A Bottom-up Approach for Extracting Network Intents

Rafael Hengen Ribeiro, Arthur Selle Jacobs, Ricardo Parizotto, Luciano Zembruzki,
Alberto Egon Schaeffer-Filho, and Lisandro Zambenedetti Granville

Institute of Informatics — Federal University of Rio Grande do Sul
Av. Bento Gongalves, 9500 — Porto Alegre, Brazil
{rhribeiro, asjacobs, rparizotto, lzembruzki, alberto, granville } @inf.ufrgs.br

Abstract. Intent-Based Networking (IBN) is showing significant improvements
in network management, especially by reducing the complexity through intent-
level languages. However, IBN is not yet integrated and widely deployed in most
networks. Network operators may still encounter several issues deploying new
intents, such as reasoning about complex configurations to understand previ-
ously deployed rules before writing an intent to update the network state. Many
networks include several devices distributed along with its topology, each de-
vice configured using vendor-specific languages. Thus, inferring the behavior
of devices as high-level intents from low-level configurations can be an ardu-
ous and time-consuming task. Current solutions that derive high-level represen-
tations from bottom-up configuration analysis can not represent configurations
in an intent-level. In this work, we present a bottom-up approach to extract in-
tents from network configurations. To validate our approach, we develop a system
called SCRIBE (SeCuRity Intent-Based Extractor), which decompiles security
configurations from different network devices and translates them to an intent-
level language called Nile. To demonstrate the feasibility of SCRIBE, we outline
a case study and evaluate with dumps of real-world firewall configurations con-
taining rules from various servers and institutions.

Keywords: Intent-Based Networking, Network Management, Programming Lan-
guages

1 Introduction

In Intent-Based Networking (IBN), an intent is a high-level abstract declaration writ-
ten by network operators to specify the desired network behavior [1] [2]. IBN helps
operators configure the network by hiding unnecessary low-level details of the under-
lying network, inside an intent-aware network management system. In a recent effort,
researchers have exploited specification languages that are closer to natural language to
define and employ network intents. Nile [1] and Jinjing [3] are examples of such lan-
guages. Employing such solutions into the network can improve management and also
facilitate the deployment of new features. However, current efforts to support IBN fo-
cus on top-down approaches, meaning that network configurations are first specified as
intents and then refined to low-level configuration directives — i.e., the network is as-
sumed to support intents already. Network operators may still encounter several issues

deploying new intents, such as reasoning about complex configurations to understand
previously deployed rules before writing an intent to update the network state.

Network operators may encounter networks with missing documentation of pre-
viously deployed intents, becoming hard to understand the network behavior. In such
cases, especially in large-scale networks, operators must read many configuration files
to comprehend the network behavior. Large-scale networks may include various devices
distributed in multiple hierarchical levels of their topology, each of these devices con-
figured using low-level, vendor-specific languages. Thus, existing top-down approaches
to specify intents are not straightforward to be implemented. Take, for instance, the con-
figuration of a firewall: an operator must manually check several low-level firewall rules
to extract a simple intent, such as “block p2p traffic”.

There is a lack of solutions for interpreting low-level configuration directives and
expressing them using intents. In the network security context, many work efforts are
made to interpret the behavior of firewalls in the network by converting rules to high-
level representations, such as tables [4], symbolic models [5], generic firewall languages
[6], and graphs [7]. These representations help operators understand firewall rules by
capturing low-level configuration details in a bottom-up approach and displaying fire-
walls rules in a vendor-independent form. However, these solutions display as output
only allowing and blocking statements for IP addresses and ports, requiring operators to
know the functioning of firewalls, protocols, and ports to understand the generated rep-
resentation. Thus, we can observe a lack of strategies to bridge the existing gap between
low-level deployed network rules and high-level network intents. An intent-level rep-
resentation can help operators by reducing the necessary effort to consolidate network
rules and reason about previously deployed intents.

Given the lack of strategies to express the behavior of already deployed network
configurations in the form of intents, we propose a bottom-up methodology to repre-
sent network configurations in an intent-level language. We developed a prototype tool
called SCRIBE (SeCuRity Intent-Based Extractor) to validate our method. SCRIBE in-
teracts with tools that reverse engineer vendor-specific configurations to an intermediate
level and aggregates the complementary information to provide a high-level represen-
tation. Finally, SCRIBE translates this representation into an intent-defined language,
called Nile. We demonstrate the feasibility of our approach using a case study and an
evaluation of the translation accuracy with real-world firewall dumps [5], containing
firewall rules from various servers and institutions. Our results show that SCRIBE is
able to express network configurations in an intent-level language with high accuracy,
capturing the vast majority of the low-level details present in the input configuration
files.

The remainder of this paper is structured as follows. In Section 2, we review related
work. In Section 3, we specify an end-to-end methodology to extract intents from net-
work configurations and we detail the implementation of SCRIBE. We describe two
case studies based on realistic scenarios in Section 4. In Section 5, we conduct an
evaluation of our system using real-world configurations, as well as a discussion of
our findings. Finally, in Section 6, we conclude this paper with discussions and future
work.

2 Related Work

In this section, we review related work. We consider as related work previous efforts
that read low-level network configurations and express configurations in an intent-level
language. Given the lack of strategies in this area, we review intent languages that (7)
allow deploying network configurations using high-level directives; and previous efforts
that (i7) read vendor-specific configurations from a restricted context and use high-level
representations to display these configurations.

Jinjing [3] automatically generates ACL update plans based on operators’ high-
level intent. Jinjing offers an intent language named LAI, with high-level representation,
which operators can use to express their in-network ACL plan updates. Janus [8] support
policies with QoS requirements, mobility, and temporal dynamics. In a recent effort [1],
authors provide a solution to allow users to express intents in natural language, using
Nile as an intermediate representation, closely resembling the English language. Their
approach reduces the need for operators to learn a new policy language for each differ-
ent type of network. However, all these languages are top-down approaches, meaning
that network configurations are firstly specified as intents and then refined to low-level
configuration directives.

In the security context, some efforts have been made to parse low-level firewall
rules and express them using high-level representations, such as graphs or tables. In
a previous work [7], authors propose a solution to read vendor-specific firewall rules
and represent them as a directed graph abstraction, where nodes correspond to the net-
work devices, and directional edges represent a statement to allow or block traffic on a
specific port. This graph abstraction helps users understand firewall configurations by
displaying the network topology, allow and block statements in an easy-to-understand
representation. However, this solution only supports simple allow and block policies in
specific ports and hosts, and there is no support for distributed firewall configurations.

More recently, in [4], the authors propose FWS, a solution that reads firewall config-
urations from different systems and synthesizes them in a tabular form. To this end, au-
thors provide a language to interact with FWS, where the user can load vendor-specific
rules from different firewalls and queries for specific IPs, ports, networks, as well as
compare them. The tabular representation helps operators understand firewall rules by
centralizing all configurations in a single place. However, for distributed firewall con-
figurations, this solution loads each device configuration separated in a different table,
each representing the firewall rules of a single device. Due to the use of various tables,
operators can have difficulty to reason about previously deployed intents in a network-
wide context.

In Net2Text [9], authors propose a solution to summarize the forwarding behavior
in natural language. This solution provides interaction through a “chatbot”, where users
can query for a specific forwarding behavior. While this work does an excellent job
in summarizing the network-wide forwarding state, producing succinct reports in nat-
ural language, it is limited to forwarding behavior, not supporting ACL and NAT, for
1nstance.

3 Methodology Overview

In this section, we describe a bottom-up methodology to parse network configurations
and represent them into an intent-level language, depicted in Figure 1. Our process ex-
pects as input configuration files exported from network devices (e.g., firewalls, NAT,
routers). Having these configuration files, in the step @, we gather them in a centralized
database, synthesize these configurations and express them using an intermediate repre-
sentation. During the step (2), we extract the network entities and generate a platform-
independent abstract model. In the step (3), we enrich the model with complementary
information provided by various sources. The final result of this step is the Aggregated
Model, an enhanced representation of the network configurations, which we call meta-
intents. Finally, in the last step @, we translate meta-intents into our extended version
of the Nile language, which is described in 3.4.

@) ® @

Translation
-------- >

Configuration Intermediate Abstract Aggregated Intent
Representation Model Model

<

<lg
7]
<
=
=
=
@
2.
w
Q
)
=]
w
o,
a
i)
=3
o
=]
>
agQ
aQ
(=]
@
]
[~}
=
]
3

@)

Fig. 1. Process of intent extraction

3.1 Configuration synthesis

In the first step of our process — indicated in Figure 1 by step @ — we collect low-level
directives from various configuration files, which can be distributed in multiple levels
of the network hierarchy, and synthesize them to an intermediate representation. In this
step, the input our approach is composed of configuration files exported from various
devices. After, we parse the configuration files and synthesize the configuration direc-
tives. This process must be low-level and accurate in order to create a trustworthy repre-
sentation, which can reproduce all aspects of configuration and their interactions. As we
leverage information from multiple different sources in the network, we exploit existing
literature solutions to extract such info in a structured fashion. However, as the exist-
ing solutions are not standardized, we have various representation types such as tables,
graphs, or symbolic models. Thus, our solution must be able to parse multiple input
sources. Aiming to parse these input sources, we design our synthesis methodology as
an extensible module that can use many solutions to characterize network behavior. Our
approach consists of gathering configuration files, generating input commands for the
base solutions, and exporting the output of these solutions to process them in the next
steps. How the base solutions are heterogeneous, we may have several outputs in this
step, one for each network device. In the next step, described in Section 3.2, we detail
how we gather these generated outputs and generate an intermediate representation.

3.2 Consolidation

After we have the intermediate representation, we can start to raise the abstraction level
of the network model. This step is the most important phase of the process, once it
develops a more manageable and structured view of the configuration. In this phase,
we parse the intermediate representation and extract the entities needed for our reverse-
engineering process.

Definition 1. A network configuration is a composition of several entities. We define an
entity as E = {Target, Traffic, Actionsk }, where:

— Target: represents the target object of a determined rule. A Target can be special-
ized to represent network target objects in various scenarios. For example, if we
model a firewall, we can model firewall Target entities by using source and destina-
tion prefixes (Target :=< src.prefix,dst.prefix >). A firewall prefix may represent
a single IP (e.g., src.ip :== 10.0.0.1) or a network IP prefix (e.g., src.prefix :=
10.0.0.0/8).

— Traffic: represents the type of traffic in the network. For example, in firewall and
NAT actions the Traffic entity represents the set of source and destination ports for
filtering traffic, which will discern the traffic type in the network.

— Action: represents operations to be executed. An action will be applied to the rules,
for a pair < Target,Traffic >. Each entity may have k actions, then Actions =
(actionhactionz,...,actionK). Each action contains parameters necessary to run
the desired operation. Then P = (p1, pa, ..., pn) is the set of parameters of an Ac-
tion i. As an example, we can represent a NAT forward operation in a Action =
{forward} and include the parameters p; = DNAT1p and p» = DNATp,yt, indi-
cating the destination NAT IP and port for a specified traffic.

Finally, to group the entities which produces the same intent, we perform an addi-
tional processing phase. In this phase, we search through the extracted configurations
and match pairs of entities by common characteristics using grouping functions.

Our grouping process consists of three applications of grouping functions in Target,
Traffic, and Action entities, respectively. We define grouping as a function of entities,
g: E X E— E, where we first group entities by the Target. Targets with the same ori-
gin and destination must be part of the same intent. Therefore we merge the entities
that match these parameters. Formally, Vi, j € E, if target; = target ; then we compute
g(i, j). Second, the grouping is performed by the entity Traffic, containing input and
output ports. Formally, Vi, j € E, if traffic; = traffic ; then we compute g(i, j). In the last
stage, we gather similar Action entities. If two actions have the same traffic type, we
complement the traffic type by adding a parameter, indicating a variation in a set of sim-
ilar characteristics of the Traffic. We consider as similar, a group of rules containing the
same characteristics in which there is only a characteristic that differs them. This only
different characteristic is considered the varying parameter. The varying parameter will
be the input of traffic and stored separated from the entities, thereby reducing the total
set of rules, aiming to create compact intents. Formally, Vi, j € E, if traffic; is similar
to traffic; by the characteristic ¢, then action.p := action.pUc. All entities generated in
this step will serve as input for the aggregation, which is described next.

3.3 Aggregation

In the third step of our process, we join all related entities to generate meta-intents.
Meta-intents contains pairs of information, including the origin, destination, services,
and the default action. Meta-intents are a more high-level representation of our process,
much closer to an intent, and we represent them in JSON format.

We use complementary information from various sources to enrich the generated
meta-intents and display the information at a user-friendly level. The purpose is to
eliminate the redundant constructions and replace them with a smaller and clearer set
of rules R. To enrich the meta-intents, we collect hostnames and topology as a piece of
additional information from the network. Also, our solution provides an option to in-
put “friendly” names for hosts, aiming to facilitate the recognizing of network devices.
With all the complementary information gathered, we replace all IP addresses for the
provided names. After, we infer the service or protocol names from provided ports. For
this, we query the Service Name and Transport Protocol Port Number Registry [10],
which lists the standard port for services.

3.4 Extending Nile

We use Nile as default language to represent our intents. The Nile language can express
intents in an intent-level of abstraction, closely resembling the natural language, and
satisfies our requirements of readability and abstraction. However, Nile natively does
not contain symbols to support NAT behavior. In order to express NAT behavior, we
extend the Nile grammar to support NAT directives. To do that, we include NAT con-
structs to Nile language. We add the forward keyword to represent a forward NAT
action.

A Nile forward action requires a <target> symbol. Nevertheless, the actual Nile
<target> symbol only allows representing groups, services, endpoints, and traffic. We
can not represent a pair of IP address and port as a target for operation. To overcome
this limitation, we create a new symbol <address> to express a pair of IP or host and a
port. The syntax of the address symbol is <address>::=< IP/Host, [Port] >, expecting
an IP or host as a required parameter and a port as an optional parameter. If the port
parameter is missing on intent, the system will assume the NAT port as the same as the
input or output port.

define intent forwardIntent:
from endpoint ('internet')
to endpoint ('NAT Device ')
for protocol ('SSH')
forward address ('10.0.0.5"', 2222)

Listing 1. NAT Forward in Nile

In Listing 1, we provide an example using the Nile command forward and the
address symbol. In this example, we represent a NAT action from incoming traffic.
The incoming SSH traffic with the destination “NAT Device” will be redirected to the
internal address 10.0.0.5 on port 2222.

3.5 Intent translation

After enriching the model with complementary information, we process the generated
meta-intents to translate them into our extended version of Nile. Nile grammar has
several symbols to represent network rules, which can be directly translated from our
generated entities. Nile grammar expects two endpoints as parameters, which can be
hosts, middleboxes, and many other network devices. We map our arguments on Target
entity and generate two Nile endpoints. The second phase of the translation process to
Nile involves the mapping of Traffic entities to Nile matches symbol. The Nile language
supports service, traffic, protocol and group traffic types, and, we also extend Nile allow
the representation of addresses, which permit us to express our Traffic type in different
levels of abstraction. In the last phase of the Nile translation process, we express our
Action entities. The Nile grammar allows us to represent our actions using Nile rules,
which permits us to represent actions like allowing, blocking, and add middleboxes,
permitting us to represent several network functionalities supported by different types
of middleboxes. We also extend the Nile language to support the operation forward,
allowing us to represent NAT forwarding actions, as described in Section 3.4.

3.6 Implementation

We validate the feasibility of our methodology by developing a prototype solution called
SCRIBE. The system leverages different input sources to process low-level firewall
configurations and queries for all configurations available on filtering and NAT tables.
SCRIBE has about 400 lines of Python code. In this section, we discuss the implemen-
tation of SCRIBE in detail as well as our modifications to third-party tools to make
them interact with SCRIBE.

We divide the system into two different modules. In the first module (1), SCRIBE
generates commands to load all configuration files in FWS [4]. We choose FWS due to
the trustworthiness to generate the intermediate model. Also, FWS supports the most
common firewall solutions for Linux/Unix systems, such as iptables, IPFW, packet fil-
ter (PF), and Cisco IOS ACL configurations. FWS process low-level firewall configu-
rations files and synthesizes the network configuration using first-order logic predicates
to characterize allowed policies in firewall and NAT forwards. In the second module
(2), SCRIBE queries for all filtering and NAT rules in FWS. FWS then generates the re-
sult as a table, displaying all allowed connections in the network. We process the rules
table generated by FWS and register them into our database. Then, we process these
rules and complement with additional data to consolidade in our intermediate represen-
tation format, as explained in Section 3. Finally, we translate the meta-intents to the
Nile language.

4 Case Study

Let us suppose that a new operator initiates at a company and wants to assert if the
network behaves as expected and makes some changes. For this, the operator needs to
discover all devices of the network and understand their respective configurations. In

this situation, the network operator would need to (i) discover all devices in the network
and their respective IP addresses, (ii) read the entire configuration from various network
devices and (iii) provide some documentation to help understand the network behavior
for the next alteration. To do these tasks, the operator needs to have platform-specific
expertise, besides knowledge of network administrative tools.

Instead, the operator could rely on Scribe to understand the network state and then
insert a new rule as needed. In this section, we analyze a Science DMZ case study indi-
cating the applicability of our solution to extract intents from already deployed network
configurations and demonstrate the effectiveness and technical feasibility of our pro-
posed solution. For this purpose, we explore a Science DMZ scenario. Next, we discuss
this scenario in detail.

4.1 Scenario - Science DMZ

{ Internet %

g 17216115 100.13 o
DTN 1 ' ‘ Web Server
E 172.16.1.5 E—:—E 10.0.0.5
m 172.16.1.16 S. DMZ Router Border Router Firewall / NAT 100110 ey
—— Workstation 1
DTN 2

DMZ LAN

Fig. 2. Science DMZ network

In this case study, we explore a university scenario with Science DMZ. In this
network, there are high-speed DTNs (Data Transfer Nodes) in a DMZ (Demilitarized
Zone), a router with ACLs and an internal firewall. A DMZ can be used to isolate par-
ticular servers from the machines within a network. Figure 2, shows the scenario. In this
network, the DTNs are connected directly to a router because of the high-speed trans-
fers [11]. A stateful firewall can degrade the network performance and is not suitable
to realize the transfer of huge amounts of scientific data in high-speed connections. For
this, the ACLs (Access-Control Lists) are inserted directly in the router in a stateless
manner, aiming to maximize the transfer speeds [11].

We extract the network intents in a bottom-up approach. These intents hide the
complexity involved to configure two separate devices to manage ACLs in a high-speed
DMZ and a conventional stateful firewall managing internal connections. The ACL
router begins with a default-blocked configuration, and it is possible to add network IP
addresses and prefixes in a “whitelist”, indicating what server is allowed to perform a
high-speed connection with a specific DTN. NAT isolates the internal network, and the
firewall device attends to translate external addresses to NAT addresses. The firewall
rules deal with internal traffic, besides blocking suspected protocols, such as UDP or
TCP for some specific internal hosts.

The output intents for this solution are shown in Listing 2. We observe a significant
reduction in the number of lines of code. The original iptables code, available at

our repository, has more than 40 lines of code, and the resulting Nile intents have 22
lines. Also, we have reduced the complexity by rising the abstraction level. From these
generated intents listed in Listing 2, we can easily infer the base intents derived from
this scenario. The two first intents (i) represents an allow intent between University A
and the authorized DTN, labeled “DTN 1”. The third intent of Listing 2 (ii) describes
the behavior of allowing all types of traffic in the internal network. With the use of
intuitive alias supported by SCRIBE, we can define in this example the alias “My Net-
work”, referring to the prefix 10.0.0.0/8 (prefix of the internal network). From intents
natIntentl and nat Intent2, we can observe (iii) a NAT translation from all in-
coming traffic for the HTTP and HTTPS protocols, indicating that these types of traffic
will be forwarded to the Web Server, which can only be accessed directly from the
internal network.

define intent firewalllntentl] :
from endpoint ('University A')
to endpoint ('DIN 1)
allow traffic (‘'all")

define intent firewalllntent2:
from endpoint ('University B')
to endpoint ('DIN 2')
allow traffic ('all')

define intent firewalllntent3:
from endpoint ('My Network')
to endpoint ('My Network ')
allow traffic (‘'all")

define intent natlntentl :
from endpoint ('internet')
to endpoint ('Firewall / NAT")
for protocol ('HTTP')
forward address ('Web Server ')

define intent natlntent2:
from endpoint ('internet')
to endpoint ('Firewall / NAT")
for protocol ('HTTPS')
forward address ('Web Server ')

Listing 2. Resulting Nile intents for the Science DMZ scenario

5 Evaluation

The evaluation of the bottom-up process requires a careful analysis of the intents, i.e.,
we need to find ways to identify if the extracted intents represent the same configuration
as the low-level configuration. In this section, we define and measure accuracy metrics
collected from SCRIBE through several real-world network configurations.

To assert the feasibility of our bottom-up process, we evaluate two main aspects: (i)
the accuracy of generated intents and (i) SCRIBE support for the most present func-
tionalities in real-world firewall dumps. To evaluate the accuracy of generated intents,
we compare if the characteristics of the original configuration files are present in the
extracted intents. We performed several measurements using real-world security rules
from a public collaborative repository [5], which contains dumps of firewall rules from
various servers and institutions. For security concerns, some public IP addresses and
MAC addresses are anonymized.

5.1 Translation Accuracy

We performed a static analysis to validate if each generated intent represents the config-
uration accurately. Each characteristic is a configuration element of a rule. For instance,
source address, port number, and action (e.g., allow) are characteristics of a traditional
allow rule. We automatically to extract all firewall parameters of configurations. We
use these extracted parameters to compare with parameters extracted from generated
intents, in order to evaluate the accuracy.

After, we dump the parameters of configurations present in generated intents. We
then compare if the parameters dumped of low-level configurations are also present in
generated intents. Thus, we calculate the accuracy by count how many parameters of
the configuration files are also present in generated intents. Figure 3(a) presents the
accuracy of the intents. The X-axis shows the firewall dump (with a compact name),
and Y-axis represents the rate of correctly extracted configuration parameters, i.e., the
percentual of configuration parameters which are present in low-level configurations
and also present in generated intents.

We can verify in Figure 3(a) that the accuracy of generated intents is above 0.8 for
most of the dumps, which represent that SCRIBE can extract intents from configura-
tion files with high fidelity, missing very few configuration details. The worst case is
Veroneau (a dump of veroneau.net) and contains several directives of ICMP messages
and some directives of rate-limiting, both not supported for our solution yet. However,
even for this dump, our solution can express most of the functionalities available in the
firewall configuration. We can observe that we can represent high-level intents, closely
resembling the natural language, and, nevertheless, maintain a high fidelity to the orig-
inal configuration.

5.2 Functionality support

We extract several properties from firewalls to recognize supported functionalities. For
this, we extract all possible parameters from the firewall configuration files and gather
all these parameters for posterior analysis. We carefully analyze the exported param-
eters to capture the meaning for the parameter, exploring for which functionality it
belongs.

With the grasp of the functionalities, we extract these functionality parameters from
several real-world configuration files. For this, we process all available configuration
files and count the functionality parameters for each. After, we contrast all used func-
tionality parameters in real-world configurations with security functionalities supported

©
5 10,098 096 2 1%
=1 so
g 09 087 086 081 e g8 SCRIBE Support
£ 23 ° < Supported
< 06 o X Not Supported
% 05 ‘é 3
204 3
H é D D D D
O 02 58
D 04 3°
& 00 So =z @ \i|
Q}(‘Q} \e\oé\e Q\{&\ \ &o‘b (\%{b\) c}\oo O\Q & 00 ‘\’0 Q\”Q’O\Q &
& & 4@‘0 Yo' RS e R
& K
O
(a) Extraction percentage of correct intents for (b) Most used functionalities in security con-
each firewall dump. figurations and SCRIBE support for them.

Fig. 3. Evaluation of SCRIBE functionality support.

by SCRIBE. We display the functionalities results in Figure 3(b). We remove from the
graphic all parameters with less than 30 utilizations, due to the little utilization in the
dataset. Observing Figure 3(b), it is possible to observe that SCRIBE supports the most
used functionality parameters in real-world firewall configurations, and, due to this sup-
port, SCRIBE can represent the most used firewall functionalities at an intent-level.
Most of SCRIBE unsupported functionalities of firewalls refers to logging, TCP
flags, and ICMP messages. SCRIBE also does not support rate-limiting functionali-
ties yet. However, this functionality is rarely used directly in firewall configurations,
according to our evaluated sources, and will be an object of study of future work.

6 Conclusion and Future Work

In this paper, we introduced a novel bottom-up approach to intent extraction, which
synthesizes and represents existing network configurations in an intent-level. We de-
veloped a solution to validate the feasibility of our process, and we provide two case
studies representing real-world scenarios where we can apply the process. Case studies
evidence that we can extract intents from these scenarios, and represent the network
behavior in intent-level, closely resembling the natural language. Additionally, we use
real-world firewall configurations to evaluate the accuracy of our implemented solution.
We find that it is possible to extract intents from real configurations using SCRIBE with
high accuracy, preserving the majority of aspects of the original configurations in the
translation process.

Although SCRIBE can extract intents with high accuracy, it still faces some lim-
itations. In particular, we do not support firewall features of rate-limiting, logging,
and ICMP messages. We suggest, as future work, including these functionalities into
SCRIBE. For this, there is a need to add new features to FWS and also add new con-
structs in the Nile language. We also see as a perspective supporting routing algorithms,
which also would require modifications into Nile and support from other synthesizers,
besides FWS.

Acknowledgement

We thank CNPq for the financial support. This research has been supported by call
Universal 01/2016 (CNPq), project NFV Mentor process 423275/2016-0.

References

1.

10.

11.

A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville, “Refining Network Intents
for Self-Driving Networks,” in Proceedings of the Afternoon Workshop on Self-Driving
Networks, ser. Selt DN 2018. New York, NY, USA: ACM, 2018, pp. 15-21. [Online].
Available: http://doi.acm.org/10.1145/3229584.3229590

. E.J. Scheid, C. C. Machado, M. F. Franco, R. L. dos Santos, R. P. Pfitscher, A. E. Schaeffer-

Filho, and L. Z. Granville, “INSpIRE: Integrated NFV-based Intent Refinement Environ-
ment,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
May 2017, pp. 186-194.

. B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, and X. Wu, “Safely and Automat-

ically Updating In-Network ACL Configurations with Intent Language,” in SIGCOMM 19
Proceedings of the 2019 Conference of the ACM Special Interest Group on Data Communi-
cation, 2019.

. C. Bodei, P. Degano, L. Galletta, R. Focardi, M. Tempesta, and L. Veronese, “Language-

Independent Synthesis of Firewall Policies,” in 2018 IEEE European Symposium on Security
and Privacy (EuroS P), April 2018, pp. 92-106.

. C. Diekmann, J. Michaelis, M. Haslbeck, and G. Carle, “Verified iptables firewall analysis,”

in 2016 IFIP Networking Conference (IFIP Networking) and Workshops, May 2016, pp.
252-260.

. A. Tongaonkar, N. Inamdar, and R. Sekar, “Inferring Higher Level Policies from Firewall

Rules,” in Proceedings of the 21st Conference on Large Installation System Administration
Conference, ser. LISA’07. Berkeley, CA, USA: USENIX Association, 2007, pp. 2:1-2:10.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1349426.1349428

. S. Martinez, J. Cabot, J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia, “A Model-

driven Approach for the Extraction of Network Access-control Policies,” in Proceedings of
the Workshop on Model-Driven Security, ser. MDsec *12. New York, NY, USA: ACM,
2012, pp. 5:1-5:6. [Online]. Available: http://doi.acm.org/10.1145/2422498.2422503

. A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang, and W. Wu, “Supporting

Diverse Dynamic Intent-based Policies Using Janus,” in Proceedings of the 13th
International Conference on Emerging Networking EXperiments and Technologies, ser.
CoNEXT °17. New York, NY, USA: ACM, 2017, pp. 296-309. [Online]. Available:
http://doi.acm.org/10.1145/3143361.3143380

. R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Net2Text: Query-

Guided Summarization of Network Forwarding Behaviors,” in [15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18). Ren-
ton, WA: USENIX Association, Apr. 2018, pp. 609-623. [Online]. Available:
https://www.usenix.org/conference/nsdil8/presentation/birkner

Service Name and Transport Protocol Port Number Registry. [Online]. Avail-
able: https://www.iana.org/assignments/service-names-port-numbers/service-names-port-
numbers.xhtml

E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The Science DMZ: A Network
Design Pattern for Data-Intensive Science,” Scientific Programming, vol. 22, no. 2, pp. 173—
185, 2014.

