Sobre o "Método Húngaro"

Marcus Ritt

Março 2023

Outline

Cuidado

- Tem diversos algoritmos que são encontrados pelo nome de "Método Húngaro"
- O nosso método de resolver o problema segue o livro de Schrijver (Combinatorial Optimization, 2004, cáp. 17, "Weighted bipartite matching and the assignment problem")
- Em particular tem outros métodos bem diferentes, cujo princípio é de algoritmos primais-duais
 - Nos não discutimos este princípio em aula, então não tem como entender estes métodos
- ▶ O objetivo do trabalho não é implementar qualquer algoritmo encontrado pelo nome "Método Húngaro", mas o algoritmo discutido em aula, e em particular a variante que busca caminhos aumentantes mais curtos usando a transformação de Johnson e o algoritmo de Dijkstra

O método de Johnson

- Para lembrar: caso um grafo não tem ciclos negativos, é possível definir um potencial p_v nos vértices $v \in V$ tal que as distâncias transformadas $d'_{uv} = d_{uv} (p_v p_u) \ge 0$, i.e. são não-negativas.
- Uma vez na posse de um potencial desses, então, podemos simplesmente rodar o algoritmo de Dijkstra (como implementado no 1o trabalho)
- O problema com isso: descobrir o potencial ab initio custa tempo O(nm); isso não faz sentido, porque o algoritmo de Bellmann-Ford resolve o problema dos caminhos mais curtos diretamente em tempo O(nm). (Isso é somente útil para resolver o problema de encontrar as caminhos mais curtos entre todos pares de vértices).
- ► Logo o problema é: manter um potencial durante a execução do algoritmo de forma mais eficiente

Manter um potencial de forma eficiente I

- Isso funciona como segue
- ► Inicialmente:
 - Para todo vértice $v \in S$: define $p_v := W$, onde $W := \max_{e \in E} w_e$.
 - Para todo vértice $v \in T$: define $p_v := 0$.
 - Isso satisfaz a condição, porque a orientação de todos arco e é de S para T e logo tem peso -w_e e ainda $d'_{uv} = d_{uv} (p_v p_u) = d_{uv} + p_u \ge -W + p_u = 0.$
- Em cada iteração, na posse de um potencial correto:
 - Roda o algoritmo de Dijsktra iniciando com os vértices livres S₀ em
 S.
 - Isso determina dist'(S₀, v) para todos vértices v (nas distâncias modificadas, por isso dist').
 - Encontra a caminho mais curto que termina num vértice livre em T.

Manter um potencial de forma eficiente II

- Depois atualiza atualiza o potencial como segue
 - Simplesmente define $p_{\nu} := \operatorname{dist}(S_0, \nu)$ usando o caminho mais curto encontrado
 - Nota que isso são os caminhos mais curtos mas com distâncias usando os pesos originais (por isso dist (S_0, v)).
 - Isso nunca gera um problema porque
 - O conjunto de vértices livres em S diminui em cada iteração, $S'_0 \subseteq S_0$.
 - O conjunto de vértices livres em T diminui em cada iteração, $T_0' \subseteq T_0$.