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Abstract— In indoor environments, the presence of people
and dynamic objects is a common occurrence. In autonomous
navigation, this proposes a challenge since such objects have
unpredictable behavior. This affects the robots’ navigation,
often requiring re-planning. Having the knowledge about which
regions of the map are more densely occupied by those objects
can help in decision-making. In this paper, we propose a
method that creates a Crowd-Based Dynamic Blockage layer
using semantic information. This map represents regions that
are potentially difficult to navigate due to their concentration
on those obstacles. We also propose a strategy to track such
obstacles and update the map continuously. Finally, the robot
can decide whether a region is suitable to navigate or whether
alternative paths must be chosen. Our experiments show that
the Crowd-Based Dynamic Blockage can successfully improve
planning in this environment.

I. INTRODUCTION

During the last decades, autonomous robotics has evolved
from static environments, built specifically for a given appli-
cation, to environments with more dynamic objects, such as
warehouses, offices, healthcare houses, markets, and others.
In those places, the robot must adapt to them since the pos-
sibility of interaction with people and other objects is more
likely to occur.This adaptation can bring more autonomy,
robustness, and efficiency to the robotic system [1].

An autonomous robot needs to obtain information from
its environment and translate it into a sequence of actions
determined for it to reach its goal [2]. The amount of
variable information makes robotic environments highly un-
predictable, especially in close quarters, due to operating
close to people.In this case, using higher-level information is
a way to understand better the environment and the behavior
of those in it.

Many branches of research focus on obtaining and main-
taining information about the position of dynamic objects
in the environment to use them in the robot’s mapping and
navigation. In [3], semantic information is used for grid map
construction and marking identified objects. Similarly, in [1]
and [4], semantic information is used more straightforwardly
to navigate the environment and mark what has been seen.
Likewise, approaches to a complete system are referenced in
[5] and [6], where information is used to create layers and
make navigation decisions on specific situations.

Besides knowing the position of the objects, it is necessary
to know the class of the objects that are identified, to know
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the characteristics of the objects and how long they usually
stay in the environment, e.g., a heavy object (such as large
boxes or refrigerators) in the middle of a path tends to
stay there for an extended period of time as opposed to the
presence of a person who stays for a short period of time.
Thus, to maintain a well-known environment for autonomous
robots, it is prudent to keep information about the type
of object and its location, which can be done by fusing
the data obtained through the robot’s sensors. Therefore,
combining this information in a semantic map and using
it for autonomous robots’ navigation, task planning, and
exploration is possible.

Areas with dynamic objects can cause partial blockages
and delay the robot’s navigation. This information hasn’t
been thoroughly explored in previous works. The idea is
not to know precisely the position of dynamic objects, as
they tend to change frequently. Rather, roughly estimate the
region in which they are located and assess the impact it
may cause on navigation in terms of delays if the robot
travels there. This is the focus of this work. In this paper,
we propose a method for constructing dynamic blockages
using semantic information about people in the environment.
These blockages, called Crowd-Based Dynamic Blockages
(CBDB), are weighted for different configurations of people
and objects and can be used by traditional planners to make
informed decisions. Our main contributions are an approach
to maintaining updated CBDB information and a planning
strategy using CBDB.

The paper is structured as follows. Section II presents
the academic background, Section III describes a system
overview of our method, Section IV shows the results of
conducted experiments, and Section V summarizes our work
and suggests future works.

II. RELATED WORK

Semantic mapping is a widely researched area with differ-
ing approaches and for different purposes. In [7], a semantic
map is defined as obtaining relevant information in the
environment in which the robot is inserted and attaching it
to maps being created or other types of objects created. In
some cases, its use is for open environments, like in [8],
where the authors create a semantic map of the sidewalk and
the road. In indoor environments, in [9], the authors build a
semantic map from the robot’s sensor information and use
the robot’s information to be able to navigate the environment
and plan tasks. This information is assembled into a multi-
hierarchical representation. Similarly, the strategies in [3]
and [10] perform object detection and classification with the



YOLO technique [11] [12] and place the information in a
grid map.

A different approach to constructing the semantic map is
made by [13], where the authors address the problem that
the robot knows that there are objects around it but does
not know what type of object is detected. In [4], a different
type of semantic map is built with information from door
numbers; thus, a robot can be directed to rooms within the
known part of the environment. In [14] and [1], the authors
use the object’s semantic information to associate locations
and orientations where these objects should be to devise a
dynamic navigation strategy.

Other works using semantic maps focus on task planning,
a well-known area where a sequence of steps is planned for
the robot to execute to reach a specific location and fulfill a
task. In [15], the authors use a previously created semantic
map to solve tasks without human intervention. Instead of
having the goal as a set coordinate for the robot, the system
sets goals by giving the robot the task of finding an object
or entering a room in the environment.

A complete navigation robot system can be made using
the strategies above. In [16], the authors built a system
using semantic mapping and path planning techniques for
use in a wheelchair. The chair can use the grid map to
plan its path, and the semantic information is used to iterate
between humans and robots, enabling efficient navigation.
In [6], the authors use semantic map information when the
robot moves to a new destination, considering that at certain
times of the day, it must deviate from an area and take a
longer path for safety. In [5], the authors utilize Human-
Robot interaction to generate layers from observed objects
in the environment. This enables the robot to approach
individuals and seek their attention or steer clear of areas
where a person is engaged in tasks that the robot might
disrupt. Similarly, in [17], the authors use layering with
spatial information to characterize office spaces to create
conceptual representations. Our approach also proposes a
complete mapping and planning system, as presented below.

III. SYSTEM APPROACH

Fig. 1. Overview of the proposed system containing the mapping, the
planning, and the exploratory components.

We propose a system for robots equipped with a 2D
LIDAR and an RGB-D camera that operate in environments
with dynamic objects and agents, such as people. Our system
is composed of three major components, as seen in Fig. 1: the
mapping of objects in the form of a semantic map describing
the CBDB information, a planning strategy using the CBDB

where the best path is chosen considering the mapped
blockages that cross the robot’s way and an exploration
strategy which consists of actively moving the robot to the
location of current blockages to update them and search for
new ones. Next, we present each component in detail.

A. Mapping

The main idea of this component is to map dynamic
objects in a 2D representation and then evaluate whether
the regions containing them are favorable for navigation. For
this, we identify and classify objects, geometrically map the
environment using SLAM, mark the regions of interest, and
evaluate the costs of going through those regions. For the first
two tasks, we use YOLO for object detection using camera
images1, and GMapping for building a 2D occupancy grid
map using LIDAR information2, both being well-established
solutions in the field of robotics and automation. For this
work, only some objects are considered (e.g., person and
luggage); other objects in the environment are considered
unknown to this system. Some of these classified objects are
shown in Fig. 2.

After identifying an object of interest, to obtain its location
in the world, we calculate an estimated position based on the
object’s bounding box, determined by YOLO, and the depth
information of the pixels associated with the image patch
given by the bounding box. The information about the objects
in the environment is used to create a layer that maintains
control of the regions containing objects over time. In this
work, we call this layer “Crowd-based Dynamic Blockages”,
an example seen in Fig. 3(a).

The original occupancy grid, a lane map, and a semantic
map indicating the objects’ positions must also be updated
before building the CBDB. A complete overview of the
layers3 used in the system can be seen in Fig. 4(a). When an
object is detected, positional and semantic information about
the object is marked in the semantic map, i.e. a grid map
with different colored marks indicating the semantic value,
as shown in 4(b). The information regarding the position,
quantity, and types of objects in the environment is utilized to

1We use YOLO v3, a deep learning method for object detection [11].
2We use the ROS implementation described in http://wiki.ros.

org/gmapping.
3As our proposal focuses on the mapping of dynamic objects, the static

mapping of the environment using Gmapping and the creation of preferred
lanes for robot navigation were created prior to our experiments.

(a) Simulation (b) Real scenario

Fig. 2. Example of types of objects detected by the proposed system in
simulation and real environments evaluated in our experiments.

http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping


(a) (b)

Fig. 3. Example of a CBDB applied over a grid map based on the location
of detected objects. (a) Grid with a full blockage marked in red. (b) Values
used to compute the weight of a blockage region, where θx and θy are
the dimensions of the area affected by the objects and φ is the number of
objects in this region.

create a blockage in the region, as depicted in Fig. 4(c). This
blockage is assigned a weight, which will be subsequently
used for planning.

(a) (b) (c)

Fig. 4. Configuration of layers used in the system. (a) All layers in the
system. (b) Closer view of the semantic map. (c) Closer view of the resulting
CBDB based on the information in the semantic map. Clustered objects
generate larger blocking regions, as shown in red.

The dimensions of the blockage region, given by θx and
θy , are defined as sides of a bounding box containing the
positions of objects detected in front of the robot. Informa-
tion about the number of objects detected by the robot(φ)
is required as well, as exemplified in Fig. 3(b). Next, we
compute the weight of the region as follows,

γ =
φ

αθxθy
(1)

where α is a weighting factor that sets the difficulty of
crossing an area in terms of the number of objects per
m2. The weight is higher in proportion to the number of
obstructions in the robot’s path, as more turns are required
and additional time is spent on navigation.

B. Planning

We convert the detected objects into weighted blockages
within the CBDB layer and provide this information to the
robot for planning purposes. It helps the robot determine
whether it’s worthwhile to navigate through a crowded path
or if taking an alternate route would be better. First, our
system uses A* as the standard planner, but the algorithm is
interchangeable, to get the shortest possible path Porig. The
robot can choose the path by considering whether the area
is blocked in the CBDB layer, as illustrated in Fig. 5.

Fig. 5. Example of paths used in the planning process considering the
CBDB. Porig is the original path given that no blockage exists. Palt is an
alternative path given that the region has a full blockage. Pblk is the same
path as Porig but with the weight of the partial blockage, wblk .

The impact of the blockage over Porig, which we denom-
inated wblk, is obtained by applying the weight γ over the
path section associated with the region, as follows.

wblk =
wR

1− γ
γ < γmax (2)

When determining the route from Porig, we consider the
weight of the blocked region (wR) that the route passes
through, incorporating the weight assigned to the blocked
region. Considering that the robot needs a feasible space to
travel, the variable γmax

4 is used to determine how crowded
a region can be before being considered totally blocked.

The updated path regarding the blockage region, Pblk, is
Porig with an updated cost, as given by

cost(Pblk) = cost(Porig) + (wblk − wR). (3)

Then, we analyze if the updated path is sufficiently better
than an alternative path, Palt, that completely blocks the
designed region, as shown in Fig. 5. The decision follows
Eq 4. If, after weighing the blockage, the cost of Pblk

is higher than Palt, we select the alternative path. Before
selecting Pblk, we ensure that its cost must be lower than
Palt by a threshold wdiff

5. This parameter was added after
observing that deciding between narrow differences produced
inconsistent results.

Path =

{
Palt if cost(Palt) < cost(Pblk) + wdiff

Porig otherwise
(4)

C. Navigation and Object Position Update

In order to ensure the accuracy of blockage region in-
formation, the robot maintains a list of previously detected
objects. This list is regularly evaluated to determine if the
objects are still present and to update their positions if they
have moved. An example of objects that need to be analyzed
can be seen in Fig. 6, each having a different color assigned
to them.

During the exploration phase, visual information is pro-
cessed and examined. An algorithm describing the decision-
making when encountering an object is shown in Alg. 1.

4All the experiments executed in this work set the values of α = 2 and
γmax = 0, 7

5In our experiments, the wdiff value was taken as a 350 step difference
between the two paths.
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Fig. 6. Example of exploration of desired objects that need to be analyzed
and updated. (a) The different classes of objects marked in the grid map.
(b) The real position of the objects in the environment.

When the robot performs the exploration, if no object is
found, the occurrence in the grid map is cleaned, and the
robot goes to the next destination and repeats the process.
When the robot sees more than one object, it analyzes all
objects.

Algorithm 1: Active Exploration Strategy

1 while coverage not completed do
2 if object is detected then
3 if detected object is already mapped then
4 Update object information
5 else
6 Clear old object and update the new one
7 else
8 Clear object information
9 end while

IV. EXPERIMENTS

We ran our experiments with a Pioneer 3-DX mobile
robot equipped with a SICK LMS 200 LIDAR and an
Intel Realsense D435 RGB-D camera in simulated and real
scenarios. Simulated tests were executed using the Gazebo
simulation environment with ROS, while tests with the
physical robot were performed in the Institute of Informatics
building of UFRGS-Brazil. All the simulated experiments
were performed in a platform with Ubuntu 20.04 equipped
with an AMD Ryzen 5 processor, 48GB RAM, and a GPU
Nvidia GeForce RTX 3060. The experiment in the real
environment was performed on a platform with Ubuntu 20.04
equipped with an AMD Ryzen 7 processor, 16GB RAM, and
a GPU Nvidia GeForce RTX 3060.

Our experimental validation was divided into three parts.
First, we performed experiments that analyzed the impact of
partial blockages in the robot’s path and how knowing such
information beforehand leads to better navigation choices.
Next, we analyzed the behavior of our algorithm in different
situations, observing when the robot decides to take the
original shortest path and when it is better to take an
alternative longer path depending on the map topology and
blockage configurations. Finally, we compared our results
with a standard planning strategy6.

6For this, we used the move base package for ROS, which can be found
in http://wiki.ros.org/move_base

A. Analyzing the impact of people moving in the robot’s path

Preliminary experiments were conducted to verify how
partial obstructions can hinder navigation, making it slower
as the robot needs to adjust its route when encountering
obstacles. Simulated tests were done in a corridor-shaped
environment, Fig. 7(a). Dynamic obstacles were represented
by people walking through the corridor, while stationary
obstacles were represented by office furniture and people
standing still. A complete scenario is shown in Fig. 7(b).
The robot moved 20 times from one side of the map to
the other and returned, reacting to obstacles (which moved
independently of the robot’s motion). We compared the
crossing times of the clear path with the partially blocked
path in Fig. 7(c).

(a) (b) (c)

Fig. 7. Experiments in a simulated corridor environment with partial
blockage in the path. (a) The robot repeatedly moves from one end of the
corridor to the other and returns. (b) Example of objects present in the
partial blockage sector. (c) Box plot comparing elapsed travel time in paths
that have a partially blocked zone or clear paths. The red and green dots are
the travel times in the partially blocked zone and the clear path, respectively.
The blue circle and number indicate the average time for each scenario.

In a fully known environment (e.g., the clear zone), the
robot follows the planned path consistently, as seen from
the low variance in the times measured. On the other hand,
we can see that the presence of dynamic obstacles, even
without completely obstructing the path, substantially delays
the robot’s navigation (in the tested case, by around 40%).
Therefore, using the information in the CBDB, the robot can
plan whether it is worth trying to cross a potentially blocked
area or detour to an alternative path.

B. Analyzing the navigation’s decisions using CBDB

For the second part of the experiments, we analyze how
different types of maps and blockage locations impact the de-
cisions of our planning strategy. We first tested the approach
in the real-world environment of the Institute of Informatics
through a few experiments to observe its practical applica-
tion. An example of a situation encountered in our tests can
be seen in Fig. 8(a), where the shortest path goes through
a blockage, and our system decides to take the alternative
path. In Fig. 8(b), we can see the robot detecting objects
in a corridor in a blockage position. In environments with
similar corridor sizes, the differences between Pblk and Palt

are negligible; thus, the method chooses to follow the path
without partial blockages, as expected.

http://wiki.ros.org/move_base


(a) (b)

Fig. 8. Experiments performed in the Institute of Informatics. (a) Example
of the shortest path calculated and the path executed by the robot after
the blockage calculation. (b) Example of dynamic objects observed in the
environment that generate a partial blockage in the corridor.

Next, we performed multiple sets of simulated experiments
in three different scenarios7, 20 times each. Scenario A had
192 different configurations8 of blockages, initial positions,
and goals. Due to the complexity of scenarios B and C, we
randomly sampled among possible combinations of block-
ages, initial positions, and goals, these scenarios are shown
in Figs. 9(a), 9(c) and 9(e). Each map was divided into
regions associated with the corridors. A test configuration
was made by randomly selecting regions for the initial pose,
the goal, and a blockage region. Given the large number of
tested configurations, we focused on the planning process
and evaluation of the results, without conducting complete
tests involving the physical movement of the robot in the
Gazebo simulator.

In each test, the robot calculates a path from an origin
to a destination. If a blockage is in the way of the original
path, our system computes how much this blockage affects
the plan. Results are shown in Figs 9(b), 9(d), and 9(f). We
can see that path Palt was selected with greater frequency
than Porigin all the different maps. Because the generation of
blockages in the environment is random, most of the time, the
shortest path is not affected by a blockage. In this case, we
consider the path chosen as free, or Pfree. In other situations
(which varied from 40% to 45% of the time, depending on
the scenario), the blocking region coincided with a section
of the shortest path, and the algorithm had to decide between
paths. In all scenarios, the algorithm predominantly chose the
alternative path to circumvent the partially blocked region.
However, the difference decreases when there are fewer
options for alternative paths: in scenario C the choice for
Palt is 8.5 greater than for Pblk (i.e. 68/8); in scenario B it
decreases to 6.2 (i.e. 74/12); and in scenario A it drops to
2.9 (i.e. 57/20). Therefore, when there are fewer alternatives,
it becomes worthwhile considering traversing the partially
blocked regions.

7Each scenario is a simplified recreation of the Institute of Informatics
with minor modifications in the structure and length of the corridors.

8This value is obtained with f(x) = x!× 2x, where x is the number of
regions in each scenario

(a) Scenario A (b) Decisions in Scenario A

(c) Scenario B (d) Decisions in Scenario B

(e) Scenario C (f) Decisions in Scenario C

Fig. 9. Results of simulated experiments to analyze planning decisions.
Left: scenarios tested in the simulated experiments, with each corridor region
marked in the maps. Right: box plots showing the decisions made in each
scenario.

C. Analyzing the complete planning system

In our final experiment, we assessed the complete planning
system by executing the decision-making process and simu-
lating the robot’s motion in Gazebo. We compared the results
with those obtained from a standard navigation strategy that
does not utilize CBDB. The measured run time results,
utilizing a configuration system where the blockage is located
in a specific map region shown in Fig.10(a), are summarized
in Fig.10(b). Column ‘CBDB? No’ in Fig. 10(b) describes
the results obtained using the standard navigation algorithm,
i.e., when the robot does not have the blockage information.
Column ‘CBDB? Yes’ shows our system’s results. We ran-
domly chose 10 positions displayed on the map. The robot
starts from its initial position and travels to goal positions
sequentially. Only one blocking region exists on the right
side of the map, so some shortest paths between goals do
not cross the blockage, while others do.

Additionally, two conditions of CBDB information were
tested: one with high accuracy and the other with low. In the
experiments marked as ‘φ set’, the exact number of obstacles
predicted in the CBDB were placed in the blockage area. In
the experiments marked as ‘φ random’, a variable amount
of obstacles was placed in that region. This means that the
number of obstacles likely differed from what was predicted,
potentially resulting in a different crossing time than initially



expected for the robot.

(a) (b)

(c)

Fig. 10. Fig. 10(a) shows the goals used in one of the experiments. The
blockage is the red region and the start position of the robot is represented
by the yellow star. Fig. 10(b) shows the results obtained in this experiment,
where each row is directly related to goals in Fig. 10(a). The highlighted
rows are the paths chosen with blocked regions. Fig. 10(c) has the mean
times for all configurations on each scenario.

Pfree represents the choices made when the path to the
goal does not pass through the blocked region. Porig repre-
sents the choices made when the calculated cost of the detour
doesn’t reach the threshold, maintaining the original path.
Palt represents the choices where the robot detours from
the blocked region. The paths followed by both algorithms
when choosing Porig are virtually the same. However, the
time taken to travel through them may be different, which
is justified by the fact that the robot has to make real-time
adjustments to avoid unforeseen dynamic obstacles.

Fig. 10(c) synthesizes the mean time for each case scenario
(Fig. 10(b) being a fragment of the experiment) for all the
maps used. With this, we can compare that on the φ set,
scenarios A and B have an average time using the CBDB
11% less than not using it (i.e., 68.9/76.7 and 60.4/67.2).
However, scenario C’s average time is only 3% lower (i.e.,
51.4/52.8). When φ is random, using CDBD in scenario A
produces a time that is 17% faster (i.e., 65.6/78.8) and 14%
faster in scenario B (i.e., 65.6/78.8). In scenario C, the times
were only 2% lower (i.e., 51.8/52.5).

With these results, it is possible to note that when the
map has different paths that can be chosen, the gain with
the usage of CBDB decreases. In contrast, using CBDB
in environments with long corridors or limited routes is
beneficial.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a system composed of se-
mantic mapping and planning that uses the Crowd-Based
Dynamic Blockage layer, our main contribution. Using this
information during planning can avoid wasting time going
to a blocked path while saving computational resources by
pruning costly paths. With our experiments, we observed that
a robot navigating a corridor with dynamic objects might take

longer time as opposed to empty corridors. Additionally, us-
ing our method, we perceived an improvement when evading
blocked regions using previously acquired information. Our
method performs similarly to standard navigation methods
in areas with wide open spaces since the robot can avoid
a blockage without major path alteration. However, it shows
better results when operating in narrow hallways or corridors.

For future works, we plan to use our system in a more
realistic environment while considering more object classes
and vast areas. Additionally, the technique can be improved
by using more semantic information, considering types of
blockages, and clearing areas through time. We could also
use the CBDB layer to adjust the robot’s position in the
occurrence of poor localization.
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