

MINIMUM WEIGHT ROOTED ARBORESECENCES

Marcus Ritt (joint work with Jordi Pereira)

Seminário grupo de algoritmos e otimização — Abril 2019 1

- 1. Overview
- Problem reductions
- Mathematical formulation
- 4. Finding arborescences that span subsets
- 5. Putting it all together
- 6. Some results

- A directed graph G = (V, A) and arcs weights w_a
- A root $r \in V$

Find an arborescence $G^{st}=(V^{st},A^{st})$ rooted in r of minimum total weight.

- 1. Non-negative case $(w_a \ge 0)$: trivial solution $G^* = (\{r\}, \emptyset)$.
- 2. G^* must be spanning $(V^* = V)$: polynomially solvable (Chu & Liu 1965, Edmonds 1967, Bock 1971)
- 3. Tarjan (1977): $O(n^2)$ for dense, $O(m \log n)$ for sparse graphs
- 4. Gabow et. al (1986), Fischetti & Toth (1993): link paths, speedups.
- 5. Unrooted case and branchings: can be made to work, too.

while there's an unconnected vertex vadd lightest in-arc (u,v) to A^* if that forms a cycle:
find lightest cycle arc a
for all arcs into cycle
subtract diff. of cycle-arc to w_a contract cycle
expand cycles, remove redundant arcs

Uncapacitated facility location: open facilities I at cost $f_i \geq 0$, and connect customers J at cost $c_{ij} \geq 0$.

Reduction to MWRA:

- 1. Introduce a root r.
- 2. Connect root to facilities via arcs (r, i) of weight f_i .
- 3. Connect facilities to clients via arcs (i, j) of weight c_{ij} .
- 4. Add an auxiliary vertex j', for each client $j \in J$.
- 5. Connect clients to auxiliary vertices by arcs (j,j') of weight $M_j = -f_{\mu_j} c_{\mu_j,j} 1$ where $\mu_j = \operatorname{argmin}_{i \in I} \{f_i + c_{ij}\}.$

Minimum covering arborescence: like MWRA, but a subset of required vertices $R \subseteq V$ must be included.

Reduction to MWRA: (same idea as for UFL):

- 1. Add an auxiliary vertex v' for each required vertex $v \in R$.
- Connect required to auxiliary vertices by arcs (v, v') of weight $M_v = -d_{rv} 1$ where d_{rv} is (some) distance from root to v.

Observations:

- For the MCA $w_a \ge 0, a \in A$ makes sense. In this case we have the Steiner arborescence problem.
- If we have prizes, we can push them into the arcs, so prize-collecting variants can also be solved.
- As for Steiner problems: knowing the optimal vertex set is tantamout to knowing the optimal solution (run Edmonds).

- Rule 1, Incoming root arcs
 - All incoming arcs into the root can be deleted.
- Rule 2, Non-reachable vertices

All vertices that are not reachable from the root r can be deleted.

- Rule 3, Required vertices of indegree one
 - If r is a required vertex with a single incoming arc (v,r), then v is required.
- Rule 4, Non-positive arcs
 - All vertices reachable from the root r via a path of non-positive arcs can be made required.

Assume Rule 4 can't be applied any more, but we find a path ruv

- from required vertex $r \in R$
- to non-required vertives $u,v\in \overline{R}=V\setminus R$
- of non-positive weight.

Then v can be made required.

Note: arc (r, u) must be positive, arc (u, v) negative.

This motivates:

- Call a simple path that starts at some vertex in R with arcs in $V \times \overline{R}$ an *outpath*.
- Call R k-closed, if for every vertex $v \in \overline{R}$ the shortest outpath P to v of length at most k has positive weight (i.e. w(P) > 0).

Note: Applying rule 4 yields a 1-closed set.

• Rule 5, Vertices reachable by non-positive paths

Let R be a k-closed set. Consider all vertices C that can be reached from some vertex in R by a simple path P of non-positive weight and length k+1. Then all vertices C are required.

```
R = \{r\}
apply rules 3 and 4
k=1
while k < n-1 do
   // here R is k-closed
   apply Rule 5 to find new required vertices C
   if C = \emptyset then
       k := k + 1
   else
       R := R \cup C
       apply rules 3 and 4
       k=1
```

Problem: checking k-closedness is NP-complete in general, since checking for a negative-length simple path between two vertices is hard when cycles of negative length can exist.

Solution: heuristic, running Bellman-Ford starting at required vertices R, limited to paths of length at most k+1. If any vertex in \overline{R} of non-positive distance root is found, verify that there's is a simple path that witnesses this.

Consequence: we may miss some required vertices.

• Rule 6, Vertices with a single neighbor

A vertex with a single neighbor and an incoming arc of non-negative weight can be deleted.

Rule 7, Vertices of non-negative contribution

Let L be a lower bound on the total weight of the arcs reachable from vertex v and let $\mu = \min_{a \in N^-(v)} w_a$ be the weight of the lightest incoming arc into v. If $\mu + L \geq 0$, vertex v can be deleted, if $L \geq 0$ all outgoing arcs from v can be deleted.

For Rule 7: sum of all negative arcs that can be reached from \boldsymbol{v} is a simple lower bound.

MWRA-a:
$$\min \sum_{(i,j)\in A} w_{ij} x_{ij}$$
, (1)

s.t.
$$\sum_{i:(i,j)\in A} x_{ij} \le 1, \qquad \forall j \in V \setminus \{r\}, \qquad (2)$$

$$x_{ij} \le \sum_{i':(i',i) \in A} x_{i',i} \quad \forall (i,j) \in A, i \ne r.$$
 (3)

$$x_{ij} \in \{0, 1\}, \qquad \forall (i, j) \in A. \quad (4)$$

- Works in acyclic graphs.
- In general: need to guarantee connectivity, by eliminating subcircuits.

Subtour elimination

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1, \qquad \forall S \subset V, |S| \ge 2.$$
 (5)

Cutset inequalities

$$\sum_{i \in S} \sum_{j \notin S} x_{ij} \ge \sum_{i': (i', j') \in A} x_{i'j'}, \quad \forall S \subset V, r \in S, j' \notin S. \quad (6)$$

When graph is series-parallel, constraints (2), (5), and $x_{ij} \ge 0$, $\forall (i,j) \in A$ describe the convex hull of the r-arborescences (Goemans 1992, 1994).

- Model usually too large: we want to solve instances with 5K vertices, and up to 12.5M arcs.
- Note: the solution has at most |V| arcs, so most arcs are useless.
- Therefore:
 - 1. Solve a simple set packing relaxation (1), (2), (4).
 - 2. Prune arc a=(i,j) if $ub \leq lb + \bar{c}_a$, for red. costs $\bar{c}_a = w_a \pi_j$.
 - 3. Solve the linear relaxation of MWRA-a by column generation, with column set \bar{A} .
 - Column generation is actually a column and row generation!
 - For each new arc, we need to include a new constraint, too.
 - 4. Prune arcs as above, for red. costs $\bar{c}_a = w_a \pi_j \sum_{a' \in \bar{A}} \pi_{a'}$.
 - 5. Solve the complete model by a branch-and-cut approach.

- Separate special cutsets (3) as well as general cutsets (6).
- For $m \leq 10K$ include special cutsets (3).

For each integral solution:

Find the strongly connected components, add

$$\sum_{(i,j)\in A'} x_{ij} \le |A'| - 1. \tag{7}$$

to eliminate circuits A'.

For each fractional solution: seperate cutset inequalities

• Special cutsets can be separated by inspection.

- Find integrally connected vertices by DFS
- For non-integrally connected vertices v that are required or have outgoing solutions arcs
 - Solve min-cut/max-flow between root r and v with capacities equal to linear relaxation
 - If flow is less than incoming flow in current solution: add a cut

Edmonds algorithm as of Fischetti & Toth

 $A_0 := \emptyset; \ h := 0$

// Phase I

- while A_0 is not r-connected do
 - h := h + 1
- (1) find a strong component S_h of $G_0=(V,A_0)$ such that $r\not\in S_h$ and $A_0\cap K_h=\emptyset$ for the r-cutset
 - $K_h = (V \setminus S_h, S_h)$
- (2) find an arc $(u_h, v_h) \in K_h$ such that $w_{(u_h, v_h)} \le w_{(u, v)}$ for $(u, v) \in K_h$
 - $A_0 := A_0 \cup \{(u_h, v_h)\}\$
 - foreach $(u,v) \in K_h$ do $w_{(u,v)} := w_{(u,v)} w_{(u_h,v_h)}$
 - // Phase II
 - for $t = h, h 1, \dots$ to 1 do
 - if $(u_t, v_t) \in A_0$ then
 - foreach q < t such that $v_t \in S_q$ do $A_0 := A_0 \setminus \{(u_q, v_q)\}$

FINDING ARBORESCENCES THAT SPAN SUBSETS Adding required vertices

Strong components are *preferred* if they can reach a required vertex. **Idea**: try to connect only if required and to required, or if beneficial.

- Line (1) selects a preferred strong component S_h , if it exists, otherwise any strong component.
- Line (2) selects the lightest cut-arc coming from a preferred strong component; if it does not exist, or S_h is not preferred the overall lightest cut-arc is taken.
- If the selected strong component S_h is not preferred, the cut-arc a is only accepted if $w_a \leq 0$; otherwise S_h is excluded from further consideration.

```
Input : An initial solution s.

Output: The best solution found during the search s^*.

s := localsearch(s)

repeat

s' := perturb(s)

s' := localsearch(s')

s := accept(s, s')

until a stopping criterion is satisfied
```

Main idea: search in the space of free vertices S, make some subset $s \subseteq S$ required.

- Initial solution: best of running modified Edmonds algorithm with $s = \emptyset$, s = S.
- Local search: flip vertices, first improvement.
- Perturbation: flip $k \in [k_{\min}|S|, k_{\max}|S|]$ vertices randomly.
- Acceptance: with probability $\min\{1, e^{-\alpha r}\}$ for some α and relative deviation of new from old solution value r = (w(s') - w(s))/w(s).
- A twist: search only L% of the neighborhood for improving moves, before accepting, then go to local minimum.

- 1. Apply the problem reductions. If no free vertices remain, apply Edmonds algorithm to find an optimal solution and stop.
- 2. Compute a lower bound given by the value of a minimum cost branching.
- 3. Compute an upper bound by solving different minimum cost arborescence problems: one on all required and free vertices; a second only on the required vertices, giving preference to arcs that connect to preferred components; and a third that also uses only the required vertices, but always chooses the cheapest arc.
- 4. Solve the first relaxation (set packing). Use the reduced costs of the arcs to exclude those that exceed the upper bound.
- 5. If the number of free vertices k is small, enumerate all possible 2^k subsets of free vertices, and apply Edmonds algorithm to each of them in order to find the optimal solution and stop.

- Exclude unpromising arcs heuristically such that the graph remains connected.
 - For $n \to \infty$, $\hat{p} = (\ln n + c)/n$ is a *threshold*: probability of single SCC is $e^{-2e^{-c}}$ (Graham & Pike 2008).
 - Allow max. indegree $\delta = 2 \lceil \ln n \rceil$, take best arcs only.
- Repeat step 3 to obtain an alternative upper bound on the reduced graph and apply the ILS metaheuristic starting from the best solution to obtain a tighter upper bound.
- 8. Apply the second relaxation. Use the reduced costs to exclude arcs that cannot improve the upper bound.
- 9. Check for the optimality of the incumbent and, if the solution is not optimal, apply the branch-and-cut approach.

Problem	Туре	n	$p_{ m arc}$	$p_{ m neg}$	X [%]	N
MWRA MWRA MCA (Set 1) MCA (Set 2)	DAG DG DAG DAG	100, 1000, 3000 100, 1000, 3000 500, 1000, 5000 500, 1000, 5000	0.1, 0.3, 0.5 0.05, 0.15, 0.25 0.1, 0.3, 0.5 0.1, 0.3, 0.5	0.25, 0.5, 0.75 0.25, 0.5, 0.75 0.01 0.001	1, 10, 20 20	10 10 10 10

 $n\!\!:$ no. of vertices; $p_{\rm arc}\!\!:$ arc probability; $p_{\rm neg}\!\!:$ negative weight probability; $|X|\!\!:$ no. required vertices (% of total vertices); $N\!\!:$ instances/group.

				Ma	thHeur	dapcstp	ILS			Exact	
n	p_{arc}	p_{neg}	Opt.	Dev.	Time (s)	Time (s)	Dev.	Time (s)	 N	Time (s)	
100	0.1	0.25	-2214.7	0.0	0.2	0.0	0.0	0.0	0	0.0	
100	0.1	0.50	-4112.8	0.0	0.0	0.0	0.0	0.0	0	0.0	
100	0.1	0.75	-4628.4	0.0	0.1	0.0	0.0	0.0	4	0.0	
100	0.3	0.25	-5868.7	0.0	0.1	0.0	0.0	0.0	0	0.0	
100	0.3	0.50	-7319.9	0.0	0.0	0.0	0.0	0.0	5	0.0	
100	0.3	0.75	-7999.2	0.0	0.0	0.0	0.0	0.0	10	_	
100	0.5	0.25	-7193.3	0.0	0.1	0.0	0.0	0.0	1	0.0	
100	0.5	0.50	-8332.0	0.0	0.0	0.0	0.0	0.0	6	0.0	
100	0.5	0.75	-8886.6	0.0	0.0	0.0	0.0	0.0	10	_	
1000	0.1	0.25	-80901.3	1.9	138.1	0.2	0.0	0.5	0	0.0	
1000	0.1	0.50	-88675.5	2.9	73.5	0.2	0.0	0.2	0	0.0	
1000	0.1	0.75	-91211.2	0.0	22.7	0.2	0.0	0.1	4	0.0	
1000	0.3	0.25	-93225.1	0.0	11.5	0.4	0.0	0.3	0	0.1	
1000	0.3	0.50	-96247.7	0.0	14.9	0.3	0.0	0.2	3	0.1	
1000	0.3	0.75	-96949.9	0.0	21.1	0.3	0.0	0.2	7	0.1	
1000	0.5	0.25	-95930.9	0.0	7.4	0.5	0.0	0.3	1	0.1	
1000	0.5	0.50	-97671.5	0.0	2.8	0.4	0.0	0.3	6	0.1	
1000	0.5	0.75	-98445.7	0.0	2.3	0.4	0.0	0.2	10	_	
3000	0.1	0.25	-278155.4	3.4	593.1	2.2	0.0	1.3	0	0.4	
3000	0.1	0.50	-286660.4	1.6	434.7	2.8	0.0	0.9	0	0.4	
3000	0.1	0.75	-290695.2	0.0	119.0	2.0	0.0	0.8	1	0.3	
3000	0.3	0.25	-292479.7	0.0	91.2	4.8	0.0	1.7	0	0.6	
3000	0.3	0.50	-296087.3	0.0	148.1	3.0	0.0	1.6	3	0.6	
3000	0.3	0.75	-297164.3	0.3	171.1	3.0	0.0	1.2	8	0.9	
3000	0.5	0.25	-295577.6	0.4	193.2	6.6	0.0	2.5	2	0.7	
3000	0.5	0.50	-297751.0	0.0	23.4	5.2	0.0	2.0	9	0.8	
3000	0.5	0.75	-298465.0	0.0	25.5	5.1	0.0	1.8	10	_	
_			_	0.4	77.6	1.4	0.0	0.6	100	0.2	

			CMSA	CMSA (RP)		dapcstp		ILS	
n	p_{arc}	Opt	Value	Time (s)	Time (s)	N	Value	Time (s)	Time (s)
500	0.1	10172.1	10172.1	35.8	0.1	10	10560.1	3.6	0.0
500	0.3	-9174.5	-9174.5	17.6	0.2	10	-9081.5	2.3	0.3
500	0.5	-23946.4	-23946.4	13.3	0.2	10	-23899.5	3.5	0.0
1000	0.1	-4382.9	-4375.0	69.1	1.2	10	-3758.0	2.1	0.4
1000	0.3	-60628.1	-60628.1	34.4	1.8	10	-60543.1	4.3	0.1
1000	0.5	-106726.2	-106726.2	14.4	2.4	10	-106691.7	3.6	0.1
5000	0.1	-527496.4	-527400.6	823.3	219.3	2	-513849.1	2.3	3.7
5000	0.3	-1372718.9	-1372321.9	214.6	151.1	7	-1369569.5	4.8	3.9
5000	0.5	-1951128.4	-1951128.4	93.6	95.1	10	-1950230.7	8.3	3.4
_	_	_	_	146.2	52.4	79	_	3.9	1.3