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ABSTRACT

Recent advances in arti�cial intelligence (AI) o�er an opportunity

for the adoption of self-driving networks. However, network op-

erators or home-network users still do not have the right tools

to exploit these new advancements in AI, since they have to rely

on low-level languages to specify network policies. Intent-based

networking (IBN) allows operators to specify high-level policies

that dictate how the network should behave without worrying

how they are translated into con�guration commands in the net-

work devices. However, the existing research proposals for IBN

fail to exploit the knowledge and feedback of the network opera-

tor to validate or improve the translation of intents. In this paper,

we introduce a novel intent-re�nement process that uses machine

learning and feedback from the operator to translate the operator’s

u�erances into network con�gurations. Our re�nement process

uses a sequence-to-sequence learning model to extract intents from

natural language and the feedback from the operator to improve

learning. �e key insight of our process is an intermediate repre-

sentation that resembles natural language that is suitable to collect

feedback from the operator but is structured enough to facilitate

precise translations. Our prototype interacts with a network op-

erator using natural language and translates the operator input to

the intermediate representation before translating to SDN rules.

Our experimental results show that our process achieves a correla-

tion coe�cient squared (i.e., R-squared) of 0.99 for a dataset with

5000 entries and the operator feedback signi�cantly improves the

accuracy of our model.
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1 INTRODUCTION

A self-driving network is an autonomous network that can predict

changes and adapt to user behaviors without the intervention of

an operator. Successfully implementing an autonomous network

would not only ease network management but also reduce opera-

tional costs. Recent advances in arti�cial intelligence (AI) o�er an

opportunity for the adoption of self-driving networks, as machine

learning models can identify pa�erns and learn how to respond to

changes in the network. However, network operators still do not

have the right tools to exploit these new developments in AI, since

they still have to rely on low-level languages to specify network

policies and complex interfaces to ensure that the speci�ed policies

are deployed correctly. Moreover, home-network users do not have

the skills to program their networks and can bene�t from a friendly

management system.

Intent-based networking (IBN) allows operators to specify high-

level policies that dictate how the network should behave—e.g.,

de�ning goals related to quality of service, security, and performance–

without worrying about the low-level details that are necessary

to program the network to achieve these goals. Existing research

proposals for IBN present several intent languages, frameworks,

and compilers to deploy intents in network devices and middle-

boxes [1, 16, 17, 20]. �ese proposals enable composition of high-

level policies [16, 17], deployment in so�ware-de�ned networks

(SDN) [1], andmanagement abstractions for network operators [20].

While these are steps in the right direction, these proposals cannot

extract intent information from pure natural language, requiring

that network operators learn a new intent de�nition language in

each proposal and, consequently, hindering interoperability, de-

ployment, and management of heterogeneous networks.

Most of the existing research proposals for IBN fail to exploit the

knowledge and feedback of the network operator. Highly complex

and, sometimes, con�icting policies in network devices may cause

network intents to derail from the desired behavior of the operator.

Moreover, the adoption of programmable network technologies,

such as SDN and Network Functions Virtualization (NFV) [8], in-

troduce a new level of dynamism that results in constant changes

in network conditions. �erefore, monitoring the network a�er

deploying policies and requesting feedback from the operator are

crucial for avoiding miscon�gurations.

In this paper, we introduce a novel intent-re�nement process that

uses machine learning and feedback from the operator to translate

the operator’s u�erances into network con�gurations (§2). Our pro-

cess consists of three stages. First, we rely on an intelligent chatbot

interface to extract the main actions and targets (i.e., entities) of an

user intent from natural language (§2.1). We implement the chatbot

interface using DialogFlow [6], which uses machine learning to

identify key aspects in the user’s u�erances without the need for
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extensively covering every possible entity value. In our chatbot,

examples of entities are the network endpoints, middleboxes, and

temporal con�gurations for the policy. A natural language interface

enables the deployment of our solution in distinct scenarios. For

instance, a home user could use our chatbot to prioritize streaming

tra�c in her network during speci�c hours of the day.

Second, we use a neural sequence-to-sequence learning model to

translate the extracted entities into a high-level structured network

de�nition program (§2.2). �e program is wri�en in Nile, our new

structured intent de�nition language (§3), which closely resembles

natural language. �eNile program is then presented to the network

operator for con�rmation on the extracted behavior. For home users

with no technical knowledge, the con�rmation can come from a

voice assistant or a graphical interface.

Finally, we compile the extracted intent program into a network

policy according to the destination network (§2.3). As a proof-of-

concept, we implement a service chain for speci�c tra�c using

SONATA-NFV [15](§4). However, the decoupling provided by the

intent de�nition language allows the compilation of the intents

to other existing network con�gurations—including policy lan-

guages, such as Janus [1], PGA [16], and Kinectic [11]—improving

the reusability of our proposed solution. In this stage, we also make

assertions to verify any con�icts between the extracted intent and

the network con�guration—e.g., an intent asking for more band-

width than is available on the required path—and warn the operator

through the chatbot interface.

In summary, our key contributions in this paper are:
(1) A novel intent-re�nement process for intelligent extraction of

intents from natural language that uses feedbacks from network

operators to improve learning.

(2) Nile: a high-level, comprehensive intent de�nition language

(§3) that resembles the English language. Nile acts as an ab-

straction layer for other policy mechanisms, reducing the need

for operators to learn a new policy language for each di�erent

type of network.

(3) Experimental results that show signi�cant improvements on

translation accuracy with the feedback of the operator (§5).

2 REFINEMENT PROCESS

�e �rst requirement for a self-driving network to reduce its man-

agement complexity is intelligent and seamless planning. A net-

work operator should be able to specify network policies without

worrying how they would be achieved. It would be even be�er

if the network operator could use natural language to de�ne the

network behavior. �e behavior may include customer expecta-

tions to comply with Service Level Agreements (SLAs), network

functions for security, temporal behavior for accommodating large

�ows during peak hours, or network-wide goals like minimizing

congestion or reducing tra�c costs by relying on cheaper paths in

the network.

With the above requirements in mind, we propose a re�nement

process for intent speci�cation that can learn and adapt itself to

achieve the network behavior expressed by the operator while pro-

viding a user-friendly interface for interactions with the operator.

�is section presents the three stages of the re�nement process: en-

tities extraction, intent translation, and intent deployment. Figure

1 presents an overview of the re�nement process with the three

stages and the steps involved in translating intents described in

natural language to network con�gurations. Note that the operator

provides feedback via chatbot interface in Step 6, and Steps 2-6 are

repeated until the operator con�rms the correct translation of the

intents.

Figure 1: Intent Re�nement Process.

2.1 Entities Extraction

�e �rst step in the intent re�nement process is to extract the

actions and targets of the network behavior expressed in natural

language by the operator. In this step, we use DialogFlow [6]

to build the Entities Extractor. DialogFlow (formerly known as

API.AI) is a development framework to build human-computer

interactions based on natural language conversations (i.e., chatbots).

�e framework uses machine learning to generalize example cases

referred to as entities and facilitate the extraction of features in

the dialog. In our chatbot, the entities include middleboxes, SLA

requirements, temporal restrictions, and endpoints targeted by the

user’s intent. One key advantage of using DialogFlow is the ability

to deploy our chatbot across multiple platforms, including Google

Assistant (present in numerous Google devices), Amazon’s Alexa,

or messaging apps, such as Slack and Facebook’s Messenger. �is

feature can be helpful for a home-network user to con�gure her

network using voice-activated assistants like Amazon’s Alexa—for

example, she could request parental control for her kids’ devices.

Despite being extremely useful for user interactions, simply

using a chatbot does not ful�ll all the requirements for intent-based

network planning. �e entities extracted from natural languages

result in key-value pairs representing the user u�erances. However,

these pairs do not re�ect the network con�guration commands.

For instance, if a network operator asks a chatbot “Please add a

�rewall for the backend.”, a possible extraction result, depending

on how the chatbot is built and trained, would be the following

entities: {middleboxes: ‘�rewall’}, {target: ‘backend’}. Hence, a�er
the chatbot interaction, we still need to translate the entities into a

structured intent that can be implemented in a destination network.

2.2 Intent Translation

In DialogFlow, a�er the chatbot interface extracts all the required

entities from the user u�erances, the framework calls a Rest API

in a backend service designated by a WebHook, which allows us

to perform the heavy processing for translations. We con�gured a

WebHook from our chatbot to our Intent Translator to receive all

the extracted entities. �ese entities are fed to a previously trained

sequence-to-sequence learning model [21], which translates entities

to structured intents wri�en in our Nile language (detailed in §3).

A neural sequence-to-sequence learning model consists of two

Recurrent Neural Network (RNN) with Long Short-Term Memory
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(LSTM) hidden units: an encoder and a decoder. In this model,

the RNN encoder processes the sequence of words (in our case

the extracted entities) and generates a thought vector, which is a

numerical representation of the input sequence. �e RNN decoder

receives the thought vector as input and generates a sequence of

words in the destination language (in our case Nile). Figure 2 shows

an example of the encoding-decoding process. Note that the RNNs

allow input and output sequences of di�erent lengths.

RNN RNN

firewall backend

Encoder

Input entitites Decoder

Output Nile intent

RNN RNN

add
middlebox\

('firewall')

RNN

{end}

RNN RNN

define intent

{start}

userIntent:

RNN RNN RNN

target\

('backend')for

T
h

o
u

g
h

t 
v

ec
to

r

Figure 2: Sequence-to-sequence learning model.

One of the shortcomings of using neural networks for text-to-

text translations is the enormous vocabulary that each language has,

which requires large datasets and substantial time to train the mod-

els. However, as we are using previously extracted entities as input

and a limited andwell-de�ned language as output, we can overcome

the shortcoming above by performing entities anonymization [10].

�is pre-processing consists of replacing each extracted entity with

a token representing it and using the token representation as input

for the RNN encoder. For example, if the Entities Extractor outputs

“�rewall” and “backend”, we would use anonymization to convert

them to the tokens ‘@middlebox’ and ‘@target’ before starting the

Intent Translation stage. A�er the translation, we simply run a

deanonymization on the resulting intent program to replace the

tokens with the originally extracted entities. By using anonymiza-

tion, we can reduce the number of training cases needed for the

model considerably, since we do not have to consider every possible

entity value for network intents. Our preliminary tests showed a

size reduction of the training dataset from 1.000.000 to 5.000 with,

surprisingly, improved accuracy.

As we cannot use words directly as input for the sequence-to-

sequence model, we convert each input word of the model to a

unique numerical representation. �e numerical representation

of the anonymized entities are the numeric indices in a pre-built

dictionary that contains all words in the model. Equation 1 presents

an example of a conversion using a vocabulary with just four words

that include the words middlebox (index 2) and target (index 3).
[

′f ir ewall ′,′ backend ′
]

⇒
[

′@middlebox ′,′@tarдet ′
]

⇒ [2, 3]

(1)

In addition to indexing the words of the input sequences, we

perform Word Embedding vectorization in the �rst layer of the

RNN encoder to concisely represent the indexed words as arrays

of real values. �is word vectorization is known to improve the

learning rates and prediction accuracy of linguistic models, as it

can capture and represent the meaning of each word [14]. �e

array of real values, which represents the sequence of anonymized

entities given as input to the sequence-to-sequence model, is then

processed one by one by the RNN encoder to generate the thought

vector. �e RNN decoder then uses the encoded thought vector

to predict a sequence of statements in the output language Nile.

�e structured intent de�nition generated by the decoder is then

presented to the network operator for con�rmation on the extracted

desired behavior through the chatbot interface.

�e operator may either con�rm the correctness of the intent

program or make adjustments if necessary. A�er the operator’s

response, the intent program and the input entities are included

in the training database of the sequence-to-sequence model, and

a new training round is initiated. In this interaction, we explicitly

consider the operator’s feedback during the translation, ensuring

that the results improve every time the operator requests an action.

2.3 Intent Deployment

Finally, having a structured intent program veri�ed by the operator,

the Intent Deployer can compile and deploy it into a destination

network, as shown in Figure 1. In this stage, we make assertions to

verify any con�icts between the extracted intent and the network

con�guration and warn the operator through the chatbot interface.

We then translate Nile programs into con�guration commands us-

ing SONATA-NFV [15]. We currently do not deal with non-SDN

networks, but we intend to develop an AI-based module that can

handle di�erent networks in future work. For example, a neural

network could infer the best routes to comply with SLA require-

ments of the intent without the need of a pre-populated database.

However, the decoupling provided by the intent de�nition language

allows compilations to other existing network con�gurations, in-

cluding other policy languages, such as Janus [1], PGA [16], and

Kinectic [11].

Ideally, the process described in this section and presented in Fig-

ure 1 would also include an Intent Behavior Monitor module. �is

module would ensure that the deployed policies respect the intents

extracted by the re�nement process. To achieve this goal, the mod-

ule could leverage a neural network to predict which parameters

should be monitored. �e module could then monitor the param-

eters and notify the operator in case of disparities between the

behavior and the intent. We leave the design and implementation

of this module for future work.

3 NILE: INTENT DEFINITION LANGUAGE

�e previous section presented a lengthy process to transform

natural language into device con�gurations. A key insight we un-

covered from this translation process is the clear need for a simple,

yet comprehensive, abstraction layer between lower-level policies

and the natural language used by operators and home users. While

low-level policy enforcers, such as SDN rules, require operators

with extensive expertise and management experience to program

the intended behavior of a network, natural language is hard to

parse and interpret correctly and o�en inaccurate, creating a huge

gap between the intended behavior and the network con�gurations.

Also, translating natural language intent directly to network rules

decreases portability and reusability, since each possible destination

network has speci�c features and con�guration requirements. To

bridge this gap, we propose the Nile1 language as an intermediate

intent representation that is close to natural language. However,

Nile exhibits enough structure that works well as the target for

the learning algorithm and allows translation to di�erent target

networks.

1Nile comes from Network Intent LanguagE
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By introducing an intent de�nition language as an intermediate

representation in the re�nement process, we decouple the pol-

icy extraction from the policy deployment and enforcement. �is

decoupling, with an intermediate representation that resembles

natural language and is easy to understand, allows us to use the

feedback from the operator before deploying the extracted behavior.

Moreover, the intent de�nition language acts as an abstraction layer

for other policy mechanisms, reducing the need for operators to

learn multiple policy languages for each di�erent type of network.

Hence, the design requirements for the intent language grammar

are: (i) high legibility, as operators unfamiliar to the language must

be able to understand and assert the correctness of the intent; (ii)

high expressiveness, to faithfully represent the operator’s intention;

and (iii) high writability, to allow operators to make adjustments

to the generated intents quickly and easily. �e grammar of Nile,

in EBNF notation [9], is in Grammar 1.

〈intent 〉 ::= ‘define intent’ intent name ‘:’ 〈commands〉

〈commands〉 ::= 〈command 〉 { ’\n’ 〈command 〉 }

〈command 〉 ::= (〈middleboxes〉 | 〈qos〉 | 〈rules〉)+ [ 〈optional〉 ]

〈middleboxes〉 ::= ‘add’ 〈middlebox 〉 { (‘,’ | ‘, \n’) 〈middlebox 〉 }

〈middlebox 〉 ::= ‘middlebox(’ middlebox id ’)’

〈qos〉 ::= ‘with’ 〈metrics〉

〈metrics〉 ::= 〈metric〉 { (‘,’ | ‘, \n’) 〈metric〉}

〈metric〉 ::= 〈metric id 〉‘(’ 〈constraint 〉 ‘,’ value ‘)’

| 〈metric id 〉‘(none)’

〈metric id 〉 ::= latency | ji�er | loss | throughput

〈constraint 〉 ::= ‘less [or equal]’ | ‘more [or equal]’ | ‘equal’ |

‘different’

〈rules〉 ::= 〈rule〉 { ‘\n’ 〈rule〉 }

〈rule〉 ::= (allow | block) 〈tra�c〉

〈optional〉 ::= 〈targets〉 | 〈locations〉 | 〈interval〉

〈targets〉 ::= ‘for’ 〈target 〉 { (‘,’ | ‘, \n’) 〈target 〉 }

〈target 〉 ::= ‘client(’ client id ‘)’ | 〈tra�c〉

〈locations〉 ::= ‘from’ 〈endpoint 〉 ‘to’ 〈endpoint 〉

〈endpoint 〉 ::= ‘endpoint(’ endpoint id ‘)’

〈interval〉 ::= ‘start’ 〈date time〉 ‘\n’ ‘end’ 〈date time〉

〈tra�c〉 ::= ‘traffic(’ tra�c id ‘)’ | ‘flow(’ [〈�ve tuple〉]+ ‘)’

〈�ve tuple〉 ::= ‘protocol:’ v | ‘src_port:’ v | ‘src_ip:’ v |

‘dest_port:’ v | ‘dest_ip:’ v

〈date time〉 ::= ‘datetime(’datetime‘)’ | ‘date(’date‘)’ |
‘hour(’hour‘)’

Grammar 1: Nile.

With the Nile language, we can build powerful yet simple in-

tents. For example, an input ”Add �rewall and intrusion detection

from gateway to backend for client B, with latency less than 10ms

and 100mbps of bandwidth, and allow HTTPS only, everyday from

09:00 to 18:00 ” can be represented as in Listings 1. Note that the

Nile program includes only the speci�c hours de�ned in the intent,

which means that the behavior must be repeated every day. �is

example illustrates how Nile provides a high-level abstraction for

structured intents. We believe this initial grammar for Nile is ex-

pressive enough to represent most network intents, but we do plan

to expand it to incorporate new features. Note that the ids provided

by the operator (i.e., tokens in red in Grammar 1) must be resolved

during the compilation process, as they represent information spe-

ci�c to each network. �is feature of the language enhances its

�exibility for de�ning intents and serving as an abstraction layer.

d e f i n e i n t e n t q o s I n t e n t :

from endpo in t ( ' gateway ' )

t o endpo in t ( ' da t a b a s e ' )

f o r c l i e n t ( 'B ' )

add middlebox ( ' f i r e w a l l ' ) , midd lebox ( ' i d s ' )

with l a t e n c y ( ' l e s s ' , ' 10 s ' ) ,

th roughput ( 'more or equa l ' , ' 100mbps ' )

a l l ow t r a f f i c ( ' h t t p s ' )

s t a r t hour ( ' 0 9 : 0 0 ' )

end hour ( ' 1 8 : 0 0 ' )

Listing 1: Nile intent example.

4 IMPLEMENTATION

We use a di�erent Github project for each stage of the re�nement

process so that people can download and reuse the stages individu-

ally. We implemented the Entities Extractor as a DialogFlow chat

interface and deployed it for testing in the Google Assistant. �e

chat interface consists of a list of entities, which are the key features

to be parsed from natural language, and language intents (not re-

lated to network intents). Language intents represent possible user

interactions that the chatbot creator provides for machine learning

training so that DialogFlow can generalize and learn how to extract

the necessary entities from future user interactions. We exported

our implementation of the chat interface from DialogFlow as JSON

�les and uploaded them to GitHub2. For reproduction purposes, the

�les can be imported to a new DialogFlow project and retrained.

We implemented the Intent Translator as a Python Restful API

service that is called by the DialogFlow chat interface right a�er

it extracts the entities. �e service can interact with the chatbot

interface to ask for additional information if necessary. Besides

this interaction, the API provides a sequence-to-sequence model

developed using Keras [3] that we used to train our model. We

trained and computed the weights of our model with an automat-

ically generated dataset of input entries containing examples of

anonymized entities and the correspondent Nile program, which is

also anonymized. We used di�erent sizes of datasets in our eval-

uation, and the results are in §5. A�er generating a Nile intent

and con�rming it with the user feedback, we retrain the model

by adding the intent to the training dataset. �e Intent Translator

project is available at GitHub3. For testing purposes, we deployed

the Intent Translator using Heroku [7].

Finally, we developed the Intent Deployer as a separate Python

Restful API service that is called by the Intent Translator when it �n-

ishes the translation process. As a proof-of-concept, we developed

a project that implements service chaining policies using SONATA-

NFV [15] and deploys them in an emulated network. SONATA-NFV

is an emulation platform based on Mininet [12] that deploys net-

work functions as Docker containers. Nile commands for client

identi�cation, time, and tra�c requirements are not implemented

yet. However, we do plan to extend our implementation to include

the full set of Nile commands and to introduce machine learning

to predict the best way to compile and ful�ll Nile programs in a

destination network. �is project is also available at Github4.

2Available at h�ps://github.com/asjacobs92/nia-chatbot/
3Available at h�ps://github.com/asjacobs92/nia-webhook/
4Available at h�ps://github.com/asjacobs92/nia-deployer/
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5 EVALUATION

To assess the feasibility of our intent re�nement process, we evalu-

ate two main aspects: (i) the accuracy we can achieve with di�erent

sizes of training datasets, aiming to �nd the optimal ratio between

dataset size (which impacts the training time signi�cantly) and

prediction accuracy; and (ii) the impact of the operator feedback on

the accuracy of predictions over time to determine if it improves

accuracy. Also, we provide a test case to demonstrate the end-to-

end deployment process of intents in a destination network (i.e.,

from natural language to network con�gurations). We run our

experiments on a server with 8 Intel(R) Core(TM) i7-6700 CPU at

3.40 GHz, 16GB of RAM, running Deepin Linux kernel 4.14. We

generated the datasets automatically with random sets of entities

and Nile intent pairs, combining a di�erent number of middleboxes,

endpoints, tra�c matching rules, time, and QoS requirements in

each intent. All training iterations were done with 70 epochs, batch

size of 64, and a validation split of 20%. We evaluate �ve di�erent

sizes of training datasets: 100, 500, 1000, 2000, and 5000 entries.

For each size of the training dataset, we generate a separate testing

dataset, containing 20% of the number of entries from the training

dataset.

To assess the �rst aspect, we �rst train the translation model

and then we measure for each prediction in the testing dataset

the correlation coe�cient squared (i.e., R-squared) between the

intent predicted by the model and the expected output intent. In

this case, the closer to 1 the R-squared value is, the more accurate

the translation model is—i.e., less errors (e.g., repeated words) and

wrong instructions in the resulting Nile program. �e measure-

ments generated a list of R-squared values for each test case. Figure

3(a) shows the mean and 95% con�dence interval for the measured

R-squared values for each training dataset size. We also show in

Figure 3(b) the training times for the same datasets. As expected,

the larger the training dataset, the more accurate the results yielded

by the translation model and the longer the training times. We can

see from Figure 3(a) that we need only 5000 entries in the training

set to achieve excellent results in the re�nement process. We expect

be�er results with larger datasets. However, the training process

for our largest dataset was close to three hours, and larger datasets

require even longer periods for training the model.
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Figure 3: Accuracy and training time by dataset sizes.

Next, we evaluate the impact of the operator feedback in the

accuracy of the prediction with the same datasets. To simulate this

process, we �rst load the neural network weights for the trained

model. Having a trained model, we use 30 di�erent test cases of

entities and expected Nile intents to simulate requests from an

operator. For each case, we �rst use the entities to predict an intent

from the translation model, and measure the R-squared for that

case in comparison to the expected Nile intent; then, we add the

expected intent into the training dataset of the model, and start a

new epoch of training.

Figure 4 shows the R-squared values a�er 0, 10, 20 and 30 feed-

backs were incorporated into the training dataset. It is clear from

the plot that, regardless the size of the training dataset, the accuracy

improves considerably with repeated training a�er incorporating

feedback. �is behavior is particularly evident for training datasets

with a smaller number of entries. For instance, we can observe

that the operator feedback can improve the accuracy of the model

trained with 2000 entries up to the same level as the model trained

with 5000 entries without the feedback. �is result means that for

a much smaller dataset, which requires much less training time,

we can achieve similar results. It is also worth mentioning that,

in some cases, results obtained with smaller datasets were be�er

than the results obtained with larger datasets, such as with dataset

sizes 500 and 1000. �is behavior is most likely because of feed-

back cases that repeated during the test since the training dataset

were randomly generated. Hence, the model trained with a smaller

dataset could predict with higher accuracy the cases he had already

learned from the feedback.
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Figure 4: Accuracy improvement with feedback over time.

Finally, one could argue that, since the training dataset with

5000 entries has close to perfect accuracy from the start, there

is no need for incorporating feedback into the training process.

We counter this argument by pointing out that, no ma�er how

accurate the prediction model is, there will always be speci�c cases

that are not covered by the training dataset, and the sequence-to-

sequence model may produce erroneous results. �erefore, it is

imperative that an operator con�rms the generated intent to avoid

miscon�gurations, and corrects it so that the model can learn and

reduce the frequency of these cases.

To illustrate how the end-to-end deployment process of intents

works, we present a test case that concerns service chaining using

SONATA-NFV (see Section 4). All the scripts and reproduction

artifacts of this and other test cases that we cannot show because of

space limitations are available at Github5. �e scenario consists of

5h�ps://github.com/asjacobs92/nia-experiment
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a network with two OpenVSwitches connecting an Iperf client that

sends 100 Mbps of UDP tra�c to its server and a Stratos Web client

that generates HTTP requests to a Web server. A�er starting both

clients, we tested the user intent ”Please add a �rewall and an IDS

from Iperf client to server,” aiming to block and inspect the tra�c

generated from the Iperf client while ignoring the tra�c from the

Web client. �e Entities Extractor, in DialogFlow, extracts the origin,

destination and desired middleboxes of the intent, and call the

Intent Translator RestAPI. �e Intent Translator converts the input

entities into the Nile intent displayed in Listing 2. Subsequently,

the Intent Deployer compiles the translated Nile program in the

SONATA-NFV commands shown in Listing 3. �e middleboxes

are Docker containers using pre-con�gured images (i.e., genic-vnf )

with the scripts required to run the network functions. We use

iptables and Snort to implement the �rewall and IDS, respectively.

Figure 5 shows the test scenario where the red arrows represent

the deployed intent

d e f i n e i n t e n t t e s t I n t e n t :

from endpo in t ( ' i p e r f c l i e n t ' )

t o endpo in t ( ' i p e r f s e r v e r ' )

add middlebox ( ' f i r e w a l l ' ) , midd lebox ( ' i d s ' )

Listing 2: Generated Nile intent.

# dep loy vn f s

vim−emu compute s t a r t −d vnfs dc −n fw \

− i gen ic −vnf −c ” . / s t a r t f i r e w a l l . sh &” \

−−ne t ” ( i d = in , i p = 1 0 . 0 . 0 . 2 0 / 2 4 ) , ( i d =out , i p = 1 0 . 0 . 0 . 2 1 / 2 4 ) ”

vim−emu compute s t a r t −d vnfs dc −n i d s \

− i gen ic −vnf −c ” . / s t a r t s n o r t . sh &” \

−−ne t ” ( i d = in , i p = 1 0 . 0 . 0 . 3 0 / 2 4 ) , ( i d =out , i p = 1 0 . 0 . 0 . 3 1 / 2 4 ) ”

# cha in vn f s

vim−emu network add −b − s r c i p e r f −c : c−e th0 −d s t fw : in

vim−emu network add −b − s r c fw : out −d s t i d s : i n

vim−emu network add −b − s r c i d s : out −d s t i p e r f −s : s−e th0

Listing 3: Generated SONATA-NFV commands.

Figure 5: End-to-end test scenario.

6 RELATEDWORK

Recent works on IBN feature several intent languages, frameworks,

and compilers to e�ciently deploy intents in network devices and

middleboxes [1, 2, 5, 11, 16, 17, 19, 20]. Most notably, PGA [16] pro-

poses the use of a graph abstraction to compose high-level policies

and deploy them in SDN networks. PGA supports Access Con-

trol List (ACL) and service-chaining policies, leveraging a graph

structure to resolve con�icts. Janus [1] extends PGA to support

policies with QoS requirements, mobility, and temporal dynamics.

More recently, Cocoon [17] introduces a framework focused on

guaranteeing correctness of SDN programs that resembles our ap-

proach, but it uses �rst-order logic instead of machine learning to

convert high-level intents into lower level con�gurations. Cocoon,

however, does not validate its re�nements with the operator or

learn the operator’s intent over time. Moreover, its speci�cation

language is not as user friendly as natural language. In the industry,

Robotron [20] provides a high-level intent abstraction for designing

and managing the worldwide-scale network of Facebook. While

these e�orts present contributions for specifying and verifying net-

work policies, they still fail to extract intent information from pure

natural language, requiring that network operators learn new and

complex policy de�nition languages. In our work, we tackle these

complexity issues by leveraging the DialogFlow chatbot interface,

coupled with the neural translation process into Nile. By relying

on Nile solely for adjustments and con�rmation, we signi�cantly

reduce the knowledge curve of our intent solution.

Other related works focus speci�cally on the intent and policy

re�nement process. For instance, INSpIRE [18] applies a re�ne-

ment process to determine which middleboxes should compose a

service chain to ful�ll an intent. However, this re�nement process

focuses solely on intents related to security middleboxes, ignoring

other essential complex scenarios with other intent requirements.

Machado et al. [13] and Craven et al. propose di�erent approaches

to policy re�nement, leveraging Event Calculus (EC) [13] or a UML

logical representation [4] as intermediate policy representations to

allow the operationalization of network behavior de�nition. Still,

these existing research proposals for IBN fail to exploit the knowl-

edge and feedback of the network operator. Highly complex and,

sometimes, con�icting policies in network devices may cause net-

work intents to derail from the desired behavior of the operator.

Hence, requesting feedback from the operator is crucial to avoid

miscon�gurations. We tackle these shortcomings by incorporating

the operator’s feedback into our neural network training dataset

so that we can learn from past mistakes.

7 CONCLUSION

In this paper, we introduced a novel intent re�nement process and

Nile, a high-level intent de�nition language, aiming to be a step

towards enabling self-driving networks. �e proposed re�nement

process leverages a user-friendly chat interface and a sequence-

to-sequence learning model that extracts from natural language

a structured intent program, wri�en in Nile. �e extracted Nile

intent acts as an abstraction layer for lower-level con�guration

and policy languages, which allows us to ask for feedback from

the operator before compiling the structured intent into network

con�gurations. Our evaluation of the proposed process yielded

a correlation coe�cient squared (i.e., R-squared) of 0.99 for the

intents extracted using our sequence-to-sequence model. Also, the

use of feedback from the operator into the model improved the

accuracy of our translation model, especially for smaller training

datasets.
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