
Global Localization Over 2D Floor Plans with
Free-Space Density Based on Depth Information

Renan Maffei† Diego Pittol† Mathias Mantelli† Edson Prestes† Mariana Kolberg†

Abstract— Many applications with mobile robots require self-
localization in indoor maps. While such maps can be previously
generated by SLAM strategies, there are various localization
approaches that use 2D floor plans as reference input. In this
paper, we present a localization strategy using floor plan as
map, which is based on spatial density information computed
from dense depth data of RGB-D cameras. We propose an
interval-based model, called Interval Free-Space Density, that
bounds the uncertainty of observations and minimizes the
effects of movable objects in the environment. Our model was
applied in a Monte Carlo Localization strategy and compared
with traditional observation models. The results of experiments
showed the robustness of the proposed method in single-camera
and multi-camera experiments in home environments.

I. INTRODUCTION

Global localization is a fundamental problem of mobile
robotics that consists in estimating the pose of a robot, that
is initially unknown, relative to a map of the environment
known a priori [1]. Most approaches model such estimate as
a probability distribution, which is updated through Bayesian
filtering. Among those approaches, Monte Carlo Localization
(MCL) [2] stands out as one of the most popular, due to
its ability to model arbitrary distributions, robustness and
simplicity. However, the efficiency of the localization process
depends on a series of factors, such as the map representa-
tion, and the way sensor measurements are modelled.

Different map representations have been used in robotics
throughout the years and each of them are more suitable to
some types of sensors and environments. For example, grid
maps are easily generated from rangefinders sensors such
as lasers and sonars; feature-based maps can be generated
from camera images, etc. That said, in order to localize
a robot in some specific map, this map must have been
previously built, for instance, using some SLAM technique.
Nevertheless, when we are dealing with localization in indoor
environments, often there are maps of the environment al-
ready available in the form of floor plans. Floor plans are not
perfect representations of the real environments, due to the
absence of objects such as furniture that impact the sensors
observations. Still, they describe the complete structure of
environments, serving as good representations of them.

†Institute of Informatics, Universidade Federal do Rio
Grande do Sul, Porto Alegre, Brazil rqmaffei,
dpittol, mathias.fassini, prestes,
mariana.kolberg@inf.ufrgs.br

This study was financed in part by the Brazilian National Council for
Scientific and Technological Development (CNPq) and by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) -
Finance Code 001.

In recent years, many localization approaches use floor
plans as reference input [3]–[6]. Among them is Ribacki et
al.’s approach [6], which is based on the concept of Free-
Space Density (FSD) [7]. The FSD of a given position
in space is a measure of the free-space surrounding such
position computed using a circular kernel. For instance, wide
regions (e.g. middle of large rooms) have high FSD values,
while narrow regions (e.g. small corridors, places near cor-
ners of rooms) have low FSD values. The value depends
on the selected kernel radius, but usually a radius of couple
meters is a safe choice for domestic scenarios [7]. Due to its
conciseness, FSD is suitable for efficient queries, and applied
in MCL it is able to handle a large number of particles
very fast. Additionally, FSD describes a characteristic of
a given region which is the same regardless the sensors
used. Thus, it is applicable with different sensors, such as
laser rangefinders [7] and omnidirectional cameras capturing
ceiling images [6].

In this paper we propose a localization strategy based
on free-space density for a robot equipped with RGB-D
cameras. This type of sensor provides data in the form of
dense 3D point clouds, which is much more information than
what was dealt with in previous FSD works. However a large
part of such information is associated with objects that are
not present in the reference map, which needs to be taken
into account. The main contributions of this paper are:

• A strategy to compute FSD from dense 3D point clouds
that seeks to minimize the effect of objects that are
absent in the reference map.

• A modification to FSD, called Interval FSD, that
determines the uncertainty of the FSD value in interval
form and makes the technique more robust.

The method was evaluated in multi-cameras and single-
camera scenarios of a robot moving in different domestic
environments. Our code is available online1.

This paper is organized as follows. Section II presents
relevant work on the localization problem. Sections III and
IV present the proposed approach and experimental results.
Section V presents conclusion and future work.

II. RELATED WORK

Robot localization is a widely studied problem and since
the seminal work of Dellaert et al. [2], several localization
approaches were proposed based on Monte Carlo Localiza-
tion. It is possible to find approaches for robots with different

1https://github.com/phir2-lab/fsd_localization

renan
Typewriter
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating newcollective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.�https://doi.org/10.1109/IROS45743.2020.9340642

renan
Note
@INPROCEEDINGS{9340642,
 author={Maffei, Renan and Pittol, Diego and Mantelli, Mathias and Prestes, Edson and Kolberg, Mariana},
 booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
 title={Global Localization Over 2D Floor Plans with Free-Space Density Based on Depth Information},
 year={2020},
 volume={},
 number={},
 pages={4609-4614},
 doi={10.1109/IROS45743.2020.9340642}}

https://github.com/phir2-lab/fsd_localization

sensors like laser rangefinders, monocular cameras, or RGB-
D cameras.

Boniardi et al. [8] used a LiDAR sensor and proposed a
scan-to-map-matching method to online augment a 2D floor
plan with 3D information extracted from a pose-graph-based
SLAM. However, their approach not intent to solve the global
localization problem and need a known coarse start pose.
Later, Boniardi et al. [5] extended [8] to handle both static
and changing environments in long-term localization.

Winterhalter et al. [3] localize a Google Tango tablet in a
2D floor plan map. The device provided the visual-inertial
odometry, and the similarity between the observation and
the map is computed using a subset of RGB-D measures
randomly selected. Fang et al. [9] focused on the 3D local-
ization problem in visually degraded environments using an
RGB-D camera. They proposed a 6DoF odometry estimation
method, and 6DoF Localization based on MCL, to localize
the robot in a given 3D global map.

The RGB-D MCL method proposed by Ito et al. [4]
uses the WiFi signal strength to estimate a coarse initial
distribution, removing ambiguities. Then, they extract planes
from the point cloud and project them down onto the 2D floor
plan. Fallon et al. [10] proposed to generate a simplified 3D
map composed of large planar segments, such as walls and
ceilings, in a preliminary mapping step. Then, the likelihood
of each particle is evaluated comparing the downsampled
RGB-D image with each particle’s prediction of the scene,
synthesized using a GPU to run in real-time. Biswas et
al. [11] introduced the Fast Sampling Plane Filtering algo-
rithm that samples the depth image to produce a set of points
corresponding to planes, significantly reducing the amount of
data to be processed. Then, these points are matched against
the lines in the 2D floor plan.

Boniardi et al. [12] proposed a monocular localization
system that employs a CNN to predict the room layout edges
from the image. Then, an MCL was used to localize the
robot, comparing these edges with those inferred from the
2D floor plan. A 3D metrical point cloud obtained from a
monocular visual SLAM was used by Chu et al. [13] to
extract information about doors, architectural lines, and the
observed free space, incorporating them into the observation
model. Mendez et al. [14] extracted semantic information
from RGB images by processing them with a CNN. They
proposed a sensor model to MCL that rely on likelihood
fields computed for walls, doors, and windows. A similar
approach, but without semantics, was proposed by Merriuax
et al. [15] that extended the likelihood field to 3D based only
in the obstacles, and used it in the observation model.

III. LOCALIZATION IN 2D FLOOR PLANS USING
FREE-SPACE DENSITY BASED ON DEPTH INFORMATION

A. Free-space density (FSD)

The proposed method relies on the concept of Free Space
Density (FSD) [7], which is a kernel density estimate of the
amount of free space around a given position of a grid map.

0.0 1.0

A B C DE F G

B

G

A

D

C

F

E

(a) Examples of FSD values
min max

0.0 1.0

(b) FSD field

Fig. 1: Free-space density computed over a gridmap. (a) The
colored regions show the cells inside a circular kernel that are
visible from its center, placed at different positions. (b) The FSD
values of all cells of the gridmap are illustrated by different colors
going from dark red (Ψ = 0) to dark blue (Ψ = 1).

The FSD (Ψ) of a region centered at cell m0 is a real
value between 0 and 1 that can be computed as follows

Ψ(m0) =
∑
mi

s(mi,m0)K(||mi −m0||) (1)

where K(.) is a circular kernel profile2, mi is a cell limited
by the kernel radius and

s(mi,m0) =

 1 , if mi is a free-space cell
and visible from m0

0 , otherwise
(2)

The value of FSD is independent of orientation, which
means that every position in a given 2D grid map is as-
sociated to only one FSD value. Fig. 1a shows examples
of FSD values computed in different positions of a map,
considering a circular kernel of 1.5m radius. In wide areas
such as position G, the FSD value is near the maximum (1.0)
because the whole circular kernel is applied over free space
cells; on the other hand, in narrow regions such as A and B,
the FSD value is much smaller. Fig. 1b shows the resulting
FSD field computed over the grid map.

The cost of computing FSD in a given position of a grid
map is proportional to the kernel radius (kr), because, at the
most, it requires checking the visibility of all cells inside
the kernel. This can be done performing a raycast from the
kernel center to all border cells3, stopping at obstacles.

However, the fact that FSD is just a single value favors
pre-caching, differently from approaches with more complex
observation models, in which pre-caching can be high costly
in terms of memory requirements or only small parts of the
process can be pre-computed. This is particularly suitable for
particle filters, because the process of particles’ weighting
(generally the costly step of the filter) becomes a single-
valued table look-up.

2In this work we simply use a Uniform kernel profile, but other profiles,
such as Gaussian, can be used to give more weight to cells near the center
of the kernel [6], [7].

3Considering that there are 2πkr = O(kr) border cells, and a single
raycast operation is O(kr), the cost of the FSD computation is O(k2r).

The map of the environment is obtained from a 2D floor
plan such as in [3], [6]. For each dataset tested, a 2D grid
map is built defining as obstacles the cells associated to walls
(with the exception of internal doorways); as unknown, the
cells outside the map; and as free-space, the remaining cells.
The FSD field map is computed over all free-space cells prior
the start of the localization process.

B. Computing FSD from camera depth information

Since FSD describes a basic spatial characteristic of envi-
ronment regions, the FSD map (i.e., the one with reference
values used to evaluate the robot observations) is always
computed the same way, independent from the type of robot
sensors. This is the case for robots equipped with 2D laser
rangefinders [7], with omnidirectional cameras [6], or, for
instance, with RGB-D cameras, as proposed in this paper.
On the other hand, computing the FSD based on the actual
robot observations changes according to the sensor used.

Computing FSD from camera depth data takes five steps:
1) Horizontal downsampling of the depth data;
2) Projection of selected measurements over a 2D plane;
3) Filtering max ranges in each projected direction;
4) Updating local grid map with filtered measurements;
5) Computing FSD on local grid map.

Note that this algorithm can be applied for any type of 3D
point cloud, since it does not use color information, but only
positional information.

The first step, i.e. downsampling the depth data infor-
mation, is not mandatory, but gives a great contribution to
reduce the processing cost. Since the method deals with a 2D
floor plan, the downsampling is made by selecting horizontal
slices of the depth data, to cover more area with less points.
Fig. 2c shows an example of a downsampled point cloud,
generated from the camera image in Fig. 2a, in comparison
with the full point cloud shown in Fig. 2b.

In the second step, the selected measurements are pro-
jected from 3D to 2D. Then, during the third step, we
filter the measurements by keeping only the one with the
maximum projected range, among all that happen in the
same orientation4. The goal is to ignore dynamic obstacles,
by keeping only the measurements associated with static
obstacles, like walls, that ideally are the maximum ranges
measured indoor. Of course, this is not true when the robot
senses through windows or in front of mirrored surfaces, but
in general it is shown to be a good strategy. We also keep
only measurements of points above 0.5m and below 2.5m to
remove detected measurements of the floor and the ceiling.

The fourth step is updating a local grid map with the
filtered ranges. Like [7], we update the grid map using the
HIMM method [16]. Also, we reset all cells with a distance at
least 2×Kr from the robot position to avoid inconsistencies
from past observations. Fig. 2d shows an example of map
update, where the updated cells are highlighted in pink.
Finally, the fifth step is computing the FSD, as defined in
section III-A, by applying a circular kernel of radius Kr over

4For this, we discretize the orientations in steps of 1◦.

(a) (b) (c)

(d) (e)

Fig. 2: FSD obtained from camera depth information. (a) Camera
image. (b) Full point cloud obtained from depth data. (c) Downsam-
pled point cloud. (d) Update of local grid map with the maximum
projected measured ranges. (e) Visible free-space cells used for FSD
computation.

the grid and counting all visible free-space cells inside it, as
shown in Fig. 2e.

C. Interval FSD

An issue about comparing free-space densities from a map
known a priori and a local map that is being built during
runtime, is that, depending on the sequence of observations
made by the robot, the local map may look very different
while not fully completed, thus the computed FSD value may
vary. A fully completed local map is a grid with no reachable
unknown cells5 inside the kernel. In previous works [7], the
FSD is considered undefined in situations like that, and the
weighting+resampling steps of the localization process are
momentarily suspended, causing an increase of uncertainty.

Nonetheless, we can estimate an interval of possible FSD
values considering the current local map. In the worst case,
this interval encompasses all values from 0 to 1, and the FSD
will be undefined just like in [7]. Fortunately, this interval is
generally smaller. Given the example in Fig. 3, the minimum
possible FSD value is the current FSD considering the known
free-space, which usually is larger than 0. The maximum
possible FSD value must be computed with the maximum
possible visible free-space cells inside the kernel, which is
the sum of current visible free-space cells and the current
visible unknown cells, as shown in Fig. 3b. Commonly,
after the initial moments when the robot enters a room, the
amount of unknown cells surrounding the robot pose tends
to decrease fast, thus most of the time the interval of possible
FSD values is small.

According to interval arithmetics definitions [17], we
define the Interval FSD, [Ψ(m0)], of a region centered at

5That is, no unknown cells neighboring free-space cells inside the kernel.

(a) (b)

1.0

0.0

(c)

Fig. 3: Interval FSD. (a) Local map with known free-space (white),
known obstacles (black), unknown cells (gray). (b) Minimum
visible free-space inside kernel (yellow) and maximum possible
free-space (blue). (c) True FSD value computed in the reference
map (pointed by green arrow) is inside the interval of FSD values.

cell m0, as follows

[Ψ(m0)] =
[

Ψ(m0) , Ψ(m0)
]

= {Ψ ∈ R |Ψ(m0) ≤ Ψ ≤ Ψ(m0)} (3)

where the infimum Ψ(m0) of the interval corresponds to the
definition of the FSD in Eq. 1, that is Ψ(m0) = Ψ(m0); and
the supremum Ψ(m0) of the interval is

Ψ(m0) =
∑
mi

sunk(mi,m0)K(||mi −m0||), (4)

with

sunk(mi,m0) =

 1 , if mi is a free-space or unknown
cell and visible from m0

0 , otherwise
(5)

D. Monte Carlo Localization using Interval FSD

A popular solution for the global localization problem, in
which the initial pose of a robot inside a known environment
is unknown, is the Monte Carlo Localization (MCL) [2]. In
MCL, the posterior distribution of the robot pose is estimated
with a set of weighted particles that are updated in a process
of sampling, importance weighting and resampling. The steps
of sampling and weighting depend on the robot motion model
and the measurement model, respectively. In this work, we
use a traditional odometry-based motion model [1], while
the observation model is based on Interval FSD values.

At instant t, the weight of the i-th particle, p[i]
t , is defined

as

w(p
[i]
t) =

1 , if Ψ(m

[i]
t) ∈ [Ψ(mr

t)]

fΨ(Ψ(m
[i]
t),Ψ(mr

t)) , if Ψ(m
[i]
t) > Ψ(mr

t)

fΨ(Ψ(m
[i]
t),Ψ(mr

t)) , if Ψ(m
[i]
t) < Ψ(mr

t)

(6)
where Ψ(mr

t) is the Interval FSD computed at the local
map given the current observations, Ψ(m

[i]
t) is the FSD at

the particle position, and fΨ is the following function,

fΨ(Ψa,Ψb) = 1.0− min(|Ψa −Ψb|,∆Ψ)

∆Ψ
, (7)

alma-s1

rx2-s1

pare-s1 anto-s1

2m

2m

start
end

Fig. 4: Maps and trajectories of the four tested scenarios from the
Robot@home dataset [18]. pare-s1: area 10.2×10.3m2, path length
43.2m; alma-s1: area 8.2 × 6.6m2, path length 39.9m; anto-s1:
area 8.7 × 12.4m2, path length 43.7m; rx2-s1: area 5.7 × 6.1m2,
path length 15.7m.

with ∆Ψ being the difference between the maximum and
minimum FSD values in the reference map. In short, particles
with FSD value inside the boundaries of the computed
Interval FSD receive the maximum weight; the remaining
particles are weighted in function of the distance to the
nearest interval boundary – the smallest the difference, the
higher the particle’s weight.

IV. EXPERIMENTS

The experimental validation was made using the
Robot@home dataset [18] produced by researchers from the
Univ. of Malaga. They used a mobile robot equipped with
five sensors in parallel to the ground: a 2D laser range finder
near the ground and four RGB-D cameras with orientations
(yaw) of −45◦, 0◦, 45◦, 90◦. Four domestic scenarios6,
described in Fig. 4, were selected to evaluate our work. The
ground truth of the robot pose and the odometry were not
directly available, and thus were respectively generated using
SLAM and scan matching techniques7. For each scenario, we
performed two types of tests: multi-camera (using the four
RGB-D cameras) and single-camera (using only the RGB-D
camera facing forward).

We compared our proposal (Interval FSD) to other five
approaches of particles weighting: Cloud Likelihood - scan
matching between K random measurements8 from the point
cloud, analyzing beam endpoints using a likelihood map, as
used in [3]; Cloud Raycast - similar to the previous method,
but performing raycasting to obtain more precise results;
Laser - scan matching using the 2D laser readings; Pure
Motion (no observation model) - only removing particles
that go over obstacles or outside the map; and Absolute
FSD - using in all situations the FSD considering only
the known free-space. All experiments were performed in
a notebook with 16GB and an i7 processor, using ROS

6The Robot@home dataset contains a fifth scenario, but collected with a
very low framerate that prevents its use in our application.

7The floor plan for each environment was manually generated over a
gridmap created by a laser-based SLAM, along with depth information from
the 3D point cloud. The package developed for this is available at
https://github.com/phir2-lab/robotathome_at_ros

8We selected K=100 random measurements in the experiments.

https://github.com/phir2-lab/robotathome_at_ros

Multi Camera

0 10 20 30 40
Path distance (m)

0

1

2

3

4

5

6

7
Er

ro
r (

m
)

(a) alma-s1

0 10 20 30 40
Path distance (m)

0

1

2

3

4

5

6

7

8

9

Er
ro

r (
m

)
(b) anto-s1

0 10 20 30 40
Path distance (m)

0
1
2
3
4
5
6
7
8
9

10
11

Er
ro

r (
m

)

(c) pare-s1

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Path distance (m)

0

1

2

3

4

Er
ro

r (
m

)

(d) rx2-s1

Single Camera

0 10 20 30 40
Path distance (m)

0

1

2

3

4

5

6

7

Er
ro

r (
m

)

(e) alma-s1

0 10 20 30 40
Path distance (m)

0

1

2

3

4

5

6

7

8

9

Er
ro

r (
m

)

(f) anto-s1

0 10 20 30 40
Path distance (m)

0
1
2
3
4
5
6
7
8
9

10
11

Er
ro

r (
m

)

(g) pare-s1

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Path distance (m)

0

1

2

3

4

Er
ro

r (
m

)

(h) rx2-s1
Absolute FSD
Interval FSD

Cloud Likelihood

Cloud Raycast

Laser

Pure Motion

Fig. 5: Mean Particle Error in all experiments.

kinetic (the datasets were converted to the ROS format). Each
configuration was run 10 times using 20000 particles.

Fig. 5 and Table I present a summary of the results. Fig. 5
shows the evolution of the weighted mean error of the
particles position, while Table I analyze other metrics: the
succeed distance, i.e., the total distance from the start that
the robot traveled until the convergence9 of the particle filter;
the mean position error after convergence; the final mean
error; and the mean time per iteration of the particle filter.

In general, the Interval FSD was the only method that
converged in all datasets. The Absolute FSD converged in
all multi-camera experiments, but suffered in the single-
camera scenarios. This is expected because multiple cameras
covers a large part of the surroundings of the robot, quickly
leaving little unknown space in the local map centered at the
robot position. In such cases, the Absolute and the Interval
FSD behave very similarly. On the other hand, with a single
camera the FSD intervals can be quite large when the robot
enters a new room, which explains the poor results of the
Absolute FSD in datasets such as pare-s1.

The approaches based on scan matching behaved well in
the rx2-s1 dataset, the simplest one. In fact, in such dataset
both approaches - Cloud Likelihood and Cloud Raycast -
converged much faster than FSD. However, they diverged
on the other three datasets. The main problem of such

9We consider convergence when the error becomes smaller than 1m, and
does not exceed this value until the end of the trajectory.

approaches is that by choosing random measurements from
the point cloud there is a high risk of making bad selections
(i.e. measurements of furniture, movable objects), and bad
weighting processes make the filter eliminate too much
viable hypotheses over time. As shown in the experiments,
when the real environment can be quite different from the
reference map (like domestic environments) it is interesting
to use conservative approaches, such as the Interval FSD.

Regarding the methods that do not use RGB-D informa-
tion, the scan-matching of laser readings failed in all datasets,
because the observations made by the laser captured all kinds
of furniture (e.g. beds, couches, chairs), causing erroneous
weighting most of the time. On the other hand, pure motion
(i.e. only eliminating particles that go over walls) generally
works if odometry is good and the trajectory traversed by
the robot is not ambiguous. This is not the case in rx2-s1, in
which pure motion could not converge, but it is in the other
three datasets. The problem of such naive approach is that
the convergence generally takes longer to occur.

Finally, Table I also shows the mean time per iteration
obtained with the tested methods using the same amount of
particles (N=20000). Both types of FSD are very fast because
the weighting of a particle is basically a query of a single
value in memory. It is important to note that no optimization,
such as KLD, was implemented. Still, optimizations can
be added to the MCL algorithm to reduce the number of
particles, but in any case, the computational cost difference
of the particles weighting will be relatively maintained.

Dataset
alma-s1 anto-s1 pare-s1 rx2-s1Method

SucD PosEAC FErr SucD PosEAC FErr SucD PosEAC FErr SucD PosEAC FErr

Time per
iteration (s)

µ - - 3.36 - - 7.87 - - 3.71 - - 2.79 0.818Laser
σ - - 1.41 - - 2.86 - - 2.81 - - 1.10 0.304
µ 14.66 0.39 0.40 16.23 0.41 0.45 21.15 0.44 0.55 - - 1.33 0.062Pure Motion
σ 0.76 0.01 0.02 1.09 0.03 0.02 3.11 0.03 0.02 - - 0.04 0.008

Multi-camera
µ - - 3.01 - - 1.34 - - 7.45 3.43 0.36 0.79 0.605Cloud Likelihood
σ - - 1.41 - - 2.82 - - 2.58 0.33 0.01 0.10 0.079
µ - - 3.32 - - 1.61 - - 4.27 3.34 0.49 0.99 1.686Cloud Raycast
σ - - 1.55 - - 1.17 - - 1.69 1.09 0.03 0.28 0.321
µ 10.77 0.31 0.50 11.02 0.35 0.28 16.73 0.32 0.40 7.98 0.45 0.40 0.064Absolute FSD
σ 1.73 0.02 0.03 0.66 0.01 0.02 1.11 0.03 0.05 1.41 0.06 0.01 0.008
µ 11.01 0.29 0.51 11.45 0.35 0.29 14.34 0.35 0.42 10.2 0.35 0.39 0.065Interval FSD
σ 0.15 0.01 0.02 0.37 0.01 0.05 0.90 0.02 0.05 0.11 0.02 0.01 0.008

Single-camera
µ - - 3.94 - - 6.48 - - 8.24 - - 1.01 0.464Cloud Likelihood
σ - - 0.78 - - 1.09 - - 3.29 - - 0.05 0.097
µ - - 3.89 - - 1.47 - - 5.73 4.86 0.47 0.79 1.521Cloud Raycast
σ - - 3.36 - - 0.88 - - 1.66 2.94 0.07 0.09 0.296
µ - - 2.07 29.91 0.33 0.32 - - 6.27 9.67 0.44 0.59 0.088Absolute FSD
σ - - 2.23 0.45 0.03 0.02 - - 1.32 0.13 0.02 0.01 0.008
µ 11.16 0.34 0.38 9.51 0.40 0.33 18.59 0.41 0.91 10.04 0.36 0.47 0.088Interval FSD
σ 0.13 0.01 0.03 0.26 0.01 0.01 0.24 0.05 0.37 0.11 0.01 0.01 0.008

TABLE I: Experiment Results. SucD: succeed distance (m); PosEAC: Position error after convergence (m); FErr: Final error (m). SucD
and PosEAC only exist when FErr < 1m. Values in red: methods that did not converge. Bold: best results for each metric and dataset.

V. CONCLUSION

In this work, we present a localization strategy based on
Free-Space Density (FSD) computed from RGB-D images.
A robust way to compute spatial density from depth cloud
data is proposed, minimizing the effects of movable objects
in the environment. We also define an interval-based model
that bounds the uncertainty of FSD in incomplete maps. Tests
in domestic environments in single and multi-camera sce-
narios demonstrated the robustness of the proposed method.
Additionaly, MCL with FSD does not require parameter
tuning like other models10: the weights are given by direct
comparisons of FSD.

It is important to note that the proposed approach handles
well environments that contain unpredicted objects (which
may lead to failures of methods based on scan matching),
but it still needs to observe part of the structure of the envi-
ronment (e.g. walls), otherwise there is no way of matching
the FSD computed from observations and the reference FSD.

In the future, we plan to study other forms of computing
spatial density from different sensors and applications. There
is also the possibility of combining multiple kernels to
compute FSD, as proposed in [7]. With the Interval FSD, this
combination can be analyzed from the interval arithmetics
point of view.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2005.

[2] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localiza-
tion for mobile robots,” in Proc. of ICRA. IEEE, 1999, pp. 1322–1328.

[3] W. Winterhalter, F. Fleckenstein, B. Steder, L. Spinello, and W. Bur-
gard, “Accurate indoor localization for rgb-d smartphones and tablets
given 2d floor plans,” in Proc. of IROS, 2015, pp. 3138–3143.

10Except for the kernel radius, which is standard in all scenarios

[4] S. Ito, F. Endres, M. Kuderer, G. D. Tipaldi, C. Stachniss, and
W. Burgard, “W-rgb-d: Floor-plan-based indoor global localization
using a depth camera and wifi,” in ICRA. IEEE, 2014, pp. 417–
422.

[5] F. Boniardi, T. Caselitz, R. Kümmerle, and W. Burgard, “A pose graph-
based localization system for long-term navigation in cad floor plans,”
Robotics and Autonomous Systems, vol. 112, pp. 84–97, 2019.

[6] A. Ribacki, V. A. M. Jorge, M. Mantelli, R. Maffei, and E. Prestes,
“Vision-based global localization using ceiling space density,” in Proc.
of ICRA, 2018, pp. 3502–3507.

[7] R. Maffei, V. A. M. Jorge, V. F. Rey, M. Kolberg, and E. Prestes, “Fast
monte carlo localization using spatial density information,” in Proc.
of ICRA. IEEE, May 2015, pp. 6352–6358.

[8] F. Boniardi, T. Caselitz, R. Kümmerle, and W. Burgard, “Robust lidar-
based localization in architectural floor plans,” in Proc. of IROS, 2017,
pp. 3318–3324.

[9] Z. Fang and S. Scherer, “Real-time onboard 6dof localization of an
indoor mav in degraded visual environments using a rgb-d camera,”
in Proc. of ICRA. IEEE, 2015, pp. 5253–5259.

[10] M. F. Fallon, H. Johannsson, and J. J. Leonard, “Efficient scene
simulation for robust monte carlo localization using an rgb-d camera,”
in Proc. of ICRA, 2012, pp. 1663–1670.

[11] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot
localization and navigation,” in Proc. of ICRA. IEEE, 2012, pp.
1697–1702.

[12] F. Boniardi, A. Valada, R. Mohan, T. Caselitz, and W. Burgard,
“Robot localization in floor plans using a room layout edge extraction
network,” in Proc. of IROS. IEEE, 2019, pp. 5291–5297.

[13] H. Chu, D. Ki Kim, and T. Chen, “You are here: Mimicking the human
thinking process in reading floor-plans,” in Proc. of ICCV. IEEE,
2015, pp. 2210–2218.

[14] O. Mendez, S. Hadfield, N. Pugeault, and R. Bowden, “Sedar -
semantic detection and ranging: Humans can localise without lidar,
can robots?” in Proc. of ICRA, 2018, pp. 6053–6060.

[15] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier,
“Robust robot localization in a complex oil and gas industrial en-
vironment,” J. of Field Robotics, vol. 35, no. 2, pp. 213–230, 2018.

[16] J. Borenstein and Y. Koren, “Histogramic in-motion mapping for
mobile robot obstacle avoidance,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 4, pp. 535–539, Aug 1991.

[17] L. Jaulin, M. Kieffer, O. Didrit, and É. Walter, Applied Interval
Analysis. London: Springer, 2001.

[18] J. R. Ruiz-Sarmiento, C. Galindo, and J. González-Jiménez,
“Robot@home, a robotic dataset for semantic mapping of home
environments,” International Journal of Robotics Research, 2017.

	Introduction
	Related Work
	Localization in 2D floor plans using free-space density based on depth information
	Free-space density (FSD)
	Computing FSD from camera depth information
	Interval FSD
	Monte Carlo Localization using Interval FSD

	Experiments
	Conclusion
	References

