

MÉTODO SIMPLEX 3

Marcus Ritt

seg>

INF 05010 – Otimização combinatória — <2020-05-11

Outline MÉTODO SIMPLEX 3

1. Encontrar uma solução inicial

2. Sistemas degenerados

Método de duas fases.

Fase I necessária? Caso $b_i \ge 0$ para todo $i \in [m]$: aplica fase II. Dicionário inicial Cria o dicionário inicial do sistema auxiliar

$$z = \min\{x_0 \mid Ax \le b + x_o e\}.$$

Pseudo-pivô Pivota x_0 – x_k , sendo $k = \operatorname{argmin}_{i \in [m]} b_k$ o índice do lado direito mais negativo.

Solução fase I Aplica o método Simplex regular no dicionário resultante.

Sistema auxiliar: sempre possui uma sol. (por construção), e nunca é ilimitado.

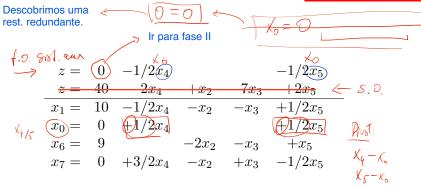
Fase II necessária? Caso a solução ótima da fase I possui valor $x_0>0$: o sistema original não possui solução. Para.

Remove x_0 da base Caso x_0 é uma variável básica: pivota x_0 - x_k com x_k uma variável nula com $\bar{a}_{0k} \neq 0$.

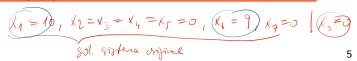
Prepara fase II Remove coluna x_0 . Remove a função objetivo do sistema <u>auxiliar</u> e introduz a função objetivo do sistema <u>original</u> (escrita em função das variáveis nulas).

Fase II Aplica o método Simplex regular no dicionário inicial da fase II.

Sobre remoção de x_0 da base



- Sempre vai existir uma variável com $\bar{a}_{0k} \neq 0$
- O pivô com qualquer uma dessa variáveis remove x_0 da base



- Um dicionário é degenerado se existe um $i \in \mathcal{B}$ tal que $\bar{b}_i = 0$.
- Problema: pode acontecer um pivô que não aumenta a variável entrante, e portanto não aumenta o valor da função objetivo.
- Tais pivôs são degenerados.

Problema maior: terminação.

K = 0

Fica no mesmo ponto, não faz progresso.

Perigo: ciclagem.

Exemplo 1: Nem sempre é um problema

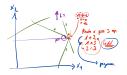
• x_2 é a variável sainte e o valor da função objetivo aumenta.

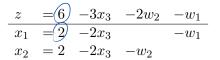
SISTEMAS DEGENERADOS

 $z = 3 + \frac{1}{2x_1} + \frac{2}{2x_2} - \frac{2}{3} + \frac{2}{3} +$

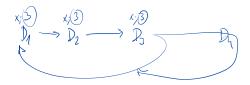
- Se a variável sainte é determinada pela equação com $\bar{b}_i=0$, temos um *pivô degenerado*.
- Nesse caso, a variável entrante não aumenta: temos a mesma solução depois do pivô.

O valor da função objetivo não aumentou! A sol. é a mesma.

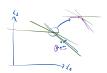




A segunda iteração aumentou o valor da função objetivo!

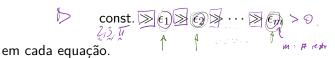


Logo: o método Simplex poderia não terminar => perder a corretude total.



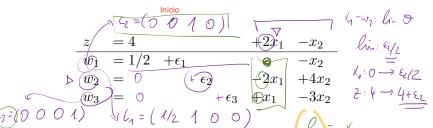
- <u>Ignora</u> o problema (ou <u>perturba numericamente</u>).
- <u>Método lexicográfico</u> (perturba simbolicamente).
- Regra de Bland.

Introduzimos perturbações simbólicas



• Característica: Todo ϵ_i é numa escala diferente dos outros tal que eles não se cancelam.

SISTEMAS DEGENERADOS Exemplo

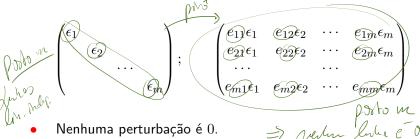


- Os e participam na determinação do limite!
- Mas nunca como "variáveis entrantes".
- O "coeficiente" agora é um vetor $c = (\overline{b} e_1) \dots e_m)^t$.
- Similarmente o limite para $\bar{a}_{ik} > 0$ é um vetor.
- Comparar limites l, l': $\underline{l} < \underline{l'}$ caso o primeiro coeficiente não-zero de l-l' é < 0. Comparar lexicograficamente.

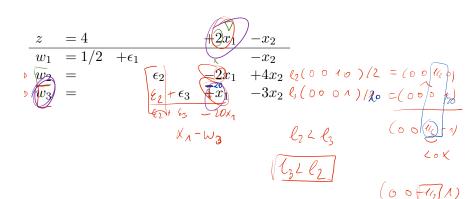
O método Simplex sempre termina escolhendo as variáveis saintes usando a regra lexicográfica.

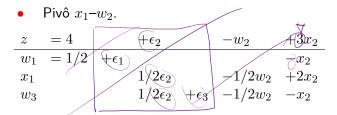
Cerls. Incares

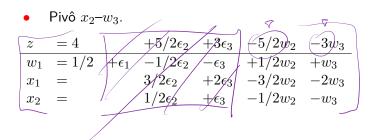
Perturbações durante a aplicação do método



nov fer Luas latos







Candidato p/ entrar: coeficiente positivo.

Candidato p/ sair: menor limite.

Escolhe como variável entrante e sainte sempre <u>a variável</u> com o menor índice (caso tiver mais que um <u>candidato</u>).

Para qualquer programa linear temos:

- Se não existe solução ótima, o problema é inviável ou ilimitado.
- Se existe uma solução viável, existe uma solução básica viável.
- Se existe uma solução ótima, existe uma solução ótima básica.

- No máximo (n+m) bases
- Uma regra de pivoteamento polinomial é uma questão aberta
- Melhor algoritmo: $O((n^3/\log n)L)$ (Anstreicher 1999) para inteiros com L bits em aritmética em O(1).
- Empiricamente o método Simplex precisa $O((m+n)^{1/2})$ (Vanderbei 2014).