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Abstract. Internet eXchange Points (IXPs) are high-performance net-
works that allow multiple autonomous systems to exchange traffic. As in
any network, IXP operators face management challenges to promote bet-
ter usage of the services provided by the network. Among these, a critical
problem lies in the identification of elephant flows, which are character-
ized by having traffic size and duration significantly higher than other
flows. We explore the periodic pattern of IXP network traffic to predict
the new flows’ size and duration by observing the previous flows’ tem-
poral behavior. One of the critical parameters of success for periodicity-
based predictions is the sample selection, with the quality and size of
samples directly influencing results. In this paper, we present a sam-
ple selection strategy, based on the Cuckoo Search Algorithm, to match
it with our mechanism. Our approach uses a Sample Selection Module
based on views updated from an objective function adapted to the IXP
network traffic. Thus, we optimize in ≈ 32% the predictions processing
time and increased the mechanism accuracy by≈ 20%, using conservative
tolerance for the prediction interval, compared to previous approaches.
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1 Introduction

Internet eXchange Points (IXPs) are high-performance networks and perform
an essential role in the Internet ecosystem [3], accounting for at least 20% of all
traffic exchanged between Internet Autonomous Systems (ASes) [5]. As in any
network, IXP operators face daily management challenges to promote better us-
age of the services provided by the network [1]. Among these, the identification
of elephant flows is a critical problem for IXP management, which are character-
ized by having traffic size and duration significantly higher than other flows (i.e.,
small/mice flows) [12]. Thus elephant flows tend to deplete the network devices’
resources rapidly and can significantly impact smaller flows traffic that share



the same path on the IXP infrastructure, compromising the overall perceived
network Quality of Service (QoS) [11].

Most of state-of-the-art approaches for elephant flow identification combine
Software-Defined Networking (SDN) [17] with periodicity-based flow behavior
prediction. In efforts to rapidly identify and mitigate the effects of elephant flows
on IXP networks, recent research has used the SDN and network programma-
bility paradigm [4] as alternatives to traditional monitoring and identification
approaches. Proposed solutions such as DevoFlow [7], OpenSample [24], and
SDEFIX [15] present mechanisms for identifying elephant flows in IXP networks
using sFlow [21] and managing paths (as a reaction to elephant flows) using
Openflow [17]. In IDEAFIX [22], we analyzed flow’s size and duration for each
ingress packet immediately in the data plane, and compared to thresholds for
flow classification. Then, in a first improvement of IDEAFIX, we proposed a
periodicity-based mechanism [23] to predict flows’ behavior and anticipate the
elephant flows identification process in the control plane.

Although the state-of-the-art approaches that use the periodicity of flows
can detect Elephant flows occurrences, the sample selection process is neglected.
For instance, our prediction mechanism [23] is based on a Locally Weighted
Regression (LWR) [20, 6] model, and the samples used in the prediction mech-
anism were selected only based in the flow 5-tuple. That is, the sample set was
not optimized for run-time prediction. We argue that this can delay the ele-
phant flows identification and mitigation time. Thus, in this paper, we present a
bio-inspired sample selection strategy based on the metaheuristic Cuckoo Search
Algorithm (CSA) [25], to improve the predictions in terms of prediction time and
accuracy. Our approach uses a Sample Selection Module based on views gener-
ated/updated from an objective function adapted to the IXP network traffic, as
described in Subsection 3.1. In particular, this paper makes the following con-
tributions: (i) a sample selection mechanism for IXP networks traffic, optimized
by a metaheuristic strategy (based on CSA); (ii) a prototype implementation of
the proposed sample selection method, coupled with our previous elephant flow
prediction mechanism for improved performance; and (iii) perform the elephant
flows identification and reaction process fast and efficient.

Experimental results show that our sample selection strategy optimizes up to
41% the predictions processing time and, consequently, identifies and mitigates
elephant flows faster than the state-of-the-art. In the best and worst cases from
an software emulated P4 switch [4], the reaction time was ≈ 32 ms and ≈ 102
ms, respectively. However, the packet processing time of the software-emulated
P4 switch also influences the reaction time (i.e., it would take less time in a
hardware switch). In addition, the mechanism accuracy has increased by ≈ 20%
compared to previous approaches, using conservative tolerance to the prediction
interval. That is, the network operator can define a tolerance for the calculated
prediction interval over each inference. The prediction interval determines the
fluctuation margin for the inferred value. These results represent, at least, 90% of
success in elephant flows identification, out of the total number of elephant flows
inserted in the network at each test, with approximately 5% of false positives.



The remainder of this paper is organized as follows. In Section 2, we present
background on IXP network traffic and the Cuckoo Search Algorithm. Our op-
timized sample selection strategy for the elephant flow prediction is described
presented in Section 3. The evaluation of our proposal and the main results is
presented in Section 4. We discuss related work on Section 5. Finally, in Section
6, we present the main conclusions of the study and future work perspectives.

2 Background

In this section, we first discuss the IXP traffic behavior and elephant flow con-
cepts associated with its management challenges to then introduce our previous
solution for elephant flow prediction/identification. Next, we briefly review the
Cuckoo Search Algorithm (CSA) on which we base our sample selection proposal.

2.1 IXP Traffic Behavior and Elephant Flows

In the Internet traffic, most of the flows have a small size and/or lifetime (i.e.,
small flows) [1, 26], but there is a small number of flows that accounts for the
majority of the traffic volume, also having a longer lifetime; these are the ele-
phant flows [12, 18]. Elephant flows are common in networks, and they may cause
performance issues that demand proper management actions from network oper-
ators. For example, elephant flows can significantly impact the small flow traffic
that occasionally shares the same network data path. Also, elephant flows tend
to deplete the network devices’ resources rapidly, this also can lead to undesir-
able delays, queuing, and packet losses [12, 15, 19]. In the case of IXP, elephant
flows impact are more critical, because of the traffic amount that IXP networks
must deal with. Therefore, the faster elephant flows are identified, the smaller
are their effects on network performance [15, 23].
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Fig. 1. Australia IXPs aggregate traffic [23].

Figure 1 [23] presents the traffic behavior in Australia IXPs [13] over the
course of a week. IX-Australia offers peering in Western Australia (WA-IX),



New South Wales (NSW-IX), and Victoria (VIC-IX). Although this is an aggre-
gated traffic behavior, it is possible to recognize a periodic pattern, with discrete
variations. This IXP’s behavior is also seen in the largest IXPs worldwide (e.g.,
AMS-IX, DE-CIX, MSK-IX) [1, 2]. Application-based IXP traffic analysis shows
that HTTP/HTTPS is the most dominant application, accounting for more than
50% of bytes exchanged between ASes [1]. Moreover, elephant flows traffic has
a substantial, but not perfect, correlation with traffic in total flows [16].

In our previous work [23], we explored the IXP network traffic periodicity to
predict the new flow instance size and duration by observing the previous flows’
temporal behavior. That is, as the traffic pattern exhibits a periodicity (as shown
in Figure 1), our previous prediction mechanism uses the events that previously
resulted in elephant flows to predict new elephant flows. Although our prediction
mechanism allows us to considerably anticipate elephant flow identification, it
is based on a Locally Weighted Regression LWR model and makes predictions
at run-time. Therefore, the quantity and quality of the prediction sample base
influences results directly. In this paper, we rely on a sample selection strat-
egy for our prediction mechanism (see Section 3), based on the Cuckoo Search
Algorithm, described in the next subsection.

2.2 Cuckoo Search Algorithm

Cuckoo Search (CSA) [25] is a metaheuristic algorithm developed to solve opti-
mization problems by simulating the behavior of the cuckoo bird. Biologically,
cuckoo birds do not create their nests, and they lay their eggs in other birds’
nests at random. In this case, there is a probability that the host bird will find
the intruder egg and throw it away. So the eggs that survive are considered
the fittest, and so begins the new generation. At the computational scope, for
a maximization problem, the quality or adequacy of a solution may be propor-
tional to the value of the objective function. For this, CSA admit the following
representations: each egg in a nest represents a solution, and a cuckoo egg repre-
sents a new solution, the goal is to use the new and potentially better solutions
(cuckoos) to replace a “not so good” solution in the nests.

In this paper, the objective function purpose is to validate elephant flow
samples (based on flow’s size and duration) obtained from the IXP network
and compose an optimized sample set to use in the prediction mechanism, as
described in the Section 3. As already mentioned, our prediction mechanism [23]
uses the LWR [6] model to predict the behavior of new network flows at run
time. Therefore, the quantity and quality of the prediction sample base influences
results directly, as presented in the evaluation section (see Section 4).

Based on the Cuckoo Search Algorithm, our Sample Selection Module (refer
to Subsection 3.1) creates solution sets from data plane reports, identifies the
best solutions by our objective function, and passes them on to new generations.
Thus, we seek to optimize the set of samples used in the prediction mechanism in
order to improve processing time and accuracy. Therefore, from this, we wish to
perform the elephant flows identification and reaction process fast and efficient
in run-time.



3 Proposed Approach

In this section, we describe the architecture for elephant flows prediction and
identification, and the Sample Select Module, introduced in this paper. Figure 2
shows the proposed architecture, composed of an IXP infrastructure abstraction
with a programmable data plane, a historical database, the sample selection
module, and a prediction module, in the control plane. When an edge switch
receives the flow’s first packet, the controller is notified to compute the path by
which the flow will be routed in the network. Then, running at the control plane,
the mechanism uses the LWR model to predict the flow size and duration [23].
When predicted values are validated, based on tolerated prediction intervals, the
mechanism characterizes the flow as an elephant or not, according to thresholds.
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Fig. 2. The Mechanism Architecture.

The prediction mechanism, presented in our previous work [23], relies on a
historical database with information about the previous flows’ behavior. This
information is extracted directly from the data plane, where an agent uses P4
to account, in each edge switch, the volume, and duration of each flow that
ingresses in the IXP network. When a flow is finalized (e.g., TCP FIN flag is
valid, or timeout exceeded), a notification (on top of UDP) is sent from the data
plane to the control plane to report the flow size and duration along with its 5-
tuple and start flow time (i.e., timeStamp). In our previous work [23], the samples
used in the prediction mechanism were selected only based in the flow 5-tuple.
That is, the sample set used in the predictions was not optimized for run-time
prediction. Consequently, the elephant flows identification and mitigation time
are also affected. In contrast, in this paper, we introduced a sample selection
strategy based on the Cuckoo Search Algorithm, to minimize the prediction
time, improve the prediction mechanism’s accuracy, and consequently reduce
the reaction time to elephant flows.



3.1 Sample Selection Module

The Sample Selection Module operation is based on a query manager and on
views composed by data plane reports stored in the historical database. The
views composition/update uses the metaheuristic Cuckoo Search Algorithm (de-
scribed in the Subsection 2.2) defined by the objective function described below.
Each view Vi is associated with a time of day i, resulting in 24 views (0-23 hours).
When Vi is active, the mechanism can update the previous view Vi−1. Conse-
quently, Vi can only be updated when the next view is active Vi+1. Thus, it aims
to follow the periodicity in IXP network traffic behavior.

The objective function (Algorithm 1) has the role of updating views’ samples
from two combined rules: reduction and validation. In reduction, the view’s older
samples are discarded if they exceed the time window w defined by the network
operator (e.g., seven days). In the validation rule, the view’s current samples
and each flow reported by the data plane, in the view time interval, have their
volume and duration characteristics compared with the thresholds used in that
interval. Therefore, only the samples validated by the objective function will be
in the next view (next generation). It allows us to keep up with the latest changes
in IXP network behavior, reducing both search space, and sample variation, as
evidenced by the results obtained from the experimental evaluation, Section 4.
The worst-case complexity of this algorithm is given by O(n), where n is the
number of samples in the View plus data plane reports, in the View interval.

Algorithm 1 Objective Function

Input: View, reports by the data plane (in the View interval), thresholdsize,
thresholdduration

Output: View (next generation)
V iew.append(reports)
s is flow sample (5-tuple, ingressTimeStamp, size, duration)
w = time window
forall s ∈ V iew do

if s.ingressT imeStamp < w or
s.size < thresholdsize or s.duration < thresholdduration then

V iew.remove(s)
end

end

Therefore, if a flow was reported by the data plane as an elephant one, it
is kept in the views to anticipate the identification of recurring occurrences.
However, if the flow is not reported as elephant successive times for the view
range, its oldest occurrences should be deleted with the view update process, and
the controller understands that this flow is unlikely to be an elephant. Thus, an
elephant flow reported in a sporadic situation, in updates (next generations), it
will have no match in the analysis view. Such an approach allows the mechanism
to be flexible to non-periodic elephant flows occurrences.



The query manager is responsible for verifying whether the analyzed flow’s
tuple matches on the current view. If there is not a match, the prediction module
is not triggered, and the controller understands that this flow is unlikely to be
an elephant. Otherwise, when there are matches for this tuple in the current
view, the controller realizes that this flow may be an elephant. In this case, the
prediction module is triggered to predict the flow’s behavior, using samples ob-
tained by the current view, based on the flow’s tuple. That is, assuming that the
samples on the current view correspond to the more recent flow’s occurrences,
selected by our objective function, it is expected that the prediction model de-
mands less time to predict the flow’s volume and duration, with more accuracy.
Finally, if the predicted values exceed the predefined thresholds, then, the flow
is classified as an elephant, and control messages are sent to the data plane to
mitigate its effects following the IXP network traffic policy.

To prioritize time requirements in an IXP network, in which decisions/actions
need to be taken quickly, a proactive approach has been developed. That is,
when a flow is started, the controller inserts the routing rules into the default
path; also, it adds the routing rules for an alternative path. When an elephant
flow is identified, the controller sends control messages to insert a rule into the
edge switch to mark the packets of the identified elephant flow (i.e., set an IP
header flag) and route them by an alternative path. This approach demands
more memory resources for the routing tables. However, this allows reacting to
an elephant flow more quickly, as will be shown in the following results.

4 Evaluation

To assess the elephant flow prediction and identification mechanism based on our
sample selection search strategy (abbreviation “SSS”), we compared the previ-
ous approach [23], without sample selection optimization (abbreviation “SSU”),
and focused on evaluating four main aspects: (i) mechanism accuracy, i.e., the
percentage of valid elephant flows predictions and false positives; (ii) reaction
time, i.e., the interval between the ingress time of the flow first packet in the
IXP network, the query to Sample Selection Module, Prediction Module time,
and the identified elephant flow management time; (iii) excess data, i.e., the
number of bytes that transited in default path until the flow has been identified
as an elephant one and a reaction occurs; and (iv) resource utilization, i.e., the
memory and CPU usage by the Predict and Sample Selection Module in our
mechanism; For metrics (ii), (iii), and (iv), lower values are better.

We rely on a topology based on the AMS-IX [2] infrastructure (see Figure 2),
as also used in the related work [15, 22], with 8 ASes connected by edge switches
to a programmable data plane IXP. Each edge switch runs IDEAFIX to analyze
and report flows to the control plane and has at least two IXP network core
connection paths. Switches were implemented in the language P416 and by using
the software switch BMv2 3. The infrastructure was emulated using Mininet 2.3,
with a bandwidth of 1 Gbps per link and no propagation delay.

3https://github.com/p4lang/behavioral-model



We generated a workload in two scenarios with distinct sizes of TCP flows
between all connected ASes using iPerf. The first scenario (S1) with low traffic
behavior variation and regular periodicity, i.e., flows follow a well-defined fre-
quency. Scenario two (S2) with more significant variation in the flows behavior
and periodicity. The flow bandwidth was established at 10 Mbps, and the du-
ration was determined through a exponential distribution [14], with a mean of
60 seconds, and the rate parameter (λ = 1/β) with β = 20 and 40 seconds (S1
and S2, respectively), for elephant flows. For small flows, we used a mean of 5
seconds and β = 5 and 10 seconds (S1 and S2, respectively) [15, 22]. The IXP
network traffic was distributed periodically over nine weeks (i.e., ≈ 1,600 hours).
The thresholds were defined in 10 MB and 20 seconds [15, 22]. Each experiment
lasted 10 minutes, repeated 32 times, and 2,048 flows were generated, of which
12% were elephant flows [1]. We used a computer with Intel Core i7-4790 pro-
cessor, 16 GB of RAM, and Ubuntu 16.04 LTS.

The mechanism accuracy (in Figure 3(b)) was evaluated from the valid pre-
dictions (true positives) of the elephant flows (based on the tolerance defined
by the network operator for the prediction interval) and false positives, in two
scenarios (Figure 3(a)). We observed that the prediction mechanism allows for
greater accuracy when using samples from our sample selection search (SSS)
strategy, compared to the sample selection unoptimized (SSU) approach. These
results are a consequence of the filter applied by our objective function (see
subsection 3.1). Results show an increase of ≈ 8% and 20% between the two
approaches, in both scenarios (S1 and S2, respectively), using conservative tol-
erance for the prediction interval. It shows that the method can predict and
validate values even in non-regular scenarios. However, it requires more flexibil-
ity in prediction tolerance. These results represent, at least, 90% of success in
elephant flows identification, out of the total number of elephant flows inserted
at each test (i.e., ≈ 245 flows), with approximately 5% of false positives. Ele-
phant flows not identified by the prediction mechanism were identified directly
in the data plane by IDEAFIX [22], after exceeding the thresholds.
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Fig. 3. Scenario and prediction mechanism accuracy.



Figure 4(a) shows the reaction time to elephant flows influenced by the sample
number used in the predictions. The amount of samples influences these results
because the prediction mechanism needs to process them in run-time. This allows
us to observe the time it takes for a reaction to occur with the prediction model
being generated/trained at run-time. In the y-axis, the average reaction time
(in milliseconds) has a significant difference, when applied the sample selection
on the optimized database relative to a search performed on an unoptimized
database. Results show a difference up to 32% and 41% in the best (i.e., ≈ 32
ms) and worst (i.e., ≈ 102 ms) case, respectively, at a 95% confidence level.
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Fig. 4. Reaction time and excess data analysis.

The same behavior observed for excess data (Figure 4(b)), i.e., the number
of bytes that transited in default path until the flow has been identified as an
elephant one and a reaction occurs. This is because the prediction time influences
the mitigation process, allowing more packets to be routed through the default
path. Results show a difference up to 32% and 41% in the best (i.e., ≈ 68.2 KB)
and worst (i.e., ≈ 196.6 KB) case, respectively, at a 95% confidence level.

Finally, Table 1 shows the resource utilization of the mechanism, i.e., the
memory and CPU usage by the Predict and Sample Selection Module in our
mechanism. We observe that the Sample Selection Module incurs in a significant
increase in CPU (i.e., ≈ 45%) and memory (i.e., ≈ 32%) usage in the control
plane. It is because the view-based strategy (SSS) needs more processing for its
updates and more memory to replicate information compared to SSU.

Table 1. Resource usage of the prediction mechanism.

Approach SSU SSS

CPU Used 32.8% 78.7%
Memory Used 15.6% 47.1%



In summary, the results show that we can predict and identify elephant flows
faster and more accurately by using a Sample Selection Module. Our view-based
strategy updated by an objective function based on the Cuckoo Search Algorithm
allows us to choose the best samples from the global data plane reports (i.e.,
historical database). This improves the predictions’ confidence interval and ac-
curacy. In addition, search and prediction times are reduced. Consequently, also
reduced the elephant flow identification and reaction time. However, our mecha-
nism incurs a significant increase in CPU and memory using in the control plane,
compared to previous approaches. Thereby, the IXP network operator can eval-
uate which strategy is most appropriate, according to its gains and cost, based
on the results presented in this study.

5 Related Work

In DevoFlow [7], OpenSample [24], and SDEFIX [15], an SDN/OpenFlow-based
identification module is used to classify elephant flows, analyzing the collected
data by sFlow according to predefined rules. When size and duration thresholds
are exceeded, the flow is classified as elephant and it is mitigated according to
policies written by the network operator. However, these approaches performs
elephant flow analysis and identification integrally in the control plane and a re-
action occurs only when thresholds are exceeded. In IDEAFIX [22], our previous
work, we present the first attempt to identify elephant flows in IXPs faster by
relying on programmable data planes. To do that, IDEAFIX takes advantage of
P4 [4] features to store and analyze the information about the size and duration
of the flows entirely in the data plane. Although IDEAFIX reduces the detection
delay when compared to controller-based approaches, it still requires that flows
size and duration to reach the thresholds for identification to occur.

Traffic behavior prediction strategies are alternatives to the approaches de-
scribed above to identify elephant flows. Although it is not perceptible initially,
elephant flows are elephant ones since their first packet. Thus if the predicted
flow behavior, its characterization may be anticipated. To network flows behav-
ior predict, recurrently strategies use Artificial Neural Networks, Bayesian Net-
works [9], Hidden Markov [8], and Machine Learning techniques [10]. However,
they are limited as to generate run-time prediction models. That is, a training
period is required to make predictions whenever changes in network behavior
occur. Given this, we introduced a first mechanism for predicting elephant flows
in IXP networks in run-time [23] using a Locally Weighted Regression model
(LWR) [20, 6]. The sample weights, in the LWR model, are attributed from a
Gaussian distribution adjusted by the network operator according to the desired
sample time window. In addition, the network operator can define a tolerance
range to validate estimations according to the calculated prediction interval for
each of them. To make this strategy even more optimized, in this paper, we
combine it with a prediction mechanism that relies on the bio-inspired sam-
ple selection strategy, based on the Cuckoo Search Algorithm, to perform the
elephant flows identification and reaction process fast and efficient in run-time.



6 Conclusions

In this paper, we present a sample selection strategy, based on the metaheuristic
Cuckoo Search Algorithm, for predicting elephant flows in Internet eXchange
Point programmable networks. We explored the periodicity pattern of IXP net-
work traffic to predict the new flow instance size and duration by observing
the previous flows’ temporal behavior. In additional we use a Sample Selection
Module based on views generated/updated from an objective function adapted
to the IXP network traffic context. Thus, we optimize in ≈ 32% the predictions
processing time and, consequently, identify and mitigate elephant flows faster
(i.e., 32.8 ms), and increased the mechanism accuracy by ≈ 20% using conserva-
tive tolerance for the prediction interval, compared to previous approaches. As
future work, we will consider other methods, based on machine learning to pre-
dict flows’ behavior, analyze the trade-off between control-data plane processing,
and we also plan to deploy our solution in real IXP networks.
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