EURO-PVM/MPI'06
Bonn, Germany

MPI, MPI-2, ...

Message Passing Interface is the de-facto standard for Cluster Computing
= inherited from PVM;

~ MPI 1.2 does not provide the dynamic creation/management of processes

Improving the Dynamic Creation
of Processes in MPI-2

MPI-2: has been defined in 1998.
~ Parallel IO, RVA, efc... ;
~ Dynamic creation of processes (MPI_Comm_spawn)

Recent implementations of MPI-2:

— LAM: since the start of the 2000 years.
+ Lamgrow/lamshrink

~ MPI-CH: Jan., 2005,

— HP-MP!I: Dec., 2005.
Marcia C. Cera, Guilherme P. Pezzi, Elton Mathias,

i § Bt Towards a MPI for Grids ?
Nicolas Maillard and Philippe O. A. Navaux PO G2, Mpi-c st
— Checkpoint/Restart in MPI-CHv2 and LAM (/BLCR)
* builds upon MPI 1.2;
— Open-MPI: fusion between MPI-FT and LAM.
* Fully functionnal?

but not the

Work sponsored by CNPg, CAPES and HP Brazil

‘"’m"r'n‘»:a'ég EURO-PVMMPI06 UFRGS EURO-PVMMP1'06
UNIVERSIDADE FERAL

MPI_Comm_spawn() MPI_Comm_spawn()

* MPI_Comm_spawn(cmd, argv, argc,
nbprocs, info, root, comm_root,
&intercomm, err);

MPI_Comm_spawn(cmd, argv, argc,
nbprocs, info, root, comm_root,
&intercomm, err);

— cmd: name of the MPI executable.

— argv, argc: command line arguments to be
passed to ‘cmd’.

— nbprocs: number of MPI processes to be
created.

MPI_Init()

MPLInit()

MPI_Finalize()

'MPI_Finalize()

EURO-PVMMP1'06

EURO-PVMMP1'06

MPI_Comm_spawn() MPI_Comm_spawn()

* MPI_Comm_spawn(cmd, argv, argc,
nbprocs, info, root, comm_root,
&intercomm, err);

— info :backdoor left to the implementation.
* MPI-2 defines the dataype ‘MP|_Info’

* MP|_Comm_spawn(cmd, argv, argc, nbprocs, info,
root, comm_root, &intercomm, err);

— root : rank of the father process.

— comm_root : intra-communicator of the parent process
(MPI_Communicator).
* Ex. of use:

MPIInfo_set(info, “lam_spawn_sched_round_robin®, rank) — intercomm : inter-communicator that enables the

communication Send/Recv bwteen the processes in
‘comm_root’ and those of the children’s

* Starts a Round-Robin from proc number ‘rank’ MPI_Comm_world.

* (Round-Robin is the default)

EURO-PVMMP1'06

EURO-PVMMP1'06

Communication between the Processes

The parent uses the inter-communicator to
send/recv messages with its children.

* The children have to call

MPI_Get_parent() to obtain their parent’s
communicator.

— If the return is NULL, the children have been
“mpirun” directly, and not
MPI_Comm_spawned.

— The parent has rank 0 in this communicator.

EURO-PVMMP1'06 7

Two Main Issues with Dynamic Processes

® How to be efficient in the communication between parent and

children?
If anybody want to communicate with everybody, the comm have
to be merged (MPI_Comm_merge).
One should hierarquize the processes
-> Divide & Conquer.

® How does MPI_Comm_spawn allocate the processes ?
e Default: Round-Robin from a fixed rank (0).
Problem if a series a Spawns are repeated.

Problem when more than one process perform spawns in
parallel...

EURO-PVMMP1'06 B

Two Main Issues with Dynamic Processes

Example: Fibonacci with MPI-2

if <2l]
MET_Tsend (en, 1, MEI 3ON3, 0, 1, parent, areql;

l

elsel
sprirts (argvo], "51d
MEI_Comm_spaur. ("Fiko"

local_info, myrank, VPI_COVM_SEIF,

sprits (argvlo], "s1dr
WEL_Conn_apaur. ("Fiko*,

, Tyrank, MPT_COVM_SELF,

MEI_Rect i&x, 1, KPZ_LONG, MFI_ANY i
HET_F: , 1, VPZ_LONG, NFI_ANY
o= %+

MET_Tsend (efidm, 1, MIT_LONE,

i, 1, pazent, sreq);

HPZ_Finzlize ();

EURO-PVMMPI'06 8

Two Main Issues with Dynamic Processes

How to be efficient in the communication between parent and
children?
If anybody want to communicate with everybody, the comm have
to be merged (MPI_Comm_merge).
One should hierarquize the processes
-> Divide & Conquer.

How does MPI_Comm_spawn allocate the processes ?
Default: Round-Robin from a fixed rank (0).
Problem if a series a Spawns are repeated.

Problem when more than one process perform spawns in
parallel...

EURO-PVMMP1'06 10

Two Main Issues with Dynamic Processes

® How to be efficient in the communication between parent and o

children?
If anybody want to communicate with everybody, the comm have
to be merged (MPI_Comm_merge).
One should hierarquize the processes
-> Divide & Conquer.

How does MPI_Comm_spawn allocate the processes ?
- Default: Round-Robin from a fixed rank (0).
Problem if a series a Spawns are repeated.

Problem when more than one process perform spawns in
parallel...

EURO-PVMMP1'06 11

How to be efficient in the communication between parent and
children?
If anybody want to communicate with everybody, the comm have
to be merged (MPI_Comm_merge).
One should hierarquize the processes
-> Divide & Conquer.

How does MPI_Comm_spawn allocate the processes ?
Default: Round-Robin from a fixed rank (0).
Problem if a series a Spawns are repeated.

Problem when more than one process perform spawns in
parallel...

EURO-PVMMP1'06 12

Two Main Issues with Dynamic Processes Native Allocation of Processes

® How to be efficient in the communication between parent and
children?
- If anybody want to communicate with everybody, the comm have
to be merged (MPI_Comm_merge).
- One should hierarquize the processes

* The native mechanism may allocate all processes
to one processor !

-> Divide & Conquer. Enviranment Node 1 [Node2 | Node3 | Node4 | Node5
20 spawns of 1 process 20 0 0 0 0
® How does MPI_Comm_spawn allocate the processes ? I spawn o 20 processes | 4 | 4 4 4 4

- Default: Round-Robin from a fixed rank (0).
- Problem if a series a Spawns are repeated.

— Problem when more than one process perform spawns in * Improvement with one variable that controls where

parallel... to launch the processes.
Environment Node1 Node2 | Node3 | Noded | Node5
fib(6) with LAM stendard scheduler 25 a 0 0 a
fib(6) with embedded scheduler 3 4 8 2 3
EURO-PVMMP 06 13 EURO-PVMMP 06 14

Solution: a Centralized Scheduler Implementation of the Scheduler

* Simple idea:
— A daemon is run together with the MP| application to
centralize the allocation decision.

— MPI_Comm_spawn et MPI_Finalize() are redefined to notify
the daemon at process creation/finalization.

1. MPI_Comm_spawn/
Notification of the
E creation of a process
~wicmsaa) 2. Scheduling decision
- A 3. Physical creation
Krsmeouler L ¥ Ty %
L A 4. Notification of the
manager / 3 completion of the
Lo - process

* The scheduler daemon:

— Can manage the task graph of the application;

— Can decide about the location of the spawned processes, with
a Round-Robin algorithm;

 Centralized R.R.

— Can monitor /proc and base the decision about the load of
each node...

= Efei:

* Simple tests have been performed with a prototype

— To beincluded in a LAM distribution!

15 EURO-PVMMPI'06 16

1 - Fibonacci — Native Solution vs.

Three Experiments
Centralized Round-Robin Allocation

1. Application of the centralized RR to the computation of Number of processes on each node

Fibo(7), Fibo(10) and Fibo(13).
= This benchmark creates many processes of very short
duration
= Balancing the processes.

10 Native solution

Centralized RR solution

2. Recursive computation of the prime numbers in the
interval [1...N], with measure of the load
- Irregular run-time
- Improving the computation time.

Numbe of procassss

4. Round-Robin with a dynamically increasing number of
nodes (lamgrow)
— Dynamic creation of processes and resources
= Load balancing with dynamic resources.

Nods 11 (beivent 0 and 1)

EURO-PVMMP1'06 17 EURO-PVMMP1'06 18

1 - Fibonacci — Native Solution vs.
Centralized Round-Robin Allocation

Number of processes on each node

Numbe of procassss

an

1=10, p=17T
Nods 11 (beivent 0 and 1)
EURO-PVMMP1'06 19

2 - Prime Numbers — Balancing the Load
of an Irregular Application

Run-Time

ith Round-Robjn

=0 =

>

AT L

Time(s)

1

ased oh the load

0
106107 15c10% 20610° 25a10° 30x10° 35x10° aox10® 4s¢10° 50x10°
Interval size:

EURO-PVMMP1'06 21

3 - Fibonacci — Allocation of Processes with
lamgrow

250 |-

N

Number of processes

o T = T w T
1 min 3 min G min 9 min

Number of Nodes
EURO-PVMMP 06 23

Numbe of procassss

a0

250

N~

Number of processes

1 - Fibonacci — Native Solution vs.
Centralized Round-Robin Allocation

Number of processes on each node

The native solution did not run!

1=10, p=17T

Rods 11 (e s O o

EURO-PVMMP1'06

i | I

d El
n=13, 02753
1)

20

- Fibonacci — Allocation of Processes with

lamgrow

H

1 min

T Smin " T Gmin 5 min

Number of Nodes
EURO-PVMMP 06

22

- Fibonacci — Allocation of Processes with
lamgrow
1 min T 3 min v ’ G min ‘ ‘h ’ 9 min

Number of Nodes
EURO-PVMMP06

24

3 - Fibonacci — Allocation of Processes with
lamgrow

Y

Number of processes
T
i

dmn " " omn " 7 emn " " omn

Number of Nodes
EURO-PVMMP 06 25

Limitations & Next Steps

* Limited to LAM-MPI
— Yet, easy to port!

* The only Lam-dependent part is the integration into the
|_Comm_spawn implementation.

* Lamgrow is fine... What about lamshrink ?
— One needs some checkpoint/restart mechanism...
— Open-MPI could provide it ?

* Inaview to working with coarse-grained applications, the
benchmarks are somewhat limited...
— Current work includes “real-world” applications.

* Using such mechanisms in Grids?
— Does MPI-2 run on the Grid ?

— Globus enabled MPI distribution does not seem to focus
MPI-2..

EURO-PVMMP1'06 27

Conclusions

Dynamic creation of processes with MPI-2 is okay.
— Interesting for coarse-grained applications
— One needs to find a way to manage efficiently the
communication
* Parent/children
— LAM enables the dynamic integration of new resources
(lamgrow)

LAM'’s native allocation of Spawned processes is
weak.

— Well, it respects the norm !
— A simple, centralized solution leads to clear improvements.
— Why not providing such add-ons in the distributions?

Natural idea: distribute the scheduler
— Workstealing?
EURO-PVM/MP'06 26

Any return will be welcome!

nicolas@inf.ufrgs.br

EURO-PVMMP1'06

