A few parallel algorithms with communication

A simplified LogP model

- Let us assume now that:
 - A parallel program is run by \(p \) distinct and equal processors, each one with its own private memory;
 - The time to communicate \(n \) Bytes between two processors is modeled as:
 \[
 T_{\text{comm}}(n) = L + n/g
 \]
 1. \(L \) is a latency (in sec.),
 2. \(1/g \) (in B/sec) is the throughput (\(g \) is the “gap” between the transmission of 2 Bytes).
- This model is homogeneous, static and symmetric.
 - All the processors are supposed to be equal,
 - Their number does not change during the computation,
 - A communication does not privilege the sender or the receiver.

Granularity and Distribution

- Having a notion of “remote memory” vs. “local memory” enables to define two notions:
 1. The granularity of a parallel program is the ratio “number of instructions” / “volume of communication”;
 - Or better, the ratio “CPU time” / “Communication time”;
 - A program is called “fine-grained” or “coarse-grained” depending of its granularity.
 2. The way the data have to be distributed between the processors, in order to minimize the communication.
 - A processor can only compute with data in its local memory.
 - Notice that in practice you may have overlap between computation and communication.

Revisiting the matrix product

- 1st hypothesis: \(M \) and \(N \) are both copied in the memory of all the \(p \) processors.
 - It is reasonable to want to have ‘res’ also copied.
 - Each processor can compute roughly \(n/p \) coefficients of ‘res’.
 - since each one of these computations takes time \(t(n) \), the total computing time is \(t(n/p) \) (by processor).
 - But then, each processor must send its coefficients to all the other.
 - By processor, this means \(p-1 \) messages of size \(n/p \), i.e. \(T_{\text{comm}}(n) = (p-1)g \times n^2/p^2 \).
 - The good point is that each message is “big” (good for latency).
 - Grain: approx. \(g^2 n^2 / (p-1)^2 p^2 \) \(\approx g n p \).

With distributed matrices

- 2nd hypothesis: \(M \) and \(N \) are distributed, and ‘res’ should be distributed.
 - \(M \) is distributed by lines,
 - \(N \) is distributed by columns,
 - ‘res’ is distributed by lines.
 - Each process must compute \(n/p \) lines, i.e. \(n^2/p \) coefficients of res.
 - This means again \(t(n/p) \) op. by processor
 - The problem is that a given proc needs \((p-1) \times n/p \) columns that it does not own.
 - i.e., by proc: \(T_{\text{comm}}(m) = (p-1)n/L \times n/p \).
 - Grain: approx. \(g n^2 / n^2 = g n \)
 - Same thing as previous, not that good for Latency, better for throughput.

With block-distributed matrices

- 3rd hypothesis: \(M \) and \(N \) are distributed, and ‘res’ should be distributed.
 - \(M, N \) and res are distributed by blocks of size \(K x K \) elements.
 - \(g = K^2 \) i.e., \(K = n / \sqrt{p} \).
 - Each process must compute \(K^2 = n^2/p \) coefficients of res.
 - This still means \(t(n^2/p) \) op. by processor
 - Then, each processor needs to receive:
 - \((n-K+1) K^2 \) coeff. from lines \(= p \times (L+K^2/g) \) \(\approx n^2 g / p \)
 - \((n-K+1) K^2 \) coeff. from columns \(\approx n^2 g / p \)
 - i.e., by proc: \(T_{\text{comm}}(m) = 2 n^2 / g/p \).
 - Grain: approx. \(g n^2 / n^2 = g n / p \)
 - Good for latency, and much better than previous results.
System of linear equations

- Coming back to the LU original (non D&C) factorization...
 - for (k = 0 ; k <= n-2; k++)
 - for (i = k+1 ; i <= n-1; i++)
 - \(M[i][k] = M[i][k] / M[k][k] \)
 - \(\text{if } (r == \text{rank}(k)) \)
 - for (i = k+1 ; i <= n-1; i++)
 - \(M[i][j] = M[i][j] - M[i][k] * M[k][j] \)

- How do we distribute the computations?
 - Distribute M by column,
 - Each processor only computes the coefficients of its own columns.
 - Let us note rank(k) the rank of the processor which owns column k.

The parallel algorithm (1)

- Writing in a SPMD way (all the processors run this same code):
 - \(r = \text{my_proc_rank}() \)
 - \(p = \text{number_of_procs}() \)
 - for (k = 0 ; k <= n-2; k++)
 - if (r == rank(k))
 - for (i = k+1 ; i <= n-1; i++)
 - \(M[i][k] = M[i][k] / M[k][k] \)
 - \(\text{if } (r == \text{rank}(k)) \)
 - for (i = k+1 ; i <= n-1; i++)
 - \(M[i][j] = M[i][j] - M[i][k] * M[k][j] \)

- Using a “local index” \(l \) (0...n/p) for the columns:
 - \(r = \text{my_proc_rank}() \)
 - \(p = \text{number_of_procs}() \)
 - for (k = 0 ; k <= n-2; k++)
 - if (r == rank(k))
 - for (i = k+1 ; i <= n-1; i++)
 - \(M[i][j] = M[i][j] - M[i][k] * M[k][j] \)

Two more “implementation” details

- You need to broadcast the elements \(M[i][j] \) in the middle of the algorithm.
- This means sending n/p coefficients to all the p-1 other processors.
- Takes time (p-1)L x m/gp).
- Note: this is a worst case scenario – a broadcast can (should) be better implemented.
- It could take something like (L x n/g)(log)g).

- Probably, this broadcast needs to access contiguous elements in the local memory.
 - This means that the \(M[i][j] \) coefs. probably should be stored in column-major order (Fortran order).
 - Else (in C), you have to use an intermediate buffer.
- This is typical of MPI + C programming.

So what is the “rank()” function?

- \(\text{rank}(k) \) = rank of the processor that owns the column k.
- There are many options:
 - Block mapping: let \(B = n/p \), then \(\text{rank}(k) = k / B \)
 - \(/ \) is the euclidean division.
 - With this formula, the last processor gets a little bit more elements than the other.
 - Very simple to implement, and maximizes locality.
 - Cyclic (round-robin) mapping: \(\text{rank}(k) = k \% p \)
 - Simple to implement, minimizes locality
 - Good for load balancing.
 - Block cyclic: given a block size n/p \(\geq B \), \(\text{rank}(k) = (k / B) \% p \)
 - The best of two worlds.
Parallel complexity of LU

- Each processor performs (roughly):
 - \(n^3/2p \) divisions in the first phase (pivot computation)
 - Actually, they are products.
 - Broadcast: \((L + n^3/2p)\log(p)\)
 - \(n^3/3p \) products
- In the update phase.
- Total runtime:
 - \((n^3/2p + n^3/3p)T + (L + n^3/2p)\log(p)\)
 - Granularity: roughly \(gn/\log(p) \)
- This is not that bad (compare to the matrix products).
- But the parallel runtime is far from ideal.

How do you do it?

- These equations apply mathematical operators to 3D points.
 - E.g.: temperature(x,y,z).
- In order to solve them by approximation, the 3D spatial domain is discretized by a mesh.
 - The continuous operators turn to matricial operators.
 You then have to iteratively apply these operators to compute the values for each vertex
 - (this means matrix-vector products)
 - Hopefully this converges.

Solving a System of Differential Equations

- You want to simulate:
 - The heat diffusion in a metallic bar,
 - The behavior of a fluid flow when it meets an obstacle,
 - The diffusion of pollutants in a river,
 - The stock-exchange (bad example today...)
- Then you need to solve things like:

\[
\frac{\partial y}{\partial x} + \frac{\partial (mx)}{\partial x} - \frac{\partial (nx)}{\partial x} - \frac{\partial (ny)}{\partial y} + \frac{\partial (nz)}{\partial z} = \frac{\partial (V \Delta z)}{\partial x} - \frac{\partial (V \Delta z)}{\partial y} + f(x,y)
\]

(All the study in SCHEPKE et al., Performance improvement of the Parallel Lattice Boltzmann Method. SBAC'07)

Example of output – fluid in a channel

- A fluid flows in a square channel,
- There is an obstacle in the middle.
- How does it impact on the velocity/pressure of the fluid?

Domain decomposition (1)

- So you end up with a mesh that you have to distribute.
- How do you distribute it?
 - If it is "regular" (structured), e.g., with rectangles or triangles, all the same size, it is more or less like the matrices.
 - If it is unstructured (like the examples above), then it is much more difficult.
 - Graph partitioning techniques.
Domain decomposition (2)

- Anyway, you end up with a distributed data-structure (usually a d-dimensional array), with:
 - N internal vertices.
 - D peripheral vertices.
- The parallel computation will consist in an iterative process. At each iteration:
 - Each processor applies its (discretized) operator on the N internal points.
 - Each processor sends to those which own the neighbor domains the values of the points that lie on the frontier.
 - And receives from its neighbors their values.
 - Each processor updates its frontier with these new received values.
 - Either overwrite them, either uses a mean...

Parallele Programmierung
Nicolas Malhant, Marcus Bitte

19

Frontier

- The notion of frontier is crucial:
 - The more overlap between the frontiers, more continuous the solution will be.
 - The convergence will be faster, less risks of diverging.
 - There are numerical results that prove this.
 - The more overlap there is, more duplicated computation there is.
- From the parallel point of view, the communication is directly conditioned by the size of the frontiers
 - Granularity is roughly NT / 2(N + Dg).
 - So you want small frontiers.
- What is best?
 - A more parallel algorithm, which performs more iterations to converge?
 - A less parallel algorithm, which performs less iterations?

Parallele Programmierung
Nicolas Malhant, Marcus Bitte

20

Example: a “square” case

- The domain is a cube, containing N³ points.
- Divide it following one dimension in p slices
 - You have N³/p points by domain.
 - D is proportional to N³/p.
- Divide it following 2 dimensions in p “sticks”
 - You still have N³/p points by domain.
 - D is proportional to 4 N² / p.
- Divide it following 3 dimensions in p “small cubes”
 - You still have N³/p points by domain.
 - D is proportional to 6 N¹ / p³.
- The 3D solution is better!
 - But you need more technical manipulations of the communication!

Parallele Programmierung
Nicolas Malhant, Marcus Bitte

21

Performance analysis [Schepke ’07]

- Back to the fluid dynamics.
 - The 3D blocks win
 - They have a linear speedup.
 - But you can see the distance from optimum.

Parallele Programmierung
Nicolas Malhant, Marcus Bitte

22

Conclusion

- Taking communication into account leads to other preocupations:
 - Granularity.
 - Interleaving comm with computation.
- This is good, but is highly specific to each application and architecture
 - You have to measure L, g, etc.
 - You lose the “big picture”.
- You end up having to think about the implementation...
 - See the Broadcast in the LU factorization.
- Talking about implementation... This is the subject of next lecture!
 - Message Passing Interface (MPI).

Parallele Programmierung
Nicolas Malhant, Marcus Bitte

23