, Jul 2022. [Online]. Available:
https://thescipub.com/abstract/jcssp.2022.687.694

[11] J. H. L. Bakker and F. J. Pattenier, “The layer network federation
reference point-definition and implementation,” in TINA ’99. 1999
Telecommunications Information Networking Architecture Conference
Proceedings (Cat. No.99EX368), 1999, pp. 125–127.

[12] N. Uramoto and H. Maruyama, “Infobus repeater: a secure and dis-
tributed publish/subscribe middleware,” in Proceedings of the 1999 ICPP
Workshops on Collaboration and Mobile Computing (CMC’99). Group
Communications (IWGC). Internet ’99 (IWI’99). Industrial Applications
on Network Computing (INDAP). Multime, 1999, pp. 260–265.

[13] T. Bass, “The federation of critical infrastructure information via
publish-subscribe enabled multisensor data fusion,” in Proceedings of the
Fifth International Conference on Information Fusion. FUSION 2002.
(IEEE Cat.No.02EX5997), vol. 2, 2002, pp. 1076–1083 vol.2.

[14] Z. Y. Thean, V. Voon Yap, and P. C. Teh, “Container-based mqtt broker
cluster for edge computing,” in 2019 4th International Conference
and Workshops on Recent Advances and Innovations in Engineering
(ICRAIE), 2019, pp. 1–6.

