

# AUTOMATIC ALGORITHM CONFIGURATION – METHODS

Marcus Ritt

May 2017

Introduction and Overview

- Brief overview on automatic algorithm configuration (AAC)
- Panorama of the methods related to AAC
- Main research lines

- Search space: (heuristic) algorithms solving a problem.
- Objective: find an algorithm of good performance.

Exact problem is undecidable.

Solution: some (truly meta) heuristics which select an algorithm.

Most of the routine part of finding good algorithms can be done better automatically

### Humans

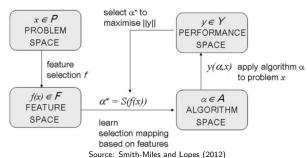
- usually work iteratively, by trial and error, with small-scale experiments,
- are slow.
- are biased,
- get easily fooled by complex interactions,
- get easily bored.

Let humans do the *creative part*! (For now.)

- Four spaces: problems  $\mathcal{P}$ , features  $\mathcal{F}$ , algorithms  $\mathcal{A}$ , performance  $\mathcal{Y}$ .
- Feature selection:  $f: \mathcal{P} \to \mathcal{F}$

problem

- Evaluation:  $y: \mathcal{A} \times \mathcal{P} \to \mathcal{Y}$
- Algorithm selection:  $S: \mathcal{F} \to \mathcal{A}$
- Goal:  $y(S(f(x)), x) = \max_{a \in A} ||y(a, x)||$ .



Rice's formulation

$$y(S(f(x)), x) = \max_{a \in \mathcal{A}} ||y(a, x)||$$

is *instance-based* (online selection).

- Note: y can be an expected value, e.g. over seeds.
- For (offline) algorithm configuration:

$$y(a) = \max_{a \in A} ||y(a)||$$

• Now: y is a summary statistic over instances, too.

## THE FASTEST AND SHORTEST ALGORITHM

FOR ALL WELL-DEFINED PROBLEMS<sup>1</sup>

# Where's the problem?

Marcus Hutter

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland marcus@idsia.ch http://www.idsia.ch/~marcus

#### Key Words

Acceleration, Computational Complexity, Algorithmic Information Theory, Kolmogorov Complexity, Blum's Speed-up Theorem, Levin Search.

- What is the **search space** A? How do we represent elements  $x \in A$ ?
- What is the (exploitable) structure of the search space?
- How do we evaluate (cheaply!) an algorithm, or compare two algorithms?

- Parameters: algorithm tuning or calibration.
   Typically: Numerical (real, integer), ordinal, categorical.
- Some selected algorithms: portfolio methods.
   Typically: online.
- Large class of algorithms: algorithm configuration or design.

Typically: Syntax trees, grammars.

These categories are **blurry**.

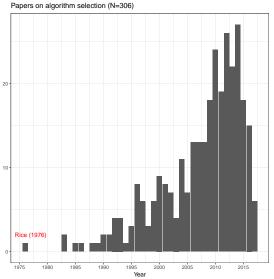
- What is the distance of two algorithms?
- What is the neighbor of an algorithm?
- What is the recombination of two algorithms?
- Is there any **fitness-distance correlation**?

Without structure: can't do better than *random search* (no free lunch!).

- Theoretical minimum: time and solution quality.
- Trade-off: fast, anytime, best possible.
- Problems: instance-dependent often stochastic
   (= seed-dependent).
- Ideally: Empirical performance models.

Performance evaluation is the **bottleneck** and **drives algorithms** 

## Publications on algorithm selection



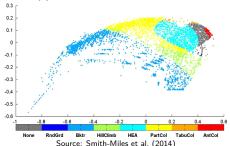
- Programming by optimization (Hoos 2012; Hoos 2014)
  - Try to avoid design choices
  - Make them explicit
- Hyper-heuristics (Cowling, Kendall, and Soubeiga 2000)
  - Typically online.
- Automatic algorithm configuration (Birattari 2005)

Features, hardness and performance models

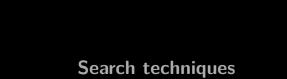
- Goals: reduce data, explain observations, simplify models.
- Problem-independent: fitness landscape analysis
   (e.g. ruggedness, fitness-distance correlation), landmarks.
- Problem-dependent: e.g. density in SAT problems, triangle inequality for distances.

Correlation with performance usually depends on the algorithm

- Techniques: instance classification via machine learning
  - e.g. random trees, Bayesian classifiers, decision trees, neural networks.
- Example: **Graph coloring** (Smith-Miles et al. 2014)
  - 18 features, 8 algorithms, GA evolves feature selections
  - Fitness: success of Naive Bayesian classifier to predict being best after projection to 2D with PCA
  - Classifier: Support vector machine



- **Assumption**: Practical hardness ⇔ Empirical performance.
- Solves Rice (1976)'s problem: select algorithm of best predicted performance.
- Techniques: again by machine learning from examples
- According to Hutter et al. (2014): random forests are state of the art → SMAC



- **Blackbox function**  $f: D \to \mathbb{R}$ , f random variable
- Find  $\max_{x \in D} E[f(d)]$  (or other summary statistic).
- Commonly:  $D = \mathbb{R}^n$
- Relation to Rice (1976)'s model: for a fixed instance x, function f(a) = y(a, x) is the **black box**.
- For algorithm configuration:  $D = \mathcal{A} = A_1 \times \cdots \times A_n$  for n parameters.

- Model-free: random search, grid search, direct (pattern) search, genetic programming Examples: ParamILS, Mesh adaptive direct search, Gender-based genetic algorithm
- Model-based: racing (F-Race), surrogates, estimation of distribution
   Examples: Sequential Parameter Optimization (SPO), Sequential Model-Based Algorithm Configuration (SMAC), REVAC, Bonesa.

Most are **essentially Blackbox** (i.e. no or light assumptions on algorithmic structure)



- Adaptive mesh refinement, with a current mesh size  $\Delta$
- Repeatedly:
  - **Search**: global search on the mesh. On success, coarsen mesh if too fine, continue.
  - Poll: local search for an improving point. On success, continue.
  - **Refine**: refine mesh.
- OPAL: Python-implementation of MADS applied to algorithm tuning (Audet, Dang, and Orban 2010).

- Genetic algorithms applied to evolution of algorithms.
- Traditional responses in GP:
  - Representation: Syntax trees, often homogeneous (=expressions); grammars.
  - Initialization: grow trees.
  - Crossover: choose random subtrees (biased to internal), exchange them.
  - Mutation: substitute some subtree but a new, random one; change a node.
  - Folk wisdom: larger populations are better (Poli, Langdon, and PcPhee 2008).
- Essentially same difficulties as generic problem: representation, modification, evaluation.

Sellmann, and Tierney 2009)



- Individuals: variable trees of parameters (bounded numerical or categorical), either of competing or non-competing gender.
- **Selection**: Top 10% competing mate with random non-competing individual.
- Crossover: Uniform, tree-based, with higher correlation of variables in subtrees.
- *Mutation*: With fixed probability 0.1 uniform for categorical, Gaussian for numerical parameters.
- **Evaluation**: Racing on N random instances, N increasing over runtime.
- Claim: better than ParamILS.

- *Other names*: metamodels, response surface models, approximation model, cheap models.
- Substitute costly evaluation of f by a surrogate function s.
- Surrogate s is a **simplified model**.
- Repeatedly: find a minimizer x of s, evaluate f(x), update surrogate s.
- Sequential Model-Based Algorithm Configuration (SMAC) (Hutter, Hoos, and Leyton-Brown 2011) is a surrogate method using random forests.

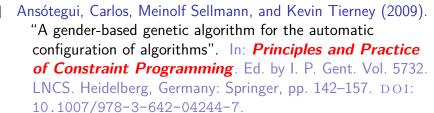


- An example of an **estimation of distribution** algorithm.
- **Steady-state** evolution of a population of parameter settings: recombine n best, replace oldest.
- **Recombination**: uniform scanning.
- **Mutation**: independent for each parameter. Sort values of all parents, substitute value in child x by U[l, u], where l is the value of the h-th predecessor and u the value of the h-th successor of x.  $(h \approx n/10)$
- REVAC maximizes the entropy of the marginal distributions of each parameter.

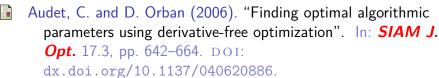
Conclusion

- There's **nothing new** under the sun.
- But we find a lot of different names for similar ideas.
- There's nothing specific to meta-heuristics (model, search space structure).
- How can we evaluate more aggressively?





Audet, C., C.-K. Dang, and D. Orban (2010). "Software Automatic Tuning: From Concepts to State-of-the-Art Results". In: ed. by K. Naono et al. Springer.
Chap. Algorithmic parameter optimization of the DFO method with the OPAL framework, pp. 255–274.



Birattari, Mauro (2005). *Tuning Metaheuristics – A machine learning perpective*. Vol. 197. Studies in
Computational Intelligence. Springer.

Booker, A. J. et al. (1999). "A rigorous framework for optimization of expensive functions by surrogates". In: *Structural optimization* 17.1, pp. 1–13. DOI: 1007/BF01197708.



Cowling, P., G. Kendall, and E. Soubeiga (2000). "A hyperheuristic approach to scheduling a sales summit". In: *Proceedings of the Third International Conference on the Practice And Theory of Automated Timetabling*, pp. 176–190.



Hoos, Holger H. (2012). "Programming by optimization". In: *Comm. ACM* 55.22. DOI: 10.1145/2076450.2076469.



- (2014). **Programming by Optimisation (PbO)**. URL: http://www.prog-by-opt.net (visited on 11/27/2014).



Hutter, F., H. H. Hoos, and K. Leyton-Brown (2011).
"Sequential model-based optimization for general algorithm configuration". In: *Learning and Intelligent*Optimization, 5th International Conference, LION 5.
Ed. by C. A. Coello Coello. Vol. 6683. LNCS. Springer,

Heidelberg, Germany, pp. 507–523. DOI: 10.1007/978-3-642-25566-3 40.

Hutter, F. et al. (2014). "Algorithm runtime prediction: Methods and evaluation". In: *Artif. Intell.* 206, pp. 79–111.

Kotte, Lars (2016). *Algorithm Selection literature* summary. URL:

http://larskotthoff.github.io/assurvey.



Nannen, Volker and A. E. Eiben (2007). "Relevance estimation and value calibration of evolutionary algorithm parameters". In: Proc. 20th Int. Joint Conf. Art. Intell. Hyderabad, pp. 975-980. URL: http:

//ijcai.org/papers07/Papers/IJCAI07-157.pdf.



Poli, Riccardo, William B. Langdon, and Nicholas F. PcPhee (2008). A Field Guide to Genetic Programming. Lulu.



Rice, J. R. (1976). "The algorithm selection problem". In: **Adv. Comput.** 15, pp. 65–118.



Smith-Miles, Kate and Leo Lopes (2012). "Measuring instance difficulty for combinatorial optimization problems". In: **Comput. Oper. Res.** 39.5, pp. 875–889. DOI: 10.1016/j.cor.2011.07.006.



Smith-Miles, Kate et al. (2014). "Towards objective measures of algorithm performance across instance space". In: *Comput. Oper. Res.* 45, pp. 12–24. DOI: 10.1016/j.cor.2013.11.015.