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INTRODUCTION

USUAL MODELS IN PRODUCTION

• Workers are commonly assumed to have equal skills.
• Often wrong, in particular for persons with disabilities.
• World Health Organization (2011) estimate: 15%-20% of the

world population has some disability.
• Persons with disabilities suffer from higher unemployment rates.
• Worker with disabilities

• have usually higher processing time than regular workers;
• may be unable to operate some machines.

3



1 WORKERS WITH
DISABILITIES IN FLOW
SHOPS

4



2 WORKERS WITH
DISABILITIES IN FLOW
SHOPS

WORKERS WITH DISABILITIES IN FLOW SHOPS

FLOW SHOP SCHEDULING

• Flow Shop Scheduling Problem (FSSP)
• Schedule jobs J1, . . . , Jn on machines M1, . . . ,Mm.
• Job Ji must be processed on machine Mr in time pri.
• No preemption.
• Each machine processes only one job at a time.
• Objective: minimize the makespan.

• Permutation Flow Shop Scheduling Problem (PFSSP)
• Jobs are processed on all machines in the same order.

• NP-Hard for three or more machines (Garey and Johnson
1979).
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FLOW SHOP SCHEDULING – EXAMPLE

Machine
Job M1 M2 M3 M4
J1 1 2 2 1
J2 1 1 2 2
J3 2 1 1 2
J4 1 3 2 1

0 5 10

M1
M2
M3
M4

J1 J2 J3 J4

t
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WORKERS WITH DISABILITIES IN FLOW
SHOPS

• Scheduling problems with
• mainly heterogenous workers: sheltered work centres for disabled
• a small percentage of heterogenous workers.

• Focus here: assign one or two parallel workers with disabilities
to a machine they can operate and find an optimal schedule
• Equals to 5%-40% of workers with disabilities in standard

instances.
• Four problem variants of the Flow Shop Insertion and

Scheduling Problem (FSISP)
• FSISP: single worker, flow shop
• HFSISP: two parallel workers, flow shop
• PFSISP: single worker, permutation flow shop
• HPFSISP: two parallel workers, permutation flow shop

This paper
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WORKERS WITH DISABILITIES IN FLOW
SHOPS – EXAMPLE

Regular With disabilities
Job M1 M2 M3 M4 M1 M2 M3 M4
J1 1 2 2 1 2 4 2 ∞
J2 1 1 2 2 1 1 4 ∞
J3 2 1 1 2 4 2 1 ∞
J4 1 3 2 1 1 4 2 ∞

0 5 10

M1
M2

M3,wd
M4

J2 J1 J4 J3

t
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PFSISP: MATHEMATICAL MODEL

min.
∑
p∈[n]

T T1p +
∑

q∈[2,m]

T Tqn +
∑

q∈[m−1]

Yqn, s.t., (1)

∑
i∈[n]

Zij = 1, ∀i ∈ [m], (2)

∑
j∈[n]

Zij = 1, ∀i ∈ [n], (3)

T T1,j−1 − T Tr,j−1 +
∑

q∈[r−1]

T Tqj − T Tq,j−1

+
∑

q∈[r−1]

Yqj − Yq,j−1 ≥ 0, ∀r ∈ [2, m], j ∈ [2, n], (4)

T Trj =
∑
i∈[n]

pri(1−Xr)Zij + driXrZij , ∀r ∈ [m], j ∈ [n], (5)

∑
r∈A

Xr = 1. (6)

• Based on the best model for the PFSSP (Tseng and
Stafford 2007).

• Main ideas
• Assign jobs to sequence positions.
• Represent a schedule by operation waiting times Yrj .

• Extended to include a worker assignment.

10



3 WORKERS WITH
DISABILITIES IN FLOW
SHOPS

MATHEMATICAL MODELS
PFSISP

PFSISP: MATHEMATICAL MODEL

min.
∑
p∈[n]

T T1p +
∑

q∈[2,m]

T Tqn +
∑

q∈[m−1]

Yqn, s.t., (1)

∑
i∈[n]

Zij = 1, ∀i ∈ [m], (2)

∑
j∈[n]

Zij = 1, ∀i ∈ [n], (3)

T T1,j−1 − T Tr,j−1 +
∑

q∈[r−1]

T Tqj − T Tq,j−1

+
∑

q∈[r−1]

Yqj − Yq,j−1 ≥ 0, ∀r ∈ [2, m], j ∈ [2, n], (4)

T Trj =
∑
i∈[n]

pri(1−Xr)Zij + driXrZij , ∀r ∈ [m], j ∈ [n], (5)

∑
r∈A

Xr = 1. (6)

• Based on the best model for the PFSSP (Tseng and
Stafford 2007).

• Main ideas
• Assign jobs to sequence positions.
• Represent a schedule by operation waiting times Yrj .

• Extended to include a worker assignment.

10



3 WORKERS WITH
DISABILITIES IN FLOW
SHOPS

MATHEMATICAL MODELS
HPFSISP

HPFSISP: MATHEMATICAL MODEL

min. Cmax, s.t. (7)
Cmax ≥ Cjm, ∀j ∈ [n], (8)∑

l∈[2]
Ujkl = 1, ∀j, k ∈ [m], (9)

Ujk2 ≤ Xk, ∀j, k, (10)
Cjk − Tjk ≥ Cj,k−1, ∀j, k, (11)
Q(2− Ujkl − Uqkl + Pjq) + Cjk − Tjk ≥ Cqk ∀j, q ∈ [n], k, l ∈ [2], (12)
Q(3− Ujkl − Uqkl − Pjq) + Cqk − Tqk ≥ Cjk, ∀j, q, k, l, (13)

Tjk = pjk(1−Xr) +
∑

l∈[2]
(djkwXkWwl), ∀j, k, l, w ∈ [2], (14)∑

k∈A
Xk = 1, (15)∑

l∈[2]
Wwl = 1, ∀w, (16)∑

w∈[2]
Wwl = 1, ∀l, (17)

Cjk ≥ 0 ∀j, k. (18)

• Uses dichotomous constraints (binary variables Pij) for
ordering the jobs.

• Extended to include a double worker assignment.
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HEURISTICS FOR FLOW SHOP INSERTION
PROBLEMS

• Using an iterated greedy algorithm (Ruiz and Stützle 2007).
• Construct an initial solution by the procedure of Nawaz,

Enscore, and Ham (1983).
• Repeatedly perturb the solution and apply a local search.
• New solution is accepted with

P [accept(π, π′)] = min{e−∆(π,π′)/T , 1}
T = αp/10

• Two strategies for worker assignment
• Allocation to every possible machine.
• Pooled allocation.
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ITERATED GREEDY ALGORITHM

Input: A permutation schedule π.
Output: An improved permutation schedule π′.
1: function iga(π)
2: π := shift-localsearch(π)
3: repeat
4: remove d random jobs j1, . . . , jd from π to get π′
5: for i ∈ [d] do
6: insert ji into π′ at the pos. of minimal Cmax(π′)
7: end for
8: π′ := shift-localsearch(π′)
9: if accept(π, π′) then

10: π := π′

11: end if
12: until some stopping criterion is satisfied
13: return the best solution π∗ found during the search
14: end function

Perturbation

Local search
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A POOLED IGA

Output: A solution (π, k) for the PFSISP or HPFSISP
1: P := {(NEH(k), k) | k ∈ [m]} . create the solution pool
2: while |P | > 1 do
3: for all (π, k) ∈ P do
4: (π, k) := (IGA(π, t), k)
5: end for
6: (π0, k0) := argmax(π,k)∈P Cmax(π)
7: P := P \ {(π0, k0)}
8: end while
9: return the single solution (π, k) in the pool

Apply IGA to pool

Remove worst solution
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HEURISTICS FOR FLOW SHOP INSERTION PROBLEMS

THE TWO MACHINE-SUBPROBLEM

• Reduction to a head-body-tail problem

rij = max{ri,π(π−1(j)−1), ri−1,j}+ pij

qij = max{qi,π(π−1(j)+1), qi+1,j}+ pij

• Solution by dynamic programming

C(j, t1, t2) = min{max{C1(t1, j) + qj , C(j + 1, C1(t1, j), t2)},
max{C2(t2, j) + qj , C(j + 1, t1, C2(t2, j))}}

with earliest starting time

Cl(t, j) = max{t, rj}+ pjl

on machine l.
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COMPUTATIONAL EXPERIMENTS

TEST INSTANCES AND METHODOLOGY

• Nine small instances from Carlier (1978).
• 60 large instances from Taillard (1993) with up to 50 jobs and

20 machines.
• We created heterogeneous instances with

• 0%, 10%, and 20% of incompatibilities per worker;
• processing times chosen uniformly at random in [p, 2p] or [p, 5p]

for regular time p.
• In total 408 test instances.
• Parameter setting according to Ruiz and Stützle (2007)

d = 4; α = 0.4.

• Running time 3nmms.
• Five replications in all tests.
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CARLIER INSTANCES – SINGLE WORKER

CPLEX LOMPEN Heuristics
Var. Inc. t Rd. t Rd. S P PL

2 0 26.7 7.4 0.1 7.4 7.4 7.4 7.4
2 10 17.8 7.9 0.1 7.9 7.9 7.9 7.9
2 20 14.5 9.2 0.1 9.2 9.2 9.3 9.3
5 0 55.7 75.8 0.0 75.8 75.8 75.8 75.8
5 10 46.7 75.8 0.0 75.8 75.8 75.8 75.8
5 20 11.3 77.7 0.0 77.7 77.7 77.7 77.7

Avg. 28.8 42.3 0.0 42.3 42.3 42.3 42.3

• All instances solved optimally.
• Easy to solve for the state-of-the-art B&B solver

LOMPEN (Companys and Mateo 2007) and the heuristics.
• Confirms a high overhead for a single worker.
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COMPUTATIONAL EXPERIMENTS

CARLIER INSTANCES – TWO WORKERS

CPLEX Heuristics
Var. Inc. Gap t Rd. S P PL PD

2 0 6.9 1499.5 -4.2 -4.1 -4.0 -4.0 -3.6
2 10 6.4 1151.0 -2.2 -2.1 -2.1 -2.1 -2.1
2 20 5.1 1524.7 -0.6 -0.5 -0.5 -0.5 -0.4
5 0 4.1 875.8 3.6 4.6 4.3 4.3 4.6
5 10 3.7 899.0 5.0 5.8 5.5 5.6 5.5
5 20 3.7 788.2 5.4 6.1 5.9 5.8 5.7

Avg. 5.0 1123.0 1.2 1.6 1.5 1.5 1.6

• 80% of the instances solved in one hour.
• Heuristics in average 0.4% longer in 1/500 of the time.
• Makespan close to optimum of regular PFSSP.

20



5 WORKERS WITH
DISABILITIES IN FLOW
SHOPS

COMPUTATIONAL EXPERIMENTS

TAILLARD INSTANCES – TIME VAR. [p, 2p]
LOMPEN One worker Two workers

G I t Rd. S P PL S P PL
1

0

0.4 14.7 14.7 14.7 14.7 -3.4 -3.6 -3.7
2 3141.9 2.5 3.6 3.7 3.6 -0.3 -0.9 -1.3
3 54258.4 1.2 1.4 1.4 1.3 -0.0 -0.4 -0.9
4 6.9 27.4 27.4 27.4 27.4 -0.8 -1.3 -1.3
5 127.0 19.2 19.4 19.4 19.4 3.0 0.7 -0.4
6 21934.4 5.2 5.1 5.0 4.2 4.1 3.0 0.8
Avg. 13244.9 11.7 11.9 11.9 11.8 0.4 -0.4 -1.1
1

10

0.4 17.0 17.0 17.0 17.0 -3.5 -3.6 -3.7
2 3795.5 3.5 3.7 3.7 3.7 -0.3 -0.7 -1.2
3 48653.9 1.3 1.5 1.5 1.4 -0.1 -0.2 -0.9
4 6.2 28.4 28.4 28.4 28.4 -0.3 -0.9 -1.0
5 80.4 20.2 20.2 20.2 20.2 3.2 0.9 -0.3
6 19483.3 5.5 5.3 5.3 4.7 4.1 3.1 0.8
Avg. 12003.3 12.6 12.7 12.7 12.6 0.5 -0.2 -1.0
1

20

0.4 18.3 18.3 18.3 18.3 -1.7 -1.9 -2.0
2 1872.0 5.2 5.3 5.5 5.3 -0.1 -0.6 -0.9
3 44304.2 1.3 1.4 1.5 1.4 0.0 -0.2 -0.8
4 4.7 28.7 28.7 28.7 28.7 -0.0 -0.7 -0.7
5 76.4 20.5 20.5 20.6 20.6 3.2 1.3 0.2
6 16410.8 5.8 5.8 5.6 5.0 4.1 3.1 0.8
Avg. 10444.8 13.3 13.3 13.4 13.2 0.9 0.2 -0.6

• Single worker
• Very good solutions, close to optimality.
• Solver needs 3 h, heuristic at most 1 min.
• No notable difference between the strategies.

• Two workers: pool and longer time limit improve.
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TAILLARD INSTANCES – TIME VAR. [p, 5p]
LOMPEN One worker Two workers

G I t Rd. S P PL S P PL
1

0

0.2 106.5 106.5 106.5 106.5 6.7 5.8 5.3
2 3.7 58.0 58.0 58.0 58.0 5.5 4.1 3.7
3 390.8 24.6 24.6 24.7 24.7 3.7 2.8 2.2
4 6.8 149.2 149.2 149.2 149.2 5.6 2.8 2.3
5 30.8 125.5 125.5 125.5 125.5 9.3 5.7 4.0
6 491.5 77.0 77.0 77.0 77.0 7.8 6.2 3.5
Avg. 154.0 90.1 90.1 90.2 90.2 6.4 4.6 3.5
1

10

0.2 108.3 108.3 108.4 108.4 6.6 5.8 5.4
2 3.6 58.0 58.0 58.0 58.0 5.5 4.4 3.6
3 389.5 26.6 26.6 26.6 26.6 3.6 2.7 2.1
4 5.8 154.7 154.7 154.7 154.7 5.2 3.0 2.4
5 27.5 125.5 125.5 125.6 125.5 9.6 6.6 4.3
6 476.9 77.8 77.8 77.8 77.8 8.0 6.4 3.4
Avg. 150.6 91.8 91.8 91.8 91.8 6.4 4.8 3.6
1

20

0.1 119.1 119.1 119.1 119.1 6.6 5.8 5.4
2 3.4 68.2 68.2 68.2 68.2 5.4 4.3 3.7
3 383.6 27.6 27.6 27.6 27.6 3.9 3.4 2.6
4 4.4 154.7 154.7 154.7 154.7 10.9 7.9 7.0
5 24.1 126.0 126.0 126.0 126.0 9.4 6.6 4.8
6 462.1 78.5 78.5 78.5 78.5 7.9 6.4 3.5
Avg. 146.3 95.7 95.7 95.7 95.7 7.3 5.7 4.5

• Single worker
• Again: good solutions in a short time with all

strategies.
• Easier to solve, due to strong bottleneck machine.

• Two workers: pool and longer time limit again
improve.
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• Easier to solve, due to strong bottleneck machine.

• Two workers: pool and longer time limit again
improve.
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• Variants of IGAs show very good results for PFSISP and
HPFSISP.

• The pooling strategy is useful for the hybrid problem variant.
• Inserting a single worker has a visible overhead

• 12% for a small time variation [p, 2p];
• 90% for a large time variation [p, 5p].

• Inserting two workers at a hybrid machine effectively hides
disabilities
• Shorter makespan than PFSSP for small time variation [p, 2p]
• Never more than 7% longer for large time variation [p, 5p]
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Thanks for your attention!
For more on the general case:
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MODELING DEPENDENCIES AFTER Tseng
and Stafford (2007)

Time

M1 T T11 T T12 . . . T T1,j−1 T T1,j T T1,j+1

Y1jY1j

M2 T T2,j−1 T T2,j T T2,j+1

Y2jY2j

Mr−1 T Tr−1,j−1 T Tr−1,j T Tr−1,j+1

Yr−1,jYr−1,j

Mr T Tr,j−1 T Tr,j T Tr,j+1

• Schedule is represented by waiting times Yrj .
• Total time to start of operation (r, j) can be

expressed
• By execution path of job j (red path).
• By execution path of job j − 1 plus time for

operation (r, j − 1).
• Tseng and Stafford (2007)’s restriction (4)

requires the latter to be at most the former.
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