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Goals

• Brief overview on automatic algorithm configuration (AAC)
• Panorama of the methods related to AAC
• Main research lines
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The problem

• Search space: (heuristic) algorithms solving a problem.
• Objective: find an algorithm of good performance.

Exact problem is undecidable.

• Solution: some (truly meta) heuristics which select an
algorithm.
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Claim

Most of the routine part of finding good al-
gorithms can be done better automatically

Humans
• usually work iteratively, by trial and error, with small-scale

experiments,
• are slow,
• are biased,
• get easily fooled by complex interactions,
• get easily bored.

Let humans do the creative part! (For now.)
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Rice (1976): The algorithm selection
problem

• Four spaces: problems P , features F , algorithms A,
performance Y .

• Feature selection: f : P → F
• Evaluation: y : A×P → Y
• Algorithm selection: S : F → A
• Goal: y(S(f(x)), x) = maxa∈A ||y(a, x)||.

Source: Smith-Miles and Lopes (2012)
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Algorithm configuration

• Rice’s formulation

y(S(f(x)), x) = max
a∈A
||y(a, x)||

is instance-based (online selection).
• Note: y can be an expected value, e.g. over seeds.
• For (offline) algorithm configuration:

y(a) = max
a∈A
||y(a)||

• Now: y is a summary statistic over instances, too.
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Where’s the problem?

• What is the search space A? How do we represent
elements x ∈ A?

• What is the (exploitable) structure of the search space?
• How do we evaluate (cheaply!) an algorithm, or compare

two algorithms?

9



1 AUTOMATIC ALGORITHM
CONFIGURATION –
METHODS

INTRODUCTION AND OVERVIEW

The search space

• Parameters: algorithm tuning or calibration.
Typically: Numerical (real, integer), ordinal, categorical.

• Some selected algorithms: portfolio methods.
Typically: online.

• Large class of algorithms: algorithm configuration or
design.
Typically: Syntax trees, grammars.

These categories are blurry .
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Search space structure

• What is the distance of two algorithms?
• What is the neighbor of an algorithm?
• What is the recombination of two algorithms?
• Is there any fitness-distance correlation?

Without structure: can’t do better
than random search (no free lunch!).
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What is good performance?

• Theoretical minimum: time and solution quality .
• Trade-off: fast, anytime, best possible.
• Problems: instance-dependent often stochastic

(= seed-dependent).
• Ideally: Empirical performance models.

Performance evaluation is the
bottleneck and drives algorithms
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Publications on algorithm selection

Rice (1976)
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Related concepts

• Programming by optimization (Hoos 2012; Hoos 2014)
• Try to avoid design choices
• Make them explicit

• Hyper-heuristics (Cowling, Kendall, and Soubeiga 2000)
• Typically online.

• Automatic algorithm configuration (Birattari 2005)
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Feature extraction: what?

• Goals: reduce data, explain observations, simplify models.
• Problem-independent: fitness landscape analysis

(e.g. ruggedness, fitness-distance correlation), landmarks.
• Problem-dependent: e.g. density in SAT problems,

triangle inequality for distances.

Correlation with performance
usually depends on the algorithm
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Hardness models

• Techniques: instance classification via machine learning
• e.g. random trees, Bayesian classifiers, decision trees,

neural networks.
• Example: Graph coloring (Smith-Miles et al. 2014)

• 18 features, 8 algorithms, GA evolves feature selections
• Fitness: success of Naive Bayesian classifier to predict

being best after projection to 2D with PCA
• Classifier: Support vector machine

Source: Smith-Miles et al. (2014) 17
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Empirical performance models

• Assumption: Practical hardness ⇔ Empirical
performance.

• Solves Rice (1976)’s problem: select algorithm of best
predicted performance.

• Techniques: again by machine learning from examples
• According to Hutter et al. (2014): random forests are

state of the art  SMAC
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Stochastic Blackbox search

• Blackbox function f : D → R, f random variable
• Find maxx∈D E[f(d)] (or other summary statistic).
• Commonly: D = Rn

• Relation to Rice (1976)’s model: for a fixed instance x,
function f(a) = y(a, x) is the black box.

• For algorithm configuration: D = A = A1 × · · · × An for
n parameters.
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Model-free versus model-based

• Model-free: random search, grid search, direct (pattern)
search, genetic programming
Examples: ParamILS, Mesh adaptive direct search,
Gender-based genetic algorithm

• Model-based : racing (F-Race), surrogates, estimation of
distribution
Examples: Sequential Parameter Optimization (SPO),
Sequential Model-Based Algorithm Configuration (SMAC),
REVAC, Bonesa.

Most are essentially Blackbox (i.e. no or
light assumptions on algorithmic structure)
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Mesh adaptive direct search (Audet and
Orban 2006)

• Adaptive mesh refinement, with a current mesh size ∆
• Repeatedly:

• Search: global search on the mesh. On success, coarsen
mesh if too fine, continue.

• Poll : local search for an improving point. On success,
continue.

• Refine: refine mesh.
• OPAL: Python-implementation of MADS applied to

algorithm tuning (Audet, Dang, and Orban 2010).
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Genetic programming

• Genetic algorithms applied to evolution of algorithms.
• Traditional responses in GP:

• Representation: Syntax trees, often homogeneous
(=expressions); grammars.

• Initialization: grow trees.
• Crossover: choose random subtrees (biased to internal),

exchange them.
• Mutation: substitute some subtree but a new, random

one; change a node.
• Folk wisdom: larger populations are better (Poli,

Langdon, and PcPhee 2008).
• Essentially same difficulties as generic problem:

representation, modification, evaluation.
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Gender-based genetic algorithm (Ansótegui,
Sellmann, and Tierney 2009)

• Individuals: variable trees of parameters (bounded
numerical or categorical), either of competing or
non-competing gender.

• Selection: Top 10% competing mate with random
non-competing individual.

• Crossover : Uniform, tree-based, with higher correlation
of variables in subtrees.

• Mutation: With fixed probability 0.1 uniform for
categorical, Gaussian for numerical parameters.

• Evaluation: Racing on N random instances, N increasing
over runtime.

• Claim: better than ParamILS.
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Surrogate methods (Booker et al. 1999)

• Other names: metamodels, response surface models,
approximation model, cheap models.

• Substitute costly evaluation of f by a surrogate function s.
• Surrogate s is a simplified model .
• Repeatedly: find a minimizer x of s, evaluate f(x), update

surrogate s.
• Sequential Model-Based Algorithm Configuration

(SMAC) (Hutter, Hoos, and Leyton-Brown 2011) is a
surrogate method using random forests.
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Relevance Estimation and Value
Calibration (Nannen and Eiben 2007)

• An example of an estimation of distribution algorithm.
• Steady-state evolution of a population of parameter

settings: recombine n best, replace oldest.
• Recombination: uniform scanning.
• Mutation: independent for each parameter. Sort values

of all parents, substitute value in child x by U [l, u], where
l is the value of the h-th predecessor and u the value of
the h-th successor of x. (h ≈ n/10)

• REVAC maximizes the entropy of the marginal
distributions of each parameter.
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Conclusions and Questions

• There’s nothing new under the sun.
• But we find a lot of different names for similar ideas.
• There’s nothing specific to meta-heuristics (model,

search space structure).
• How can we evaluate more aggressively?
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