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Abstract— Unmanned Aerial Vehicles (UAVs) depend on
localization systems to safely and efficiently perform their tasks,
usually relying on GPS. However, this setup is not problem-
free, and having only one source of measurement may be
catastrophic to the UAVs’ operation. To avoid this kind of issue,
this paper proposes a visual UAV localization system as an
extra source of pose estimation in case of GPS malfunctioning.
The novelty of our system is its measurement model used
in the Monte Carlo Localization, which relies on a new
descriptor called NBD-BRIEF, based on the Nearest Building
Distance (NBD) information obtained at the vehicle position.
The building footprint is extracted from the UAV images using
a convolutional network. Such semantic information is more
stable and less sensitive to light and color changes, making the
method generally more robust than approaches purely based
on color matching. The experiments have shown that our NBD-
BRIEF descriptor performs better than competing approaches
to the same problem. And the results indicate that our visual
UAV localization system based on NBD-BRIEF can properly
estimate the UAV’s pose in three different flights, while other
localization methods we compared failed.

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have

dealt with many different tasks in robotics and automation.

Medical product transport [1], agriculture [2], and even Mars

exploration [3] are just a few examples of UAV deployments.

Across all applications, it is vital to precisely estimate the

UAV’s pose, mainly for the cases in which it is autonomously

operating. The majority of UAVs rely on their embedded

GPS sensor to estimate their position with the aid of the

global navigation satellite systems (GNSS). Even though

GNSS is widely used, issues in its signal, such as insta-

bility and multi-path propagation [4], [5], may increase the

uncertainty of the position estimation. Besides, UAVs can

be hijacked by spoofed GNSS signal [6], [7], which may be

catastrophic to the safety of the task.

Therefore, an alternative system is required as a redundant

source of pose estimation. Vision-based localization systems

are one of the most popular solutions to play the role of a

secondary pose estimation system when the GPS fails. Not

only are cameras more portable and have a lower cost when

compared with other solutions, such as laser rangefinders,

but visual localization techniques can also be used in various

situations.
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Fig. 1: Information about buildings in urban areas (b) tends to be
a more reliable source of information than pure visual information,
(a), which suffers variations due to changes in weather, season, etc.
However, such information ends up generating large homogeneous
regions, unduly increasing the similarity between different regions.
On the other hand, building proximity i.e. the distance to the nearest
building, (c), is a measure that varies along the environment and
can be used to improve the localization process. In (b), buildings
are represented with white pixels. In (c), the whiter a pixel is, the
further it is from the buildings’ edges.

Visual localization for UAVs is a challenging problem for

several reasons. The main ones are related to comparing

the UAV sensor readings, usually 2D images, and the map

of the environment, frequently a 2D satellite image. The

satellite image may be outdated concerning the flight date,

making the UAV images and the satellite map considerably

different. Besides, as the UAV flies outdoors during the pose

estimation, there may be illumination changes across the

sequence of UAV images or even perspective effects in the

buildings and high structures.

Couturier and Akhloufi [5] present an excellent overview

of several works on visual UAV localization in general and

discuss how they deal with the challenges of this problem.

Cited works [8], [9], [10] range from visual odometry that

tracks the UAV by the sequence of its images to feature-based

approaches that compare the UAV images against multiple

satellite image patches.

Among the methods based on matching satellite image

maps and UAV images, one that showed excellent robustness

was abBRIEF, proposed by Mantelli et al. [11]. The main

contribution of their work is a measurement model for

the Monte Carlo Localization (MCL) system using the so-

called abBRIEF descriptor, which extends the Binary Robust

Independent Elementary Features (BRIEF) descriptor [12].

Their experiments show that their system correctly estimates

the UAV’s pose in multiple flights and maps. However, the

weakness of their system is homogeneous areas, such as

forests and pastures. Since their abBRIEF descriptor relies on

the color information to compute the image signature, their



system cannot efficiently estimate the UAV’s pose when it

flies over a region represented mainly by a single color.

An alternative way of approaching the localization prob-

lem being less influenced by issues arising from color vari-

ations in the images, is the use of semantic information that

varies little over time, such as buildings, roads, among others.

Choi and Myung [13] proposed a visual UAV localization

system using buildings information obtained through image

segmentation, along with a concept called Building Ratio.

They compare the UAV image against patches of the map,

searching for possible matches. The system continues until

there is a convergence and the UAV position is estimated.

A weakness of the Building Ratio-based approach is that it

compresses the image information too much, which hinders

convergence in more complex environments. Additionally,

the experiments only considered flights at fixed heights.

Despite the valuable work proposed by the research com-

munity, there is still room for improvement in the field of

visual UAV localization. In this paper, we propose a new

vision-based UAV localization system that is based on a

less varied source of information than the pure colors of

an image. The presence of buildings in a given region of

an urban area tends to pass through far fewer changes than

purely visual information such as light, color, or vegetation of

the same area during the day, throughout the seasons, or over

the years. However, as illustrated in Fig. 1b, the information

of what is a building and what is not usually is not quite

descriptive due to its homogeneous nature; thus, our method

proposes using a measure of proximity to buildings, which

varies gradually between neighboring pixels, as shown in

Fig. 1c. Our main contributions are:

• NBD-BRIEF - an image descriptor based on the dis-

tances to the nearest buildings in the image;

• a visual UAV localization framework based on NBD-

BRIEF, that uses as input a reference map containing

building footprints, and RGB images taken by an UAV

and processed with a convolutional neural network to

classify building information.

This paper is organized as follows. Section II explores

the importance of a good measurement model for a UAV

localization system, giving a context of the importance of

MCL for visual UAV localization and the impact of different

ways of matching images. Section III details the proposed

approach. Section IV describes the experiments, and Section

V, the conclusion.

II. THE IMPORTANCE OF A GOOD MEASUREMENT MODEL

IN THE UAV LOCALIZATION PROBLEM

The general idea of MCL, widely used in localization

problems [14], is to spread particles (i.e., virtual copies of the

robot) on the environment map to perform the pose estima-

tion through a cycle of prediction and correction. A motion

model is used in the prediction step by moving the particles

according to the robot’s odometry information. Then, the

state is corrected using a measurement model, which com-

pares the robot’s sensor readings with the particles’ readings.

The more similar the particle’s readings are to the robot’s,

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

(e) Similarities between images using 3 different approaches

Fig. 2: Analysis of three different similarity measurements (Build-
ing Ratio, Binary-Input Brief and Building Distance) computed
between pairs of four images containing building information
(Images 1 to 4). The original images captured by the UAV are
shown in the background (darker colors). Still, only the building
information (pink) or its absence is used by the methods to compute
the similarities.
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Fig. 3: Different descriptors considering the building information
shown in (a): (b) Building ratio: density of building cells inside
a kernel (results with three different kernel sizes are shown); (c)
Binary-Input BRIEF (Building vs Non-building info): compar-
isons of binary values extracted from random pairs of points; and
(d) BRIEF w/ Building Distance info: likewise, but comparing
values of distance to borders of buildings.

the higher the particle’s weight required for sampling a new

set of particles. In the context of UAV localization, MCL

is one of the most popular algorithms [5], with a satellite

image as the reference map. Thus, the measurement model

must compare the image taken by the UAV with patches of

the reference map simulating the view of particles.

RGB images captured by a UAV contain a considerable

amount of information, representing the environment that the

UAV flies over. On the other hand, segmented images that

classify the environment according to only one class, such

as buildings, have two possible pixel values: true or false.

Thus, there is a trade-off between relying on information

susceptible to variations and not having enough information

to perform the image matching efficiently.

Fig. 2 shows the comparisons between different match-

ing strategies applied to binary images segmented as

building/non-building. Four images were chosen for testing

containing different configurations of buildings, highlighted

in pink. Three different approaches were tested matching all

pairs of images, with results shown in Fig. 2e. The selected

techniques are illustrated in Fig. 3, and described next.

The first strategy analyzed is the application of the Build-



ing Ratio concept [13], illustrated in Fig. 3b. It computes

a kernel density estimate indicating the ratio of an area

associated with buildings over the total area within a kernel

centered in the middle of the image1. It is possible to observe

in Fig. 2 that very different configurations of buildings have

similar building ratios because the space without buildings

in the images is much larger than the opposite. Therefore, it

is a strategy that serves to differentiate well only substantial

changes between regions.

The second strategy analyzed that we called Binary-Input

BRIEF and is illustrated in Fig. 3c, is a variation of the

abBRIEF matching algorithm [11], but using the binary

image of building classification as a source. The descriptor

is constructed by comparing pairs of random pixels within

the same image and establishing whether the first element of

the pair has a greater intensity than the second. To compare

two images, the descriptor is generated in each image, with

the same pairs of points, and the difference between the

descriptors is the similarity result. This type of strategy works

well for colored images [11], as any variations in colors

tend to be consistent within the image itself (e.g., everything

is brighter or with greater contrast). On the other hand, in

binary images, the regions are mostly homogeneous, so there

is a high chance that distinct pairs of points will generate the

same result. We can see that since most of every image does

not contain buildings, most of the pairs of points will tend to

have the same value, and the generated descriptors become

very similar.

Finally, the third strategy analyzed, illustrated in Fig. 3d,

is what we are proposing in this work: the use of proximity

to buildings instead of simply considering whether or not the

region is a building. The idea is that by using the proximity

to buildings data, i.e., the distance to the nearest building, we

have more information to use in the matching process while

ensuring that such information is as reliable as the original

binary image. With this strategy, the differences in the image-

matching result are much more pronounced, as shown in

Fig. 2e. For example, the image in Fig. 2a, which does not

contain buildings, becomes very different from the others.

Furthermore, even the three remaining images have a more

significant difference among them with this strategy than

evaluating them with the previous ones, which is excellent

for improving the quality of the localization estimate.

Compared to the previous descriptors, especially to the

first one, the distance-based descriptor is much more sen-

sitive, with the disadvantage of being less robust to noise.

However, this is a small drawback compared to the disad-

vantage of using so little information, like the other methods,

that could prevent successful localization.

III. PROPOSAL - LOCALIZATION USING BUILDINGS

PROXIMITY INFORMATION

A. Framework Overview

In this paper, we propose a global localization approach

using MCL, that compares images obtained by a UAV

1Kernels of different sizes can be used in parallel to obtain more
information. In the tests, three sizes were used, as suggested in [13].
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Fig. 4: Overview of the proposed framework. The distance trans-
form is applied in the segmented UAV image and in the reference
map, which is used in the MCL together with the odometry.

looking downward with a satellite image of the region where

the robot is located. The weighting step of the MCL2 is

based on constructing a BRIEF-based descriptor obtained

from images describing the proximity to buildings. Fig. 4

presents an overview of the proposed framework.

Fig. 5: Reference map, M, used in Flight 1. The building footprint
was extracted from Google Maps. Both segmented images in the
right column represent the same place on Earth. The difference is
that the upper image is a patch from M, whereas the lower one is
the segmented UAV image associated with the highlighted area of
the map.

The reference map, M, is a satellite image containing

information about buildings, which is later converted to

a map describing the proximity to buildings through the

application of a distance transform. M could be obtained

by segmenting areas associated with buildings in an RGB

satellite image; however, this step is unnecessary. Nowadays,

maps of building footprints are widely available in tools

like Google Maps and OpenStreetMap and are incredibly

detailed. In Fig. 5, we can see a satellite image with a

building footprint overlay, which has been retrieved from

Google Maps. The process is similar to the UAV Images;

however, the images must first be segmented to extract the

building information and converted to buildings proximity

information.

2The other MCL steps, such as resampling and sampling using the visual
odometry as input for the motion model, follow the implementation of MCL
using abBRIEF. For more details see [11].



B. Image segmentation

The first step of the proposed approach is to segment the

UAV images as building or non-building, done by a frame-

work based on the U-Net convolutional neural network [15].

Since the segmentation process is not a contribution of this

work, we have chosen one of the most popular and accurate

segmentation methods. U-Net comprises a contracting path

and a symmetric expanding path, in which it encodes and

decodes the features in a segmented image. The network we

use, [16], was pre-trained using a dataset [17] composed of

images from African cities and their infrastructure, building

footprint, and vegetation, which are similar to the regions

where our experiments were performed.

It is worth noting that even though the segmentation of

buildings may not be 100% accurate, which means that the

input information for the particle filter is not completely

reliable, small changes in the contours of the buildings

generate a small impact on the values of distances to the

nearest building. Of course, if there are serious errors in the

classification of buildings, or if the buildings present in the

reference map change in relation to the buildings observed by

the vehicle, the localization process will be harmed and may

fail. But this is an inherent problem of the localization task,

where observations are expected to match properly with the

available map. The particle filter is generally a successful

strategy when the differences between the expected and

observed information are small [5], [14].

C. Computing Nearest Building Distance

Segmented images are difficult to match, as shown in

Fig. 2. We propose using a modified version of the BRIEF

descriptor to improve the results. It uses information about

the distance to the nearest building edge, which is called

NBD-BRIEF.

First, the buildings’ edges are extracted from the seg-

mented image using the Canny edge detector [18], resulting

in an image I. Next, I is used to compute the euclidean

distance of a given pixel p to the nearest building edge,

given by

d(p, I) = min

{

min
q∈Ie

√

(pu − qu)2 + (pv − qv)2 , L

}

, (1)

where pu and pv are the coordinates of the pixel p, qu and qv
are the coordinates of an edge pixel q given the set of all edge

pixels Ie ⊆ I, and L is a maximum distance limit. Fig. 1c

presents an example of the resulting image by applying the

distance transform over all pixels of image I.

The maximum distance L is required because the UAV

only observes buildings inside its current field of view;

hence, an image without buildings has zero distance infor-

mation. This is not the case in the reference map, where

all buildings are known a priori. If there is no distance

limit, even regions far away from buildings will have distance

information in the reference map, leading to inconsistencies

against the descriptors computed on UAV images. In our

tests, the ideal limit for the distance transform in the UAV

images lies between 25% and 50% of the biggest image di-

mension (length or width). The limit in the map is multiplied

by an estimate of the scale between the map and the image,

which depends on the height of the UAV3.

In the NBD-BRIEF, a set of pixel pairs S = {s1, ..., sk}
are randomly selected over an image, where each pair s =
{x1,x2} ∈ S is composed of two random points. During the

selection, a Gaussian distribution is used in the image center

to minimize the effects of buildings suddenly appearing near

the edges of the image.

The binary feature vector B = (τ1, τ2, · · · , τk) describing

the NBD-BRIEF is composed by k binary comparisons τ .

Instead of comparing the intensity of two pixels, such as in

abBRIEF [11], we compare the distance of these pixels to

the nearest building edge, as given by

τ(I; s) =

{

1 : d(x1, I) < d(x2, I)
0 : otherwise

}

(2)

As in [11], the similarity of two images is given by

calculating each NBD-BRIEF image descriptor’s Hamming

distance (Hd). Finally, we model the observation likelihood

in the MCL with a zero-mean Gaussian distribution com-

puted in function of such distance,

p(It |x
[p]
t ,M) = N (Hd(Bt, B̂

[p]
t ), 0, σ), (3)

where Bt is the descriptor computed from the UAV image

It, B̂
[p]
t is the descriptor computed from the expected image

obtained from M associated to a particle in pose x
[p]
t , and

the deviation σ is an intrinsic noise parameter of the model4

IV. EXPERIMENTS

A. Setup

The experimental validation was made with three datasets

of flights taken by two UAV models equipped with GPS,

camera, and IMU in the state of Rio Grande do Sul, Brazil.

Figs. 6a, 6c, and 6e show the trajectories of the flights, and

further information about the flights is present in Table I.

TABLE I: Flights details

Flight 1 Flight 2 Flight 3

Location Arroio do Meio Arroio do Meio Porto Alegre
UAV DJI Phantom 3 DJI Matrice 100 DJI Matrice 100
Gimbal Yes No No
Flight time 358 s 290 s 306 s
Path dist. 1800 m 1120 m 1085 m
Map area 1.09 km² 0.81 km² 0.08 km²
Altitude 35m - 130m 35m - 180m 40m - 50m

The satellite images and building footprints used in our

experiments were taken from Googles Maps. We could have

used any other source of satellite images, but for the region

3Since the particle filter used in the MCL considers maximum and
minimum particle heights, we also can compute the maximum and minimum
scale difference (pixels × meter) between the reference map and UAV
images. During the experiments, we selected a fixed scale value from inside
such interval, as shown in Section IV, which proved to work well, despite
being an approximation.

4In our tests, we used σ as 15% of the maximum Hamming distance.



(a) Flight 1 Path (b) Flight 1 Results

(c) Flight 2 Path (d) Flight 2 Results

(e) Flight 3 Path (f) Flight 3 Results

Fig. 6: a, c, e: Maps and paths of the three flights used in the tests.
The white parts are the building footprints overlaying a satellite
image of the flight area. The flight starts on the red ’X’ and ends
in the yellow triangle. b, d, f: Comparisons of Mean Absolute
Error (MAE) obtained in the three tested scenarios. The error line
is drawn thicker when the particle filter converges to a single cluster.
Our method kept the MAE below the convergence threshold most
of the time. The abBRIEF performed well in Flight 1, while the
building ratio method achieved good results in Flight 2.

where the UAVs flew, Google Maps is the one that provides

the most detailed image in general. The maps are dated from

2021, and each flight was tested on only one map as older

building footprints are unavailable.

All three tests present challenges. The first test uses a

bigger reference map, and the third flight was recorded over

an area with far fewer buildings than the other two. Besides,

the second and the third flights have been recorded without

a gimbal, which messes with the visual odometry5.

In terms of comparisons with other approaches, we se-

lected the original abBRIEF work [11]; a variation of the

Building Ratio6 approach [13]; and Binary-Input (BI) BRIEF,

5As an illustration, although flights 1 and 2 pass over the same region,
due to the presence of a gimbal, that stabilizes the camera and facilitates
image matching, the visual odometry computed with images from Flight 1
presented an error 40% smaller than that of Flight 2.

6The original method [13] does not use a particle filter, but a completely
different location estimation framework, thus we only tested the impact of
the building ratio as a measurement model. The tested framework is the
same as ours, but applying the building ratio instead of the NBD-BRIEF.

TABLE II: Results of NBD-BRIEF with different distance limit

Metric

Distance Limit

L=80 L=100 L=120

F
li

g
h

t
1

MAE (m) 21.74 11.26 11.26

MAE Conv. (m) 20.04 9.16 8.74

Proper Conv. (%) 92.21 95.19 94.92
Wrong Conv. (%) 0 0.02 0

No conv. (%) 7.79 4.79 5.08

F
li

g
h

t
2

MAE (m) 61.32 61.48 62.59
MAE Conv. (m) 59.02 57.57 57.75
Proper Conv. (%) 71.35 71.75 71.02
Wrong Conv. (%) 1.04 1.04 0.90

No conv. (%) 27.61 27.21 28.08

F
li

g
h

t
3

MAE (m) 17.49 17.15 15.68

MAE Conv. (m) 10.00 10.84 10.81
Proper Conv. (%) 57.35 56.81 58.02

Wrong Conv. (%) 4.97 4.34 3.88

No conv. (%) 37.68 38.85 38.01

the same variation of abBRIEF discussed in Section II, which

uses directly the segmented images, instead of the original

colored ones. The abBRIEF was tested with images in the

RGB color space, as in [11]. For the modified versions using

Building Ratio and BI-BRIEF, we used the UAV segmented

images and the reference map containing buildings infor-

mation (the same used in our method before applying the

distance transform).

All experiments were made with images captured at 1

FPS, 50.000 particles in the MCL, and 30 runs for each

configuration, as same as done by Mantelli et al. [11]. The

ground truth used for evaluation was directly obtained from

the GPS coordinates during flights.

B. Results

As our work is based on MCL, the localization of the UAV

is complete after the particles converge. We consider that the

particles converge when the distance error is lower than 10%

of the reference map size.

In the first set of tests, we evaluate our method with three

different limits for the distance transform: 80, 100, and 120

pixels. Table II presents the results of Mean Absolute Error

(MAE), Mean Absolute Error after convergence, and the

percentages of proper, wrong, and no convergence during

the length of the runs. We can see that the variation of the

parameter L generally does not imply large variations in

the results, which is good because it shows that the method

can work with robustness keeping the parameter fixed, even

knowing that the height of the UAV varies during flights.

This happens because the method does not need to know the

exact distance from a point to a building, which would be

a measure that depends on the current scale of the image,

and, consequently, the exact UAV’s height. On the contrary,

it is enough to know if the point is closer to the building

than another point in the same image, and this relation of

magnitude between the distances is maintained even if the

scale is somewhat wrong (ensuring that the distance limit

is sufficiently large). That said, L=100 and L=120 had a

slightly better performance than L=80; thus, we fixed L as



TABLE III: Comparisons with other methods

Metric

Methods

BI-
BRIEF

Building
Ratio

abBRIEF
Ours

L=100

F
li

g
h

t
1

MAE (m) 263.37 372.49 39.09 11.26

MAE Conv. (m) – – 30.75 9.16

Proper Conv. (%) 0 4.49 84.96 95.19

Wrong Conv. (%) 0 5.19 0.56 0.02
No conv. (%) 100 90.32 14.48 4.79

F
li

g
h

t
2

MAE (m) 160.36 105.46 336.27 61.48

MAE Conv. (m) – 66.55 – 57.57

Proper Conv. (%) 0 46.21 0.26 71.75

Wrong Conv. (%) 0 3.50 0.62 1.04
No conv. (%) 100 50.29 99.12 27.21

F
li

g
h

t
3

MAE (m) 86.15 333.00 107.13 17.15

MAE Conv. (m) – 16.26 – 10.84

Proper Conv. (%) 0 16.11 4.03 56.81

Wrong Conv. (%) 0 5.80 1.24 4.34
No conv. (%) 100 78.09 94.73 38.85

100 to compare with other methods.

The comparisons of our method, BI-BRIEF, Building

Ratio, and abBRIEF are shown in Table III. Our method

performed better than the three other methods in all three

scenarios. Our method achieved an error of 9.16 meters in

the first flight, against 39.09 meters from abBRIEF, the only

of the three other methods with good convergence. This was

the same dataset used by Mantelli et al. in [11], so abBRIEF

was expected to work well. In the second and third flights,

our method had an error of 8.98 meters and 5.42 meters,

respectively, much lower than the other methods.

Fig. 6 shows the MAE of the four methods in the three

tested scenarios. In Flight 1, our method achieved conver-

gence earlier than the abBRIEF method and sustained a low

error along the trajectory. The abBRIEF method significantly

increased the error after around 300s of the flight, where a

patch of vegetation changes colors throughout the seasons.

The earliest convergence was also achieved by our method

in the second flight. In this scenario, the building ratio

method and ours kept the MAE below the convergence

threshold most of the time, but in some areas with a low

number of buildings, the error increased above the threshold.

In the third flight, the building ratio method converged

before our method, but it got lost by around 100s of the flight,

while ours kept the error below 20 meters most of the time. It

is worth mentioning that Flight 3 is the most difficult dataset,

as a large part of the flight takes place over homogeneous

areas without buildings, so these sections lack information

to maintain an adequate pose estimate. Even so, the NBD-

BRIEF is the only method that maintains convergence most

of the time.

V. CONCLUSION

This paper proposes a novel descriptor called NBD-BRIEF

(nearest building distance BRIEF) for use in the visual UAV

localization problem. We tested our proposal in challenging

scenarios, with traveled distances always superior to 1km and

altitudes varying from 35m to 180m – situations in which

virtually no other tested approach works consistently well.

Our proposed method obtained low average error throughout

the experiments. In all tests, our method outperformed the

competing approaches, such as the abBRIEF method, the one

which inspired us to do the current work.

In the proposed strategy, we used only information about

proximity to buildings, which proved to be suitable for

applications in urban regions. Nonetheless, as we can see

in Flight 3, the low building count in some scenarios can

be a problem. In future work, we intend to investigate the

use of other semantic classes, such as roads and high or low

vegetation. Using more classes could improve localization

and diminish the dependency on just one type of information.
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Vargas, “The use of unmanned aerial vehicles and wireless sensor
network in agricultural applications,” in 2012 IEEE International

Geoscience and Remote Sensing Symposium, 2012, pp. 5045–5048.
[3] J. G. Serna, F. Vanegas, F. Gonzalez, and D. Flannery, “A review

of current approaches for uav autonomous mission planning for mars
biosignatures detection,” in IEEE Aerospace Conf., 2020, pp. 1–15.

[4] F. Caballero, L. Merino, J. Ferruz, and A. Ollero, “Improving vision-
based planar motion estimation for unmanned aerial vehicles through
online mosaicing,” in 2006 IEEE ICRA. IEEE, 2006, pp. 2860–2865.

[5] A. Couturier and M. A. Akhloufi, “A review on absolute visual
localization for uav,” Robotics and Autonomous Systems, vol. 135,
p. 103666, 2021.

[6] A. Viswanathan, B. R. Pires, and D. Huber, “Vision-based robot
localization across seasons and in remote locations,” in IEEE ICRA.
IEEE, 2016, pp. 4815–4821.

[7] G. Conte and P. Doherty, “An integrated uav navigation system based
on aerial image matching,” in Aerospace Conf. IEEE, 2008, pp. 1–10.

[8] M. Shan, F. Wang, F. Lin, Z. Gao, Y. Z. Tang, and B. M. Chen,
“Google map aided visual navigation for uavs in gps-denied environ-
ment,” in 2015 IEEE ROBIO, 2015, pp. 114–119.

[9] A. L. Majdik, D. Verda, Y. Albers-Schoenberg, and D. Scaramuzza,
“Air-ground matching: Appearance-based gps-denied urban localiza-
tion of micro aerial vehicles,” Journal of Field Robotics, vol. 32, no. 7,
pp. 1015–1039, 2015.

[10] S. H. Choi and C. G. Park, “Image-based monte-carlo localization with
information allocation logic to mitigate shadow effect,” IEEE Access,
vol. 8, pp. 213 447–213 459, 2020.

[11] M. Mantelli, D. Pittol, R. Neuland, A. Ribacki, R. Maffei, V. Jorge,
E. Prestes, and M. Kolberg, “A novel measurement model based on
abbrief for global localization of a uav over satellite images,” Robotics

and Autonomous Systems, vol. 112, pp. 304–319, 2019.
[12] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust

independent elementary features,” in Computer Vision – ECCV 2010,
K. Daniilidis, P. Maragos, and N. Paragios, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 778–792.

[13] J. Choi and H. Myung, “Brm localization: Uav localization in gnss-
denied environments based on matching of numerical map and uav
images,” in IEEE/RSJ IROS 2020, 2020, pp. 4537–4544.

[14] S. Thrun, “Probabilistic robotics,” Commun. ACM, vol. 45, no. 3, p.
52–57, mar 2002.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in MICCAI 2015,
N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham:
Springer, 2015, pp. 234–241.

[16] DrivenData, “Open cities ai challenge: Segmenting buildings
for disaster resilience,” https://github.com/drivendataorg/
open-cities-ai-challenge/, 2020, accessed: 2021-07-29.

[17] GFDRR Labs, “Open cities ai challenge dataset, version 1.0,” Radiant
MLHub https://doi.org/10.34911/rdnt.f94cxb, 2020, accessed: 2021-
07-29.

[18] J. Canny, “A computational approach to edge detection,” Transac. on

pattern analysis and machine intelligence, no. 6, pp. 679–698, 1986.

https://github.com/drivendataorg/open-cities-ai-challenge/
https://github.com/drivendataorg/open-cities-ai-challenge/
https://doi.org/10.34911/rdnt.f94cxb

