
Computer Networks 214 (2022) 109109

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Review article

A deterministic approach for extracting network security intents
Rafael Hengen Ribeiro a,∗, Arthur Selle Jacobs b, Luciano Zembruzki b, Ricardo Parizotto b,
Eder John Scheid a, Alberto Egon Schaeffer-Filho b, Lisandro Zambenedetti Granville b,
Burkhard Stiller a

a Communication Systems Group CSG, Department of Informatics IfI, Universität Zürich UZH, Switzerland
b Computer Networks Group, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil

A R T I C L E I N F O

Keywords:
Network management
Intent-based networking
Intents
Programming languages

A B S T R A C T

Intents brought significant improvements in network management by the use of intent-level languages. Despite
these improvements, intents are not yet fully integrated and deployed in most large-scale networks. As a
result, network operators may still experience problems when deploying new intents, for instance, learning a
vendor-specific language to understand previously deployed configurations of a network device. Additionally,
traditional configurations are distributed across multiple devices, each configured using low-level, vendor-
specific languages. As a result, inferring intents from these low-level configurations is a time-consuming
process. Furthermore, current solutions for deriving high-level representations from bottom-up configuration
analysis do not provide results as intents or have a very limited scope, missing essential details that enhance
the representation.

In the solution to these shortcomings, a deterministic bottom-up approach was developed to extract intents
from network configuration files, which translates them into a high-level intent-defined language. By parsing
security configurations from various network devices and translating them into an extended version of the
Nile (Jacobs et al. 2018) language, an intent-defined language, the prototype demonstrates the concept of
this approach. While three case studies illustrate the effectiveness of the approach proposed in real-world
scenarios, additional evaluations exploit dumps of real-world firewall and Network Address Translator (NAT)
configurations consisting of rules from different servers and institutions. These evaluations demonstrate that
the proposed solution can represent configurations at an intent-level language, maintaining high accuracy
while representing key details of low-level configurations.
1. Introduction

The tasks of implementation, configuration, and troubleshooting
require within traditional networks technically skilled network oper-
ators to provision and manage multivendor networks [1]. This need
for a constant manual intervention leads to high operational costs, e.g.,
ZK Research [2] states that 78% of IT budgets are spent on maintaining
current environments. Novel technologies, such as Software-Defined
Networking (SDN), emerged as viable alternatives, increasing network
flexibility and simplifying network management by allowing operators
to program the control plane and manage multiple devices in a central-
ized manner. However, programmable networks still require a highly
skilled person to maintain the network’s operational level [3], unless
higher-level abstractions are provided.

High-level abstractions for network management can be provided
by using intents, which determine abstract declarations written by

∗ Corresponding author.
E-mail addresses: ribeiro@ifi.uzh.ch (R.H. Ribeiro), asjacobs@inf.ufrgs.br (A.S. Jacobs), lzembruzki@inf.ufrgs.br (L. Zembruzki), rparizotto@inf.ufrgs.br

(R. Parizotto), scheid@ifi.uzh.ch (E.J. Scheid), alberto@inf.ufrgs.br (A.E. Schaeffer-Filho), granville@inf.ufrgs.br (L.Z. Granville), stiller@ifi.uzh.ch (B. Stiller).

network operators to specify the desired network behavior [4,5] inside
an Intent-Based Networking (IBN) management system. IBN is a net-
working approach in which network configuration and maintenance
are based on users’ and applications’ needs, not specific device-level
configurations [6]. With IBN, there is no need to set up each router and
switch individually, e.g., manually configuring routing protocols or an
ACL on a group of routers. Rather than that, configurations are applied
automatically to all network device groups based on the user-provided
intent for how the network should operate. For instance, in IBN, a user
can write a high-level intent such as ‘‘block video streaming" instead
of configuring several devices in order to perform this action. An IBN
tool, such as Nile [7] or Jinjing [8], then is responsible for refining the
intent and transforming it into actual configurations that are deployed
into network devices.
vailable online 17 June 2022
389-1286/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2022.109109
Received 3 December 2021; Received in revised form 9 June 2022; Accepted 11 Ju
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ne 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:ribeiro@ifi.uzh.ch
mailto:asjacobs@inf.ufrgs.br
mailto:lzembruzki@inf.ufrgs.br
mailto:rparizotto@inf.ufrgs.br
mailto:scheid@ifi.uzh.ch
mailto:alberto@inf.ufrgs.br
mailto:granville@inf.ufrgs.br
mailto:stiller@ifi.uzh.ch
https://doi.org/10.1016/j.comnet.2022.109109
https://doi.org/10.1016/j.comnet.2022.109109
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109109&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

s
a
b
c
p
v
‘
v
t
r
n
o
n
i
t

o
t
o
d
s
T
c
h
i
t
c
m
t
p
(
a
w
i
a

p

The employment of specification languages closer to natural lan-
guages has been exploited in IBN environments to define and deploy
network intents, e.g., Nile [7] and Jinjing [8], thereby improving net-
work management and enabling the rapid deployment of new features.
However, current IBN solutions focus on top-down approaches, specify-
ing network-wide configurations as intents and refining the generation
of corresponding low-level configurations, thus, indicating that they are
only applicable to IBN-enabled networks.

The effort required to integrate traditional networks’ configurations
into IBN environments is not only challenging, but often leads operators
to reject the use of modern intent solutions. Some efforts were made
to interpret low-level configuration directives and express them in
higher levels of abstractions, e.g., in the context of security, where
olutions are capable of interpreting low-level firewall configurations
nd representing them using higher-level abstractions, such as ta-
les [9], symbolic models [10], and graphs [11]. These representations
an assist operators in comprehending firewall rules by bottom-up
arsing low-level configuration and representing firewall rules in a
endor-independent fashion. However, such abstractions are not yet
‘intent-level’’ representations and require skilled operators to know
ery specific firewall configuration details. Only a few solutions address
he problem of helping operators migrate already deployed network
ules into an IBN environment, such as Anime [12], which shows a
on-deterministic behavior. Generating an intent-level representation
f previously deployed network configurations helps operators reduce
ecessary effort to understand current network rules and enable reason-
ng about previously deployed intents, thus, facilitating the migration
o modern intent-based environments.

As of today, only a few strategies can express the network behavior
f already deployed configurations into an intent-level language, and
hey are limited to the forwarding behavior, for instance, not capable
f representing security intents. Given this lack of solutions, this work
evelops a deterministic bottom-up approach for parsing and repre-
enting network security configurations at an intent-level language.
he solution proposed can (1) interpret rules from low-level network
onfiguration files, (2) create an intermediate model, and (3) extract
igh-level intents that are translated to the Nile language. A prototype
mplemented on top of SCRIBE validates the concept, and a respective
ool developed interacts with third-party tools to parse vendor-specific
onfigurations and combine their output with complementary infor-
ation to display network rules in an intent-level language. As input,

he system reads configuration files exported from various systems,
rocesses Access Control List (ACL) and Network Address Translation
NAT) rules, and refines them by grouping related characteristics, such
s Internet Protocol (IP) source and destination pairs as well as net-
ork services. Finally, these intents are supplemented with additional

nformation in order to translate them to corresponding Nile intents
nd present them to operators.

Three case studies demonstrate the feasibility of the proposed ap-
roach: (i) a small business’s typical infrastructure; (ii) a high-speed

campus network with a science Demilitarized Zone (DMZ) design pat-
tern; and (iii) a network of IP security cameras. Each case study
demonstrates the solution’s ability to describe network behavior us-
ing intents, which closely resemble natural language. Its evaluation
is performed using datasets from a public repository [10] containing
firewall rules from multiple servers and institutions demonstrates the
translation’s accuracy and functionality, as results demonstrate that
network configurations can be displayed with high fidelity at the intent
level, capturing low-level details present in input configuration files.

The remainder of this paper is structured as follows. While Section 2
describes related work, Section 3 details the end-to-end methodology to
extract intents from existing network configurations. Based on the es-
sential details of the implementation within Section 4, Section 5 studies
the three case in the context of real-world scenarios, followed by the
evaluation to demonstrate accuracy and functionality in reality. Finally,
2

Section 6 summarizes the work and outlines future steps possible.
2. Related work

This section presents the concepts of IBN and the state-of-the-art in
bottom-up approaches to derive network configurations

2.1. Intent-based networking (IBN)

IBN has emerged as cutting-edge technology for network automa-
tion and orchestration that has the potential to alter existing network
architectures and technologies fundamentally. It is a networking ap-
proach capable of automatically converting, deploying, and configuring
network resources according to user requirements to the operator’s
intentions. This strategy is capable of overcoming and controlling
unexpected events or failures. Additionally, it can continuously monitor
network resources and collect statistics for life cycle management [5].
Numerous industrial organizations have developed IBN-based systems,
with the Internet Engineering Task Force (IETF) being responsible for
the standardization of intelligent IBN systems.

Intents enable network applications or practitioners to specify what
the network should do at the policy level rather than how the network
should achieve the desired configuration [5]. Because the low-level
implementations of intents may react and change in response to net-
work changes or practitioner requests, intents have a lifecycle [7].
They can be succinctly modeled as intent state machines. Intent frame-
works, such as ONOS Intent Framework, can react to any changes
at the low level that affect high-level intents, and the coordination
of intents is accomplished by monitoring any relevant state changes
induced by apps or the network. For example, the intent manager
receives a topology change event and determines whether any installed
intents are affected; in that case, the intents will be recompiled and
reinstalled. Additionally, intent managers check whether state changes
enable previously failed intents to be installed successfully. Finally,
intent managers can install and remove policies derived from intents
as practitioners or applications require. While IBN efforts such as
Lumi [13] enable natural language representation of high-level intents,
they are not able to integrate existing configurations from traditional
networks into the IBN environment.

2.2. Bottom-up approaches and IBN languages

Numerous configuration synthesis solutions can precisely generate a
logical model from given input configurations, reproducing their char-
acteristics and interactions [14,15]. However, they still cannot generate
configurations in high-level representations, such as intents. These
efforts enable the efficient reproduction of low-level configuration char-
acteristics in higher-level platform-independent representations such
as abstract topologies [15], abstract models [14], or a tabular rep-
resentation [9]. Batfish [14], for instance, can reproduce data and
plane models. This approach takes configuration files as input and
generates the control plane model followed by the generation of the
data plane using an environment and the previously generated control
plane model, which consists of the up/down status of each link in
the network and a set of route announcements for Border Gateway
Protocol (BGP) synthesis.

Abstract models are required because debugging raw configurations
requires separate frameworks for each configuration, which becomes
impractical and costly. Operators can detect errors and ensure the
accuracy of planned or current network configurations for traditional
routers using Batfish’s model (e.g., Cisco IOS or Juniper JunOS). Ad-
ditionally, by simulating the data and control plane behavior, Batfish
enables the analysis of forwarding decisions and error checkings, such
as the absence of black holes or loops.

In the context of network security, approaches focusing on fire-
walls and NAT exist to derive high-level and platform-independent
models from low-level configurations. For instance, previous work such

as [11,16] provides a high-level representation of filtering behavior in

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

T
r

firewalls representing its policies using graphs and vendor-independent
languages. Recently, a work called FireWall Synthesizer (FWS) [9] out-
lined a formal characterization of firewall and NAT configurations. FWS
parses firewall rules from various firewall utilities (e.g., iptables)
and converts them to a tabular format. FWS employs first-order logic
predicates to determine which packets are accepted by the firewall
and supports NAT redirection behavior. The resulting table contains a
flattened representation of firewall and NAT rules, i.e., an unordered
representation of firewall rules. Additionally, FWS includes a language
that enables the user to import vendor-specific rules from various fire-
walls and perform queries for specific IP addresses, ports, and networks.
By displaying all configurations in a vendor-independent manner, the
tabular representation helps users in comprehending firewall rules. This
representation, however, still requires expert knowledge of firewall
tables and NAT. Additionally, for distributed firewall configurations,
this solution separates each device configuration into a separate table,
with each row representing a single device’s rules. Due to a large
number of tables, operators may have difficulty reasoning about rules
deployed in a network-wide context.

Bottom-up approaches are seen rarely to expresses the network’s
behavior using intent-level languages. For instance, Net2Text [17] and
Anime [12] provide summaries of the forwarding behavior. Net2Text
follows a bottom-up solution to summarize the forwarding behavior
and represent it in natural language, which allows users to interact with
a ‘‘chatbot’’, allowing them to query for a specific forwarding behavior
for which the system replies with the forwarding state of the query
specified. However, while this summarizes network-wide forwarding
state, producing succinct summaries in natural language, it is limited
to forwarding behavior for Wide Area Networks (WAN), not support-
ing, for instance, ACL and NAT. Anime determines a framework to
infer high-level intents by mining commonalities among the network’s
forwarding behavior and can infer high-level intents from a provided
configuration. Anime’s behavior is non-deterministic and the context is
limited to forwarding behavior of the WAN.

More recently, the bottom-up approach SCRIBE [18,19] was pro-
posed to infer high-level intents from network configurations. The
prototype takes raw configuration files as input, creates an intermediate
model, and derives high-level intents that are translated to the Nile lan-
guage. Although SCRIBE parses network configurations and represents
them using intents, it is limited to very simple allow rules for firewalls
and elementary NAT operations, not representing complex and realistic
firewall and NAT configurations at all. Furthermore, the Policy Intent
Inference (PII) system [20] was proposed to bridge the semantic gap
between underlying networks and policy management solutions. PII’s
intent inference scope is also applicable to network-wide functions and
services, aiming to onboard legacy and non-intent native networks onto
IBN platforms.

Research efforts on intents being focused on creating top-down
approaches, such as Nile [7], Lumi [13], INSpIRE[21], or Jinjing [8]
lead to operators dictating the behavior of the network through intents.
However, they do not provide a mechanism being capable of translating
already deployed low-level configurations into an intent-level language.

Currently, the effort required to integrate traditional network con-
figurations into IBN environments is not only difficult, but currently
discourages operators from implementing modern intent solutions. As
in production grade networks operators need to update their security
configurations and detect possible errors in already deployed ones [8],
additional research is required to close this gap and integrate intent-
based solutions into established traditional networks. Thus, the focus of
this paper is precisely on the absence of solutions for presenting existing
configurations in an intent-level representation.

3. Solution overview

The proposed solution consists of a bottom-up approach to synthe-
size network configurations, create the abstract model, and represent
3

r

Fig. 1. Process of intent extraction.

configurations into an intent-level language, which built on top of
existing work parsing low-level configurations and creating an inter-
mediate representation. SCRIBE [18] is used as a base for the newly
developed solution to represent complex firewall rules of ‘‘allowing’’
and ‘‘blocking’’ instead of the SCRIBE’s default-block policy, which
only foresees ‘‘allow’’ rules. This approach does represent complex and
realistic configurations, including ranges and exceptions, which are
displayed in an intent-level language that extends Nile [7].

3.1. Process

The process of intent extraction is divided into four steps (cf.
Fig. 1): First, the process expects configuration files exported from
networked devices, specifically firewalls and NAT boxes, as input.
Based on these configuration files as of step 1⃝they are stored in a cen-
tralized database and, posteriorly, synthesized. During step 2⃝entities
representing parts of the configuration are exported and gathered to
generate a platform-independent abstract representation, called ‘‘meta-
intent’’. Step 3⃝enriches meta-intents with complementary information
provided by various sources. The final result here reaches an en-
riched representation of network configurations called ‘‘aggregated
meta-intents’’. Finally step 4⃝translates these aggregated meta-intents
into the extended version of Nile.

Configuration synthesis
The synthesis step 1⃝collects low-level configuration directives from

various configuration files, resulting from configurations exported off
multiple devices at different levels of the network hierarchy. This
step parses the output of configurations exported from these devices
and gathers these along with the network topology and aliases. Each
configuration file consists of various rules and parameters. For in-
stance, a rule may be composed of source and destination IP addresses,
network ports, forwarding rules, and stateful elements. Finally, given
that network devices can be distributed in multiple levels of the net-
work topology, the acquisition of rules is performed, maintaining all
configurations centralized in the same database for future exportation.

Step 1⃝is performed by a Synthesizer and an Exporter (cf. Fig. 2).
he Synthesizer is responsible for collecting and gathering configu-
ation files and synthesize configurations into an intermediate rep-

esentation. The synthesis must be low-level and detailed in order

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

t
o
f
s
p
c
s
a
c

f
p
a
c

C

r

c
d

𝑉
e
c
I

i
m
‘
t

Fig. 2. Configuration synthesis.

Fig. 3. Consolidation.

o create a trustworthy representation that can reproduce all aspects
f configurations and their interactions. The information is leveraged
rom multiple sources in the network and exploits existing literature
olutions to extract such information in a structured format. Third-
arty synthesizers are used as a part of the solution to avoid the
onstruction of a parser for each vendor-specific language, which is
ubject to future optimizations. However, since there is no globally
ccepted single solution, the solution developed parses and aggregates
onfigurations from multiple input sources.

The last step of the synthesis involves collecting and putting con-
igurations generated by synthesizers into a centralized database. This
rocess is run by the Exporter component that receives configurations
s outputs from the Synthesizer and exports them into a centralized
onfiguration database.

onsolidation
Consolidation raises the network model’s abstraction level with the

epresentation into an intermediate format (i) to extract from an inter-
mediate representation of higher-level entities that represent parts of
the configuration, (ii) to group these entities by similar characteristics,
and (iii) to generate the meta-intent representation. Fig. 3 indicates the
pipeline of substeps, within which the Entity Extraction is responsible
for loading configurations from the database and generating network
entities. The Grouping step compacts the set of rules. The meta-intent
Exporter generates the output in a meta-intent format.

Within entity extraction, a configuration is defined as a compo-
sition of entities and is divided into three parts. Each part of the
configuration is represented by a distinct entity that can be desig-
nated as Target, Traffic, or Action. Formally, an entity is defined as
4

𝐸 = {𝑇 𝑎𝑟𝑔𝑒𝑡, 𝑇 𝑟𝑎𝑓𝑓𝑖𝑐, 𝐴𝑐𝑡𝑖𝑜𝑛}. Entities represent a set of objects
belonging to different categories. An entity can be described as a class,
representing a set of attributes that a Firewall contains. A property,
on the other hand, defines an individual object represented by the pair
<key, value>. An example of property can be a source of a firewall rule.

The 𝑇 𝑎𝑟𝑔𝑒𝑡 represents a set of objects composed of sources and
destinations of a determined rule. A Target entity is specialized to
represent network target objects in different scenarios and composed
out of a set of devices in a traditional network, where the rule will
be applied. For example, a common firewall rule for blocking traffic
contains the source and destination of the traffic that will contain
parameters belonging to a Target. For instance, source and destination
prefixes can be modeled by 𝑇 𝑎𝑟𝑔𝑒𝑡 ∶= ⟨𝑠𝑟𝑐.𝑝𝑟𝑒𝑓𝑖𝑥, 𝑑𝑠𝑡.𝑝𝑟𝑒𝑓𝑖𝑥⟩.

The 𝑇 𝑟𝑎𝑓𝑓𝑖𝑐 entity represents the traffic type in a network. The traf-
fic type differentiates between network services. For instance, service
types can be distinguished by Transmission Control Protocols (TCP) and
User Datagram Protocol (UDP) and the port used by each service. For
example, in firewall and NAT contexts, source and destination ports
and the protocol (TCP or UDP) compose the Traffic entity for traffic
filtering, differentiating between traffic types in the network.

The 𝐴𝑐𝑡𝑖𝑜𝑛 represents an operation to be executed for a pair
⟨𝑇 𝑎𝑟𝑔𝑒𝑡, 𝑇 𝑟𝑎𝑓𝑓𝑖𝑐⟩. Operations consist of a behavior belonging to a
network function, such as a forwarding in a NAT box or a block rule
in a firewall. Each action contains the parameters needed to run the
desired operation. The set 𝑃 = (𝑝1, 𝑝2, ..., 𝑝𝑛) represents parameters of
a given Action. For example, a NAT forward operation can be modeled
as an action 𝐴𝑐𝑡𝑖𝑜𝑛 = {forward} and includes a set of parameters,
such as 𝑝1 = DNATIP and 𝑝2 = DNATPort, respectively, indicating the
destination NAT IP and port for a specified traffic.

Finally, to group entities that produce the same intent grouping is
performed to search through configurations extracted and to match
pairs of entities by similar characteristics through grouping functions.
The grouping is defined as a function composed of entities 𝑔 ∶ 𝐸 ×𝐸 ↦

𝐸. The grouping is performed as an one-level operation and does not
consider the type of entities involved in this process.

The grouping process is defined by set operations. Formally, 𝑆
represents a set of rules containing network properties, each of them
represented by 𝑝𝑖. Given a set 𝑆, a property 𝑝𝑖 is selected as a varying
parameter 𝑣𝑖 and a subset 𝐺 containing the 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆) − 1 continues as
remaining properties. For a given set 𝑆 = {𝑝1, 𝑝2, ..., 𝑝𝑛}, where 𝑛 is
the set size, to each 𝑣𝑖 a property of set 𝑆 is attributed, as instance
𝑣1 = 𝑝1, 𝑣2 = 𝑝2, ..., and 𝑣𝑛 = 𝑝𝑛. For each 𝑣𝑖, a superset 𝑉 is created,
ontaining the property 𝑣𝑖 and the subset 𝐺 = {𝑆 ⧵ 𝑣𝑖}. In this way, 𝐺
erives the groups 𝑉1 = {𝑣1, 𝑆⧵𝑣1}, 𝑉2 = {𝑣2, 𝑆⧵𝑣2}, ..., 𝑉𝑛 = {𝑣𝑛, 𝑆⧵𝑣𝑛}.

The grouping process consists of searching for all sets generated of
, grouping entities 𝑉 with similar 𝐺 subsets, and gathering them by

videncing the varying parameter 𝑣𝑖. These sets 𝐺 for each 𝑉 set are
ompared and grouped, if they are equal. Take 𝑉𝑖 and 𝑉𝑗 as an instance.
f the subset 𝐺𝑖 ∈ 𝑉𝑖 = 𝐺𝑗 ∈ 𝑉𝑗 , they are grouped in a new set 𝐼 and

include in that set the varying parameter, so the final grouped set is
𝐼 = {𝐺𝑖, 𝑣𝑖, 𝑣𝑗}.

The last step of the consolidation generates meta-intents being
composed of pairs of information, such as origin, destination, services,
and the default action for a given rule in a well-structured format.
Meta-intents show high-level expression, much closer to an intent.
They can easily be represented by common data-interchange formats,
such as JSON (JavaScript Object Notation). After grouping sets, the
Meta-intent Extractor traverses them and maps values of 𝑉𝑖 sets to the
ntermediate representation meta-intent. This high-level representation
aps all values from sets in the form {‘‘Entity.Property’’ :
‘value’’}. For each 𝑝𝑖 ∈ 𝐸𝑖, where 𝑝𝑖 is a property and 𝐸𝑖 an entity,

he meta-intent extractor will map to an entry {‘‘𝐸 .𝑝 ’’:‘‘value’’}.
𝑖 𝑖

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

A

r
d
g
s
l

a
i
u
g
t
i
p

I

n
i
c
f
i
t

t
r
a
p
a

t
h
w
a
a
O
n
f
r
d
t
i
o
S

N

w
e
A
o

Fig. 4. Aggregation.

ggregation
While meta-intents were generated as an intermediate structured

epresentation, they contains low-level information, such as IP ad-
resses. Thus, all meta-intents generated in the consolidation step are
athered and enriched with complementary information from various
ources. This step displays the information needed at a user-friendly
evel.

The aggregation (cf. Fig. 4) collects hostnames and topology data
s a piece of additional information from the network to enrich meta-
ntents, featuring an option to input ‘‘friendly’’ names for hosts that help
sers identify network devices. With all complementary information
athered, IP addresses are replaced with names provided and a query
o the Service Name and Transport Protocol Port Number Registry [22]
s performed to infer the service or protocol name according to ports
rovided.

ntent translation
After enriching meta-intents with complementary information, the

ext step translates resulting intents to Nile, the target language. Thus,
t turns easy for users to understand the most common operations
urrently supported by networks. The Nile grammar’s symbols allows
or the representation of network security rules. Most of these enriched
ntents can be directly mapped to Nile symbols. Initially, the Target en-
ity is mapped to the Nile ⟨f rom_to⟩ symbol. The Nile symbol ⟨f rom_to⟩

expects two endpoints as parameters. The arguments of the Target entity
are mapped to generate two Nile symbols ⟨endpoints⟩, representing
source and destination.

The second phase of the Nile translation process involves mapping
Traffic entities to Nile ⟨matches⟩ symbols, exploiting service, traffic,
protocol, and group traffic types. This work extended Nile to allow for
the representation of addresses utilized to express the entity Traffic in
different levels of abstraction. The last phase of this translation pro-
cesses the representation of Action entities by Nile ⟨rules⟩. The grammar
symbol ⟨rules⟩ permits the representation of actions, such as allow
and block, and ⟨middleboxes⟩ allows for the representation of several
network functionality supported by different types of middleboxes.
In addition, the Nile grammar was extended to support a forward
operation, allowing the representation of NAT forwarding actions (cf.
Section 3.3).

3.2. Specializations

Different specializations were proposed to apply the solution in
specific contexts, e.g., specializations for firewalls and NATs.

Firewalls
This ‘‘Firewall’’ specialization specifies how the approach can be ap-

plied to the firewall context, expecting to receive input configurations
in a tabular form. This tabular representation of rules must contain the
fields source and destination for a Target entity, port and protocol (TCP
or UDP) for a Traffic entity and an Action, which contains a function to
allow or deny a packet. Given a tuple (Target.source, Target.destination,
Traffic.protocol, Traffic.port) the firewall applies an operation to allow
5

or deny a packet based on the Target and Traffic fields.
Table 1
Traffic classification by source and destination.

Source Destination Classification

external internal incoming traffic
internal external outgoing traffic
internal internal internal traffic

The synthesis outputs these fields in the tabular format. While this
paper does not generate a firewall model for each vendor, a third-
party solution was used to generate the tabular representation. For
firewall specializations a firewall synthesizer [9] is utilized to parse
vendor-specific rules and transforms them into a tabular representation.
The firewall specialization follows the steps (i) to transform tabular
intermediate representation into the intent-defined language. and (ii)
proceeds with the consolidation step, described above.

For the aggregation rules are divided into three categories: inter-
nal, incoming traffic, and outgoing traffic (cf. Table 1). The traffic is
considered internal, when source and destination addresses are inside
the network prefix; for instance, source and destination addresses are
included in a prefix (e.g., 10.0.0.0/8). Incoming traffic is a classification
for the traffic in which source addresses are not part of the internal
network and destination addresses belong to the internal network, i.e.,
he destination belongs to the network prefix. Lastly, outgoing traffic
efers to situations, where the source address is in the internal network
nd the destination address is not. This classification does not consider
ackets created inside the network with a (possible) external source
ddress.

Firstly, the specialization for a firewall names the origin and des-
ination of the target: IP addresses and prefixes are changed to a
ostname or other name provided by the user. These targets denote,
here the traffic is input, output, or internal. The wildcard ‘‘*’’ denotes
ny address, which in firewall rules means that this rule that matches
ll addresses. When this wildcard appears, it is replaced by ‘‘all’.
therwise, IP addresses are renamed according to the user-friendly
ames provided, if they are available. The function rename attributes
riendly names to an IP address or a prefix. The rename function
eceives as a parameter an IP address or prefix and searches in the
atabase for aliases to the address. For instance, if a firewall rule shows
he source address any (‘*’) and the destination 192.168.0.2, which is
nternally known as a ‘‘Web Server’’, the algorithm will change the
riginal wildcard ‘‘*’’ to ‘‘All’’ and the address 192.168.0.2 to ‘‘Web
erver’’.

etwork address translation NAT
This specialization receives input configurations in a tabular form,

hile NATs must report the fields source and destination for a Target
ntity, port and protocol (TCP or UDP) for the Traffic entity and an
ction, which contains a function to forward a packet and a parameter
f sourceNAT or destinationNAT. Given a tuple (Target.source, Tar-
get.destination, Traffic.protocol, Traffic.port) the NAT applies a forward
operation based on these characteristics, considering the parameter
sourceNAT or destinationNAT.

The synthesis step generates a tabular representation for the NAT.
In this case, the synthesizer [9] is used to extract vendor-specific rules
and convert them to a tabular format. The categorization of traffic
is then carried out using this tabular representation. Similar to the
aforementioned firewall specialization (cf. Table 1), the NAT traffic
classification follows a traffic classification algorithm that determines
whether the traffic belongs to incoming or outgoing based on the
source and destination pair. However, for a NAT’s incoming traffic, the
final destination is inaccessible directly to the origin. Thus, the traffic
destination is the NAT. Inside the NAT, the destination is changed to
the correct destination, an internal address. The algorithm that defines
the origin and destination for incoming traffic verifies the source IP

and renames it to the defined friendly name. It also changes the

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

4

r
a
l
q

4

c
i
p
p
o
t
l
q
e

4

s
d
f
i
p
f

s
n
p
t
r
M

target.dst to the NATBox and the NATdst to the hostname of
target.NATdstIp. After this process, the solution proceeds with the
Consolidation step, described in Section 3.1.

For outgoing traffic, first, the source address is processed. Initially,
the NAT source address (target.NATsrc) is renamed to a familiar name.
Thereafter the target source (target.src) is set to the NAT’s address.
Finally, the destination IP address is verified to set a friendly name,
as for the firewall specialization.

3.3. Nile extensions

Nile [7] was chosen as the default language to represent intents,
since it meets this work’s requirements of readability and abstraction.
Nile’s constructs are capable of representing various network compo-
nents and actions. However, Nile natively does not support a NAT
behavior. Thus, Nile’s grammar was extended with NAT constructs to
allow for the representation of a NAT behavior. The entire grammar of
the extended Nile is shown in full in Appendix.

The extension includes the forward and rename keywords, which
adds support for a fully functional NAT forward behavior. The NAT
forward behavior requires the following information: source address or
hostname, source port, and destination port. Since the NAT forward is
defined by redirecting incoming traffic in a specific port to a specified
address in a specific destination port, the protocol can be inferred
from source and destination ports. For instance, incoming traffic in
Hypertext Transport Protocol (HTTP) can be abstracted to ‘‘traffic on
port 80’’. The representation of a NAT port’s preservation is facilitated
in the syntax by allowing omitting the destination port. In this case, the
destination port is the same as the source port.

The forward keyword was added to represent a forward NAT
action. For this keyword to be declared, a ⟨target⟩ symbol is required.
While the actual Nile ⟨target⟩ symbol allows for the representation of
groups, services, endpoints, and traffic only, it cannot represent a pair
of IP addresses and ports as a target for operation. To overcome this
limitation of ⟨target⟩, the new symbol ⟨address⟩ was created to express
a pair of IP addresses for hosts and a port (cf. Listing 1 for the syntax).

Listing 1: NAT Forwarding Behavior in Extended Nile
<forward> : := ‘ forward ’ <address>
<address>

: := ‘ address (’ <addrterm> ‘) ’
| ‘ address (’ <addrterm> ‘ , ’

<port> ‘) ’
<addrterm>

: := <ip>
| <host>

<middlebox>
: := ‘ middlebox (’ < term > ‘) ’

With the forward and rename keyword, plus address symbol,
NAT actions can be represented in Nile. The ⟨address⟩ symbol is com-
posed of the ⟨addrterm⟩ and ⟨port⟩ terms. The ⟨addrterm⟩ symbol repre-
sents a target source or destination, which is a host or IP address. The
symbol ⟨host⟩ can be composed only of valid characters for a hostname
and the symbol ⟨ip⟩ represents grammatically valid IP addresses.

The syntax of a forward action requires two endpoints represent-
ing the source and destination hostnames or IP addresses, a service
or a protocol (e.g., TCP), and a port. For a traditional NAT forward
operation for incoming traffic, the source is an external address, and
the destination represents a NAT, which forwards the traffic for a given
address and port, expressed by the symbol ⟨address⟩. For instance, a
scenario containing a NAT at the network’s edge manages all input
traffic. Internally, there is also a ‘‘Web Server’’ with IP address 10.0.0.5,
listening for HTTP traffic on port 8080. Thus, the NAT receives input
connections on port 80 for HTTP traffic and redirects all this traffic to
the Web Server. By applying the extended version of Nile, this scenario
is now represented in Listing 2 for incoming traffic. Here, a NAT action
was represented for incoming traffic.
6

t

Fig. 5. Implementation architecture.

Listing 2: NAT Forward in Nile
def ine in t en t forwardIntent :
from endpoint (‘ Al l ’)
to endpoint (‘NAT Device ’)
f o r protoco l (‘HTTP ’)
forward address (‘Web Server ’ , 8080)

. Implementation

The prototype was implemented to validate the approach and it
uns on top of SCRIBE [23] implementing specializations of the process
s well as focusing on firewalls and NAT configurations. The system
everages diverse input sources to process low-level firewall rules and
ueries all configurations available on firewall filtering and NAT tables.

.1. System architecture and use

The architecture is composed out of modules that follow the pro-
ess steps described in Section 3.1. In addition, this implementation
ncludes the creation of additional modules that interact with third-
arty synthesizers (e.g., FWS [9]), which were used as a base solution to
arse network configurations. The general implementation architecture
f the tool developed (cf. Fig. 5), includes the Query Generator module
o deliver commands to the synthesizer. These commands include (i)
oad-low-level configuration rules, (ii) synthesization of rules, and (iii)
uerying synthesizer results. The FWS-Export module is responsible for
xporting FWS tables into a Comma Separated Values (CSV) format.

.2. System modeling

The prototype developed is extensible and capable of representing
everal network functions, thus, utilizing modules, each representing a
ifferent network function. Initially, the implementation of the system
ollows the model using Target, Traffic, and Action entities as explained
n Section 3.1. These entities are composed out of attributes relating to
arts from the configuration. The model was specialized to represent
irewall and NAT through mapping from input files to abstract entities.

The initial approach is to map the fields from the input files to
ystem classes according to the structure of input files. For this, the
etwork was modeled using an Objected Oriented Programming (OOP)
aradigm. An object represents an instance of a network component for
he model, such as an IP address. In the first moment, utility functions
ead the input configuration and CSV files before generating entities.
ost firewall input entries can be directly mapped from the input to
he proposed entities, as shown in Table 2.

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

i
t

n
a
i
s
T
i
i
p
I

C

w
r
a
c
n
t
s
d
s
m
F

i
r
o
t
q

Table 2
Mapping tabular model to system entities.

Information Input column Entity

Source IP srcIP Target.SrcIP
Destination IP dstIP Target.DstIP
Source Port srcPort Traffic.SrcPort
Destination Port dstPort Traffic.DstPort
Protocol protocol Traffic.Protocol

5. Evaluation and discussion

The implementation is evaluated in the context of three real-world
case studies to demonstrate the applicability in different network con-
texts and to prove the approach via the accuracy of results by exploit-
ing real datasets containing firewall rules from different servers and
institutions [10].

5.1. Case studies

Assuming that a new operator initiates at a company and wants to
understand the network configuration, the operator intends to assert
whether the network behaves as expected. For this, there is a need
to understand the existing network configuration. The operator could
use the output of the proposed solution to understand the network
state before adding a new rule as needed. In this subsection, three case
studies illustrate the solution’s applicability in real-world scenarios to
extract intents from already deployed network configurations.

The deployment of new intents in a traditional network requires that
operators discover all network devices and their respective configura-
tions. To do this task, operators must have platform-specific expertise,
besides network administrative tools knowledge. Such a situation de-
mands a network operator to (i) discover all devices in the network and
their respective IP addresses, (ii) read the entire configuration from var-
ous network devices, and, if needed, (iii) provide some documentation
o help understand the network behavior for the next alteration.

Three scenarios were analyzed to prove the concept and the tech-
ical feasibility of the proposed solution. The first scenario represents
small company containing a single firewall device at the network’s

nput that manages firewall rules and translates NAT addresses. This
cenario also includes servers and a workstation, both isolated by NAT.
he second scenario explores a Science DMZ campus network contain-

ng ACLs directly in a DMZ router due to the high-speed characteristic
n this network, and a firewall to secure the internal network and
rovide NAT isolation. Finally, a case study illustrates a scenario with
P cameras secured by a firewall.

ase study #1: Small company with a NAT
This scenario represents a typical small company with a unique fire-

all device managing all incoming and outgoing traffic as well as NAT
ules. The studied network contains a Web Server, an SSH Server, and
Firewall/NAT middlebox, which manages the network input. Servers

annot be accessed directly from external devices; instead, external con-
ections need to pass through the ‘‘Firewall/NAT’’ middlebox. All input
raffic in Firewall/NAT middlebox is redirected to the corresponding
erver for access to them, according to the traffic type. The firewall
evice has two interfaces and also translates NAT addresses. For this
cenario, the firewall was configured using iptables, which also
anages NAT rules. The representation of this scenario is shown in

ig. 6.
In this context, the proposed solution can help by parsing the

ptables code, processing all deployed network configurations, and
epresenting NAT and firewall rules in the Nile language, assisting
perators in understanding the network behavior into a language closer
o the natural language. At the beginning of the process, the solution
ueries synthesizer for all configurations, resulting in a table indicating
7

Fig. 6. Corporate network with a NAT.

all allowed services in this network. After, the solution processes the
resulting table, extracts entities, and generates the model as described
in Section 3.1. Friendly hostnames can be aggregated together with the
service running in each port indicated by the firewall rule, enriching
the model, providing more high-level information. Finally, the system
generates meta-intents with higher-level rules and translates them to
the Nile language. The generated Nile code for this scenario is shown
in Listing 3.

Listing 3: Nile Intents for Company with a NAT
def ine in t en t f i r e w a l l I n t e n t 1 :

from endpoint (‘ a l l ’)
to endpoint (‘ f i r ewa l l ’)
allow protoco l (‘ SSH ’) ,

pro toco l (‘HTTP ’)

de f ine in t en t nat In tent1 :
from endpoint (‘ a l l ’)
to endpoint (‘ f i r ewa l l ’)
f o r protoco l (‘ SSH ’)
forward address (‘ SSH Server ’)

de f ine in t en t nat In tent2 :
from endpoint (‘ a l l ’)
to endpoint (‘ f i r ewa l l ’)
f o r protoco l (‘HTTP ’)
forward address (‘Web Server ’)

After extracting intents, the generated Nile code can help the oper-
ator to comprehend network behavior. It is simple to infer the primary
security behavior of this scenario by observing the extracted intents in
Listing 3. From the first intent, it can be noted that (i) only protocols
HTTP and SSH are allowed to enter on this network. The remaining of
the generated intents describe the NAT behavior of the network. The
second produced intent in Listing 3 indicates that (ii) all SSH traffic will
be redirected to the SSH Server, which is internally addressed by the
IP address 10.0.1.15. The last intent express that (iii) all HTTP traffic
will be redirected to the Web Server, which is internally addressed by
the IP address 10.0.1.16. The default behavior for this scenario is the
default block; thus (iv), all other connections will be denied.

Case study #2: Science DMZ
This case study explores a university scenario making use of the

design pattern Science DMZ [24]. This scenario comprises high-speed
Data Transfer Nodes (DTN) in a DMZ, a router with ACLs, and an
internal firewall in the network under study. Fig. 7, shows the scenario.
In this network, DTNs are connected directly to a router for high-speed
transfers [24], as passing this traffic through a stateful firewall can
reduce the bandwidth significantly.

A DMZ is used to isolate special servers from the machines of the in-
ternal network. It is essential to maintain public servers separated from
the internal network so an attacker cannot get to all the systems. On the
other hand, a stateful firewall may degrade the network performance
and is not suitable to realize the transfer of large amounts of data (e.g.,
for data-intensive scientific experiments) in high-speed connections. To
keep these DMZ secure, ACLs are inserted directly in the router in a
stateless manner, aiming to maximize transfer speeds [24].

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

t
d
i
h
n
i
s
U

L

i
a
a
(
B
t
b
N
t

Fig. 7. Science DMZ network.

Several intents can be inferred after applying the bottom-up process
o the configuration from this network. The ACL router begins with a
efault-blocked setting. It is possible to add network IPs and prefixes
n a ‘‘allowed list’’, indicating which server is allowed to perform a
igh-speed connection with a specific DTN. NAT isolates the internal
etwork, and the NAT box, which translates external addresses to
nternal addresses, is coupled with the firewall device. Besides blocking
uspected protocols, firewall rules deal with internal traffic, such as
DP or TCP for some specific internal hosts.

isting 4: Nile Intents for DMZ
def ine in t en t f i r e w a l l I n t e n t 1 :

from endpoint (‘ Un iver s i ty A ’)
to endpoint (‘DTN 1 ’)
allow t r a f f i c (‘ a l l ’)

de f ine in t en t f i r e w a l l I n t e n t 2 :
from endpoint (‘ Un iver s i ty B ’)
to endpoint (‘DTN 2 ’)
allow t r a f f i c (‘ a l l ’)

de f ine in t en t f i r e w a l l I n t e n t 3 :
from endpoint (‘ In t rane t ’)
to endpoint (‘ In t rane t ’)
allow t r a f f i c (‘ a l l ’)

de f ine in t en t nat In tent1 :
from endpoint (‘ a l l ’)
to endpoint (‘ F i r ewa l l / NAT’)
fo r protoco l (‘HTTP ’)
forward address (‘Web Server ’)

de f ine in t en t nat In tent2 :
from endpoint (‘ a l l ’)
to endpoint (‘ F i r ewa l l / NAT’)
fo r protoco l (‘HTTPS ’)
forward address (‘Web Server ’)

From the intents listed in Listing 4, it can be inferred the base
ntents that derive from this scenario. The first two intents (i) represents
n allow policy from Universities A and B for their corresponding
uthorized DTNs (Data Transfer Nodes). The third intent of Listing 4
ii) describes the behavior of allowing all traffic in the internal network.
y using an intuitive alias, as an example, the alias ‘‘Intranet’’ refers to
he prefix 10.0.0.0/8 – prefix of the internal network, which all devices
elong to. Last, intents natIntent1 and natIntent2 suggest (iii) a
AT translation from incoming HTTP and HTTPS traffic, indicating that

he traffic using these protocols will be forwarded to the Web Server,
8

Fig. 8. Camera network.

which is only visible in the internal network. In addition, it can be
noted that the proposed tool help reduces the complexity to understand
global configurations, as in configuring two separate devices to manage
ACLs in a high-speed DMZ and a traditional stateful firewall managing
internal traffic.

Case study #3: IP camera network
This case study explores a typical scenario of a camera network

secured by a firewall. Security mechanisms are needed to ensure the
security of IP cameras, as malicious devices can use them as a vec-
tor for DDoS attacks [25,26]. This scenario is adapted from [27], a
scenario containing an IP camera with iptables, and it includes
two available IP cameras separated in their own network. Besides the
cameras, there are two routers, one that connects the cameras, and
another connects to the Workstation. The home router and its network
has the prefix 192.168.8.0/24, and the camera network has the prefix
192.168.5.0/24. Both connect to a firewall, which ensures that only
the necessary traffic can reach these networks. In addition, the NAT
box is coupled with the Firewall middlebox. The representation of this
scenario is shown in Fig. 8.

The cameras need to connect to an external FTP server directly, and
they are managed by a server available at the Workstation. The firewall
protects both routers and all their devices within the network, limiting
the inbound and outbound camera connections to only required ports
and protocols. The following firewall rules are applied: (i) FTP outgoing
traffic is allowed from the camera network to the Internet (all), (ii)
ICMP, HTTP, and SSH traffic are allowed from the private network
to the camera network (for ping and camera management), (iii) all
internal traffic is allowed for the private network, (iv) allow HTTP
outgoing traffic from the Workstation to the Internet. For NAT traffic,
the following forward rules apply: (i) outgoing FTP traffic from cameras
needs to be mapped to a public address, (ii) outgoing HTTP traffic from
the Workstation needs to be mapped to a public address (for remote
management).

Listing 5: Nile Intents for IP Cameras
def ine in t en t f i r e w a l l I n t e n t 1 :

from endpoint (‘ Cameras ’)
to endpoint (‘ a l l ’)
allow protoco l (‘ FTP ’)

de f ine in t en t f i r e w a l l I n t e n t 2 :
from endpoint (‘ Server ’)
to endpoint (‘ a l l ’)

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

L
(
p
i
w
(
n
s
T

allow protoco l (‘HTTP ’)

de f ine in t en t f i r e w a l l I n t e n t 3 :
from endpoint (‘ Cameras ’)
to endpoint (‘ P r iva te network ’)
allow protoco l (‘ ICMP ’) ,

pro toco l (‘ SSH ’) ,
pro toco l (‘HTTP ’)

de f ine in t en t f i r e w a l l I n t e n t 4 :
from endpoint (‘ P r iva te network ’)
to endpoint (‘ P r iva te network ’)
allow t r a f f i c (‘ a l l ’)

de f ine in t en t nat In tent1 :
from endpoint (‘ Cameras ’)
to endpoint (‘ F i rewal l ’)
f o r protoco l (‘ FTP ’)
rename source to (‘143 .54 .11 .1 ’)

de f ine in t en t nat In tent2 :
from endpoint (‘ F i rewal l ’)
to endpoint (‘ a l l ’)
f o r protoco l (‘HTTP ’)
rename source to (‘143 .54 .11 .2 ’)

The derived firewall and NAT intents for this scenario are shown in
isting 5, in a default-blocked setting. The first two intents
firewallIntent1 and firewallIntent2) represent an allow
olicy from an element within the network to the Internet. Also, these
ntents hide the complexity involved to configure two separated net-
orks: internal and cameras. The third firewall intent
firewallIntent3) represents an allow policy between the two
etworks for different protocols, thus allowing, for instance, traffic
uch as ping and HTTP control between the cameras and the server.
he last firewall intent (firewallIntent4) can be easily inferred

as a policy to allow all traffic in the private network. From intents
natIntent1 and natIntent2, it can be observed (iii) a NAT policy
from all outgoing traffic to have their source address changed to a
public IP, in this example anonymized to a random address belonging
to the UFRGS infrastructure.

5.2. Accuracy evaluation

The evaluation of the bottom-up process contains the analysis of
output intents, i.e., to identify, whether intents extracted represent the
identical configuration as the low-level configuration. Thus, metrics
are defined and collected from the implementation through several
real-world network configurations.

The datasets used for this evaluation are composed of raw firewall
rules collected from repositories publicly available [28] and processed
using the FWS synthesizer to generate the tabular representation. The
rules processed use a flattened representation [29], which is divided
into four different files: Input, Output, Forward, and Loopback, corre-
sponding to their firewall tables, one for each firewall table. Each of
these files contains two types of rules: filtering, representing firewall
allow policies, and NAT, representing the policies for forwarding.

Two main aspects were evaluated to assert the feasibility of the
bottom-up process: (i) the trustworthiness of generated intents and (ii)
support for the most present functionality in real-world firewall dumps.
To evaluate the trustworthiness of intents generated, it is essential to
check all characteristics of original configuration files being present in
extracted intents. Several measurements were performed using [28],
while selected public IP and Medium Access Control (MAC) addresses
9

have been anonymized.
Fig. 9. Correctly extracted intents for each firewall dump.

Translation accuracy
Static analysis was performed first to validate whether each in-

tent generated accurately represents the configuration. Each of these
characteristics analyzed represents a configuration element of a rule.
For instance, source address, port number, and action (e.g., allow)
are characteristics of a traditional allow rule. A tool developed was
used to extract intents from the aforementioned datasets as well as
to evaluate the accuracy. Those parameters present in raw configura-
tions were dumped. The analysis consists in verifying whether these
parameters were also present in generated intents by counting how
many parameters of the configuration files are also present in generated
intents. Fig. 9 presents the accuracy of the intents. The 𝑋-axis displays
the name (compact) of the firewall dump. 𝑌 -axis shows the rate of
configuration parameters extracted correctly, i.e., the percentual of
configuration parameters that were present in low-level configurations,
and also present in Nile intents.

Fig. 9 shows that the accuracy of the intents generated is high,
capable of representing the majority of elements present in the firewall
dumps, missing very few configuration details. The missed configu-
rations were related to characteristics in firewall dumps that could
not be represented in the actual intents, for instance, rate-limiting
rules. The analysis of the worst-case in terms of Veroneau (a dump of
veroneau.net) indicates several directives of Internet Control Message
Protocol (ICMP) messages and directives of rate-limiting, both still
not supported by the synthesizer used as a base here. However, even
for this case, the implementation can express most of the firewall
configuration’s functionality. Furthermore, it can be observed that
network configurations can be represented using high-level intents in
Nile, closely resembling the natural language and still with fidelity to
the original configuration.

Functionality support
This evaluation of the functionality support verifies most used con-

figuration in firewall and NAT configurations provided. This evaluation
consists of obtaining firewall configurations from [28] and checking
which of them are currently supported. Most of these iptables
options can refer to command, parameter, match, target, and listing
options [30]. Command options instruct iptables to perform specific
actions, such as append or delete a new rule. Parameter options are
used to define a packet filtering rule. Match options are used for
specialized matching options such as protocols and ports and can be
extended through modules. Target options represent actions to take if
a packet is matched, such as ACCEPT or DROP actions. Listing options
represent options to list rules on the screen.

Functionality is represented by iptables parameters, as well as
matches and target options. This evaluation is performed by a script
dumping all parameters existing as well as matches and target op-
tions existing that represent functionality in configuration files. Thus,

the number of functionality existing in the dataset was counted and

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.

c
s
s
f

u
r
c
a
o
m
f
u
p

6

w
F
t
d
n
b
l
d
a
c

p
t
u
a
g
a
l
o
t
N

r
T
t
b
l
c

⟨

⟨

⟨

⟨

⟨

⟨

⟨

⟨

⟨

⟨

⟨

⟨

Fig. 10. Support for the most used functionality in datasets.

ompared with functionality supported by the tool developed, demon-
trating the most used functionality in the datasets provided and their
upport (cf. Fig. 10 with displaying functionality on the 𝑋-axis and the
requency of their appearance on the Y-axis).

Results show that the solution implemented supports the most
sed functionality parameters from these datasets, which represent
eal-world firewall configurations [28]. Due to this wide support, it
an represent existing firewall functionality in the dataset in Nile as
n intent-level representation. Most of the unsupported functionality
f firewalls refer to logging, TCP flags, and ICMP messages. At the
oment, the developed prototype does not support the rate-limiting

unctionality either. However, the rate-limiting functionality is rarely
sed directly in iptables firewall configurations, according to the
ublic repositories of firewall configurations [28].

. Summary and future work

Current network management relies on humans in the control loop,
here human insight is fundamental for network maintenance [17].
urthermore, traditional networks are generally hard to maintain due
o the gap between high-level specifications and low-level configuration
irectives. In a traditional network, it is hard to infer high-level,
etwork-wide specifications from device-level configuration directives,
ecause operators often need to learn different low-level configuration
anguages to express configurations for each network device from
ifferent vendors. Thus, these management activities are error-prone
nd cumbersome for operators, which can lead to incorrect device
onfigurations and, in turn, poor network performance.

Therefore, this new approach here work designed and implemented
rototypically a solution to fill this gap between high-level specifica-
ions and device-level configurations by introducing a novel bottom-
p approach for the extraction of security intents, which synthesizes
nd represents existing network configurations in an intent-level lan-
uage. The proposed approach facilitates operators’ understanding of
ctual network configurations by extracting intents from such low-
evel configuration directives, assisting both novice and experienced
perators in understanding existing configurations. Moreover, this solu-
ion helps operators on migrating from legacy networks to Intent-based
etworks (IBN).

The prototype was validated with respect to its feasibility and cor-
ectness under these three case studies describing real-world scenarios.
hey provided evidence that intents can be extracted from databases of
races with firewall and NAT rules, such that they represent the network
ehavior in an intent-level language, which closely resembles natural
anguage (in this case, English). Experiments had proven the solution’s
oncept by demonstrating (i) the trustworthiness of intents extracted

and (ii) the support of the developed prototype for most of functionality
present in real-world firewall configurations. Furthermore, these results
demonstrate that the solution accurately expresses configurations in an
10

intent-level language.
While the implementation was performed through a prototype tool
running on top of SCRIBE, the tool developed implements the bottom-
up process. Due to its prototypical nature the support of device-level
directives represent configurations of certain firewalls, such as ipta-
bles, IP Firewall (IPFW), and Cisco IOS. Moreover, since the output
is directly Nile code reproducing these configurations in the expected
intent-level, operators can directly use the intent-level output as input
for modern tools in the IBN domain.

Future work of such an approach includes ((i) a full exploration
of conflict finders to identify conflicts between a synthesized config-
uration and those intents being specified, (ii) the support of firewall
features with respect to rate-limiting, logging, and ICMP messages, so
far already included in datasets available, and (iii) an extension of the
approach to support wider network functions such, as Open Shortest
Path First (OSPF) and Border Gateway Protocol (BGP) routing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

While the work had been performed in a Master Thesis at the
Computer Networks Group, Institute of Informatics, Federal University
of Rio Grande do Sul, Brazil, this paper had been written at the time,
when the first author had already moved to University of Zürich UZH,
Switzerland as a Ph.D. student.

Appendix. Extended Nile Grammar

This section shows the complete grammar of the extended version
of the Nile language in the EBNF syntax [31].

⟨intent⟩ ::= ‘define intent’ ⟨term⟩‘:’ ⟨operations⟩

operations⟩ ::= ⟨path⟩ ⟨operation⟩ ’ ’ ⟨operation⟩

path⟩ ::= [⟨from_to⟩ | ⟨targets⟩]

from_to⟩ ::= ‘from’ ⟨endpoint⟩ ‘to’ ⟨endpoint⟩

operation⟩ ::= (⟨middleboxes⟩
| ⟨qos⟩
| ⟨rules⟩)+ [⟨interval⟩]

middleboxes⟩ ::= [add | remove] ⟨middlebox⟩ ‘,’
| ‘, \n’ ⟨middlebox⟩

middlebox⟩ ::= ‘middlebox(’⟨term⟩’)’

qos⟩ ::= [set | unset] ⟨metrics⟩

metrics⟩ ::= ⟨metric⟩ (‘,’
| ‘, \n’) ⟨metric⟩

metric⟩ ::= [bandwidth | quota](’[‘max’ | ‘min’]‘,’ ⟨term⟩‘)’

rules⟩ ::= [allow | block] ⟨matches⟩ [⟨matches⟩]

targets⟩ ::= ‘for’ ⟨target⟩ (‘,’ | ‘, \n’) ⟨target⟩

target⟩ ::= [⟨group⟩ | ⟨service⟩ | ⟨endpoint⟩ | ⟨traffic⟩]

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.
⟨matches⟩ ::= [⟨service⟩ | ⟨traffic⟩ | ⟨protocol⟩]

⟨endpoint⟩ ::= ‘endpoint(’⟨term⟩‘)’

⟨group⟩ ::= ‘group(’⟨term⟩‘)’

⟨service⟩ ::= ‘service(’⟨term⟩‘)’

⟨traffic⟩ ::= ‘traffic(’⟨term⟩‘)’

⟨protocol⟩ ::= ‘protocol(’⟨term⟩‘)’

⟨date_time⟩ ::= ‘datetime(’⟨term⟩‘)’
| ‘date(’⟨term⟩‘)’
| ‘hour(’⟨term⟩‘)’

⟨term⟩ ::= [a-z0-9]+

⟨forward⟩ ::= ‘forward’ ⟨address⟩

⟨address⟩ ::= ‘address (’ ⟨addrterm⟩ ‘)’
| ‘address (’ ⟨addrterm⟩ ‘, ’ ⟨port⟩ ‘)’

⟨addrterm⟩ ::= ⟨ip⟩
| ⟨host⟩

⟨middlebox⟩ ::= ‘middlebox(’⟨term⟩‘)’

⟨ip⟩ ::= ([0-9]{1,3}.){3}[0-9]{1,3}

⟨host⟩ ::= [a-zA-Z]{1}[a-zA-Z0-9_]*

⟨port⟩ ::= [0-9]{1,5}

⟨rename⟩ ::= ⟨nat_target⟩ ‘to (’ ⟨addrterm⟩ ‘)’

⟨nat_target⟩ ::= ‘source’
| ‘destination’

References

[1] K. Benzekki, A. El Fergougui, A. Elbelrhiti Elalaoui, Software-defined networking
(SDN): A survey, Secur. Commun. Netw. 9 (18) (2016) 5803–5833.

[2] Z. Kerravala, Business-Critical Services, Technical Report October, ZK Research,
2018.

[3] S. Arezoumand, K. Dzeparoska, H. Bannazadeh, A. Leon-Garcia, MD-IDN: Multi-
domain intent-driven networking in software-defined infrastructures, in: 2017
13th International Conference on Network and Service Management (CNSM),
IEEE, New York, NY, USA, 2017, pp. 1–7.

[4] M. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter, S. Jiang, L.
Ciavaglia, Autonomic Networking: Definitions and Design Goals, RFC 7575, RFC
Editor, 2015.

[5] A. Clemm, L. Ciavaglia, L.Z. Granville, J. Tantsura, Intent-Based Networking
- Concepts and Definitions, draft-irtf-nmrg-ibn-concepts-definitions-03, Internet
Engineering Task Force, 2021, Work in Progress.

[6] Cisco, Intent-Based Networking and Extending the Enterprise, Cisco public, 2020.
[7] A.S. Jacobs, R.J. Pfitscher, R.A. Ferreira, L.Z. Granville, Refining network intents

for self-driving networks, in: Proceedings of the Afternoon Workshop on Self-
Driving Networks, in: SelfDN 2018, Association for Computing Machinery (ACM),
New York, NY, USA, 2018, pp. 15–21.

[8] B. Tian, X. Zhang, E. Zhai, H.H. Liu, Q. Ye, C. Wang, X. Wu, Safely and
automatically updating in-network ACL configurations with intent language, in:
Proceedings of the 2019 Conference of the ACM Special Interest Group on Data
Communication, Association for Computing Machinery (ACM), New York, NY,
USA, 2019, pp. 214–226.

[9] C. Bodei, P. Degano, L. Galletta, R. Focardi, M. Tempesta, L. Veronese, Language-
independent synthesis of firewall policies, in: 2018 IEEE European Symposium on
Security and Privacy (Euro S&P), IEEE, New York, NY, USA, 2018, pp. 92–106.

[10] C. Diekmann, J. Michaelis, M. Haslbeck, G. Carle, Verified iptables firewall
analysis, in: 2016 IFIP Networking Conference (IFIP Networking) and Workshops,
Association for Computing Machinery (ACM), New York, NY, USA, 2016, pp.
252–260.

[11] S. Martínez, J. Cabot, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, A
model-driven approach for the extraction of network access-control policies,
in: Proceedings of the Workshop on Model-Driven Security, in: MDsec ’12,
Association for Computing Machinery (ACM), New York, NY, USA, 2012, pp.
5:1–5:6.
11
[12] A. Kheradmand, Automatic inference of high-level network intents by mining
forwarding patterns, in: Proceedings of the Symposium on SDN Research, in:
SOSR ’20, Association for Computing Machinery (ACM), New York, NY, USA,
2020, pp. 27–33.

[13] A.S. Jacobs, R.J. Pfitscher, Ferreira, R.H. Ribeiro, R.A. Ferreira, L.Z. Granville,
W. Willinger, S. Rao, Hey, lumi! using natural language for intent-based network
management, in: 2021 USENIX Annual Technical Conference (USENIX ATC 21),
USENIX Association, 2021.

[14] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan,
T. Millstein, A general approach to network configuration analysis, in: Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation, in: NSDI’15, USENIX Association, Berkeley, CA, USA, 2015, pp.
469–483.

[15] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, D. Walker, Network configuration
synthesis with abstract topologies, in: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, in: PLDI
2017, Association for Computing Machinery (ACM), New York, NY, USA, 2017,
pp. 437–451.

[16] A. Tongaonkar, N. Inamdar, R. Sekar, Inferring higher level policies from firewall
rules, in: Proceedings of the 21st Conference on Large Installation System
Administration Conference, in: LISA’07, USENIX Association, Berkeley, CA, USA,
2007, pp. 2:1–2:10.

[17] R. Birkner, D. Drachsler-Cohen, L. Vanbever, M. Vechev, Net2Text: Query-guided
summarization of network forwarding behaviors, in: 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), USENIX Association,
Renton, WA, 2018, pp. 609–623.

[18] R.H. Ribeiro, A.S. Jacobs, R. Parizotto, L. Zembruzki, A.E. Schaeffer-Filho, L.Z.
Granville, A bottom-up approach for extracting network intents, in: L. Barolli,
F. Amato, F. Moscato, T. Enokido, M. Takizawa (Eds.), Advanced Information
Networking and Applications, Springer International Publishing, Cham, 2020,
pp. 858–870.

[19] R.H. Ribeiro, A Bottom-Up Approach for Extracting Network Intents, Federal
University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2020, pp. 1–59.

[20] A. Mercian, F. Ahmed, P. Sharma, S. Wackerly, C. Clark, Mind the semantic gap:
Policy intent inference from network metadata, in: 2021 IEEE 7th International
Conference on Network Softwarization (NetSoft), 2021, pp. 312–320.

[21] E.J. Scheid, C.C. Machado, M.F. Franco, R.L. dos Santos, R.P. Pfitscher, A.E.
Schaeffer-Filho, L.Z. Granville, INSpIRE: Integrated NFV-based intent refinement
environment, in: 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), IEEE, New York, NY, USA, 2017, pp. 186–194.

[22] IANA, Service Name and Transport Protocol Port Number Registry, IANA, 2021,
https://www.iana.org/assignments/service-names-port-numbers/service-names-
port-numbers.xhtml.

[23] R.H. Ribeiro, SeCuRity intent-based extractor (SCRIBE), GitHub Repos. (2020)
https://github.com/ComputerNetworks-UFRGS/SCRIBE.

[24] E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, The science DMZ: A
network design pattern for data-intensive science, Sci. Program. 22 (2) (2014)
173–185.

[25] N. Vlajic, D. Zhou, IoT as a land of opportunity for ddos hackers, Computer 51
(7) (2018) 26–34.

[26] Y.-J. Lee, N.-K. Baik, C. Kim, C.-N. Yang, Study of detection method for spoofed
IP against ddos attacks, Pers. Ubiquitous Comput. 22 (1) (2018) 35–44.

[27] Mind Chasers Inc, Configure Netfilter (iptables) on Linux to Protect Your
Networked Devices, Mind Chasers Inc, 2019, https://mindchasers.com/dev/
netfilter.

[28] C. Diekmann, Net-network, GitHub Repos. (2015) https://github.com/diekmann/
net-network.

[29] K. Jayaraman, N. Bjørner, G. Outhred, C. Kaufman, Automated Analysis and De-
bugging of Network Connectivity Policies, Technical Report, Microsoft Research,
Redmond, WA, NY, USA, 2014.

[30] RedHat, 18.3. Options Used within iptables commands, Options Used Within
Iptables Commands (2005).

[31] 14977:1996, ISO/IEC, Information technology — Syntactic metalanguage —
Extended BNF, Technical Report, ISO/IEC, 2018.

Rafael Hengen Ribeiro joined the Communication Systems
Group (CSG) of University of Zürich (UZH) in November
2020 in order to obtain his doctoral degree under the
supervision of Prof. Dr. Burkhard Stiller. He obtained his
master’s degree in 2020 under the supervision of Prof. Dr.
Lisandro Zambenedetti Granville at the Federal University of
Rio Grande do Sul (UFRGS). His research interests include
Intent-Based Networking (IBN), Segment Routing (SR), and
Software-Defined Networking (SDN).

http://refhub.elsevier.com/S1389-1286(22)00238-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb4
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb4
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb4
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb4
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb4
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb5
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb5
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb5
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb5
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb5
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb6
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb7
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb8
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb9
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb9
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb9
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb9
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb9
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb10
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb11
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb12
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb16
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb19
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb19
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb19
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb20
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb20
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb20
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb20
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb20
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb21
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://github.com/ComputerNetworks-UFRGS/SCRIBE
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb26
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb26
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb26
https://mindchasers.com/dev/netfilter
https://mindchasers.com/dev/netfilter
https://mindchasers.com/dev/netfilter
https://github.com/diekmann/net-network
https://github.com/diekmann/net-network
https://github.com/diekmann/net-network
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb29
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb29
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb29
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb29
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb29
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb30
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb30
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb30
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb31
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb31
http://refhub.elsevier.com/S1389-1286(22)00238-9/sb31

Computer Networks 214 (2022) 109109R.H. Ribeiro et al.
Arthur Selle Jacobs is a second year Ph.D. student in Com-
puter Science, under the supervision of Prof. Dr. Lisandro
Granville, at the Federal University of Rio Grande do Sul, in
Brazil. His research interests include network management,
Network Functions Virtualization, Self-Driving Networks,
programmable networks and artificial intelligence. Arthur
is currently researching the use of machine learning for
network management, as a mean to achieve Self-Driving
Networks.

Luciano Zembruzki is a Ph.D. student in Computer Sci-
ence at Federal University of Rio Grande do Sul (UFRGS)
advised by Prof. Dr. Lisandro Zambenedetti Granville. He
achieved his B.Sc. Degree in Computer Science from the
Integrated Regional University (URI) - Campus Frederico
Westphalen, in 2017. He hold his M.Sc. Degree in Computer
Science from UFRGS, in 2020. His research interests include
Internet Measurements, Network Functions Virtualization
(NFV), Software-Defined Networking (SDN), and Distributed
Systems.

Ricardo Parizotto is a Ph.D. student under the supervision
of Prof. Dr. Alberto Schaeffer-Filho at the Federal University
of Rio Grande do Sul (UFRGS) in Brazil. He obtained his
master’s degree in 2019 under the supervision of Prof. Dr.
Alberto Schaeffer-Filho at the Federal University of Rio
Grande do Sul (UFRGS). His current research focuses on
programmable networks and in-network computing systems.

Eder John Scheid is a Junior Researcher and Ph.D. can-
didate pursuing his Ph.D. since December 2017 under the
supervision of Prof. Dr. Burkhard Stiller at the University
of Zürich UZH, Switzerland, within the Communication
Systems Group CSG of the Department of Informatics IfI.
Eder holds an M.Sc. degree in Computer Science from
the Federal University of the Rio Grande do Sul (UFRGS),
Brazil, which he obtained in 2017 under the supervision
of Prof. Dr. Lisandro Zambenedetti Granville. Eder focuses
his research on blockchain, Smart Contracts, and network
management.
12
Alberto Schaeffer-Filho holds a Ph.D. in Computer Science
(Imperial College London, 2009) and is Associate Professor
at Federal University of Rio Grande do Sul (UFRGS), Brazil.
From 2009 to 2012 he worked as a research associate at
Lancaster University, UK. Dr. Schaeffer-Filho is a CNPq-
Brazil Research Fellow and his areas of expertise are
network/service management, network virtualization and
software-defined networks, policy-based management, and
security and resilience of networks. He has authored over
50 papers in leading peer-reviewed journals and conferences
related to these topics, and also serves as TPC member
for important conferences in these areas, including: CNSM
(2018), IEEE/IFIP NOMS (2018), CNSM (2017), IFIP/IEEE
IM (2017), IEEE CCNC (2017), and IEEE INFOCOM CNTCV
Workshop (2017). He is the general chair for SBRC 2019,
co-chair for IEEE ICC 2018 CQRM Symposium, demo co-
chair for IFIP/IEEE IM 2017, and workshop co-chair for
ManSDN/NFV 2015. He is also a member of the IEEE.

Lisandro Zambenedetti Granville is full Professor at the
Institute of Informatics of the Federal University of Rio
Grande do Sul. He served as the TPC Co-Chair of IFIP/IEEE
DSOM 2007, IFIP/IEEE NOMS 2010, and IEEE NetSoft
2018, General Co-Chair of IFIP/IEEE CNSM 2014, IEEE/IFIP
NOMS 2022, and IEEE GLOBECOM 2022, and the TPC
Vice-Chair do IEEE ICC 2018. He is the current board
member of the Brazilian Computer Society. His interests
include network management, software-defined networking,
and network functions virtualization.

Burkhard Stiller received the Informatik-Diplom (M.Sc.)
in Computer Science and the Dr. rer.-nat. (Ph.D.) degree
from the University of Karlsruhe, Germany, in 1990 and
1994, respectively. In his research career he was with the
Computer Lab, University of Cambridge, U.K. (1994–1995),
ETH Zürich, Switzerland (1995–2004), and the University of
Federal Armed Forces Munich, Germany (2002–2004). Since
2004 he chairs the Communication Systems Group CSG,
Department of Informatics IfI, at the University of Zürich
UZH, Switzerland. Besides being a member of the editorial
board of the IEEE Transactions on Network and Service
Management, Springer’s Journal of Network and Systems
Management, and the KICS’ Journal of Communications and
Networks, Burkhard is the past Editor-in-Chief of Elsevier’s
Computer Networks journal. His main research interests are
published in well over 300 research papers and include sys-
tems with a fully decentralized control (Blockchains, clouds,
peer-to-peer), network and service management (economic
management), Internet-of-Things (security of constrained
devices, LoRa), and telecommunication economics (charging
and accounting).

	A deterministic approach for extracting network security intents
	Introduction
	Related work
	Intent-based networking (IBN)
	Bottom-up approaches and IBN languages

	Solution overview
	Process
	Configuration Synthesis
	Consolidation
	Aggregation
	Intent Translation

	Specializations
	Firewalls
	Network Address Translation NAT

	Nile extensions

	Implementation
	System architecture and use
	System modeling

	Evaluation and discussion
	Case studies
	Case Study #1: Small Company with a NAT
	Case Study #2: Science DMZ
	Case Study #3: IP Camera Network

	Accuracy evaluation
	Translation Accuracy
	Functionality Support

	Summary and future work
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Extended Nile Grammar
	References

