A Design Methodology for Matching Improvement in Bandgap References

Juan Pablo Martinez Brito1, Hamilton Klimach2, Sergio Bampi1

1PGMICRO – Graduate Program on Microelectronics
2Electrical Engineering Department
Federal University of Rio Grande do Sul, UFRGS
Porto Alegre, Brazil
\{juan, bampi\}@inf.ufrgs.br, hamilton.klimach@ufrgs.br

Abstract

Errors caused by tolerance variations and mismatches among components severely degrade the performance of integrated circuits. These random effects in process parameters significantly impact manufacture costs by decreasing yield and so by including extra-circuits for adjustment. In this paper we propose a design methodology based on the Pelgrom’s MOS transistor-mismatching model devices. Our main objective is to calculate the size of each component considering their relation between area and mismatching. Therefore, in order to validate our proposal methodology, we used as a design target a bandgap reference circuit fabricated in 0.35\textmu m CMOS technology. Its temperature coefficient attains an average value of 40ppm/\textdegree C and an average output voltage of 1.20714V. It also includes a straightforward 4-bits trim circuit to achieve more process independence variation. As a result of our methodology, the considerable area of 400x350\textmu m2 was occupied due to our matching design requirements.

1. Introduction

Usefulness and performance in integrated circuits design relies on good device matching. The accurate characterization of mismatch parameters and their inclusion as part of simulator model libraries are extremely important to ensure circuit yield during the design phase [1,2]. Transistor mismatch model is one of the main parameters determining the accuracy–speed–power tradeoff in analog circuit design [3]. Either for digital CMOS, it is considered to be one of the barriers to the device continuous downsampling dimensions [4]. Mismatch modeling is therefore of crucial importance in order to be able to characterize a technology. To keep a link between model and technology parameters, the model has to be physically/measured based [5,6]. Particularly in analog MOS integrated circuits, the design depends heavily upon matching accuracy [7].

2. Design Towards Matching

Mismatch modeling include two terms [5]: 1) a distance dependent term (global mismatch) and 2) a size dependent term (local mismatch). The distance dependent term can be compensated through layout techniques (such as common centroids and dummy structures). However, only the size dependent term is discussed in this work and it will be include as a design step of a Bandgap Reference circuit. Concerns like finding the optimum area allocated for minimum mismatching [10], accurate modeling [5] and the magnitude of each error among components [1], were considered to obtain the resistor and transistor sizes.

Thus, for resistor size calculation the following criteria were considered:

- Commonly the key elements are bipolar and/or MOS transistors, but in some applications matching accuracy of resistors and/or capacitors are also critical. Notwithstanding handling statistical design aspects is not often a standardized step in the design flow [8-9]. For that reason, in this work we focused our design in order to afford the maximum matching among circuit components. For this, we contribute to improve the theory developed in [5] and link that as a design variable to reach the best size of each circuit component. Therefore, in order to validate our theory we use as a design target a bandgap reference circuit, which is a renowned architecture characterized by its well-defined accuracy requirement. Implemented in AMS0.35\textmu m CMOS technology, the circuit also includes a straightforward 4-bits trim circuit to achieve more process independence variation. Hence, the development of the design methodology is described in section 2. The design of a Bandgap Reference is demonstrated in section 3. Section 4 describes the inclusion of Extra-Circuits like trim circuit. In section 5 some simulations and measurement results are analyzed. Finally, in section 6 we have the conclusion.
2.1 Resistors

The following Pelgrom model [5] that describes the standard deviation between two rectangular devices depending on the area is characterized by

\[\sigma_R = \sigma \left(\frac{\Delta R}{R} \right) = \frac{K_R}{\sqrt{W \cdot L}} \]

(1)

supposing \(\sigma_R \leq 0.1\% \) as a start point [1] and \(K_R = 11\% \) for polysilicon in the AMS 0.35\(\mu \)m CMOS technology. Consequently, the value of \(W \cdot L \) is 12100 \(\mu \)m\(^2\). Since is required \(R = 5\, \text{K}\, \Omega \) then the resistor made by polysilicon (50\(\Omega \)/\(\square \)) occupies the area of \(W = 1000 \mu \)m and \(L = 10 \mu \)m.

Furthermore, for MOS Transistor size calculation the following criteria were considered

2.2 MOS Transistors

Threshold voltage \(V_T \) and current factor \(\beta \) \((\beta = C_{\text{OX}} \cdot \mu \cdot W / L)\) variations are the dominant sources of mismatch among MOS transistors [5]. Their random differences have a normal distribution and their standard deviation depends on the device area \(W \cdot L \) and device spacing distance. For our purpose, only area effects are considered. The standard deviation of \(V_T \) and \(\beta \) differences are defined respectively as

\[\sigma(V_T) = \frac{A_{V_T}}{W \cdot L} \]

(2)

\[\sigma(\beta) = \frac{A_{\beta}}{W \cdot L} \]

(3)

where \(A_{V_T} \) and \(A_{\beta} \) are constants technology-dependent. Considering the standard deviation of the drain-source current model valid in all regions of operations [7], the following expression is easily obtained as,

\[\sigma \left(\frac{\Delta I_{DS}}{I_{DS}} \right) = \left(\frac{\Delta \beta}{\beta} \right) + \frac{gm}{I_{DS}} (\Delta V_T) \]

(4)

Thus combining (2) and (3) in (4), it seems to be coherent to assume that the following expression must represent the standard deviation of the mismatched drain-source current in term of dimensions \((W & L)\), technology parameters \((A_{V_T} & A_{V_T})\) and bias \((gm/I_{DS})\).

\[\sigma \left(\frac{\Delta I_{DS}}{I_{DS}} \right) \approx \left(\frac{A_{\beta}}{\sqrt{W \cdot L}} \right) \cdot \frac{gm}{I_{DS}} \left(\frac{A_{V_T}}{\sqrt{W \cdot L}} \right) \]

(5)

Concerning the transistor biased point we may considered at weak inversion \(gm/I_{DS} = 1/(n \cdot U_T) \). Given \(n \) the slope factor parameter and \(U_T \) the thermal voltage (26mV at 300K). However in strong inversion then \(gm/I_{DS} = 2/(V_{GS} - V_T) \).

3. Bandgap Reference Design

The Bandgap Reference Circuit is the most stable and popular reference voltage generator. It is a circuit required in many analog and mixed-signal circuits, such as ADC, DAC, DRAM and flash memories, and so forth. It is commonly designed to be insensitive to temperature, supply voltage and process variations. Much work has been done to improve performance concerning temperature and supply voltage variations [11-15]. However, the development of high-performance CMOS bandgap reference has been hindered by several limiting factors attributable to process variations [1,9]. Even though the stress in their design is mostly on temperature compensation, process variations have the biggest impact on the absolute value of the reference voltage, and postprocessing trim techniques are used for their compensation.

In our case for clarity and convenience the analysis is performed within the context of the bandgap’s basic building block. The schematic is shown in figure 1.

![Figure 1. Architecture of the CMOS Bandgap Reference.](image-url)
\[
\frac{\partial V_{\text{ref}}}{\partial T} = 0 = R \left[\frac{(W/L)_i \cdot k}{(W/L)_q \cdot R} \cdot \ln(N) \right] + \frac{\partial V_{\text{GSO}}}{\partial T}
\]

(7)

\[
\Rightarrow K_{\text{REF}} = \frac{(W/L)_i}{(W/L)_q} = \frac{-\frac{\partial V_{\text{GSO}}}{\partial T}}{q \cdot \ln(N) \cdot V^{\circ \circ C}} \cong 30
\]

in this case, \(K_{\text{REF}}\) is the number of transistors is parallel with \(Q_5\) to produce the stable reference voltage \((V_{\text{REF}})\).

Therefore, using the formula obtained in section 2.2 and considering our transistors biased in strong inversion then \(\text{gm/}I_{DS}=2/(V_{GS}-V_T)\). Thus, the following mismatch model equation may be written as

\[
\sigma \left(\frac{\Delta I_{DS}}{I_{DS}} \right) = \left(\frac{A_\beta}{\sqrt{W \cdot L}} \right) + \frac{2}{(V_{GS} - V_T)} \left(\frac{A_\gamma}{\sqrt{W \cdot L}} \right)
\]

hence the following formula may infer about the calculus of each transistor dimension

\[
\sqrt{W \cdot L} = \frac{2 \cdot A_\gamma + A_\beta (V_{GS} - V_T)}{\sigma \left(\frac{\Delta I_{DS}}{I_{DS}} \right) (V_{GS} - V_T)} = \frac{K_{\text{MOS}}}{\sigma \left(\frac{\Delta I_{DS}}{I_{DS}} \right)}
\]

(9)

where \(2 \cdot A_\gamma + A_\beta (V_{GS} - V_T) = K_{\text{MOS}}\) is a constant value dependent on technology and the bias point. In our case \(K_{\text{PMOS}}=3.15\% \cdot \mu \text{m} \cdot \text{V}\) and \(K_{\text{NMOs}}=2.84\% \cdot \mu \text{m} \cdot \text{V}\). Thus, drawing squared transistors and desiring an average value for the mismatched drain-source current less than 0.1% [1], then the dimensions of each \(N_{\text{MOS}}\) and \(P_{\text{MOS}}\) transistor is respectively:

\[
W_{\text{NMOs}} = L_{\text{NMOs}} \cong 2.84\% \cdot \mu \text{m} \cdot \text{V} \cdot 0.1\% \cdot 0.368\text{V} = 77.2\mu \text{m}
\]

(10)

\[
W_{\text{PMO}5} = L_{\text{PMO}5} \cong 3.15\% \cdot \mu \text{m} \cdot \text{V} \cdot 0.1\% \cdot 0.460\text{V} = 68.5\mu \text{m}
\]

(11)

By this manner the transistors were built with sizes of \(W_{\text{NMOs}}=L_{\text{NMOs}}=80\mu \text{m}\) and \(W_{\text{PMO}5}=L_{\text{PMO}5}=70\mu \text{m}\). Table I summarizes the final dimensions of each component.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_1, Q_2)</td>
<td>(W=80\mu \text{m}, L=80\mu \text{m})</td>
</tr>
<tr>
<td>(Q_3, Q_4)</td>
<td>(W=70\mu \text{m}, L=70\mu \text{m})</td>
</tr>
<tr>
<td>(Q_6\ldots Q_9)</td>
<td>32.6µm² (Vertical BJT)</td>
</tr>
<tr>
<td>(Q_5, Q_{10}\ldots Q_{35})</td>
<td>(W=20\mu \text{m}, L=20\mu \text{m})</td>
</tr>
<tr>
<td>(Q_{36})</td>
<td>(W=10\mu \text{m}, L=20\mu \text{m})</td>
</tr>
<tr>
<td>(Q_{37})</td>
<td>(W=5\mu \text{m}, L=20\mu \text{m})</td>
</tr>
<tr>
<td>(Q_{38})</td>
<td>(W=1\mu \text{m}, L=80\mu \text{m})</td>
</tr>
<tr>
<td>(Q_{39}, Q_{40})</td>
<td>(W=10\mu \text{m}, L=1\mu \text{m})</td>
</tr>
<tr>
<td>(R_1)</td>
<td>(W=10\mu \text{m}, L=1000\mu \text{m}-5\Phi \Omega)</td>
</tr>
<tr>
<td>(R_2)</td>
<td>(W=10\mu \text{m}, L=1000\mu \text{m}-5\Phi \Omega)</td>
</tr>
</tbody>
</table>

4. Extra-circuits

4.1 Trim circuit

Trim regulation is a well known strategy to set the temperature coefficient to a desired value [16,17]. In our case, is made by adjusting the \(K_{\text{REF}}\) factor. Since transistors and resistors were calculated to reach our matching expectations at 0.1%, there are some others sources of errors like: \(V_{BE}\) spread, Early voltage due to bipolar transistors, package shift, and packages stress [1]. For convenience these errors will not be analyzed here but will be taken into account by increasing the entire value of the variability of \(V_{\text{REF}}\) i.e., the target value will be \(\Delta V_{\text{REF}}=0.5\%\). We also assume that the bandgap reference in the worst case may expect an initial value of \(\Delta V_{\text{REF}}=5\%\). Based on [16] the design of the trim range is defined by the fundamental accuracy desired and by the expected initial value of an untrimmed reference. In other words, the numbers of trim bits is determined by the least significant bit (LSB) and by the value of the full-scale range trim expected. Thus, the following rule must be respected

\[
\frac{\ln \left(\frac{V_{FS}}{V_{\text{LSB}}} \cdot 2 \right)}{\ln(2)} \geq \# \text{Bits} \geq \frac{\ln \left(\frac{V_{FS}}{V_{\text{LSB}}} + 1 \right)}{\ln(2)}
\]

(12)

where \(V_{FS}\) is the full-scale voltage and \(V_{\text{LSB}}\) is the LSB voltage. Since ideally \(V_{\text{REF}}=1.2\text{V}\) then

\[
V_{FS} = 5\% \cdot 1.2 = 60\text{mV}
\]

(13)

\[
V_{\text{LSB}} = 0.5\% \cdot 1.2 = 6\text{mV}
\]

(14)

Accordingly formula (12) \#Bits=3.4594, in a such wise the trim circuit is made by 4 bits. This feature was implemented through 4 MOS transistors with the terminals of gate (G) and source (S) connected in parallel to \(Q_3\) and their drain (D) terminal connected to four additional Pads. Assuming a binarily weighted algorithm, their sizes were in steps by \(2W_5, W_3, W_2/2 \) and \(W_3/4\). These transistors are \(Q_{33}, Q_{34}, Q_{35}, Q_{36}, Q_{37}\). Consequently, the current through \(R_2\) can be adjusted in up to 16 levels, proportionally to the current that flows through \(R_1\) by connecting or not these 4 Pads to the \(V_{\text{REF}}\) node.

4.2 Start-up circuit

To prevent this circuit from stabilizing at an inadequate bias point, our strategy was the inclusion of an auxiliary circuit. It will supply the gate terminals of \(Q_3\) and \(Q_4\) transistors, forcing them to enter in conduction. The start-up circuit is designed in order to operate only at the starting moment, being deactivated when entering in normal operation. This circuit is formed by the transistors
Q38, Q39 and Q40. Q38 works like an active load for Q40. Q39 supplies the polarization for the gate of transistors Q3/Q4 during the startup process. The Bandgap reference including a start-up circuit is depicted in the figure 2.

![Figure 2. Schematic with start-up circuit](image1)

Additionally all the parallel transistors with Qs and the trim circuit are shown in the figure 3.

![Figure 3. Transistors in parallel with Qs and the Trim circuit](image2)

5. Simulations and Measurement Results

We fabricated a test chip with analog circuits and test vehicles in AMS0.35µm CMOS technology. The chip is composed by analog blocks such as: OTAs, Comparators, Gm-C Filters, TAT and T-Shape Transistors and a Bandgap Reference. Figure 4 shows the chip micrograph. All modules fitted to 4.55 mm² of total area. However, the Bandgap Reference Circuit fits an area of 350x400µm (0.14mm²).

![Figure 4. Analog test chip micrograph.](image3)

5.1 Temperature Variation

The curves in figure 5 present the simulated output voltage V_{REF} as a function of the temperature for all values of the trim circuit. We are able to adjust our stable voltage reference in 16 discrete levels.

![Figure 5. all possible combinations of the trim circuit](image4)
Figure 6 shows the variation of the zero-drift point of each of the 16 bandgap curves (Fig. 5). The circuit works in a wide range of temperatures from -75ºC to 75ºC. For instance, we are able to set up an application specific bandgap circuit according their working temperature.

![Figure 6. V_REF/trim range versus Temperature](image)

Finally, in order to ensure the values found by our design methodology in figure 7 is shown the Monte Carlo analyses. We have used Monte Carlo Resistor and MOS/Bipolar Transistor models. This simulation was done only for one trim configuration (trim=1001), because the value of its zero-drift point is basically at room temperature.

![Figure 7. Monte Carlo Histogram analysis](image)

In order to resume the estimated, simulated, and measured values we put together our results in the next tables II and III:

Table II. Summary of Measured and Simulated Results

<table>
<thead>
<tr>
<th></th>
<th>Simulated</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_REF (T=27ºC) trim=0000</td>
<td>1.1890V</td>
<td>1.1732V</td>
</tr>
<tr>
<td>TC (trim=0000)</td>
<td>40ppm/ºC</td>
<td>47ppm/ºC</td>
</tr>
<tr>
<td>Supply Dependence</td>
<td>1%/ºC</td>
<td>1%/ºC</td>
</tr>
<tr>
<td>I_D0 (T=27ºC@VDD=3.3V)</td>
<td>350µA</td>
<td>420µA</td>
</tr>
<tr>
<td>Start-up time</td>
<td>2us</td>
<td>6.35us</td>
</tr>
</tbody>
</table>

Table III. Summary of Estimated, Simulated and Measured Results for Statistical Requirements

<table>
<thead>
<tr>
<th></th>
<th>Estimated</th>
<th>Simulated</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>MonteCarlo mean</td>
<td>1,22300V</td>
<td>1,20714V</td>
<td>-</td>
</tr>
<tr>
<td>MonteCarlo σ</td>
<td>60mV (5%)</td>
<td>203,617mV (17%)</td>
<td>-</td>
</tr>
<tr>
<td>V_FS</td>
<td>60mV</td>
<td>64mV</td>
<td>61mV</td>
</tr>
<tr>
<td>V_LSB</td>
<td>6mV</td>
<td>3,5mV</td>
<td>4,3mV</td>
</tr>
</tbody>
</table>

6. Conclusion

A new methodology concerning the mismatching among components was analyzed. It was developed an analytical expression based on the Pelgrom MOS transistor-mismatching model and inserted as a design variable in the design of a Bandgap Reference. The circuit was implemented in AMS 0.35µm CMOS technology. To strengthen the maximum matching among their components it also includes a trim circuit. The final circuit has the large area of 350x400µm (0.14mm²) due to our matching requirements. Observing the results, the values concerning mismatch modeling, Monte Carlo analysis and measured results are a little bit disjointed. This might be happened due to some weak point in our mismatch-model. On account of our large circuit area, some characteristics like distance consideration could be the reason of this difference. However, the statistical model (Monte Carlo model) provided by the foundry (AMS) could be also a weak point considered. Therefore, the trim circuit matches with all our expectations.

Acknowledgment

The authors would like to thank the Brazilian National Science Foundation’s: CNPq and CAPES for their support and assistance.

7. References

