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Abstract— We present c-M2DP, a fast global point cloud
descriptor that combines color and shape information, and
perform loop closure detection using it. Our approach extends
the M2DP descriptor by incorporating color information. Along
with M2DP shape signatures, we compute color signatures from
multiple 2D projections of a point cloud. Then, a compact de-
scriptor is computed by using SVD to reduce its dimensionality.
We performed experiments on public available datasets using
both camera-LIDAR fusion and stereo depth estimation. Our
results show an overall accuracy improvement over M2DP while
maintaining efficiency, and are competitive in comparison with
another color and shape descriptor.

I. INTRODUCTION

The recognition of previously visited places by a robot
is an important task for Simultaneous Localization and
Mapping (SLAM) algorithms. Also known as loop closure
detection, this subject draws much attention as robots can
operate over long distances, requiring drift correction [1].

While there is a significant amount of visual based meth-
ods exploiting 2D camera features to accomplish loop closure
detection [2]–[4], few approaches employ 3D sensor readings
such as LIDAR or stereo cameras. Spatial data captured from
these sensors are often used to generate point clouds such as
Fig. 1-b, enabling more descriptive scenes than using only
2D cameras. Besides, many of the current 3D sensors are also
equipped with means to acquire color data from the scene,
that can be used to generate colored point clouds, as seen in
Fig. 1-c. Nevertheless, loop closure detection techniques that
consider both shape and color information from the scene
still have not received much attention, despite their potential
for improving accuracy.

Typical methods for loop closure detection in point cloud
sequences employ a similarity measure, that can be obtained
through different matching approaches. Local methods can
operate around keypoints detected in the point cloud, com-
puting characteristics from each keypoint local neighborhood
to build feature descriptors [5], [6]. However, keypoint re-
peatability, time efficiency and local descriptiveness are still
struggling issues for local methods. In comparison, global
methods represent the entire cloud geometry into a single
descriptor [7]–[9], reducing dimensionality and improving
time efficiency. Nevertheless, invariance and relative transfor-
mation between point clouds can be challenging to achieve
for global methods. Moreover, there are approaches that seek
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(a) 2D image.

(b) 3D point cloud.

(c) 3D point cloud with color data.

Fig. 1: Comparison between different sensor readings.
Color data provide more descriptive point clouds.

a compromise between local and global features by using
hybrid descriptors, or doing offline vector quantization of
local descriptors for a 3D bag-of-words [10]. Other point
cloud matching alternatives can also use specific shapes [11]
or objects [12], often requiring segmentation steps, offline
classifier training, object recognition, and/or controlled envi-
ronments to operate.

Recently, He et al. (2016) [9] proposed the global point
cloud descriptor Multiview 2D Projection (M2DP), and
applied it to a LIDAR based loop closure detection ap-
proach. The M2DP descriptor outperforms other state-of-
the-art global point cloud descriptors by both accuracy and
efficiency. Its time performance is achieved by avoiding to
perform point cloud analysis in 3D space, which is often
done using surface normals that are costly to compute for
large clouds. Built using only geometric information, the
descriptor is computed by projecting different viewpoints
of a point cloud into 2D planes, obtaining multiple spatial
density distributions. These distributions are in turn singular
value decomposed (SVD), with the first left and right singular
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vectors being used as the descriptor.
Motivated by the reported improvements of adding color

information to other 3D descriptors [13]–[15], in this work
we propose to extend the M2DP descriptor by incorporating
color data in order to improve its accuracy during loop
closure detection. Along with the shape data, color distri-
butions are computed from multiple 2D projections of the
point cloud. These color distributions are concatenated with
the shape signatures. Then, we follow the same steps from
M2DP to reduce dimensionality, employing SVD to obtain
a compact signature and use it as our final descriptor.

The main contributions of this work are:
• Color M2DP (c-M2DP), a global descriptor comprising

of color and shape data computed from the point cloud;
• An improved loop closure detection using the fast c-

M2DP descriptor on point cloud sequences, which were
generated either by employing camera-LIDAR fusion
or by depth estimation from stereo, both from publicly
available outdoor datasets.

This paper is structured as follows: Section II presents a
brief overview of the related work, while Section III details
the c-M2DP descriptor. Section IV presents an evaluation of
c-M2DP, with experimental results of it being applied to loop
closure detection, followed by our conclusions in Section V.

II. RELATED WORK
Often used to perform point cloud matching, global and

local descriptors employ different approaches to describe a
scene, such as surface normals, point locations and other
computed shape properties. These descriptors can be applied
on many tasks, such as loop closure detection and object
recognition applications.

In general, loop closure detection methods employ a sim-
ilarity measure, computed between point cloud descriptors
from different scenes, to identify previously visited places.
For instance, the 3D Gestalt [16] is a local descriptor
proposed for detecting loop closures in LIDAR based point
clouds. Keypoints are randomly selected from a downsam-
pled point cloud. Bins are generated by splitting a plane
using radial and azimuthal divisions. Then, both mean and
variance height from the points are computed within each
bin. Inspired by 3D Gestalt, the Neighbor-binary landmark
density (NBLD) [17] is a local descriptor for sparse point
clouds also proposed for loop closure detection. Instead of
heights, NBLD measure point density within bins, generated
through radial, azimuthal and vertical splits of a cylinder
support around each landmark.

Point cloud descriptors can also be used to recognize ob-
jects. For instance, the Viewpoint Feature Histogram (VFH)
[7] is a global descriptor proposed for object recognition.
It is a histogram built using the angles between estimated
normals and the centroid direction, not considering point
locations. However, VFH may be subject to ambiguities
between surface normals of different point clouds. Also pro-
posed for object recognition, the Ensemble of Shapes (ESF)
[8] is a global descriptor designed for dense point clouds
captured through RGB-D sensors. ESF uses a voxel grid to

approximate surfaces from the point cloud. Then, it iterates
over point samples of the grid to compute shape angles,
distances and areas. Also worth mentioning, the Signature of
Histograms of Orientations (SHOT) [6] is a local descriptor
proposed to perform surface matching. SHOT generate bins
by splitting a sphere around each keypoint. Then, a histogram
of surface normals for each bin is computed.

Recently, descriptor approaches that use both color and
shape data have been drawing more attention. An exten-
sion of SHOT that combines color data with the original
shape descriptor is proposed in [13]. Dubbed as Color-
SHOT (CSHOT), it computes the sum of absolute differences
between CIELab triplets. The Colored Histograms of Spatial
Concentric Surflet-Pairs (CoSPAIR) [15] is a local descriptor
proposed for object recognition, also built using shape and
color. CoSPAIR splits its local support in multiple concentric
spheres. Histograms of surface normals angular relations
and CIELab channels are computed for each sphere. Recent
descriptors specifically designed for RGB-D sensors also
combine color and shape. For instance, the Local Ordinal
Intensity and Normal Descriptor (LOIND) [14], compute
the surface normals angular relations inside a support circle
around the detected keypoints, while also computing inten-
sity in pixel distributions of 2D circle patches.

As reported in [13]–[15], incorporating color can increase
descriptiveness, which improves accuracy on point cloud
matching. However, detecting loop closures using descrip-
tors that combine color and shape is still an insufficiently
investigated topic. In the following section we propose an
extension to incorporate color into the M2DP descriptor [9],
and then apply it to loop closure detection.

III. C-M2DP ALGORITHM

The M2DP descriptor represents a point cloud with a
compact signature, computed using shape data captured from
multiple 2D projected viewpoints of the point cloud. We refer
the reader to [9] for more details of its original structure. Our
proposal is to extend its design by incorporating computed
color histograms along with extracted shape signatures of the
point cloud. With the c-M2DP descriptor we aim to maintain
efficiency while increasing descriptiveness, by exploiting the
color information available in the point cloud.

We follow the original M2DP algorithm to produce a
shape signature of the input point cloud. Then, we add steps
to capture color information and incorporate it within the
descriptor. Multiple 2D planes are generated using distinct
b azimuth angles [0, πb , 2

π
b , . . . , π], and q elevation angles

[0, π2q , 2
π
2q , . . . ,

π
2 ], up to a total of b×q. We project an input

point cloud P onto each 2D plane X , and build a signature
matrix A by deriving a shape signature sX and a color
signature cX from each projection PX . Then, we reduce the
dimensionality by employing singular value decomposition
(SVD) to obtain a compact signature. The first left and
right singular vectors of the signature matrix are used as
the c-M2DP descriptor.

Our first steps follow the original M2PD algorithm to en-
sure shift and rotation invariance for the c-M2DP descriptor.



We use the point cloud centroid (i.e. the mean point) as the
descriptor reference frame origin, and shift the point cloud
with a zero mean. Then, we perform principal component
analysis (PCA) on the points. We assume that each point
cloud has two dominant directions and use the first and
second principal components as both x-axis and y-axis of
the descriptor reference frame.

A. Shape Signature

We describe how a shape signature from each 2D pro-
jection is computed. In Fig. 2-a, an input point cloud P
is projected onto a 2D plane X . Centered at the origin,
X represents a viewpoint defined by the azimuth angle
θ and elevation angle φ parameters of the normal vector
m. The 2D plane is split into l concentric circles, with
radii [r, 22r, . . . , l2r] centered at the centroid. The distance
between the centroid and the farthest point of the cloud is
used as the maximum radius. Then, for every projection
PX , a shape signature sX is computed by dividing each
concentric circle in t bins indexed by the x-axis, followed
by the counting of points that lie inside each bin.

B. Color Signature

To incorporate color information in the signature vector,
we first compute a color histogram for each concentric circle,
dividing the h color channels in j bins. Then, we concatenate
these color histograms to generate a color signature vector
cX . Lastly, we augment the signature matrix A with con-
catenated sX and cX signatures, as shown in Fig. 2-c.

In Fig 2, we accomplish the proposed extension by in-
creasing the signature size and adding a couple of steps
to compute color signatures for each 2D projection. Our
approach aims to compute color histograms for each con-
centric circle of the 2D projection, instead of every shape
bin. Therefore, we avoid a large increase in dimensionality
while still capturing distinct color distributions for each 2D
projection. Although the original structure is modified by
the added steps to incorporate color, the M2DP design still
compute shape signatures at a low cost while capturing
intricate details of the point cloud.

IV. EXPERIMENTS

The proposed c-M2DP descriptor performance is evaluated
against the original M2DP through loop closure detection
experiments. Also, we chose to compare c-M2DP against
CSHOT [13] descriptor, which also combines shape and
color, due to its competitive results. Both the proposed c-
M2DP and the original M2DP are implemented in C++. We
also used the C++ implementation of CSHOT available in
the Point Cloud Library (PCL)1. We used a laptop equipped
with an Intel i7 quad-core 2.00 GHz CPU and 8 GB RAM
as our platform for running the experiments.

In order to compare the global method c-M2DP with the
local CSHOT descriptor, we used the whole point cloud as
support of the centroid to compute the CSHOT descriptor,

1http://pointclouds.org

(a) Project a point cloud on multiple 2D planes.

(b) Compute color histograms for each concentric circle.

(c) Concatenate shape and color signatures.

Fig. 2: Additional c-M2DP steps to compute a color
signature for each point cloud 2D projection.

instead of using the local support neighborhood of multiple
reference points.

A. Dataset Sequences

The experiments employed to evaluate our proposed
method were done using KITTI [18] dataset sequences. We
used the same 00, 05, 06 and 07 sequences that are used in
[9], as they are distinct trajectories through residential areas,
having different sizes and large loops. These sequences were
simultaneously captured using a variety of sensors, including
a Velodyne 360◦ FoV LIDAR and a stereo Point Grey Flea
color camera system, both being available synchronized at
10 Hz with rectified images.

For the first experiment, we performed an offline sensor
fusion between LIDAR and the left color camera to generate
color enriched point clouds of all sequences. Afterwards, for
the second experiment, we generated colored point clouds



through offline stereo depth estimation to be able to evaluate
the system with more noisy and dense data. We briefly
describe how these points clouds were generated:

1) Camera-LIDAR fusion: As the color cameras on KITTI
are only facing forward, we had to limit the 360◦ LIDAR
FoV. We selected only LIDAR 3D points that are in the FoV
of the left color camera and generated a point cloud. Using
the kitti lidar camera2 ROS package and the translation ma-
trix provided by KITTI, we converted the coordinate system
of the selected 3D points, projecting them into the 2D camera
image. Then, we used each 2D projected point to provide the
color value to their respective 3D point.

2) Stereo estimation: We generated point clouds with
color information using the stereo depth estimation tool of
the image undistort3 ROS package. Stereo camera images
are then provided as input for OpenCV4 StereoBM block
matching algorithm, used with the tool predefined parameters
for KITTI sequences.

B. Experiments Settings

The c-M2DP descriptor is computed for each point cloud
of the sequence. Then, using L2 norm on OpenCV Brute-
Force matching algorithm, loop closures are detected by
finding the most similar descriptors between the point clouds.
We follow [9] settings and exclude neighbors of the current
frame using a ±50 frames window size during the matching
process. A match is determined as a loop closure if it is under
a L2 distance threshold. We plotted precision-recall curves
by varying this threshold with the computed L2 distances
between c-M2DP descriptors of the whole sequence. To
evaluate the matching results as either correct or false, we
used the trajectory ground truth provided by KITTI. When
two point clouds are less than 10m from each other, we
consider them as a ground truth loop closure.

As shown on Table I, we adopted the parameter values
defined in [9] for both M2DP and c-M2DP descriptors. We
arbitrarily set the number of color bins for each channel as
the same of shape bins per circle j = t. We fixed h = 3 for
our experiments using RGB, HSV and CIELab color spaces.
The c-M2DP descriptor ended up as a vector with 576 in
size, compared to the original 192 of the M2DP descriptor,
and 1344 of the CSHOT descriptor.

TABLE I: M2DP and c-M2DP parameters

Parameter M2DP c-M2DP
Azimuth angles (b) 4 4

Elevation angles (q) 16 16

Concentric circles (l) 8 8

Shape bins (t) 16 16

Color bins (j) - 16

It is worth mentioning that for CSHOT and other methods
that require surface normals, a predefined radius is needed to

2https://github.com/LidarPerception/kitti lidar camera
3https://github.com/ethz-asl/image undistort
4https://opencv.org/

estimate them. In general, this parameter needs proper tuning
for the point clouds, in order to achieve a balance between the
estimated normals accuracy and the method efficiency. We
adopted the same 5×w used in [9] for this radius parameter.
Where w is the point cloud resolution of the first frame of
the sequence, calculated by averaging the distances between
each point and its nearest neighbor.

C. Color Spaces

In Fig. 3 we plotted the loop closure detection results using
c-M2DP with the RGB, HSV and CIELab color spaces. The
KITTI06 sequence with camera-LIDAR based point clouds
was used. While using RGB, the c-M2DP descriptor achieved
82.5% recall at precision 100% against 71.4% of HSV and
49.8% of CIELab. Therefore, we adopted the RGB color
space to be used for the c-M2DP descriptor.
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Fig. 3: Precision-recall curves on KITTI06 camera-LIDAR
point clouds, using c-M2DP with different color spaces.

D. Precision-recall Curves

We plotted precision-recall curves and present the recall
rates at 100% precision tables with the overall performance
of each descriptor. Comparing recall rates at 100% precision
is important for loop closure detection methods, as any false
positive results in an incorrect loop closure. A false loop
closure can lead a SLAM system into a irrecoverable state
due to its effects on map building.

At first, we used the point cloud sequences generated
with camera-LIDAR fusion. As expected, using a forward
facing LIDAR reduced the descriptors overall accuracy, in
comparison to the same KITTI sequences in [9] with 360◦

FoV. The precision-recall curves are plotted in Fig. 4, while
recall rates at 100% precision are shown in Table II.

TABLE II: Recall at 100% precision on KITTI
camera-LIDAR based point clouds

Sequence M2DP Ours CSHOT
KITTI00 0.574303 0.673295 0.791549

KITTI05 0.408935 0.708861 0.708108

KITTI06 0.668122 0.824701 0.818898

KITTI07 0 0.101695 0.169492

In general, c-M2DP results with camera-LIDAR point
clouds shows a significant improvement over the original



(a) KITTI00
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(b) KITTI05
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(c) KITTI06
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(d) KITTI07
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Fig. 4: Precision-recall curves on KITTI camera-LIDAR
based point clouds.

M2DP descriptor. On KITTI05, c-M2DP shows a recall of
70.9% with no false positives against only 40.9% of M2DP.
Also, on the challenging KITTI07, M2DP failed by always
providing false positives. Competitive recall rates against the
CSHOT descriptor are achieved by c-M2DP on KITTI06,
with a higher recall of 82.5% at 100% precision. However,
CSHOT shows better recall rates on KITTI00 and KITTI07.
On KITTI05 both c-M2DP and CSHOT present a recall of
70.9% and 70.8%, respectively.

We used point cloud sequences generated by stereo depth
estimation in our second experiment. In Fig. 5 we plotted
precision-recall curves, and in Table III recall rates at 100%
precision are shown.

TABLE III: Recall at 100% precision on KITTI stereo
based point clouds

Sequence M2DP Ours CSHOT
KITTI00 0.269663 0.697466 0.709402

KITTI05 0.353425 0.692308 0.778539

KITTI06 0.227488 0.502075 0.822835

KITTI07 0.158537 0.372340 0.442105

The more dense and noisy point clouds were challenging
for M2DP and c-M2DP. Still, the addition of color informa-
tion has shown a significant improvement of c-M2DP over
the original M2DP. On KITTI00, c-M2DP shows a recall
of 69.8% at 100% precision against only 27% of M2DP.
However, the competing CSHOT descriptor shows better
results in all sequences, with 82.3% recall at 100% precision
in comparison to only 50.2% of c-M2DP on KITTI06. Also,
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(b) KITTI05
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(d) KITTI07
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Fig. 5: Precision-recall curves on KITTI stereo based point
clouds.

in comparison to overall results on KITTI07 using camera-
LIDAR based point clouds, stereo based clouds enabled
better recall rates for all descriptors.

E. Time Efficiency

Maintaining a good balance between accuracy and effi-
ciency when detecting loop closures is a challenging task for
any point cloud descriptor approach. During our experiments
on KITTI05, we recorded the time spent to compute each
descriptor and the search time spent on the matching process.
In Table IV we present the average times spent on these
tasks. Table IV-a shows the results when using point clouds
generated through camera-LIDAR fusion, and Table IV-b
when using point clouds generated through stereo depth
estimation.

TABLE IV: Average times in seconds to compute a
descriptor and matching on KITTI05

(a) Camera-LIDAR based point clouds.

Descriptor Computing (s) Matching (s)
M2DP 0.0674± 0.0041 0.0043± 0.0004

Ours 0.0830± 0.0052 0.0051± 0.0006

CSHOT 0.1072± 0.0168 0.0059± 0.0005

(b) Stereo based point clouds.

Descriptor Computing (s) Matching (s)
M2DP 0.3584± 0.0816 0.0044± 0.0008

Ours 0.4259± 0.0956 0.0054± 0.0006

CSHOT 1.7711± 1.0159 0.0061± 0.0005



In our first experiment, despite the significant improve-
ment in accuracy of the c-M2DP descriptor over M2DP, the
average time to compute c-M2DP is only 23.2% higher. Also,
it is worth noting that c-M2DP average computing time is
22.6% faster than CSHOT, while achieving higher recall rates
at 100% precision on KITTI06, and competitive results on
the other sequences.

In our second experiment, an overall increase on average
times spent computing descriptor is seen in the more dense,
stereo based point clouds. Similar to the first experiment,
the c-M2DP descriptor accuracy outperforms M2DP, and its
average time to compute is only 18.8% higher. Also, it is
important to highlight that while the CSHOT recall rates at
100% precision are higher on all sequences, these results
came through a heavy computational burden. Estimating sur-
face normals for a large number of points is a costly process,
and often requires a downsampling of the point cloud risking
accuracy loss. This affected CSHOT significantly, with an
average time of ≈ 1.7711s against only ≈ 0.4259s taken by
c-M2DP, i.e. 315.9% higher.

V. CONCLUSIONS

In this paper we proposed the c-M2DP descriptor, an
extension of the global point cloud descriptor M2DP that
incorporate color information along its shape data. The c-
M2DP descriptor builds color signatures from multiple 2D
projections of a point cloud by computing and concatenating
color histograms, while maintaining M2DP’s efficient shape
signatures that are also computed from each 2D projection.
Then, through SVD, a compact descriptor is obtained by
concatenating the first left and right singular vectors.

We applied the c-M2DP descriptor to loop closure de-
tection and presented two experiments on the KITTI dataset
sequences, comparing its results with the M2DP and CSHOT
descriptors. These experiments were performed with point
cloud sequences generated either by camera-LIDAR fusion,
or by stereo depth estimation. The results on both exper-
iments presented an overall accuracy improvement of the
c-M2DP descriptor over the original M2DP. On camera-
LIDAR based point clouds, c-M2DP shows competitive
results with CSHOT while being faster to compute. However,
as expected, on stereo based point clouds CSHOT shows
higher accuracy at the cost of being several times slower
than c-M2DP. This occurs because CSHOT relies on surface
normals estimated beforehand, which is a costly process
when done with large amount of points, such as the stereo
based point clouds. Besides, CSHOT needs a properly tuned
radius parameter to be able to compute surface normals from
point clouds. On the other hand, the c-M2DP descriptor is
faster and smaller in size, not requiring surface normals by
using the same low cost spatial density distributions of the
original M2DP, along with the additional color histograms.

We intend to further investigate the c-M2DP descriptor
for loop closure detection using 360◦ camera-LIDAR based
point clouds. Also, future work can be done on evaluating
it with point clouds generated from other sensors, such as

RGB-D. Investigating its suitability for loop closure detec-
tion in different outdoors areas or indoor environments, can
also be interesting topics for future examination.
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