Refactoring Internet of Things middleware through
Software-Defined Network

Lucas M. R. Arbiza, Leandro M. Bertholdo, Carlos Raniery P. dos Santos,
Lisandro Z. Granville, Liane M. R. Tarouco
Informatics Institute
Federal University of Rio Grande do Sul
Porto Alegre, Brazil
{Imrarbiza, berthold, crpsantos, granville, liane}@inf.ufrgs.br

ABSTRACT

Refactoring means to rewrite pieces of code aiming to im-
prove it internally but keeping the expected software behav-
ior. In this paper we present the refactoring of an Internet of
Things middleware based on Software-Defined Network. In
a previous work we proposed a middleware to address issues
we found in healthcare devices used to monitor patients with
chronic illnesses in their homes. Software-Defined Network
allowed the redesign of the middleware architecture to im-
prove things management, its interconnection with services,
and the deployment process of new monitoring scenarios.
Refactoring process also extended the middleware to sup-
port multiple services in a single home network sharing the
same network infrastructure. This work details an Open-
Flow controller and an application developed to achieve our
goals; we also present sample scenarios where our approach
can be applied showing different services delivered in the
same home network environment, and using data from all
connected devices to build a digital representation of the
physical realm.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Internet of
Things middleware; C.2.3 [Network Operations|: Net-
work management; C.2.4 [Distributed Systems]: Net-
work operating system—Software-Defined Network

General Terms

Design, Experimentation, Management

Keywords

Software-Defined Network, Internet of Things, Middleware,
Refactoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’15 April 13-17, 2015, Salamanca, Spain.

Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695861

640

1. INTRODUCTION

Modern communication networks are demanding the use
of new and sophisticated management solutions. While such
networks used to be composed of traditional devices (e.g.,
routers, servers, PCs), today, the number and variety of
connected elements has increased. Such elements, usually
referenced to as things, can vary in many aspects, such as
size, computing resources, operating mode, network tech-
nologies and protocols. This scenario is known as Internet
of Things (IoT), a term originally defined in 1999 to describe
the RFID tags used to track objects in supply chains. Nowa-
days, the term means the digital representation of physical
environment, created using data sent by multiple sensing
devices [14].

The importance of research in IoT is evidenced by the
growth in the number of heterogeneous devices connected
to the Internet — the industry predicts about 15 billions
by 2015 and 50 billions by 2020 [7]. These devices are used
for many and diverse applications, for example healthcare,
home automation, fitness tracking, environment monitoring,
and in smart cities. Integrating heterogeneous devices into
existing network infrastructure is a complex task. In a previ-
ous effort to develop IoT services for smart cities [5], we have
identified a set of important aspects to be considered when
employing IoT devices as part of a service. These aspects
are presented in the following:

e Interconnection: most of the Internet-enabled devices
(i.e., things) available today employ proprietary com-
munication methods to connect with the manufac-
turer servers or with other devices from the same
manufacturer. Such operation mode is know as silo
[1,11,13,17]. The main problem with silos is that data
are closed in a proprietary solution; even when acces-
sible through APIs (Application Programming Inter-
face), it is first sent to proprietary servers;

e Security and privacy: data collected by the devices
are usually transmitted in plain text and there is no
authentication between device and destination server;

e Management: IoT devices usually employ sleep sched-
ule mechanisms to reduce the power consumption,
avoiding traditional network management solutions
(e.g., SNMP, NETCONF, ICMP-based connectivity
monitoring) to be employed;

e Data structure: according to [12], 80% of healthcare
data is unstructured, thus requiring data-mining in

large volumes of data in order to find relevant infor-
mation to foresee future outcomes in patients health.

In order to tackle such issues, and considering the work-
ing scenario of REMOA project (health monitoring of pa-
tients with chronic illnesses), we developed a middleware to
execute on Access Points (APs) [16]. According to [9], mid-
dleware is one or more software layers employed to abstract
technological details to the application level. The middle-
ware development allowed us to identify that resource con-
straints of target environment (APs) slow down development
of required modules, consequently making the monitoring
solution hard to scale, deploy, and improve.

In this work we refactor the REMOA middleware in order
to support Software-Defined Network (SDN) technologies as
underlying network substrate. Specifically, we refactored
two important features provided by the middleware: things
management and interconnection. Inspired by [10], the mid-
dleware functions implemented to run in APs were moved
to remote servers, except the switching and routing tasks,
now performed as an OpenFlow switch. In the refactoring
process we also extended middleware to support more than
one service in the same AP.

In SDN-based networks, forwarding tables of switches are
configured by controllers, which are entities responsible for
storing and distributing flow rules and actions. Once an un-
matched packet arrives at a switch, it contacts the network
controller, which can decide to modify the current flow-table
rules, or to deploy new rules. This approach presents advan-
tages for IoT environments since the APs can be updated by
the SDN controller once new monitoring devices are added
to the network and start sending packets.

In our refactored middleware, services run on remote
servers and APs forward network packets based on flow rules
received from the SDN controller. Since the servers do not
present the same hardware limitations as the APs have, more
sophisticated services (e.g., management tasks, data receiv-
ing and processing) can be created and deployed to the IoT
environment in a fast and dynamic fashion; particularly be-
cause developers can make use of development resources not
possible to be used when all the middleware was being devel-
oped targeting APs. Another benefit enabled by employing
SDN in IoT context is the view of the networked environ-
ment as a whole; services may use information about com-
munication of every connected device, even things belonging
to other services, to expand the digital representation of the
environment beyond that provided by data from their de-
vices.

This paper is structured as follows: In section 2 we provide
an overview of the SDN paradigm and present other efforts
where the SDN paradigm is investigated in the IoT scenario.
Section 3 depicts the REMOA middleware, its components,
and development decisions. Middleware refactoring is de-
tailed in section 4 where we present the architecture of our
approach and its components: Derailleur OpenFlow con-
troller and ThingsFlow application (sections 4.1 and 4.2).
In section 5 we provide some examples of services and sce-
narios where this approach can be deployed. Finally we
present our considerations and point out next steps in our
work.

2. RELATED WORK

SDN is a network paradigm that has been largely explored

641

in the last years, both in industry and academia. The main
feature of SDN is decoupling the network control plane from
the forwarding devices, allowing to define the network logic
through applications that configure forwarding rules on SDN
switches [6].

In IoT field, SDN started to be explored more recently.
Qin et al. [15] propose an architecture where SDN is used
to enable different services to cooperate. The authors exem-
plify their proposal in a road scenario where, for example:
vehicles receive notifications about traffic and accidents; ve-
hicles communicate with each other; travel planning of elec-
tric cars is optimized based on the location of recharging
stations; cabs can be located. In that work, vehicles are
recognized based in data themselves provide. Such data are
crossed with data stored in databases; once a vehicle is rec-
ognized, its data can be sent to other services, such as a
network of cameras, that will visually locate a vehicle (e.g.,
cab) based on geo-location data.

The work of Chetty and Feamster [10] and Yiakoumis
et al. [18] does not address IoT explicitly, but their efforts
tackle home networks issues and use SDN to develop their
refactoring proposals. Chetty and Feamster [10] succeeded
in moving network complexity away from the home end-
users. End-users often do not properly configure their pri-
vate networks because of the specificity of technical infor-
mation presented to them, such as protocols, packet types,
attack types, and Maximum Transmission Unit (MTU). The
authors propose that network configuration possibilities are
presented in a high level abstraction configuration interface;
SDN is used to translate from configuration interface to tech-
nical OpenFlow settings.

Yiakoumis et al. [18] propose to slice home network al-
lowing different service providers (e.g., broadband, electric
energy, gas, NetFlix, GoogleTV) to use different slices to de-
liver their services sharing the same network infrastructure,
alming at costs reduction. Each service cannot interfere in
other services so that slices isolation is an essential feature.
Each slice is controlled by a service provider. For each slice,
it is guaranteed isolation of traffic and broadband, indepen-
dent control and the possibility to be changed and/or cus-
tomized by the service provider.

The target scenario of this paper is also home networks,
but with the characteristics of the monitoring environment
of the REMOA project. Laying over the ideas of the pre-
viously cited work, we extended the REMOA middleware
through a refactoring process, but we kept focus on IoT is-
sues. In the following sections we describe how refactoring
has been carried out, as well the redesigned architecture and
the implemented components.

3. REMOA MIDDLEWARE

The REMOA middleware was developed to address com-
mon issues found in IoT environments, mainly focused on
our health monitoring scenario: interconnection, security
and privacy, management, and data structure [16]. The mid-
dleware was developed considering the TP-Link WR1043ND
AP, with architecture presented in Figure 1, and the main
components discussed in the following:

1. Transparent Proxy: this component is responsible for
analyzing all the outgoing traffic to the Internet. It
receives health data from things, sends to the health-
care application, and records in the MIB (Management

Figure 1: REMOA Middleware Architecture [16].

Information Base) information about things operation
to be used for management purposes; when necessary
it applies filtering or redirecting rules to the network
traffic;

2. SNMP agent and Proxy agent: responsible for han-
dling SNMP requests made to things with no SNMP
support, it replies to requests with data previously
stored in the MIB by Transparent Proxy module;

3. Gateway: enables transparent communication between
the healthcare application and things, but only when
things operating mode allows them to be accessed.
When necessary, Gateway translates messages from
one technology to another (e.g., Ethernet to 802.15.4-
based technology).

The middleware was designed to execute over the Open-
WRT [4], a Linux-based operating system for embedded de-
vices, which is widely employed in domestic APs. In or-
der to reduce resources consumption of APs (e.g., memory
and processing), the middleware was developed using the
C++ instead of other resources demanding programming
languages, such as Java and Python.

With C++ there is a gain in performance and resources
saving running native code, but developing in C++ use to be
slower than developing with languages featured to abstract
type conversions, pointers, memory allocation/deallocation,
etc. C++11/C++14 features make development easier, but
still demands lots of work, for example, to implement a
Transparent Proxy module to communicate with things in a
REST (Representational State Transfer) style.

The deployment of new middleware features, or to employ
new monitoring devices in REMOA approach is a process
that requires much working efforts, i.e., the development
of specific modules having as target a resource constrained
system and architecture of the AP followed by the update
process. If AP is already running in the house of a patient
it is updated remotely; if some error occur the monitoring is
compromised, in addition technical staff will need to move
to the patient house for maintenance.

4. MIDDLEWARE REFACTORING

Figure 2 illustrates the middleware refactoring. The com-
plexity of network services provided by modules earlier im-
plemented over the AP, now is distributed among servers

642

provided with more computing power. AP now acts as an
OpenFlow switch and establishes IPSec connection with the
servers to where collected data are sent. The three modules
of the REMOA middleware were refactored as the following:

e Transparent Proxy module tasks are performed by AP
and service servers. AP forwards packets based on
flow rules sent by ThingsFlow application through the
controller; data collected by things are sent through
an [PSec tunnel to the services where are parsed and
processed.

e Things management that was mostly based on SNMP
in REMOA middleware, now is based on OpenFlow
counters. Counters are retrieved from APs by Things-
Flow that makes it available with a timestamp indi-
cating when it was retrieved; services retrieve coun-
ters stored in ThingsFlow to implement management
mechanisms to its things.

o Gateway now is the packet forwarding feature realized
by AP. In this approach forwarding is defined by Open-
Flow rules. In current IoT scenario there is a trend to
use IP-based approaches in things, such as 6LowPAN
and CoAP, for example. If things communication is
not based on IP, usually there is a device such as a
gateway /hub that connects things in an IP network,
so that packets are forwarded as any IP packet.

After the refactoring, the development needed for each
service (communication with things, data collecting, process-
ing, etc.) is not more impacted by AP constraints; develop-
ers can use any programming language, library, framework
or programming techniques to develop features for services,
specially those complex or even impossible to be developed
to run on AP.

In this work we extended middleware capabilities enabling
it to provide multiple services in a single AP. Yiakoumis et
al. [18] also explore the sharing of network infrastructure by

Things

User connected devices

REMOA:
Transparent proxy :

REMOA:
Gateway

REMOA:
Managemen‘t

\OpenFIow /
IPSec

Derailleur controller -~ |

y——

ThingsFlow application

- Things communication
- Internet traffic from user devices
--=+ Collected data transmition through a secure connection (IPSec)
---- Control and management secure connection (OpenFlow)
— Internal communication between application and controller
Services retrieving management data from ThingsFlow

Figure 2: Middleware architecture refactoring.

different service providers, but in their work the network is
sliced and each slice is isolated and is controlled by a service
provider. Slicing does not apply to our scenario because
we focus on IoT; in our approach services share data from
their things enlarging the digital panorama of the physical
environment. Due to privacy questions some data must not
be shared, such as personal and health data of a patient;
although data about things communication can be shared
to be used by any service, even from those which collected
health data.

Modules updates in APs in use in patients houses are no
longer needed; AP, as an OpenFlow switch, receives forward-
ing rules on demand from the controller. IPSec settings are
updated in each AP configuring them to create tunnels with
servers running the services they are providing; it is done by
a script that retrieves proper settings from the same server
where controller and application are running.

The benefits provided by this approach are: the support
to multiple services; the development of services and its fea-
tures in a not constrained environment; and automated up-
date of forwarding settings based on OpenFlow. In addition,
SDN-based refatoring allows to recognize connected devices
providing vision of network scenario and to implement man-
agement features suitable for IoT.

4.1 Derailleur Controller

The OpenFlow controller we developed in this work,
called Derailleur, has been built on top of 1libfluid [2],
the winner of Open Networking Foundation OpenFlow
Driver Competition [8]. 1libfluid is divided in two li-
braries: 1ibfluid base, that implements a server to listen
to switches connections and to handle switches events; and
libfluid_msg, which creates, parses and sends OpenFlow
messages. Derailleur controller was implemented extending
libfluid_base OFServer class through inheritance.

Derailleur was designed to be lean and to abstract
APs as switches objects, as shown in Figure 3. De-
railleur retrieves information from each connected AP send-
ing OFPT_FEATURES REQUEST and OFP_MULTIPART REQUEST
(OFPMP_DESC to request description) messages; APs replies
are parsed and stored in the corresponding switch object
stored in a virtual stack (array), and managed by controller.
Each AP may be recognized through the information re-
trieved; in our scenario we used MAC (Media Access Con-
trol) as an identifier; we can not use IP addresses because
APs in home networks will receive IP address dynamically,
additionally they may be behind NAT (Network Address
Translation).

Derailleur runs an application (a child object of Applica-
tion class) over their; Derailleur forwards events from APs
to the application that will handle then according to the ser-
vice, as described in Section 4.2. Application class provides
four abstract methods: on_switch_up, on_switch_down,
on_packet_in, and message handler; controller triggers
the suitable method depending on the AP event. When an
event occurs, the controller sends to the application data
related to the event triggered by switch; the application
handles the event and communicate with the AP through
a switch object stored in the switches stack. Switches stack
is managed by Controller class and shared with the Appli-
cation class. Through the switches objects, the application
can contact APs to retrieve data (e.g., flows, counters, infor-
mation about connected devices) and to manage flow-tables.

643

To deploy OpenFlow in APs we used the virtual switch
Open vSwitch (OVS) [3] on OpenWRT. We built an Open-
WRT image with OVS, the resulting image also contains
scripts to configure OVS bridges and network interfaces
when AP boots up.

4.2 ThingsFlow Application

ThingsFlow extends Application class from Derailleur
controller. ThingsFlow implements the inherited abstract
methods on_switch_up, on_switch_down, on_packet_in,
and message_handler; these methods are triggered by con-
troller when AP events occur. ThingsFlow also provides
methods to manage flow-tables in APs, independent of APs
events.

on_switch_up runs always when an AP connect to the
controller; ThingsFlow identifies the AP through the switch
object stacked by the controller and queries database for
flow-tables of services being provided on that home network
and installs them on AP. The method on switch down is
triggered when any AP disconnects from the controller; De-
railleur removes the corresponding switch object from the
stack; through this method ThingsFlow knows which AP
disconnected and will not try to access it.

Flow-tables sent by ThingsFlow do not contain default
rule to process packets from unknown devices (e.g., de-
vices not specified in any service). When a packet does
not match any rule on the flow-table of a given AP, it
causes a table-miss event making controller to trigger
on_packet_in method; ThingsFlow installs flows to forward
packets from that specific unknown device to the Internet or
inside the network. Flows defined specifically for unknown
devices enables the AP to implement flow counters for each
connected device; the counters may be used by any service,
as shown in Section 5, and provide a view of the network
scenario. ThingsFlow also makes available to the services
flows counters retrieved from APs; counters show if and
when devices communicate and allow services to monitor
their things.

Table 1 provides a basic example of flow-tables arrange-
ment and packet processing in a scenario where a health
monitoring service (REMOA) is provided. Beyond REMOA
flow-tables, there is one table for packets pre-processing and

ThingsFlow

Features provided:
- Management of flow-tables of APs
- APs events handling
- Counters providing

low-tables
ounters

m
e |

*(f(.

Derailleur controller
Creates a switch abstraction for
each AP, manages its
connections and handles events.

Open vSwitch
over OpenWRT

Figure 3: Overview of middleware components.

Main (0)

Input (1)

Output (2)

Packets addressed to
AP: go to table 1;

Packets sent by AP:

* Check if the incom-

ing packet is allowed
or not in this device.

packet is allowed to
be sent by this AP.

go to table 2;
* Packets from health-

care devices: go to
table 4;

* Packets to health-
care devices: go to
table 4;

* Packets addressed to
healthcare manufac-
turer servers: go to
table 4;

Any other packets:
go to table 3.

Firewall (3) REMOA (4)

* Check if the outgoing * Check if packet is * HTTP packets from
allowed according to healthcare devices
the network and ser- are redirected to
vices policies; REMOA service;

* Packets that are not * Packets from RE-
explicitly refused MOA service to
causes a table-miss healthcare devices

event; a packet-in are allowed;
message is sent to x HTTP(S) kets
packets to
the controller. healthcare devices’
manufacturer sent

by other devices are
normally forwarded;

* ICMP and SNMP
packets to devices
that support this
protocols are al-
lowed,;

Any other packet is
dropped.

Table 1: Example of packet processing among flow-tables.

three other providing filtering rules to protect AP and home
network.

5. EXAMPLE SCENARIO

In this section we present some examples of services that
may be provided in the same home network through the
same AP. In the example scenario APs are supplied by local
government to be used in social and/or well being projects
provided, for example, by hospitals or universities. APs and
ThingsFlow are managed by government staff that work to-
gether with services managers when services are deployed,
configured or updated; for example, flows from different ser-
vices may match the same packet, so managers need to han-
dle this kind of issues, otherwise OpenFlow switches will not
install overlapping flows.

This section describes three example services being deliv-
ered in the same home network. The following depicts how
services could be deployed based on our approach:

Health monitoring (REMOA):

Provided by a hospital, this service monitors patients with
chronic illnesses (e.g., diabetes, hypertension) that do not
need to be hospitalized. Patients are monitored through
healthcare devices connected to the Internet through an AP
using the existing Internet link in patient house. Healthcare
devices and the AP are provided by the hospital.

Healthcare devices we used are hard-coded configured to
send reading data to its manufacturer servers, so traffic from
these devices are redirected to REMOA by OpenFlow that
rewrites destination IP in packet header.

Data sent by healthcare devices provide a vision of patient
health. ThingsFlow knows every device connected to the
AP, it makes available flow counter of every device enabling
healthcare application to draw a panorama of the entire net-
worked environment and to infer about what is happening
on patient’s surroundings. This view of the environment as
a whole is useful, for example, if a sensor does not detect pa-

644

tient presence for a large period of time, what could trigger
an alarm, but their smartphone and notebook are connected
and TV just started to transmit a streaming; probably pa-
tient is watching TV making soft movements that are not
detected by sensor, although they are not unconscious.
Most of healthcare devices only connect when they are
used for measurements and this must be done in pre-defined
periods of time. Based on OpenFlow counters healthcare
application may implement management mechanisms to suit
treatment particularities, such as measurement schedule.

Access to smart city services

City government offers websites and mobile applications to
be used by people; information available refers, for exam-
ple, to transit, bus itinerary and current location, touristic
places, events schedule. APs providing services in homes
closer to the street, in special near bars, cafes or squares,
broadcasts a SSID (Service Set IDentifier) to be used by
anyone to access the city services; access attempts to any
other content are dropped. The traffic of this service is en-
tirely isolated from home network.

Research to characterize Internet usage

It is a research developed by an university to characterize In-
ternet usage considering aspects such as people age, gender,
education. OpenFlow counters allow to distinguish traffic
from each connected device; it is made through specific flows
that forward packets from devices of people participating
of study to analyzed destinations, such as social networks,
news, mail, web access, chat. Researches also consider time
spent in each destination and period of the day, among oth-
ers. Crossing people information with data from counters
researches can define different usage profiles.

In the examples above we showed how different services
could be implemented sharing the same network infrastruc-
ture, configured through a central application, the Things-
Flow. We emphasize that connected devices are not closed

in a single service; data from OpenFlow counters related to
communication of networked devices allow that even things
closed in manufacturer silos be used by different services for
different purposes. Note that devices used by the third ser-
vice example are the same that provide the panorama of
surroundings of patients monitored; connections using the
second service allows to estimate average waiting time in a
bus stop or people concentration.

6. FINAL CONSIDERATIONS AND FU-
TURE WORK

In this paper we presented the refactoring process based
on SDN of the REMOA middleware; we redesigned mid-
dleware architecture aiming to speed up development and
deployment process of services, features and things. Our
work focus on IoT services delivering in home networks.

Through the refactoring, network and service complexity
that were concentrated on APs were distributed among dif-
ferent servers. APs were turned in OpenFlow switches in
charge of packet forwarding according flows rules received
from controller; they also provide a encrypted connection
through which sensed data are sent.

The middleware were extended to provide multiple ser-
vices through the same AP, in the same home network. As
this work focus on IoT scenarios, things belonging to a ser-
vice may provide useful data to other services; while users
consume a service their devices connections may transpar-
ently supply data to the service itself, or any other service.

In our approach, all services run in remote servers pro-
vided with more computing resources than APs; there is no
need to develop modules to run on APs. Developers can
make use of any programming language, libraries, frame-
works, and many other development resources that poten-
tially make services deployment, improvements, and main-
tenance faster. Flow-tables of each AP are updated by con-
troller when things and other connected devices communi-
cate; no manual intervention is required.

Management of things must be designed considering
things operating mode and their usage; OpenFlow counters
allow to know when and how things are working. Things-
Flow periodically retrieves counters from APs and provide
them to the services that implement management features
to suit particularities of things they use.

Even running different services in the same AP we did not
evaluated the impact of flow-tables processing in AP; it is
one of the next steps in our work, as well a circumvent to
deal with possible controller faults. Derailleur and Things-
Flow are both under development to finish some features;
we intent to continue developing then to investigate other
ways SDN can be explored in IoT scenarios and services
delivering.

7. REFERENCES
[1] IOT-A: Internet of Things Architecture.

http://www.iot-a.eu/public.
[2] libfluid - The ONF OpenFlow driver.
http://opennetworkingfoundation.github.io/
libfluid/index.html.
Open vSwitch. http://openvswitch.org/.
OpenWRT. http://openwrt.org.
REMOA - Rede Cidada de Monitoramento de
Ambiente Baseado no Conceito de Internet das Coisas.

645

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

http://remoa.tche.br.

Software-Defined Networking: The New Norm for
Networks. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/white-
papers/wp-sdn-newnorm.pdf, 2012.

Silicon Labs 2013 Annual Report.
http://files.shareholder.com/downloads/ABEA-
39NRLI/3514356491x0x730508/7FEFCB63-3F64-4D05-
86BE-A9724E4AA891/SLAB_32633_proof_rev2.pdf,
2013.

CPgD Selected as Winner and Recipient of $50.000
Grand Prize.
https://www.opennetworking.org/component/
content/article/26-news-and-events/press-—
releases/1431-open-networking-foundation-
announces-openflow-driver-contest-winner, 2014.
L. Atzori, A. Iera, and G. Morabito. The Internet of
Things: A survey. Computer Networks,
54(15):2787-2805, 2010.

M. Chetty and N. Feamster. Refactoring network
infrastructure to improve manageability: a case study
of home networking. ACM SIGCOMM Computer
Communication Review, 42(3):54-61, 2012.

L. Coetzee and J. Eksteen. The Internet of Things -
promise for the future? An introduction. In IST-Africa
Conference Proceedings, 2011, pages 1-9, 2011.

P. Hinssen. The age of data-driven medicine.
http://datascienceseries.com/assets/blog/The_
Age_of _Data-Driven_Medicine.pdf, 2012.

Linux Foundation. Technology Leaders Establish the
AllSeen Alliance to Advance the ‘Internet of
Everything’. https://allseenalliance.org/
announcement/technology-leaders-establish-
allseen-alliance-advance-internet-everything,
2013.

D. Miorandi, S. Sicari, F. D. Pellegrini, and

I. Chlamtac. Internet of things: Vision, applications
and research challenges. Ad Hoc Networks,
10(7):1497-1516, 2012.

Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and
N. Venkatasubramanian. A Software Defined
Networking architecture for the Internet-of-Things. In
Network Operations and Management Symposium
(NOMS), 2014 IEEE, pages 1-9, 2014.

L. M. R. Tarouco, L. M. Bertholdo, L. Z. Granville,
L. M. R. Arbiza, F. Carbone, M. Marotta, and J. J. C.
de Santanna. Internet of Things in Healthcare :
Interoperatibility and Security Issues. In IEEE
International Conference on Communications,
International Workshop on Mobile Consumer Health
Care Networks, Systems and Services, pages
6121-6125, Ottawa, 2012.

G. Wu, S. Talwar, K. Johnsson, N. Himayat, and

K. D. Johnson. M2M: From mobile to embedded
internet. Communications Magazine, IEFE,
49(4):36-43, 2011.

Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and
N. McKeown. Slicing Home Networks. In Proceedings
of the 2Nd ACM SIGCOMM Workshop on Home
Networks, HomeNets '11, pages 1-6, New York, NY,
USA, 2011. ACM.

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

