
Matching of XML Schemas and Relational Schemas

Sergio L. S. Mergen1 Carlos A. Heuser1

1Instituto de Informatica
(UFRGS)

mergen@inf.ufrgs.br, heuser@inf.ufrgs.br

Abstract
XML is widely used for data exchange between relational databases. Generic exchange tools are based on

mappings between the elements of both schemas. Despite the benefits of using generic tools, the manual definition

of the mappings can become a time consuming and error-prone task. Given this scenario we propose algorithms for

the automatic matching of XML schemas(DTDs) and relational schemas. Considering we restricted the schemas

formats allowed for DTDs and relational schemas, the algorithms(matchers) we proposed take advantage of the

particularities of each schema to provide a more precise matching than the other solutions available. We also

assess the effectiveness of our matchers running experiments using real world schemas on the movies domain.

1. Introduction

As companies move to ”paperless” data storage, in which data is store in digital databases, the need
for exchanging data among databases has become more important. Therefore, techniques for the con-
ducting the data exchange consistently are a major need. One of the main problems resides in commu-
nicating data between companies whose databases schemas are structurally and semantically different.
One possible way to resolve these heterogeneities is converting data to a common data representation.

XML is widely used for that end because it provides a simple textual mechanism for data exchange,
with powerful structure capabilities. With the adoption of XML as the intermediary data type and con-
sidering most data is still stored and maintained in relational databases, the problem of data exchange
between heterogeneous databases can be translated to the problem of data exchange between a relational
database and an XML representation.

Some tools carry out the data exchange by the definition of mappings between the elements of both
schemas. For instance, tools like [1] and [12] provide the user with an interface to declare the mappings
between elements of a XML schema and columns of a relational schema. The decision of using such
tools frees the programmers from developing ad-hoc solutions whose use is limited to a constant set of
schema (whenever a new schema is to participate of the data exchange, the code should be modified).

The manual definition of the mappings can become a time consuming and error-prone task in cases
where the user must map a great number of large schemas. (Semi)automatic schema matching can be
applied to this scenario by providing a fast and convenient way to find correspondences between XML
schema elements and relational schema columns requiring none or minimum user interference.

Schema matching algorithms (matchers) are used to calculate similarities between the elements of
two schemas. One common way to find the similarities between the elements is to compare the linguistic
relation between them. This technique can be used as a basis for the development of more complex match
approaches, such as the ones that used structure information. In this paper we identify some linguistic
relations that can be applied exclusively for the matching of XML schemas elements and relational
schemas columns. Based on such linguistic relations, we have implemented a linguistic matcher that
improves the matching accuracy by finding correspondences that are not found by other solutions.



Figure 1: Element-Level Matcher classification (Adapted from [13])

Additionally, we also present an innovating structure matcher, specifically designed for handing
atomic elements matching in a scenario where the schemas can be morphologically different, such as
XML schemas and relational schemas. This structure matcher has the purpose of improving the results
obtained by the linguistic matcher. To assess the effectiveness of our method we have also ran experi-
ments that demonstrate in which cases our solution overcomes others.

This paper is organized as follows. Section 2 shows work related to our approach. Section 3 shows
some characteristics of the DTD and the relational schema graphs. Section 4 describes the techniques
proposed to achieve the matching of the schemas. In section 5 we present experimental results when
applying the matcher to real-world schemas in the movie domain. Finally we summarize our work and
present some plans for the future in section 6.

2. Related Work

In this section we present an overview of the matching approaches existing in the literature, and
discuss their contribution to the specific problem of matching XML schemas and relational schemas.

We present the matching approaches based on the classification suggested by [13], in which the
matchers are divided in element-level (see figure 1) and structure-level.

The element-level matchers can be further divided in linguistic matchers and constraint matchers.
Linguistic matchers can be applied either to the schemas or to data instances. For the first case, the
linguistic matcher looks for similarities in the name of the schema elements. In the second case, the
matcher looks for the similarity in the data values, using IR techniques such as word frequencies [3].

Element-level constraint matchers can also be divided into schema level and instance level. An exam-
ple of schema level constraint that can be exploited is the data types of the nodes(Data Type Matchers).
The instances can also present constraints, such as a range of values for a specific data field.

The element-level matchers are suitable for the task of finding correspondences between XML
schemas and relational schemas when the similarity lies in the properties of the atomic level of the
schemas. However, element-level matchers alone are not helpful when the similarity is in the proper-
ties of the nodes above the atomic level. The limitations of these matchers urge the need for additional
matching techniques that exploit the schemas structure.

Some structure matchers can be generally applied to graph schemas [10, 5, 11, 6]. The standard be-
havior of these matchers follows two steps: The similarity between two nodes is firstly pre-computed by
a particular lexical matcher(linguistic matcher, data type matcher,...). In the next step this similarities are
propagated in the tree. Two propagation directions are allowed. In bottom-up propagation the children
nodes similarities affect the similarities of the parent nodes. In top-down propagation, the parent nodes
similarities affect the children nodes.

This technique presents good results in discovering matches when the schemas are represented in
the same way, but its effectiveness is questionable when the two schemas are morphologically different.
For instance, DTDs XML schemas are typically trees, and relational schemas are better represented as
graphs. Moreover, the way the information is structured differs from one model to the other, so the



propagation of scores may not present accurate results.
There are also methods that glean knowledge from past matching experiences to improve match

accuracy [2, 5, 9]. Generally speaking, this kind of method calculates how trustfully a specific matching
technique can be used to match two schemas.

3. Schema Representation

The XML schemas and the relational schemas are represented in our work as acyclic graphs. The
matchers use the graphs in order to performs the comparisons between the nodes from both represen-
tations. The figure 2 shows the description of a relational schema and a DTD, along with the graphs
generated for them.

Next we introduce some definitions that clarify the conversion of a relational schema into a graph.

Definition 1 (Relational Schema) LetT = {t1, ..., tn} be the set of tables from a relational schemaRS.
Each tableti = has a set of columnstci = {c1, ..., cn} . Additionally, letC = {ci} be a set containing
all the columns of the relational schema. Let the tuplek = (ti, tj) be a foreign key relationship between
two tables. Further, the setFK contains all the foreign key columns ofRS.

Definition 2 (Relational Schema Graph) Let the tripleRG =< N,E, name > be the graph generated
for a RS, whereN = T ∪ (C − FK) are the nodes of the graph,E ⊆ T × (T ∪ (C − FK)) are the
edges, andname : N → η (whereη is a set of names), is the naming function.

Everyti turns into a table node. Likewise, everyci that is not a foreign key turns into a column node.
The name of the nodes are defined by thename function. The edges connect tables with tables and

tables with columns. The edges between tables and columns are described in definition 3.

Definition 3 (Containment Edges) Leted(tj → ci) be a directed edge connecting a table node to a
column node. Then,∀ ci ∈ tcj ∃ ed(tj → ci).

The directed edges are called containment edges. As a matter of fact, we borrow the definition of
containment edges from [10]. Containment edges are directional edges that indicates that a node is
contained inside another node. One property of such edges is that they can only be contained by one
parent node.

Definition 4 (Foreign Key Rule) Leted(ti ↔ tj) be a bidirectional edge connecting two table nodes.
Then,∀ k = (ti, tj) ∃ ed(ti ↔ tj).

The definition 4 states how table to table edges are created. In [10] the edges connecting table are
called aggregation edges. The difference between containment edges and aggregation edges is that the
latter allow multiple parents. In our approach, the bidirectional edges are called interrelated edges. We
rather think of the edges connecting table nodes as a mean of indicating the nodes have some kind of
relationship between them, without defining which side of the relationship contains the other. The notion
of interrelated edges is important for our matcher in the sense they allow greater navigability through the
nodes due to its bidirectional nature.

Note that in definition 2 the foreign key columns are not represented as nodes, once they represent
indirections to other tables, and these indirections are already represented by the interrelated edges.
However, there could be cases where the foreign key would be helpful for inferring similarities. We
intend to give foreign keys a better treatment in future work.

Definition 5 (Associative Tables Rule) Leted(ti ↔ tj) be a bidirectional edge connecting two table
nodes. Further, lettei be the interrelated edges ofti. Then,∀ (tj ∈ tei, tk ∈ tei)|tci ⊆ FK, (∃ ed(tj ↔
tk)) ∧ (N = N − ti).



Figure 2: Graphs for DTD and Relational Schema

The definition 5 states that the associative tables are eliminated from the graph. Instead, the table
nodes supposed to be linked with the associative tables are linked to each other (see the edge connecting
table nodebook and table nodeauthor.

Next we introduce some definitions that clarify the conversion of a DTD into a graph.
Definition 6 (DTD Schema) Letei be a element from a DTDD. Let eci = {e1, ..., en} be the set of
children elements ofei. Letsize(eci) be the number of elements ineci. Further,EP = {ei}|size(eci) >

0, andEC = {eci}.
The definition above describesEP as a set containing all the elements that have children.EC is a

set containing all the children presented inD.
Definition 7 (DTD Graph) Let the tripleDG =< N, E, naming > be the graph generated for aD,
whereN = EP ∪ EC are the nodes of the graph,E ⊆ EP × EC are the edges, andname : N →
η(whereη is a set of names) is the naming function.

The element that have children and the children themselves turn into element node. The name of the
nodes are defined by thename function. The edges connect the elements of the DTD. Such edges are
described in definition 8.
Definition 8 (DTD edges) Leted(ei → ej) be a directional edge connecting two table nodes. Then,
∀ ei ∈ ecj∃ ed(ei → ej).

The DTD graph directional edges are also named containment edges, given they express containment
in the same way as the relational schema graph directed edges.

Note in the figure 2 that the elementsemail and title appears twice in the leaf nodes. The only
difference of such nodes lies in the hierarchy above them. It is important to preserve the hierarchical
context of this kind of elements in the graph representation, because the elements meaning can be highly
related to the element’s parent [15]. Besides, each of the repeated leaf nodes can be mapped to a different
database column.

We are currently not working with DTD with ID / IDREF properties. DTDs without ID/IDREF can
be viewed as trees, which simplifies the algorithm development. As a matter of fact, like [14], a single
DTD can be viewed as a forest of trees, where each root node corresponds to an element with no parent.

Even though the graph properties are simple, additional features such as optionality can be easily
added to the graph builder algorithm. For DTDs an optional node would be an element assigned with the
”?” or the ”*” keywords. Nullable columns in the relational schema would also be converted to optional
nodes. A matcher could use this cue to infer the matches between the graphs [8].



4. The Matching Process

In this section we present an algorithm that computes the similarity of every pair of leaf nodes from
the two graphs. First, we introduce a series of definitions.

We use the term mapping node to refer to the leaf nodes the algorithm is trying to match. The
term mapping node helps contextualize the role of this kind of node in the matching process. We re-
fer to a mapping node by a full path name hereby uniquely identifying the node across the graph. In
DTDs graphs, a mapping node is labelled by its XPATH expression. In a relational schema, a mapping
node(database column) is labelled as the concatenation of the table name and the column name.

Definition 9 (Mapping Pairs) LetDMN = {e1, ..., en} be the set of mapping nodes ofDG. Identically,
RMN = {c1, ..., cn} represents the set of mapping nodes ofRG. Furthermore,MP = DMN×RMN

is the set of mapping pair possibilities.

Note that the size ofMP is a cross product ofDMN andRMN . The number of mapping pairs is
equal to a sum of all the correct and incorrect mappings(in the user perception). The correct and incorrect
mappings deduced by the matcher are also commonly called true positive and false positive mappings
[4], respectively.

Only a small subset ofMP corresponds to the true positives. Our task is thus to rank theMP set so
the true positives get in the top of the list. Each mapping pair is associated with a score ranging from 0
to 1 that determines how similar the two members of the pair are. We use this score to rank theMP .

Having defined the convention we shall used further on, we begin explaining how linguistic matchers
can be applied to our matching problem in example 1:

Example 1 Consider the schemas in figure 2. The DTD mapping nodetitle</authors/book/title> and
the relational schema mapping nodetitle<book.title> are representation of the same data. Since both
mapping nodes are written equally, a linguistic matcher would be an appropriate technique for matching
the pair.

However, similar names do not necessary mean that two nodes have the same meaning, as demon-
strated in the next example:

Example 2 The database nodetitle<book.title> represents the title of the book, while the DTD node
title </authors/book/chapter/title> represents the title of one of the book’s chapter. The use of a linguistic
matcher over the mapping pair formed by these two nodes would very likely result a high score, whereas
their meaning is not the same.

Therefore, the traditional linguistic comparison of the leaf nodes names is a limited solution, that can
possibly lead the matching process astray by providing wrong assumptions about which mapping pairs
are true positives. It is known that precision can be increased by using structure information [7]. Thus,
to minimize the occurrence of false positives, we deem that the similarity of a mapping pair depends not
only of the similarity of the mapping pair itself, but also on the similarities of the structure above the
members of the mapping pair as well.

The algorithm we propose takes into account the structure information, dividing the processing in
two phases. The first phase computes the linguistic similarity of two mapping nodes using some struc-
ture information. The second phase enhances the similarity calculated in the first phase by looking for
resemblances in the structure of each mapping node. Each phase will be detailed in the next subsections.

4.1. Containment Edge Phase

In order to establish a method for comparing the names of two mapping nodes, we first attempted
to estimate the linguistic relation between the DTD atomic elements and the relational schema columns.



In other words, we tried to determinate a DTD designer behavior, when choosing the elements names
that correspond to columns of a relational database. There can be many linguistic relations between the
mapping nodes. In this paper we identify three of them. The algorithm can be enriched with the addition
of new forms of linguistic relations.

The most evident relation is that an element name is the same as its respective column name in the
relational schema. Indeed, such situation occurs for the elementtitle </authors/book/title> and the
columntitle<book.title>, described in figure 2. Both element and column represent the same data and
have the exact same name.

In some cases, an element name is highly similar to a table name. This situation can happen
when modelling a DTD element that corresponds to the most significant column of a table. In such
cases it is a common practice that the name of the element assumes the name of the table. We can
see this kind of occurrence when modelling database columnname<author.name> as the elementau-
thor</authors/author>.

Lastly, the element’s name could be a concatenation of the column name with the table name. The
modelling of elementpubName</authors/book/info/pubName> for database columnname<publisher.name>
is a case where the table’s name is partially used to form the element name.

Based on this linguistic relations, we create three string pairs(p1,p2,p3). The first member of the pair
is always the atomic element name(ei). The second member varies according to the outlined description
below:

• p1(ei,cj) - wherecj is the column name.
• p2(ei,cj .parent) - wherecj .parent is the table name.
• p3(ei,cj+cj .parent) - wherecj+cj .parent is the concatenation of the table name and

the column name

As we can see, the linguistic relations identified are highly related to the relational schema contain-
ment edges(column node to table node connections). In fact, we named this phase after such edges, due
to its importance for the algorithm processing.

The algorithm perform its task by comparing one member of the pair with the other. Two linguistic
matchers are used in the comparisons:ngramsandsubstringmatcher. For the first two pairs, thengrams
matcher suffices. On the other hand, it fails to handle concatenated information.

We propose thesubstringlinguistic matcher that presents better results with concatenated informa-
tion. Thesubstringmatcher is useful for situation involving composite words. The algorithm assumes a
high similarity if the greatest difference between two composite words is the order in which the words
appears, such as the wordsbookNameandnameOfBook.

Each of the pairs is compared using bothngramsandsubstring. The maximum value of all compar-
isons is used as the final linguistic similarity of the mapping pair, as shown in the function given next :

sim1 = max (ngrams(p1), ngrams(p2), ngrams(p2), substring(p1), substring(p2), substring(p3))

We could also use additional linguistic matchers, or any other kind of lexical matchers to leverage the
leaf node matching process furthermore. The impact of such extensions is one of our subjects of study
for the future.

4.2. Interrelated Edges Phase

The second phase of the algorithm has the purpose of reinforcing previously calculated similarities.
The reason why we decided to incorporate this mechanism in the matching is related to the limitations



Figure 3: Mapping Pairs Example

of the technique described in subsection 4.1. Since this technique exploits poorly the structure of the
schemas, some mapping pairs scores could be miscalculated, specially when the true semantic of a
mapping node lies in the structure above it.

One situation where the structure could help in the matching process was already shown in exam-
ple 1 and 2: The goal is to provide the best matching for database mapping nodetitle<book.title>.
Based solely on the linguistic similarity of the mapping pairs, two matching candidates emerge with
score equals to 1:title</authors/book/title> (fig. 3-a) andtitle</authors/book/chapter/title>(fig. 3-b).
However, only the former represents the true positive.

It is than necessary to untie the scores of the two mapping pairs by providing a new similarity score
for both of them. The new similarity value can be calculated by observing the related nodes of both
members of the mapping pair in question. The related nodes (non-atomic nodes directly or indirectly
connected to a mapping node) present information that are somehow related to the meaning of the map-
ping node itself. Each mapping node has a set of related nodes, as defined below:

Definition 10 (Related Nodes) Let(eri1, ..., erin) be the set of the related nodes ofei. Likewise, let
(cri1, ..., crin) be the set of the related nodes ofci.

The occurrence of similarities in the related nodes increases the belief that the mapping nodes are
indeed similar. Nevertheless, not every related node is actually relevant to the similarity computation.
Parent nodes that are closer to the mapping node should have a greater relevance in the matching process.
The notion of distance is directly proportional to the the number of edges separating the nodes.

In figure 3-a and b we demonstrate the related nodes for the two mapping pairs identified in Example
1 and 2. A gray scale is used to denote which nodes are more relevant. Darker gray means higher
relevance.

Every related node has a relevance factorrf . The relevance factor ranges from 0 to 1, where 1
means the greatest possible relevance. The closest related node to the mapping node has the strongest
rf (1.0). The remaining related nodes relevance suffers a linear regression in the order ofrfd as their
distance to the mapping node increases. In figure 3 we aleatory define therfd valuing 0.2. We can see
in figure 3(b) how the relevance factor is low when the related node is far from the mapping node(see
related nodeauthors</authors>). Note that to collect the majority of the related nodes of a relational
schema mapping node one must navigate through interrelated edges(table to table connections). From
this remark follows the algorithms name (Interrelated Edges Algorithm).

Related nodes withrf = 0 can be taken of the sets because they will not affect in any way the
similarity calculus. Therefore, for larger values ofrfd, the sets become smaller. Only a small piece of
the graphs actually participate in the similarity calculus. On the other hand, for smaller values ofrfd,
the lists get bigger, which means that a wider spectrum of the graph nodes participate in the similarity
calculus.



In order to compute the similarity of two mapping nodes(ei, cj) we will compute the similarity of
all pairs of nodes that are related toei andcj . This similarity value is computed taking into account the
comparison of the nodes names and the distance from each node to its mapping element, as given by the
relevance factor (rf ).

The similarity between two mapping nodesei ∈ E andcj ∈ (C − FK) is computed as follows:
Step 1: For each nodeeri related toei and for each nodecrj related tocj two similarity values are

computed.

• ling(eri, crj) is the greater score of either thengramsor thesubstringmatcher. At this
point only the names of the related nodes are compared.

• relevance(eri, crj) is the arithmetic average of the relevance factor oferi andcrj .

This two values are combined giving the score (local score) for the(eri, crj) pair.

localScore =
ling(eri, crj) + relevance(eri, crj)

2
(1)

Step 2: In this step the local scores of all related pairs to(ei, cj) that were computes in step 1 are
combined into the resulting similarity value. This values is computed as follows:

sim2 =
∑n

1 localScorei

n
(2)

Equation 2 is the average of the sum of all local scores whose value exceeds a given threshold. Local
scores under a pre-defined threshold are discarded. Otherwise they could lower excessively the score
of true positive mappings. Only local scores that contribute to the improvement of a mapping pair are
considered useful. In figure 3 we enlace the related nodes actually used to calculate local scores. Each
related node from one side forms arpair with a related node from the other side. Notice that a local
score depends not only of the linguistic similarity of therpair, but also on the relevance of each member
of the pair, which means that even a high linguistic similarity could produce a low local score, if the
relevance of the related nodes is low.

4.3. Similarities Combination

The last step is to combine the similarity value computed in the Containment Edge Phase with the
similarity value computed in the Interrelated Edge Phase. We use a weighted average to create a final
score, as shown in equation 3:

finalScore = (sim1 ∗ α) + (sim2 ∗ β) (3)

whereα + β = 1.0
We choose to work withα = 0.75 andβ = 0.25. The differences in the weights can be comprehen-

sively understood when analyzing the purpose of the algorithm phases. The Containment Edge algorithm
represents a straightforward way to compute the similarity of leaf nodes, basically because it deals di-
rectly with the leaf nodes themselves. On the other hand, the Interrelated Edges algorithm is much more
structure reliable, and its similarity value should be used with the simple purpose of highlighting the
similarity of true positives in detriment of the false positives. This contrasting can be achieved by either
reducing the similarity of wrong mapping pairs or by improving the similarity of the right mapping pairs.

For instance, it could happen that the reinforcement reduces the scores of all mapping pairs, including
the right ones. However, in such cases, the false positives will be more penalized than the true positives,
that in turn will remain in the top as the most similar mapping nodes.



Figure 4: Use Case Schemas

Our main goal with the reinforcement computation is not to provide the highest possible similarity
for true positives, but to guarantee the top results provides the best precision and recall as possible.

5. Case study

In this section we present practical results of the usage of the algorithms we propose for the match-
ing of DTDs and relational schemas. We have run experiments with several data sources in the movies
domain. The DTDs were obtained from web sites, while the relational schemas were created by under-
graduate computer science students. For lack of space we will demonstrate the matching of two particular
schemas only. The schemas are described below:

The relational schema describes a video store company while the DTD merely describes movies.
The former has 23 mapping nodes while the mapping nodes of the latter sums 24. Given the data
exchange context, we would expect the DTD to be a view of the relational schema, but the schemas
above don’t quite fit this profile. Both schemas were independently constructed and consequently serve
a distinct purposes. Still, it is possible to feed the algorithm with these schemas because they have some
information in common in the description of movies(6 leaf nodes correspondences, presented in figure
4). This number is low if compared to the total number of mapping pair possibilities (MP= 24*23 =
552)

A normal test bed would be to use schemas where one is a complete subset of the other. However,
we actually believe running our algorithms with these poorly overlapped schemas is worth while, since
it test the algorithms ability not only to find the matches, but also to discard mapping nodes from both
schemas that have no correspondences whatsoever with mapping nodes of the other schema.

We performed three types of experiments, whose results are available in figure 5. Experiment (b)
evaluates the Containment Edge Phase algorithm in isolation. Experiment (c) evaluates the combined
scores of both Containment Edge and Interrelated Edge Phase algorithms. To demonstrate the benefits
of our technique we also report the matching result using as baseline a lexical matcher(a). This lexical
matcher is identical to the linguistic function used in the Interrelated Edge Phase(the max value of either
then-gramsand thesubstringmatcher).

We use a threshold valuing 0.5, which means scores under this value are eliminated from the list.
Furthermore, each mapping node can participate of only one mapping pair(1:1 mapping). Note that
the relations between DTDs and relational schemas in a data exchange scenario are not restricted to
1:1 mappings. As a matter of fact the mappings can become quite complex, when a element from one



Figure 5: Experimental Results

schema is a derivation of more than one element from another schema, forming the so called indirect
mappings [16]. One of the consequences of this complex relation between the schemas is the need for
1:n mappings, where one element ofDG maps to more than one element ofRG. We intend to provide
support for indirect mappings in future work.

In respect to the 1:1 mapping, we also eliminate mapping pairs if a member of the mapping pair is
already part of another mapping pair whose score is greater. This guarantees only the top scores prevail.
In the case of ties, none of the tied mapping pairs are eliminated.

The prevailing scores indicate the algorithm assumptions of the correct mapping pairs. Nevertheless,
not every mapping pair presented in the lists are true positives (the true positives are listed in figure 4).
To demonstrate the accuracy of each mapping result we use some symbols whose meaning is explained
in figure 5.

One of such symbols(£) indicates the usage of a Data Type Matcher. The Data Type matcher can
help disambiguate matchings by eliminating matching where the matched elements have different data
Types.

The baseline (a) resulted in 4 true positives and 3 false positives. Considering the real number of true
positives is up to 6, we have a precision of 57% and a recall of 66%. The precision could be improved
if it was possible to untie the scores of the first two mapping pairs rows, involving the DTD mapping
nodes/movie/certificates/cert/countryand /movie/country. However, the scores remain the same even
after using the data type matcher, since the mapping nodes have the same data type.

Running the Containment Edge matcher (b) we see that four new mapping pairs appear in the top of
the list (two false positives and two true positives). The added true positives bring recall to 100%.

The identification of these true positives was possible because our technique compared the elements



names with tables names. However, our strategy presents a weakness in the sense it cannot identify which
column of the table represents the correct match. Thus, all column of the matched table are returned as
plausible candidates. It results in the added false negatives mentioned earlier, thereby lowing precision
to 54%. By using the Data Type matcher it is possible though to increase precision to 66% (the mapping
nodes of the£ lines have different data types, and are therefore eliminated).

The experiment (c) shows the results when the reinforcement is used to untie the scores encoun-
tered in the previous two lists. One particularly interesting remark is the elimination of the wrong map-
ping for country<movie.country>. It was possible because the distance of DTD nodemovie</movie>
to the mapping nodecountry</movie/country> is lesser than its distance to the mapping nodecoun-
try </movie/certificates/cert/country>.

Notice that the scores get lower for every mapping pair, if compared to experiment (b). Still, re-
call remains 100%). Additionally, precision is slightly increase to 60%. Finally, the precision can be
improved to 85% by using the Data Type Matcher. The Data Type Matcher eliminates three wrong map-
ping pairs. Two of them are directly eliminated because of the use of different data types. The mapping
pair involving relational schema nodename<director.name> was indirectly discarded because of our
1:1 filtering mechanism (another mapping pair has a better score for that node).

6. Conclusion and Future Work

The matching of DTDs and relational schemas is a challenging task, in that it involves schemas of
different models whereas the most popular matchers known in the literature are dedicated to the matching
of schemas that belong to the same model only.

Our commitment in this paper is to provide a solution for this sort of mappings. With that in mind, we
constructed an algorithm specifically for the matching of DTDs and relational schemas. We explore the
particular kinds of linguistic relations that exist in both schemas to find similarities where other generic
solutions fails.

Even though many schemas can be successfully matched by our matcher, it is not yet a complete
solution, once it does not handled every kind of arbitrariness found in the schemas. One example of
limitation arises when the elements names from one schema are completely different from the elements
names of the other schema. In such cases, it is necessary to leverage matching by adding different types
of atomic-level matchers, and possibly trying to analyze instance data.

Yet, new structure matchers can enhance even further the pre-calculated similarities. One possible
research path on this matter is to use the vicinity(sibling nodes) of the mapping nodes to infer matching
instead of using just the related nodes of the mapping nodes, as we have proposed.

Another area of research is the study of how the tuning of the algorithm variables affect the matching.
Another correlated work is to change the way the nodes relevance in theInterrelated Edge Algorithmare
computed. Currently the relevance of the related nodes drops with a constant ratio, defined in the variable
rfd, as their distance to the mapping node increases. A form of alternative calculus would be the usage
of a quadratic function to determine the ratio of the relevance decrease.

Besides providing new linguistic relations between elements of the DTD and columns of the rela-
tional schema, we believe that the method behind theInterrelated Edge Phaseis a generic contribution
for the matching of any sort of schema format. After all, the essence of the approach is to compares two
lists of nodes, where each list member is associated with a relevance factor. A list of nodes along with
relevance factor for each list members can be easily created independently of the schema format.

Yet incomplete, we believe our efforts in this work bring some light in the matching of XML schemas
and relational schemas. Taken this work as a basis, we can exploit different aspects of the schemas, such



as the existence of indirect mappings.

References

[1] http : //www.hitsw.com/productsservices/xmlplatform.html.
[2] Alon Halevy Anhai Doan, Pedro Domingos.Machine Learning, chapter Learning to Match the

Schemas of Data Sources: A Multistrategy Approach, pages 279 – 301.
[3] R. Baezza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison Wesley, Menlo

Park, California, 1999.
[4] Hong-Hai Do, Sergey Melnik, and Erhard Rahm.Comparison of schema matching evaluations.

2002.
[5] Hong-Hai Do and Erhard Rahm. Coma: A system for flexible combination of schema matching

approaches. InProceedings of the 28th Conf. on VLDB, 2002.
[6] Prasanna Ganesan, Hector Garcia-Molina, and Jennifer Widom.ACM Transactions on Information

Systems (TOIS), chapter Exploiting hierarchical domain structure to compute similarity, pages 64 –
93.

[7] N. Guarino, C. Masolo, and G. Vetere. Ontoseek: Contentbased access to the web. InIEEE
Intelligent Systems, volume 14.

[8] J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute equivalence in databases with appli-
cation to schema integration. InIEEE Transactions on Software Engineering, pages 15(4):449–463.
IEEE Computer Society Press, April 1989.

[9] Jayant Madhavan, Philip A. Bernstein, Kuang Chen, Alon Halevy, , and Pradeep Shenoy. Corpus-
based schema matching. InWorkshop on Information Integration on the Web at the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.

[10] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching with cupid. In
Proceedings of VLDB, 2001.

[11] S. Mehiik, H. Garcia-Molinaa, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. InProc. of ICDE, 2002.

[12] L. Popa, M. A. Hernandez, Y. Velegrakis, R. J. Miller, F. Naumann, and H. Ho. Mapping xml and
relational schemas with clio, demo. InIn ICDE, 2002.

[13] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema matching. In
VLDB Journal 10, 2001.

[14] C. Reynaud, J. P. Sirot, and D. Vodislav. Semantic integration of xml heterogeneous data sources.
In Proceedings of the 2001 International Database Engineering & Applications Symposium, July
2001.

[15] G. Wang, J. Goguen, Y. Nam, and K. Lin. Interactive schema matching with semantic functions. In
Semantic Integration Workshop, October 2003.

[16] Li Xu and David W. Embley. Discovering direct and indirect matches for schema elements. In
Eighth International Conference on Database Systems for Advanced Applications (DASFAA), Ky-
oto, Japan, March, 26-28 2003.


