
MINIMUM WEIGHT ROOTED
ARBORESECENCES

MINIMUM WEIGHT ROOTED
ARBORESECENCES

Marcus Ritt (joint work with Jordi Pereira)
Seminário grupo de algoritmos e otimização — Abril 2019 1

MINIMUM WEIGHT ROOTED
ARBORESECENCESOutline

1. Overview

2. Problem reductions

3. Mathematical formulation

4. Finding arborescences that span subsets

5. Putting it all together

6. Some results

2

1 MINIMUM WEIGHT ROOTED
ARBORESECENCES

OVERVIEW

The problem

• A directed graph G = (V,A) and arcs weights wa
• A root r ∈ V

Find an arborescence G∗ = (V ∗, A∗) rooted in r of minimum
total weight.

3

1 MINIMUM WEIGHT ROOTED
ARBORESECENCES

OVERVIEW

Two simple subcases

1. Non-negative case (wa ≥ 0): trivial solution G∗ = ({r}, ∅).
2. G∗ must be spanning (V ∗ = V): polynomially solvable (Chu &

Liu 1965, Edmonds 1967, Bock 1971)
3. Tarjan (1977): O(n2) for dense, O(m logn) for sparse graphs
4. Gabow et. al (1986), Fischetti & Toth (1993): link paths,

speedups.
5. Unrooted case and branchings: can be made to work, too.

4

1 MINIMUM WEIGHT ROOTED
ARBORESECENCES

OVERVIEW

Edmonds’ algorithm in a nutshell

while there’s an unconnected vertex v
add lightest in-arc (u, v) to A∗
if that forms a cycle:

find lightest cycle arc a
for all arcs into cycle

subtract diff. of cycle-arc to wa
contract cycle

expand cycles, remove redundant arcs

5

1 2

3

4

5 5

1 2 2

3

4

5

1 MINIMUM WEIGHT ROOTED
ARBORESECENCES

OVERVIEW

Related problems

Uncapacitated facility location: open facilities I at cost
fi ≥ 0, and connect customers J at cost cij ≥ 0.

Reduction to MWRA:
1. Introduce a root r.
2. Connect root to facilities via arcs (r, i) of weight fi.
3. Connect facilities to clients via arcs (i, j) of weight cij .
4. Add an auxiliary vertex j′, for each client j ∈ J .
5. Connect clients to auxiliary vertices by arcs (j, j′) of weight

Mj = −fµj − cµj ,j − 1 where µj = argmini∈I{fi + cij}.

6

1 MINIMUM WEIGHT ROOTED
ARBORESECENCES

OVERVIEW

Related problems

Minimum covering arborescence: like MWRA, but a subset
of required vertices R ⊆ V must be included.

Reduction to MWRA: (same idea as for UFL):
1. Add an auxiliary vertex v′ for each required vertex v ∈ R.
2. Connect required to auxiliary vertices by arcs (v, v′) of weight

Mv = −drv − 1 where drv is (some) distance from root to v.
Observations:
• For the MCA wa ≥ 0, a ∈ A makes sense. In this case we have

the Steiner arborescence problem.
• If we have prizes, we can push them into the arcs, so

prize-collecting variants can also be solved.
• As for Steiner problems: knowing the optimal vertex set is

tantamout to knowing the optimal solution (run Edmonds).
7

2 MINIMUM WEIGHT ROOTED
ARBORESECENCES

PROBLEM REDUCTIONS

Four simple reduction rules

• Rule 1, Incoming root arcs
All incoming arcs into the root can be deleted.

• Rule 2, Non-reachable vertices
All vertices that are not reachable from the root r can be
deleted.

• Rule 3, Required vertices of indegree one
If r is a required vertex with a single incoming arc (v, r),
then v is required.

• Rule 4, Non-positive arcs
All vertices reachable from the root r via a path of non-
positive arcs can be made required.

8

2 MINIMUM WEIGHT ROOTED
ARBORESECENCES

PROBLEM REDUCTIONS

A simple observation

Assume Rule 4 can’t be applied any more, but we find a path ruv
• from required vertex r ∈ R
• to non-required vertives u, v ∈ R = V \R
• of non-positive weight.
Then v can be made required.
Note: arc (r, u) must be positive, arc (u, v) negative.

9

2 MINIMUM WEIGHT ROOTED
ARBORESECENCES

PROBLEM REDUCTIONS

A less simple generalization of Rule 4

This motivates:
• Call a simple path that starts at some vertex in R with arcs in

V ×R an outpath.
• Call R k-closed, if for every vertex v ∈ R the shortest outpath

P to v of length at most k has positive weight (i.e. w(P) > 0).
Note: Applying rule 4 yields a 1-closed set.

• Rule 5, Vertices reachable by non-positive paths
Let R be a k-closed set. Consider all vertices C that can
be reached from some vertex in R by a simple path P of
non-positive weight and length k + 1. Then all vertices C
are required.

10

2 MINIMUM WEIGHT ROOTED
ARBORESECENCES

PROBLEM REDUCTIONS

Reduction algorithm

R = {r}
apply rules 3 and 4
k = 1
while k < n− 1 do

// here R is k-closed
apply Rule 5 to find new required vertices C
if C = ∅ then

k := k + 1
else

R := R ∪ C
apply rules 3 and 4
k = 1

11

2 MINIMUM WEIGHT ROOTED
ARBORESECENCES

PROBLEM REDUCTIONS

A small problem

Problem: checking k-closedness is NP-complete in general, since
checking for a negative-length simple path between two vertices is
hard when cycles of negative length can exist.
Solution: heuristic, running Bellman-Ford starting at required
vertices R, limited to paths of length at most k + 1. If any vertex in
R of non-positive distance root is found, verify that there’s is a
simple path that witnesses this.
Consequence: we may miss some required vertices.

12

2 MINIMUM WEIGHT ROOTED
ARBORESECENCES

PROBLEM REDUCTIONS

Two more rules

• Rule 6, Vertices with a single neighbor
A vertex with a single neighbor and an incoming arc of
non-negative weight can be deleted.

• Rule 7, Vertices of non-negative contribution
Let L be a lower bound on the total weight of the arcs
reachable from vertex v and let µ = mina∈N−(v)wa be the
weight of the lightest incoming arc into v. If µ+ L ≥ 0,
vertex v can be deleted, if L ≥ 0 all outgoing arcs from v
can be deleted.

For Rule 7: sum of all negative arcs that can be reached from v is a
simple lower bound.

13

3 MINIMUM WEIGHT ROOTED
ARBORESECENCES

MATHEMATICAL FORMULATION

Basic formulation

MWRA-a: min
∑

(i,j)∈A
wijxij , (1)

s.t.
∑

i:(i,j)∈A
xij ≤ 1, ∀j ∈ V \ {r}, (2)

xij ≤
∑

i′:(i′,i)∈A
xi′,i ∀(i, j) ∈ A, i 6= r. (3)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (4)

• Works in acyclic graphs.
• In general: need to guarantee connectivity, by eliminating

subcircuits.
14

3 MINIMUM WEIGHT ROOTED
ARBORESECENCES

MATHEMATICAL FORMULATION

Eliminating subcircuits

• Subtour elimination∑
i∈S

∑
j∈S

xij ≤ |S| − 1, ∀S ⊂ V, |S| ≥ 2. (5)

• Cutset inequalities∑
i∈S

∑
j /∈S

xij ≥
∑

i′:(i′,j′)∈A
xi′j′ , ∀S ⊂ V, r ∈ S, j′ /∈ S. (6)

When graph is series-parallel, constraints (2), (5), and xij ≥ 0,
∀(i, j) ∈ A describe the convex hull of the r-arborescences
(Goemans 1992, 1994).

15

3 MINIMUM WEIGHT ROOTED
ARBORESECENCES

MATHEMATICAL FORMULATION

Solving the models

• Model usually too large: we want to solve instances with 5K
vertices, and up to 12.5M arcs.

• Note: the solution has at most |V | arcs, so most arcs are
useless.

• Therefore:
1. Solve a simple set packing relaxation (1), (2), (4).
2. Prune arc a = (i, j) if ub ≤ lb+ c̄a, for red. costs c̄a = wa− πj .
3. Solve the linear relaxation of MWRA-a by column generation,

with column set Ā.
• Column generation is actually a column and row generation!
• For each new arc, we need to include a new constraint, too.

4. Prune arcs as above, for red. costs c̄a = wa − πj −
∑

a′∈Ā πa′ .
5. Solve the complete model by a branch-and-cut approach.

16

3 MINIMUM WEIGHT ROOTED
ARBORESECENCES

MATHEMATICAL FORMULATION

Solving MWRA by a branch-and-cut algorithm

• Separate special cutsets (3) as well as general cutsets (6).
• For m ≤ 10K include special cutsets (3).

For each integral solution:
• Find the strongly connected components, add∑

(i,j)∈A′
xij ≤ |A′| − 1. (7)

to eliminate circuits A′.
For each fractional solution: seperate cutset inequalities
• Special cutsets can be separated by inspection.

17

3 MINIMUM WEIGHT ROOTED
ARBORESECENCES

MATHEMATICAL FORMULATION

Separating general cutsets

• Find integrally connected vertices by DFS
• For non-integrally connected vertices v that are required or

have outgoing solutions arcs
• Solve min-cut/max-flow between root r and v with capacities

equal to linear relaxation
• If flow is less than incoming flow in current solution: add a cut

18

4 MINIMUM WEIGHT ROOTED
ARBORESECENCES

FINDING ARBORESCENCES THAT SPAN SUBSETS

Edmonds algorithm as of Fischetti & Toth

A0 := ∅; h := 0
// Phase I
while A0 is not r-connected do

h := h+ 1
(1) find a strong component Sh of G0 = (V,A0) such that

r 6∈ Sh and A0 ∩Kh = ∅ for the r-cutset
Kh = (V \ Sh, Sh)

(2) find an arc (uh, vh) ∈ Kh such that w(uh,vh) ≤ w(u,v) for
(u, v) ∈ Kh

A0 := A0 ∪ {(uh, vh)}
foreach (u, v) ∈ Kh do w(u,v) := w(u,v) − w(uh,vh)

// Phase II
for t = h, h− 1, . . . to 1 do

if (ut, vt) ∈ A0 then
foreach q < t such that vt ∈ Sq do

A0 := A0 \ {(uq, vq)}
Algorithm 1: Edmonds algorithm.

19

4 MINIMUM WEIGHT ROOTED
ARBORESECENCES

FINDING ARBORESCENCES THAT SPAN SUBSETS

Adding required vertices

Strong components are preferred if they can reach a required vertex.
Idea: try to connect only if required and to required, or if beneficial.

• Line (1) selects a preferred strong component Sh, if it exists,
otherwise any strong component.

• Line (2) selects the lightest cut-arc coming from a preferred
strong component; if it does not exist, or Sh is not preferred
the overall lightest cut-arc is taken.

• If the selected strong component Sh is not preferred, the
cut-arc a is only accepted if wa ≤ 0; otherwise Sh is excluded
from further consideration.

20

4 MINIMUM WEIGHT ROOTED
ARBORESECENCES

FINDING ARBORESCENCES THAT SPAN SUBSETS

An iterated local search

Input :An initial solution s.
Output :The best solution found during the search s∗.
s := localsearch(s)
repeat

s′ := perturb(s)
s′ := localsearch(s′)
s := accept(s, s′)

until a stopping criterion is satisfied

21

4 MINIMUM WEIGHT ROOTED
ARBORESECENCES

FINDING ARBORESCENCES THAT SPAN SUBSETS

An iterated local search

Main idea: search in the space of free vertices S, make some subset
s ⊆ S required.

• Initial solution: best of running modified Edmonds algorithm
with s = ∅, s = S.

• Local search: flip vertices, first improvement.
• Perturbation: flip k ∈ [kmin|S|, kmax|S|] vertices randomly.
• Acceptance: with probability min{1, e−αr} for some α and

relative deviation of new from old solution value
r = (w(s′)− w(s))/w(s).

• A twist: search only L% of the neighborhood for improving
moves, before accepting, then go to local minimum.

22

5 MINIMUM WEIGHT ROOTED
ARBORESECENCES

PUTTING IT ALL TOGETHER

The whole shebang, part I

1. Apply the problem reductions. If no free vertices remain, apply
Edmonds algorithm to find an optimal solution and stop.

2. Compute a lower bound given by the value of a minimum cost
branching.

3. Compute an upper bound by solving different minimum cost
arborescence problems: one on all required and free vertices; a
second only on the required vertices, giving preference to arcs
that connect to preferred components; and a third that also
uses only the required vertices, but always chooses the
cheapest arc.

4. Solve the first relaxation (set packing). Use the reduced costs
of the arcs to exclude those that exceed the upper bound.

5. If the number of free vertices k is small, enumerate all possible
2k subsets of free vertices, and apply Edmonds algorithm to
each of them in order to find the optimal solution and stop. 23

5 MINIMUM WEIGHT ROOTED
ARBORESECENCES

PUTTING IT ALL TOGETHER

The whole shebang, part II

6. Exclude unpromising arcs heuristically such that the graph
remains connected.
• For n→∞, p̂ = (lnn+ c)/n is a threshold: probability of

single SCC is e−2e−c (Graham & Pike 2008).
• Allow max. indegree δ̄ = 2 dlnne, take best arcs only.

7. Repeat step 3 to obtain an alternative upper bound on the
reduced graph and apply the ILS metaheuristic starting from
the best solution to obtain a tighter upper bound.

8. Apply the second relaxation. Use the reduced costs to exclude
arcs that cannot improve the upper bound.

9. Check for the optimality of the incumbent and, if the solution
is not optimal, apply the branch-and-cut approach.

24

6 MINIMUM WEIGHT ROOTED
ARBORESECENCES

SOME RESULTS

Instances

Problem Type n parc pneg |X| [%] N

MWRA DAG 100, 1000, 3000 0.1, 0.3, 0.5 0.25, 0.5, 0.75 - 10
MWRA DG 100, 1000, 3000 0.05, 0.15, 0.25 0.25, 0.5, 0.75 - 10
MCA (Set 1) DAG 500, 1000, 5000 0.1, 0.3, 0.5 0.01 1, 10, 20 10
MCA (Set 2) DAG 500, 1000, 5000 0.1, 0.3, 0.5 0.001 20 10

n: no. of vertices; parc: arc probability; pneg: negative weight probability;
|X|: no. required vertices (% of total vertices); N : instances/group.

25

6 MINIMUM WEIGHT ROOTED
ARBORESECENCES

SOME RESULTS

Results for MWRA on DAGs

MathHeur dapcstp ILS Exact

n parc pneg Opt. Dev. Time (s) Time (s) Dev. Time (s) N Time (s)
100 0.1 0.25 -2214.7 0.0 0.2 0.0 0.0 0.0 0 0.0
100 0.1 0.50 -4112.8 0.0 0.0 0.0 0.0 0.0 0 0.0
100 0.1 0.75 -4628.4 0.0 0.1 0.0 0.0 0.0 4 0.0
100 0.3 0.25 -5868.7 0.0 0.1 0.0 0.0 0.0 0 0.0
100 0.3 0.50 -7319.9 0.0 0.0 0.0 0.0 0.0 5 0.0
100 0.3 0.75 -7999.2 0.0 0.0 0.0 0.0 0.0 10 —
100 0.5 0.25 -7193.3 0.0 0.1 0.0 0.0 0.0 1 0.0
100 0.5 0.50 -8332.0 0.0 0.0 0.0 0.0 0.0 6 0.0
100 0.5 0.75 -8886.6 0.0 0.0 0.0 0.0 0.0 10 —
1000 0.1 0.25 -80901.3 1.9 138.1 0.2 0.0 0.5 0 0.0
1000 0.1 0.50 -88675.5 2.9 73.5 0.2 0.0 0.2 0 0.0
1000 0.1 0.75 -91211.2 0.0 22.7 0.2 0.0 0.1 4 0.0
1000 0.3 0.25 -93225.1 0.0 11.5 0.4 0.0 0.3 0 0.1
1000 0.3 0.50 -96247.7 0.0 14.9 0.3 0.0 0.2 3 0.1
1000 0.3 0.75 -96949.9 0.0 21.1 0.3 0.0 0.2 7 0.1
1000 0.5 0.25 -95930.9 0.0 7.4 0.5 0.0 0.3 1 0.1
1000 0.5 0.50 -97671.5 0.0 2.8 0.4 0.0 0.3 6 0.1
1000 0.5 0.75 -98445.7 0.0 2.3 0.4 0.0 0.2 10 —
3000 0.1 0.25 -278155.4 3.4 593.1 2.2 0.0 1.3 0 0.4
3000 0.1 0.50 -286660.4 1.6 434.7 2.8 0.0 0.9 0 0.4
3000 0.1 0.75 -290695.2 0.0 119.0 2.0 0.0 0.8 1 0.3
3000 0.3 0.25 -292479.7 0.0 91.2 4.8 0.0 1.7 0 0.6
3000 0.3 0.50 -296087.3 0.0 148.1 3.0 0.0 1.6 3 0.6
3000 0.3 0.75 -297164.3 0.3 171.1 3.0 0.0 1.2 8 0.9
3000 0.5 0.25 -295577.6 0.4 193.2 6.6 0.0 2.5 2 0.7
3000 0.5 0.50 -297751.0 0.0 23.4 5.2 0.0 2.0 9 0.8
3000 0.5 0.75 -298465.0 0.0 25.5 5.1 0.0 1.8 10 —
— — — — 0.4 77.6 1.4 0.0 0.6 100 0.2

26

6 MINIMUM WEIGHT ROOTED
ARBORESECENCES

SOME RESULTS

Results for MCA on Set 2

CMSA (RP) dapcstp ILS Exact

n parc Opt Value Time (s) Time (s) N Value Time (s) Time (s)

500 0.1 10172.1 10172.1 35.8 0.1 10 10560.1 3.6 0.0
500 0.3 -9174.5 -9174.5 17.6 0.2 10 -9081.5 2.3 0.3
500 0.5 -23946.4 -23946.4 13.3 0.2 10 -23899.5 3.5 0.0
1000 0.1 -4382.9 -4375.0 69.1 1.2 10 -3758.0 2.1 0.4
1000 0.3 -60628.1 -60628.1 34.4 1.8 10 -60543.1 4.3 0.1
1000 0.5 -106726.2 -106726.2 14.4 2.4 10 -106691.7 3.6 0.1
5000 0.1 -527496.4 -527400.6 823.3 219.3 2 -513849.1 2.3 3.7
5000 0.3 -1372718.9 -1372321.9 214.6 151.1 7 -1369569.5 4.8 3.9
5000 0.5 -1951128.4 -1951128.4 93.6 95.1 10 -1950230.7 8.3 3.4

— — — — 146.2 52.4 79 — 3.9 1.3

27

	Overview
	Problem reductions
	Mathematical formulation
	Finding arborescences that span subsets
	Putting it all together
	Some results

