
Balancing chains in assembly lines with
worker-dependent task times

ALIO/EURO 2021-2022

Jordi Pereira Gude (Universidad Adolfo Ibáñez, Chile) and
Marcus Ritt (Universidade Federal do Rio Grande do Sul, Brasil)

April 2022

Outline

Introduction

Problem de�nition

Two easy cases

Further dynamic programming solutions

Some experimental results

Outline

Introduction

Problem de�nition

Two easy cases

Further dynamic programming solutions

Some experimental results

Production line balancing

Production line balancing

Production line balancing

Maximum station time: cycle time

C = max{9, 16, 14, 13, 16} = 16.

Assembly lines: simple assembly line balancing

Simple assembly line balancing problem (SALBP, Salveson, 1955).

Assembly lines: worker assignment and line balancing

Assembly line worker assignment and balancing problem (ALWABP,
Miralles et. al 2005).

Workload assignment problem (WAP)

Battarra et al., The Calzedonia workload assignment problem, J.
Oper. Res. Soc. (2021).

Outline

Introduction

Problem de�nition

Two easy cases

Further dynamic programming solutions

Some experimental results

Workload assignment problem (WAP)

Problem data:

I Tasks T = [n], workers W = [m], times tij for j ∈W , i ∈ T .

Feasible assignment:

I Worker permutation π ∈ Sm

I Sequence S = (s1, s2, . . . , sm+1) such that
s1 = 1 ≤ s2 ≤ · · · ≤ sm+1 = n + 1

I For j ∈ [m], worker πj executes tasks [sj , sj+1).

Minimize the cycle time:

I C = minj∈W
∑

i∈[sj ,sj+1[tiπj = minj∈W t[sj ,sj+1)πj .

WAP is NP-hard.

Outline

Introduction

Problem de�nition

Two easy cases

Further dynamic programming solutions

Some experimental results

Known worker permutation

I Worker permutation π ∈ Sm known

I Minimal cycle time C (i , k) for tasks 1, . . . , i with workers
π1, . . . , πk

I Solved by the dynamic program

C (i , k) = min
1≤j<i

{
max

{
C (j , k − 1), t(j ,i],πk

}}
. (1)

I with base cases C (0, k) = 0, C (i , 0) =∞, i > 0

I in time O(nm log n) and space O(nm).

Known intervals

I Sequence S = (s1, s2, . . . , sm+1) de�ning intervals [sj , sj+1[
known

I Solved by a minimum bottleneck perfect matching of intervals
to workers

I For interval j ∈ [m] and worker j ∈W has weight t[sj ,sj+1[,j .

I Time O(m5/2 logm) via binary search over O(m2) candidate
times using the algorithm of Hopcroft & Karp (1973).

Outline

Introduction

Problem de�nition

Two easy cases

Further dynamic programming solutions

Some experimental results

Full problem

I Keep track of the available workers W ′

I Minimal cycle time C (i ,W ′) for tasks 1, . . . , i using workers
W ′ ⊆W

C (i ,W ′) = min
1≤j<i ,w∈W ′

{
max{C (j ,W ′ \ {w}), t(j ,i]w}

}
(2)

I Exponential time O(nm2m log n) and space O(n2m).

I Consequence: WAP is �xed-parameter tractable for m

Worker relaxation

I Keep track only of the number of workers

I Minimal cycle time C (i , k) for tasks 1, . . . , i using k workers

C (i , k) = min
1≤j<i

{
max

{
C (j , k − 1), min

w∈W
t(j ,i]w

}}
(3)

I Time O(m2n log n) and space O(nm).

Partial worker relaxation

I Keep track of selected workers V ⊆W and the number of

remaining workers, where W = W \ V
I Minimal cycle time C (i , k,V) for tasks 1, . . . , i using k

workers from W and workers V

C (i , k ,V) = min
1≤j<i

{
minw∈W

{
max{C (j , k − 1,V), t(j ,i],w}

}
minw∈V

{
max{C (j , k ,V \ {w}), t(j ,i],w}

}
(4)

I Exponential time O(nmm22
m1 log n) and space O(nm22

m1) for
m1 = |V |, m2 = m −m1.

Partial worker relaxation (feasibility version)

I Maximum number of tasks S(V , k) solvable with workers
V ⊆W and k workers from W ,

I Pre-compute maximum number of tasks s(i ,w) that worker
w ∈W can perform when starting from task i + 1.

S(V , k) = max

{
maxw∈V {S(V \ w , k) + s(S(V \ w , k),w)}
maxw∈W {S(V , k − 1) + s(S(V , k − 1),w)

(5)

I Exponential time O(m2m1 log n) and space O(m22
m1) for

m1 = |V |, m2 = m −m1.

Proposed solution: Successive worker relaxation

I Apply an upper bound search for the optimal cycle time

I For each bound on the cycle time C :
I Solve (5) repeatedly with increasing V

I Add in each iteration most frequent repeated worker to V
I Break ties by largest interval, worker index

I If workers are repeated: apply bottleneck matching for feasible
solution

Outline

Introduction

Problem de�nition

Two easy cases

Further dynamic programming solutions

Some experimental results

Methodology

I Set I (Battarra et al. 2021), 200 instances

I Average performance (AP, single worker type) and mixed
performance (MP, 3 di�erent worker types)

I Operations o ∈ [18, 42], workers m ∼ U[9, 15], batches of
identical tasks, 1300�2200 tasks

I Set II, 200 instances

I Operations o ∈ [43, 67], workers m ∼ U[16, 22], batches of
identical tasks, 2300�3200 tasks

I AMD Ryzen 9, 4.2 GHz, 32 GB main memory

Results Set I

Table: Summary for data set I.

m N t[s] Opt.(%) Mem[MB]

9 20 0.07 100 44.20
10 28 0.10 100 44.44
11 32 0.15 100 44.87
12 25 0.22 100 45.35
13 29 0.33 100 46.04
14 39 0.55 100 47.27
15 27 0.81 100 48.91

I Previously solved by Pereira & Ritt (2022) about 1 order of

magnitude slower

Results Set II

Table: Summary for data set II.

m N t[s] Opt.(%) Mem[MB]

16 37 1.67 100 53.10
17 27 4.14 100 63.41
18 27 6.94 100 73.82
19 32 23.33 100 115.81
20 26 48.98 100 197.40
21 26 114.59 100 308.54
22 25 267.95 100 611.79

I All instances solved in about 5 min

I Instances with up to 27 workers reachable

Thanks for the attention!

Comparison to Battarra et al. (2021)

Table: Comparison to the BILS of Battarra et al. (2021): best and
average relative deviation of 10 runs for 2 mins.

BILS

m N t[s] Best Avg.

9 20 0.07 0.00 0.00
10 28 0.10 0.00 0.02
11 32 0.15 0.00 0.15
12 25 0.22 0.00 0.58
13 29 0.33 0.00 0.75
14 39 0.55 0.02 1.02
15 27 0.81 0.07 2.07

A mathematical model

I Assignment variables xij ∈ {0, 1}.

minimize C (6)

subject to C ≥
∑

i∈T ,j∈W

tijxij , ∀j ∈W , (7)

∑
j∈[w]

xij = 1, ∀i ∈ T , (8)

xgj + xij ≤ 1+ xhj , ∀g , h, i ∈ T , j ∈W , g < h < i , (9)

xij ∈ {0, 1}, ∀i ∈ T , j ∈W , (10)

C ≥ 0. (11)

	Introduction
	Problem definition
	Two easy cases
	Further dynamic programming solutions
	Some experimental results

