

EXACT APPROACHES TO ZONING PROBLEMS

Marcus Ritt

I Workshop de Problemas de Parcelamento Territorial —

30 de agosto 2018

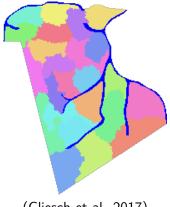
1. Overview

2. Models and algorithms

3. Summary and outlook

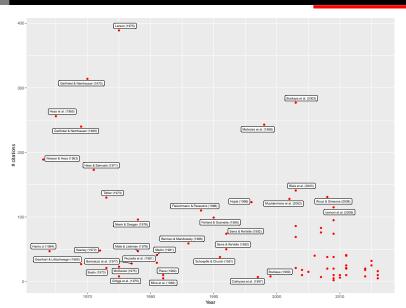
The problem

- Partition a geographical region into smaller zones
 - Usually made up of basic units
- Known as districting, territory design, zoning

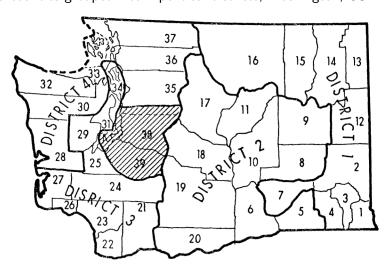


(Gliesch et al. 2017)

- Political or school districting
- Services
 - Commerce
 - Health-care, home care, emergency services
 - Fire stations, police stations
 - Electrical power distribution
 - Road maintenance
 - Gritting sand salt spreading (in cold countries)

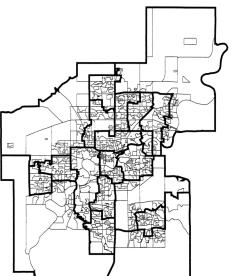


37 counties grouped into 4 political districts, Washington, USA.



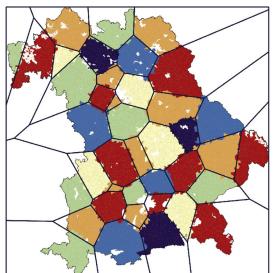
70000 retailers allocated to 168 agents, Germany.

828 enumeration areas grouped into 19 political districts, Edmonton.



Example: Steiner et al. (2015)

399 municipalities grouped into 83 microregions, healthcare, Paraná.

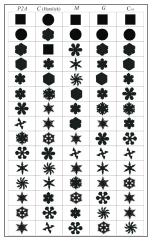


- Balance of attributes
 - e.g. population, resources, workload, . . .
- Compactness of zones
 - Shape (e.g. roundness, convexity), distances
- Connectivity of zones

Related but different:

- Clustering problems: usually unconstrained
- Location problems: concerned with placement of facilities

No clear definition in the literature



(Montero & Bribiesca 2009)

- Set of districts I, p = |I| is the number of required districts.
- Set of basic units J, n = |J|.
- Attributes a_j , distances d_{ij} , $i \in I$, $j \in J$.
- Variables

$$x_{ij} = \begin{cases} 1, & \text{basic unit } j \in J \text{ is part of district } i \in I, \\ 0, & \text{otherwise.} \end{cases}$$

$$\begin{array}{ll} \textbf{minimize} & \sum\limits_{(i,j)\in I\times J} d_{ij}x_{ij}, \\ \textbf{subject to} & \sum\limits_{i\in I} x_{ij} = 1, & \forall j\in J, \\ & \sum\limits_{i\in I} x_{ii} = p, & \forall i\in I, \\ & (1-\tau)\bar{a}x_{ii} \leq \sum\limits_{j\in J} a_jx_{ij} \leq (1+\tau)\bar{a}x_{ii}, & \forall i\in I, \\ & x_{ij}\in\{0,1\}, & \forall (i,j)\in I\times J. \end{array}$$

Here $\bar{a} = \sum_{i \in I} a_i/p$ is the average attribute, and $\tau \geq 0$ a tolerance.

- Set of attributes K.
- Attributes a_{kj} , $j \in J$, $k \in K$.

$$(1 - \tau_k)\bar{a}_k x_{ii} \le \sum_{j \in J} a_{kj} x_{ij} \le (1 + \tau_k)\bar{a}_k x_{ii}, \quad \forall i \in I, k \in K$$

• Total distance to centers (p-median)

$$\min. \quad \sum_{(i,j)\in I\times J} d_{ij}x_{ij}$$

Attribute moments

$$\begin{array}{ll} \text{min.} & \sum_{(i,j)\in I\times J} a_j d_{ij} x_{ij} \\ \\ \text{min.} & \sum_{(i,j)\in I\times J} a_j d_{ij}^2 x_{ij} \end{array}$$

Maximum distance to centers (p-center)

min.
$$\max_{(i,j)\in I\times J} d_{ij}x_{ij}$$

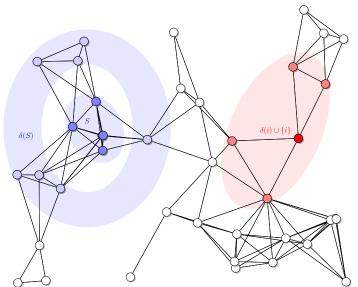
Maximum diameter

min.
$$\max_{(j,k)\in J\times J} d_{jk}x_{ij}x_{ik}$$

- Introduce a graph G = (J, A) over basic units J.
- Require districts to be *connected components* of *G*.
- Formulation: similar to subtour elimination in TSP
 - Miller-Tucker-Zemlin, flow-based, cutsets
 - Most common (and effective) subsets

$$x_i(\delta(S)) \ge 1 - |S| + x_i(S), \quad \forall i \in I, S \subseteq V \setminus (\delta(i) \cup \{i\})$$
(Conn)

where $x_i(S) = \sum_{j \in S} x_{ij}$ and $\delta(S)$ is the set of all neighbors of S not in S.



- Location-allocation (Hess et al. 1965)
 - Heuristic, based on (auxiliary) centers
- Set covering formulations solved by column generation (Mehrotra et al. 1998)
- Repeated solution of the mathematical model (Salazar-Aguilar et al. 2011)

Currently limited to a few hundred basic units.

- 1. Define initial p district centers.
- Repeat until convergence:
 - Solve allocation subproblem: assign each basic unit to some center.
 - Solve location subproblem: define updated district centers.

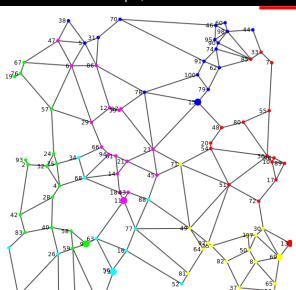
Location subproblem: find the center of each district in $O((n/p)^2)$.

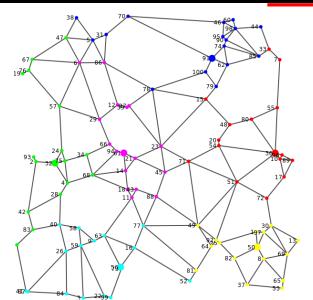
Let $C \subseteq I$ be the set of current centers:

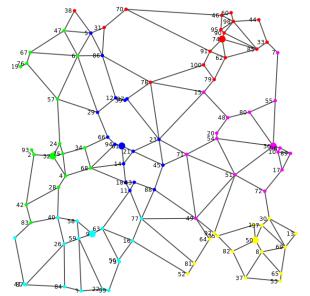
$$\label{eq:minimize} \begin{array}{ll} & \displaystyle \sum_{(i,j) \in C \times J} d_{ij} x_{ij}, \\ \\ & \text{subject to} & \displaystyle \sum_{i \in C} x_{ij} = 1, \\ & \displaystyle (1-\tau) \bar{a} x_{ii} \leq \sum_{j \in J} a_j x_{ij} \leq (1+\tau) \bar{a} x_{ii}, \\ & \displaystyle x_{ij} \in \{0,1\}, \\ \end{array} \quad \forall i \in C,$$

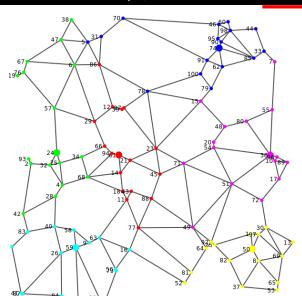
Reduces number of variables from n^2 to np.

- 1. Solve relaxed problem
 - Relax to linear program.
 - Solve for exact balance $(\tau = 0)$.
 - Resulting problem is a transportation problem.
- Split resolution
 - Number of fractional assignments: at most 2(p-1).
 - Number of *split units*: at most p-1.
 - Split resolution problem: find assignment s.t. balance minimal is NP-hard.







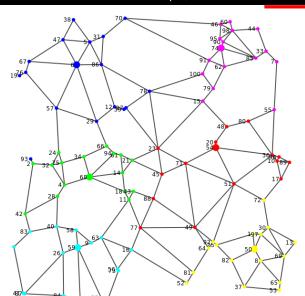


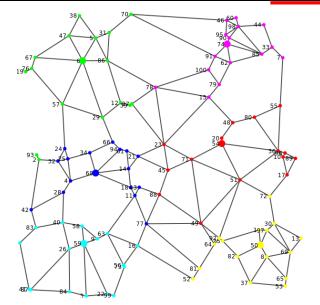
MODELS AND ALGORITHMS Branch-and-bound-and-cut (Salazar-Aguilar et al. 2011)

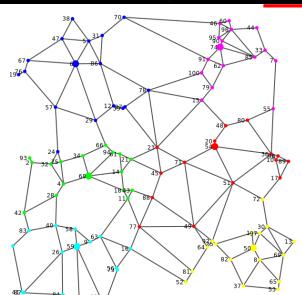
Idea: solve ILP model, add connectivity cuts

Algorithm:

- Repeat
 - Solve the current II P model.
 - If there are unconnected districts: seperate and add restrictions Conn.
- Until all districts are connected







- Proposed by Garfinkel & Nemhauser (1970), evolved by Mehrotra et al. (1998).
- Define the set of possible districts D

$$\label{eq:minimize} \begin{array}{ll} \mbox{minimize} & \sum_{i \in D} c_i x_i, \\ \mbox{subject to} & \sum_{i \in D} [j \in D] x_i = 1, & \forall j \in J, \\ & \sum_{i \in D} x_i = p, \\ & x_j \in \{0,1\}, & \forall (j) \in J. \end{array}$$

Linear relaxation can be solved by column generation.

- Find balanced and connected districts of negative reduced cost
- Fix a center c, let $J^- = J \setminus \{c\}$.
- For dual variables π_j , $j \in J$ and σ we have

$$\label{eq:minimize} \begin{array}{ll} \textbf{minimize} & -\sigma - \pi_c - \sum_{j \in J^-} (d_{cj} - \pi_j) y_j, \\ \\ \textbf{subject to} & \text{(balance)}, \\ & \text{(connectivity)}, \\ & y_i \in \{0,1\}, & \forall j \in J^-. \end{array}$$

- Initial solution: greedy construction
 - Fix a reference node u
 - Seed of district: node v of largest distance to u, break ties by largest populaton
 - Grow district: node closest to v, break ties by highest connectivity to district
 - Stop when lower bound has been reached
- Ryan-Foster (same/different) branching
 - Choose most fractional district S_1 , most populated unit i in it
 - Choose most fractional district $S_2 \neq S_1$, with $i \in S_2$
 - Choose unit $j \in S_1 \oplus S_2$
 - Creates branches "same(i,j)" and "different(i,j)".
- Depth-first search
 - Prefers "same" branches

- Very few exact approaches to territory design
- State of the art limited to small problem sizes (about 200 basic units 10 districts)
- Challenge: push the tractable problem size to 1000 basic units.