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Abstract— Mobile robots can be used in numerous outdoor
tasks such as patrolling, delivery and military applications. In
order to deploy mobile robots in this kind of environment,
where there are different challenges like slopes, elevations, or
even holes, they should be able to detect such challenges and
determine the best path to accomplish their tasks. In this paper,
we are proposing an exploration approach based on potential
fields with local distortions, in which we define preferences in
uneven terrains to avoid high declivity regions without com-
promising the best path. The approach was implemented and
tested in simulated environments, considering a ground robot
embedded with two 2D LIDAR sensors, and the experiments
demonstrated the efficiency of our method.

I. INTRODUCTION

Autonomous exploration is fundamental for mobile
robots operating autonomously in unknown or partially
unknown environments. Over the years, several explo-
ration approaches [1], including planners involving potential
fields [2]–[5], have been devised for structured planar indoor
environments.

Recently, the focus started to move from structured in-
door environments to unstructured outdoor environments
with uneven terrain [6], which broadens the applications of
autonomous robots, but also adding increased traversability
problems. Uneven terrains may, or may not, be accessible to
an autonomous robot depending on terrain declivity, i.e., the
separation between obstacles and free regions is less clear
to detect. Unstructured and uneven environments may pose
kinematic constraints to the robot (e.g., region is too steep),
or add increased or decreased energy expenditure [7] de-
pending on terrain declivity. Therefore, terrain classification
and the definition of actions for each terrain type [7]–[13],
become fundamental problems for autonomous exploration.

In the area of potential fields, while some approaches
are now focusing on uneven terrain [13], [14], most of
them keep the traditional focus on indoor and structured
environments [2], [5], [15]. Still, the application of potential
fields to the exploration problem is quite interesting. For
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instance, Prestes et al. [15] developed an exploration strategy
relying on the Boundary-Value Problem (BVP) resolving
the Laplace equation. The potential update algorithm is
made with a relaxation method, such as Gauss-Seidel, that
solves the problem incrementally and allows the use of
partial solutions. For that, we just need to define correctly
the boundary conditions (obstacles and goals, which in the
mapping problem correspond to unexplored areas), which is
simple when we have a grid map. Nevertheless, arguably the
main advantage of the BVP exploration is that the potential
field generated from the Laplace equation is a harmonic
function, free of local minima, which is one of the main
weaknesses of other potential field approaches. This means
that after computing the potential field we can always find a
path from any position in the map to the goal, and the path is
safe, i.e., far from obstacles, and smooth, which is specially
suitable for robot control. On the other hand, one of the
main problems of the BVP strategy is the high computational
cost involved for computing the potential field, which, for
example, greatly hinders its use in 3D environments.

Over the last years, extensions were presented for the
BVP exploration, mainly focusing on improving compu-
tation speed, such as the use of local windows [16] and
multigrid strategies [17]. Another major point of research
is the generation of local distortions in the potential field,
that modifies the robot path during exploration to consider
regions with different preferences [4], [18]. However, even
though potential distortions have the possibility of being used
in uneven terrains, research in this area is still open.

Our proposal is an exploration strategy based on BVP for
uneven 3D terrains, that is computed over a 2D grid asso-
ciated to an elevation map, which is crucial to circumvent
the high costs associated with the potential field update. The
proposed strategy takes advantage of potential distortions to
define preferences in environments with varying declivity, in-
cluding regions where the autonomous robot cannot traverse,
e.g., trees, stones, and so on. The proposed algorithm is able
to avoid high declivity regions without completely blocking
access to them. This is particularly important when the robot
has to cover such terrain and a complete obstruction may
lead to failure to accomplish the mission. Another feature
of the algorithm is to provide a global potential distortion
parameter used to avoid potential flattening, a known lim-
itation of BVP planners. In addition to that, the algorithm
proposes a mechanism to constrain the influence of potential
distortions, avoiding convergence problems. The resulting
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algorithm relies on a single partial differential equation to
attain a smooth trajectory toward the goal, avoiding steep
regions when required, ideal for outdoor environments or
indoor environments where the robot faces uneven terrain.
The algorithm is tested in simulation environments using
Gazebo and ROS.

This paper is presented as follows. Section II presents
relevant work on autonomous exploration in uneven envi-
ronments. Sections III and IV present the proposed approach
and experimental results. Section V presents conclusion and
future work.

II. RELATED WORK

There are different approaches related to the problem
of exploring unstructured uneven terrains and traversability
problems. A recent survey on traversability problems focus-
ing on Unmanned Ground Vehicles (UGVs) is presented
by Papadakis [6]. In the seminal work of Kweon and
Kanade [8], a digital elevation map is constructed using
a range of 3D vision-based sensors to construct a digital
elevation map of rugged terrains and using them to correct
localization errors. Joho et al. [19] trades off the expected
information gain and the cost of executing an action to con-
struct 3D maps. Steep slope regions are detected and avoided
to protect the robot by analyzing gaps in the sensor readings.
Kuthirummal et al. [9] uses LIDARs and stereo sensors to
robustly obtain elevation maps as 2D grid-cells from point
clouds and create a graph portraying safe regions which the
robot can traverse. Santamaria et al. [11] present two meth-
ods based on Gaussian processes: one online technique using
time-of-flight camera to detect obstacles and holes; and an
offline technique using laser range finders to learn traversable
regions. Martin and Corke [7] are concerned with energy
expenditures as a function of terrain traversability, which are
used to explore and construct maps focusing on minimum
energy. Suger et al. [10] points out security issues for the
robot involving traversability constraints. They present a way
for different robots to learn their traversability capabilities
from human operators. Despite not being a UGV, Shen et
al. [14] devise an efficient algorithm employing system of
particles governed by a stochastic differential equation to
perform autonomous 3D exploration using a micro-aerial
vehicles (MAVs). Bircher et al, [20] devise a path planning
algorithm for outdoor environments using MAVs, based on
a receding horizon approach, using a geometric random tree
to sample upcoming configurations.

Concerning potential fields methods, relevant for the
present work, there are approaches which handle unstruc-
tured uneven terrain while traversing it. Vlantis et al. [21]
addressed the problem of robot motion planning in a static
and bounded environment with arbitrary connectedness and
shape. Their proposal is based on harmonic potential fields
and appropriate adaptive laws that can safely navigate a robot
to its goal state from almost all initial configurations. Munoz
et al. [22] also presented a work related to robot navigation,
in which the robot trajectories are generated using Artificial
Potential Fields and the sensed depth information from the

environment. They used polar control laws to move the robot,
that can reach a goal and continuously replaning its path
without collisions. In addition to the potential fields, Friuden-
berg and Koziol [23] are also using Parallel Navigation (PN)
to propose a navigation method with obstacles avoidance.
Their proposed combined algorithm is able to guide the
robot to rendezvous with a moving target while avoiding
obstacles in its path. Another combination of potential field
and other methods was introduced by Chen et al. [24]. They
combined point cloud semantic segmentation with potential
field in order to propose a robust navigation method for
mobile robots in unknown indoor environments. Rodrigues
et al. [13] use low-level visual information to construct a
potential information field in uneven terrains to improve
localization of a mobile robot and drive it toward the goal,
by associating image features with reactive or attractive
potentials and without the need of constructing a map.

Finally, our proposal is based on a specific type of poten-
tial fields, the ones involving the solution of a Boundary-
Value Problem (BVP) [3], [4], [15]. Prestes et al. [15]
presented the BVP-based exploration that solves the Laplace
equation with Dirichlet boundary conditions over a 2D grid
map. The method was improved [16] by using a local
window with size varying according to the smallest sonar
reading. Vallve and Cetto [2] used the entropy of the map
with traditional frontier-based exploration to create a gradient
of the potential information field, where the quality of the
map, loop-closures and coverage are considered. Silveira
et al. [17] proposed a fast multi-grid approach to solve
the BVP performance problems while computing the global
potential field. Later, the use of potential distortions through
the modification of the partial differential equation were
proposed [3], [18] to generate different behaviors other than
the traditional greedy approach.

In this paper, we add a local potential distortions slope
values in a BVP setup to perform autonomous exploration
in uneven 3D terrains.

III. OUTDOOR EXPLORATION USING POTENTIAL FIELDS

A. BVP-Based Exploration

The proposed exploration approach relies on incrementally
computing a potential field over a grid map that corresponds
to the numerical solution of a Boundary-Value Problem
(BVP) [3], [15]. The BVP-based exploration [15] computes a
harmonic potential function defined by the Laplace Equation
(∇2p(x, y) = 0) together with Dirichlet boundary conditions,
i.e., fixed potentials set at the boundaries of the domain
(known traversable area). By setting a fixed high potential
to obstacles and low potential to unexplored regions, we can
generate a potential field, free of local minima, to be used as
guide to the exploration process. By following the gradient
descent of the potential field, the robot is able to fully explore
the environment while developing a smooth trajectory far
from obstacles.

However, instead of simply using the original Laplace
Equation, it is possible to generate distortions in the potential
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Fig. 1: Variation in potential field using different global preference
values, but same boundary conditions (blue: obstacles, black: goals).
With high preferences (b) the potential decreases faster than the
original harmonic function (a), while low preferences (c) makes
the potential to decrease slower.

field [3] and create regions of different preferences in the
environment following Eq. 1,

∂2p(x, y)

∂x2
+
∂2p(x, y)

∂y2︸ ︷︷ ︸
∇2p(x,y)

− ε(x, y)

(∣∣∣∣∂p(x, y)∂x

∣∣∣∣+ ∣∣∣∣∂p(x, y)∂y

∣∣∣∣)︸ ︷︷ ︸
distortion

= 0,

(1)
where ε(x, y) is a parameter that indicates the preference of
a position (x, y). If ε(x, y) > 0, the potential field decreases
faster in this position, which makes the potential closer to
the goal value, becoming more attractive to the robot. In
contrast, if ε(x, y) < 0, the position becomes less attractive.
Additionally, we are able to change the decay curvature of the
potential field by just applying the same distortion globally
(in all known environment), as shown in Fig. 1.

Considering that the space is discretized in a grid map,
the solution of Eq. 1 is obtained using a finite-difference
approximation. The potential of a cell (x, y) (that is not
boundary condition) is incrementally updated through a
relaxation method as follows,

p(x, y)← ph(x, y)−
ε(x, y)

4
pd(x, y), (2)

where

ph(x, y)←
p(x, y + 1) + p(x, y − 1) + p(x− 1, y) + p(x+ 1, y)

4

pd(x, y)←
∣∣∣∣p(x, y + 1)− p(x, y − 1)

2

∣∣∣∣+ ∣∣∣∣p(x+ 1, y)− p(x− 1, y)

2

∣∣∣∣

B. Defining boundary conditions in uneven 3D terrains

The BVP-based exploration requires the definition of two
different boundary conditions: obstacles (repulsive potential)
and unexplored areas (attractive potential). In this work,
we consider a ground robot equipped with two 2D LIDAR
sensors: one parallel to ground and other tilted down to
detect the ground in front of the robot. For robots like that
placed in 2D environments this can be trivial (using only
the first LIDAR): cells at the end-points of laser readings
are associated to obstacles; cells swept by laser readings
before reaching the end-points are associated to free-space;
the remaining cells are unexplored. In 3D environments the
problem is more difficult, because a range-finder usually
captures not only the presence of obstacles, but also the
ground curvature, which in general must not be marked
as obstacle, otherwise the exploration will never complete.

Hole

Obstacles

(a) Elevation map

detected
border
detected
border

unmapped
region
unmapped
region

(b) Boundary conditions

Fig. 2: Mapping of negative obstacles (hole, in red) is made by
detecting cells below the current ground level. Unmapped cells
between the detected ones and the robot position are also marked
as negative obstacles.

Also, there are “obstacles” that the sensor is not able to
directly detect such as slopes, cliffs or holes in the ground.

Many works in outdoor exploration use elevation grids (or
variations) to represent the environment and determine its
traversability [6], [10], [19]. In the same way, our approach
uses a traditional elevation grid that is built as the robot
moves, and stores the average of the measured heights of
each cell. We analyze the local variation of heights to detect
the presence of obstacles and slopes, and classify them as
boundary conditions in a 2D grid map M , with cell size sM ,
where the potential field will be computed.

Obstacles are detected in two ways:
• By comparing the height h(x, y) of a cell with the

average height ĥ(x, y) of all neighbor cells inside a
kernel of size Kn centered at (x, y). The cell (x, y) is
an obstacle if the difference h(x, y)− ĥ(x, y) surpasses
a threshold hobs.

• When we still do not have enough information about
the heights of the neighbors of (x, y), but such cell is
being detected by the front-facing sensor and the robot
is too close to this cell (closer than a distance dobs).

Holes (or cliffs, slopes) are detected similarly to the work
of Joho et al. [19]. When the LIDAR pointing downwards
measures the height of a cell, h(x, y), that is sufficiently
below the ground level of the robot position, h(xr, yr), i.e.,
when h(x, y)−h(xr, yr) < hhole, such cell is considered to
be a negative obstacle. However, the detected cell usually lies
at the bottom of the hole/cliff or in the opposite border, while
the nearest border of the hole (in front of the robot) remains
unmapped, as shown in Fig. 2. To avoid this issue our
approach performs a ray-cast starting from the detected cell
and going back to the robot position marking all undetected
cells in the way as negative obstacles. This technique may
mislabel some unknown cells that are near the hole but are
not part of it. Luckily, in general this is not a serious problem
as it will only make the robot stay farther from the hole.

Lastly, as in the traditional BVP exploration, the goals are
the cells in unexplored areas, i.e. the ones not measured yet.

C. Using dynamic preferences during exploration

Without disregarding the importance of defining proper
boundary conditions in the BVP-based navigation strategy



(otherwise the robot may not be able to perform the full
exploration of an environment), one of the main contributions
of this method is how to handle local potential distortions
using preferences. The application of preferences in previous
works [3], [4], [18] was generally made manually over the
map or considering simplistic rules, e.g., giving a fixed high
preference to cells near obstacles to perform wall-following.

In our work, we propose computing dynamic preferences
in all free-space cells as a function of their height values and
the height of the current robot position. The idea is to give
less preference to regions that are at different heights than the
robot, making it to prefer traveling through flatter regions.
That is, the algorithm classifies the traversability of the
terrain on-the-fly, implicitly defining the safe path the robot
should follow using a height-based preference component.
Eq. 3 defines the height-based preference of a cell (x, y),

εheight(x, y) = max(−λh × |h(xr, yr)− h(x, y)|, εhmin
),
(3)

as a function of the absolute difference between the height of
the cell (x, y) and the robot cell, and a scale factor λh. This
preference is always negative and limited from some εhmin

to 0, where the larger the height difference the more negative
the preference is1. If the height of a cell is still undefined,
εheight(x, y) = 0.

Additionally, we propose a global dynamic preference
component applied to all cells aiming to alter the decay of
the potential field, as exemplified in Fig. 1, and maintain a
significant difference of potential around the robot. While
preferences are good to guide the robot to regions that are
more interesting, there are precautions that should be taken
when using them. For instance, if we increase too much the
preference of a region, or if the goal is too far from the robot
and there are low preference regions between them, the robot
may take too long to cross such regions. We can note such
situation when the difference of potential field surrounding
the robot, pdiff (xr, yr), becomes too small. pdiff (xr, yr) is
the average of the difference between the potential at the
robot position and the potential of neighboring cells inside
a kernel of width Kn. This value always stays between 0
and 1, but quickly becomes really small (in the orders of
10−6, 10−8, 10−10...). In our approach, if pdiff (xr, yr) be-
comes smaller than 10−10 we momentarily disable the usage
of height-based preferences to make the robot reach the goals
through the smallest path. Then, only when pdiff (xr, yr)
gets larger than 10−4 we reinstate this preference usage.

It is also to deal with this problem of potential flattening
that we use a global preference2 as defined in Eq. 4,

εglobal = min(−λg × log(pdiff (xr, yr)), εgmax
). (4)

The smaller the value of pdiff (xr, yr), the larger is the
value of εglobal, which is always positive, in contrast to
εheight(x, y), that is always negative.

1The preference values that can be used are limited to [-2, 2], otherwise
the resulting potential in Eq. 2 grows outside [0,1] and the solution diverges.

2λg is a scale factor and εgmax is the maximum preference value.

(a) Elevation map

Unknown
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Obstacles

(b) Boundary conditions
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Lower
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(c) Preferences map

Other
goals

Selected
goal

(d) Potential field

Fig. 3: Exploration process prioritizes navigation (robot path, in
magenta) towards goals (unexplored area, in dark yellow) over
regions with higher preference.

Finally, the resulting preference in cell (x, y) is the
composition of both types of preferences,

ε(x, y) = εglobal + εheight(x, y). (5)

The value of ε(x, y) is limited to [εhmin
, εgmax

], given that it
is the sum of a positive preference, εhmin ∈ [0, εgmax ], and
a negative preference, εheight(x, y) ∈ [εhmin , 0],

Fig. 3 shows an example of the exploration process using
dynamic preferences. The elevation map, (a), is used to
generate the boundary conditions, (b), and the height-based
preferences, (c), and both are combined to compute the
potential field, (d). We can see that there are different goals to
be reached in the environment, but the robot chooses the one
that can be reached staying in the region of higher preference.
Note in (d) that, even though all goals have the same fixed
potential value, the selected goal is the most attractive one
(the darkest region) due to the effect of the preferences.

IV. EXPERIMENTS

Our approach was evaluated in simulated experiments
using a Pioneer 3-AT robot equipped with two 2D LIDAR
sensors (with ranges limited to 12m): one aligned with the
robot top plate in parallel to the ground, and one tilted
20◦ downwards measuring the ground in front of the robot.
The experiments were made using ROS and the Gazebo
simulator, and considering the parameters defined in Table
I. Four scenarios with different characteristics were tested,
as shown in Fig. 4: scenario 1 is an almost totally flat
terrain containing obstacles and one big slope crossing the
environment; scenario 2 is an uneven terrain (as well as
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Fig. 4: Scenarios used in the experiments. Description: S - slope;
H - hole; B - building; E - elevation/hill; C - cliff.

scenarios 3 and 4) with obstacles, a slope in the corner and
two large holes; scenario 3 contains different obstacles and
a building with an entrance; scenario 4 contains obstacles,
one hole, one steep elevation and one cliff.

Parameter Value Definition

sM 10 cm Grid cell size
Kn 20 cells Kernel width
hobs 30 cm Obstacles height threshold
dobs 1.5 m Obstacles distance threshold
hhole -60 cm Slope height threshold
εhmin

-0.5 Min. value of preference
εgmax 0.5 Max. value of preference
λh 2.0 Scale factor for height preference
λg 0.005 Scale factor for global preference

TABLE I: Parameters used in the experiments

Fig. 5 shows the results of experiments in scenario 1,
comparing the exploration with and without using prefer-
ences. With no preferences, (a), the robot properly classifies
obstacles as boundary conditions, but ignores the big slope
in the middle of the scenario since it cannot classify it as
an obstacle (and it shouldn’t). However, disregarding such
information may lead the robot to cross the slope region
multiple times, which increases the chances of slippage,
energy consumption, etc. Using preferences, (b), the robot
(if possible) always choose to visit first unexplored regions
of higher preference. This leads the robot to fully explore the
higher ground, (c), before crossing the slope a single time
and completing the exploration (d).

Fig. 6a shows an exploratory path obtained in scenario 2.
The robot starts in the middle of the environment (pos. 1)
and at the beginning it must avoid the larger hole at the top
right corner. The opposite side of the hole is mapped as an
obstacle (blue) due to the large height variation detected by
the LIDAR in the border of the hole. In turn, the margin at
the front of the robot is mapped as negative obstacle (red),
due to the absence of height measurements in that region,
that prevents the robot from falling. The robot explores the
top right corner (pos. 2) but avoids getting too close to it and
climbing the slope, based on the preferences. Then it detects
and avoids the hole at the bottom left corner (pos. 3), before

SlopeSlope

(a) No preferences
(final height map)

SlopeSlope

(b) Using preferences
(final height map)

SlopeSlope

100%
explored

0%
explored

0%
explored

(c) Preferences map at the
middle of exploration

SlopeSlope

100%
explored

100%
explored

(d) Preferences map at the
final of exploration

Fig. 5: Comparison of the exploration process without preferences,
(a), and with height-based preferences, (b), in scenario 1. Note the
preferences variation in (c) and (d) depending on the robot position
(darkest = higher preference).

going to the right side (pos. 4) and finishing the exploration
surrounding the first hole (pos. 5).

The exploration in scenario 3 is shown in Fig. 6b. In this
scenario, there are obstacles of different types, including
a building with an entrance. After mapping part of the
environment (pos. 1-3), the robot approaches the entrance
of the building (pos. 4). However, the robot does not enter
it due to a characteristic of BVP-based exploration. Since it
is possible to sense all the building’s interior from its door,
when the robot reaches such position there is an immediate
absence of attractive potentials inside the building, so it turns
around and continues the exploration (pos. 5).

Finally, Figs. 6c and 6d show two exploratory trajectories
obtained in scenario 4 containing a steep hill, a large hole
and a cliff. The interesting aspect is that depending on the
path developed by the robot the boundary conditions can be
classified differently. In Fig. 6c the robot starts at the top left
corner (pos. 1), detects the large hole (pos. 2), then moves
towards the bottom right corner (pos. 3). At this position the
robot detects the cliff slope from below, just like a barrier,
and classify that region as obstacle. Next, the robot proceeds
to explore the rest of the environment, and ends visiting the
top of the cliff. On the other hand, in Fig. 6d, the robot starts
at the top right corner (pos. 1), detects the large hole (from
the opposite side of the previous experiment) and moves
towards the cliff (pos. 2). Due to the different point of view,
the cliff is classified as a negative obstacle given the absence
of height measurements in such region. After this, the robot
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Fig. 6: Exploration examples in scenarios 2, 3 and 4 (robot path,
in magenta; obstacles in blue; negative obstacles in red).

returns and explores the rest of the environment (pos. 3-
5). The main difference that may result from variations in
the classification of boundary conditions is the size of the
classified region, because in general the classification of
obstacles is more accurate than holes. Other than that, both
boundary conditions act the same way as repulsive potentials.

V. CONCLUSION

In this work, we present an exploration strategy using
BVP-based potential fields for uneven 3D terrains. The key
contributions of this work are: (i) the first potential field
strategy to define traversable and untraversable regions on-
the-fly using preferences; (ii) a robust strategy to control
the effect of distortions of the potential field, with clearly
defined parameters; (iii) tests considering different situations
and simulation scenarios, which confirm the safety of the
approach for real world tests.

The experimental validation has shown that potential fields
using BVP is a powerful strategy, that with proper settings
of boundary conditions and preferences, is not only able to
avoid obstacles and reach goals, but also to make complex
decisions during navigation, such as avoiding dangerous
areas (e.g. cliffs, holes), avoiding going up and down hills
unnecessarily, prioritizing navigation over flat areas, etc.

The present study does not consider the effects of non-
holonomic robots with different kinematic constraints – i.e.,
different robots may climb different slopes depending on
robot pose in the terrain, and such parameters are robot
dependent. In the future, we plan to address this problem
and also consider robots with increased degrees of freedom –

e.g., UAVs and AUVs. We are currently testing the algorithm
in real world scenarios associated to mine detection robots.
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